
- 1 -

new velocity( graphs included)

October 10, 2002

Please Do Not Quote

           

 

        The Mathematical Decomposition of the Transactions Velocity of Money *

                               Hakun Kim **

                         Professor of Economics

                        Department of Economics

                            Yonsei University

                          Seoul, 120-749, Korea

                                         

  

*  The Bank of Korea financially supported this paper.

** The author wishes to express his gratitudes to Dr. Thomas Humphrey in the Federal  

   Reserve Bank of Richmond for his valuable comments. 



- 2 -

(i)  Name of the Author : Hakun KIM

(ii) Title of the Paper : The Mathematical Decomposition of the Transactions Velocity   

                         of Money

(iii) Mailing Address : Hakun KIM

                      Professor of Economics

     (Office)          Department of Economics

                      College of Economics and Business

                      Yonsei University

                      134 Shinchon-dong, Seodaemun-ku

                      Seoul, 120-749, Korea

                      Tel) 02-2123-2472

                      email : hakun@base.yonsei.ac.kr

     (Home)          # 1101 (House Number)

                      101 Dong (Building Number)

                      Namgazwa Hyundai Apartment Complex

                      376 Namgazwa-dong ,  Seodaemun-ku

                      Seoul, 120-758, Korea 

                      Tel and Fax) 02-376-2445  

(iv) Abstract : This paper is an attempt to decompose the average transactions velocity 

of money into two or more individual velocities. When the economy-wide velocity is 

expressed as a weighted average of two disaggregated velocities, this provides an 

equation with two unknowns. The additional equation can be created from the concept 

of two versions of the exchange equations; the Fisherian and Cambridge equation. The 

former represents the Fisherian problem, while the latter the Marshallian problem. Their 

integration furnishes us with the second equation to solve the system.

(v)  Key Words : velocity indifference curve, iso-velocity line, transactions time 

indifference curve, iso-transaction time line, law of equal marginal velocities per dollar, 

Fisherian space, Marshallian space, Hicks strong parallel movement effect, Hicks strong 

substitution effect, Hicks weak parallel movement effect, Hicks weak substitution effect

(vi) JEL Classification : E4, G2



- 3 -

I. Introduction

   The purpose of this paper is to decompose the economy-wide average transactions 

velocity of money into different sectoral velocities. It is true that sectoral money and its 

velocity are determined in the general equilibrium framework, but one may find the 

framework not useful for the decomposition unless he/she knows the sectoral money 

supply mechanism. The decomposition adopted in this paper is, therefore, a purely 

mathematical process without any economic assumption. 

   As Keynes (1930) points out, the importances of finding disaggregate velocities and 

monies is clear. For example, the sectoral velocities might fluctuate but offset each other 

leaving the weighted average velocity stable, and vice versa. Observing the latter only 

would lead to the erroneous conclusion regarding the underlying sectoral activities. One 

would think of an immediate application to a country's annual series of real and 

financial transactions. From the macroeconomic point of view, the knowledge of financial 

and real velocities over time would be critically important in explaining the episode like 

the great velocity decline. The velocity series for real income process would provide 

clues on the short-run and long-run effects of monetary policy.

   Despite its importance, the decomposition has no place in modern economic analysis 

even though it attracted some interest in the decades before 1940. As Cramer (1989) 

observes, "very few people care." In recent years, Humphrey (1993)  is the only one 

who shows in the theoretical level his interest in it by introducing Petty's (1662) 

decomposition, while Selden (1961), McGouldrick (1962), Garvey (1969), and Ireland 

(1991) discuss sectoral velocities in the empirical level.1)  Nevertheless, the 

decomposition problem will be a subject of high-level theory and policy concern for at 

least three main reasons.

   First, much of the literature has discussed aggregation problems of micro-level 

magnitudes. On the contrary, the decomposition of the transaction velocity of money 

presented in this paper would provide the general method for the reverse process that 

any aggregate measure may be disaggregated into sub-level components with limited 

information.

   Second, one may find the decomposition useful in analysing the effect of the newly 

born euro on each member country's holdings and its velocity after the European 

monetary union is fully launched. Miller (1979) gives us the impression that identifying 

U. S. regional monies and their velocities would assist the U. S. monetary authorities to 

allocate the limited amount of available credit more effectively.

   Third, evolution of private and public payment arrangement due to the recent 

development of electronic technologies has very different impacts on different sectors 

and regions in substantial levels. Weinberg (1994) discusses this change, saying, "In 

check processing, renewed growth has occurred in the activities of clearinghouses on 

1) I am indebted these references to Dr. Thomas Humphrey in the Federal Reserve Bank of 

Richmond.
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local, regional and, most recently, national levels" (p.2).  It was only 1984 when Tobin 

(1984) reports that the GNP velocity of the money stock in the US is 6 or 7 per year. 

If financial transactions are included, the turnover may be 20 or 30 per year. But 

demand deposits turn over 500 times a year, 2500 times in New York banks, indicating 

that most transactions are financial in nature. Compare these figures in 1984 with those 

of the Bank for International Settlements report in 1996. In the United States, roughly 

220 million market transactions are made without cash daily, with a total dollar value of 

$1.6 trillion; a tremendous increase in velocity in credit transactions. In 10 years, 

improvements in computer and telecommunications technologies facilitate the speed and 

reliability particularly in credit transactions area.

   This paper has as its starting point Fisher's 1911 transactions velocity function. We 

could divide all transactions into those related to the level of national income and other 

financial transactions. The equation may be expressed as :

   MV  = T
Y   +  TF                                                       (1)

where M  and V  are nominal stock of money and its velocity, and TY  and TF  are 

nominal values of real and financial transaction volumes, respectively. The emphasis on 

the real economic activities would transform the right-hand side into just the nominal 

income and the transactions velocity in the left-hand side into the income velocity.

   The income velocity used in the literature, nominal income divided by a monetary 

aggregate, is simply the demand for money, which in turn originates from the exchange 

equation. Restricting the transactions to the income-generating process, economists have 

transformed the equation into the demand for real balances. When the restriction 

remains valid, that is, when there is a close and stable relation between the total 

volume of overall transactions and that of income-generating ones, the behavior of 

income velocity would depict the underlying theory of the exchange equation.

   The theoretical underpinning for advocating active monetary policies lies in the belief 

that the quantity of money bears a predictable relation with income and interest rates. 

The US's experiences in the 80's such as "the great velocity decline" and "missing 

money", however, have caused a havoc in the field of monetary macroeconomics. On one 

side, economists have enlisted a series of explanation defending the viability of the 

stable money demand or the predictable income velocity. The creation of interest-bearing 

demand deposits, the change in monetary operating procedures, and the occurrences of 

various financial innovations are a few examples. On the other hand, there has been a 

steady increase in the number of empirical studies demonstrating the nonstationarity of 

income velocity, particularly that of M1, hence casting a serious doubt on the efficacy of 

monetary policies.

   The left-hand side of equation (1) has also been studied in detail. Keynes (1930), 

following the earlier works by des Essars (1895), Fisher (1911), and Snyder (1924), 
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bisected MV  into M
YVY  and MFVF  where the superscripts denote different types of 

deposits (money) and their velocities as in equation (1). However, he rejected the idea 

of a constant relationship between the total stock of money M  and TY  and suggested 

a disaggregated analysis of income and financial velocity of money. He writes

  It is important, therefore, to distinguish between the 'average' velocity of money in    

  a variety of uses and the 'true' velocity of money in a particular use meaning by     

  the latter the ratio of the volume of a particular type of transactions to the quantity   

  of money employed in them, for fluctuations in `average' velocities may be due, not   

  to fluctuations in 'true' velocities, but to fluctuations in the relative importance of     

  different types of transactions. (Keynes, 1930, vol. II, p.38, quotations in original).

This statement may be expressed as a simple functional form by adopting Keynes' 

definition of the ‘true’ velocity VY  and VF  as T
Y

M
Y
 and T

F

M
F
, respectively, and 

introducing them into equation (1). Then, we have 

     MV  = M
Y
V
Y   + M

F
V
F                                                 (2)

which is equivalent to

     V   = m
Y VY   + ( 1-mY ) VF                                          (3)

where mY  = M
Y

M
.  In this sense, Keynes' statement amounts to the definition of the 

'average’ velocity V  expressed as the arithmetic mean of the 'true' velocity V
Y  and the 

'true' velocity VF. 

  The question is, of course, how to divide the 'average' velocity V  into the 'true' 

velocities. This division needs to be economically meaningful and statistically operative.  

Keynes' interest in the decomposition developed later into liquidity preference theory in 

which motives for holding real balances like speculative and transaction demand are 

conceptually important and attractive, but not available in each period for empirical 

analysis. Divisia index of Barnett (1980) and MQ  index of Spindt (1985) are two 

distantly related attempts to disaggregate the average use of money. However, their 

objective was to devise an alternative measure of weighted average of money, ranging 

from M1 to the total liquidity rather than individual money concepts within the 

aggregate measure of money and their velocities.  Despite these difficulties, there are 

studies on the velocity of cash balances (Fisher 1909, Snyder 1924, Laurent 1970, 

Cramer and Reekers 1976, Cramer 1981, Boeschoten and Fase 1984).  Cramer (1989) 

brilliantly summarizes the main troubles of the decomposition.



- 6 -

   This paper is an attempt to decompose the average velocity into two or more 

individual velocity sequences. It will be shown that the decomposition is a purely 

mathematical process without any economic implication and/or assumption. In practice, 

the decomposition depends on the nature and availability of actual transaction volumes. 

For example, it could be real versus financial transactions. We have approximate 

measures of actual income transactions and financial transactions of an economy during 

a period of time. This provides an equation with two unknowns, two sectoral velocities. 

The key identifying these two unknowns lies in the additional equation that can be 

generated from the concept of two versions of the exchange equation, the Fisherian and 

Cambridge equations. The former generates the Fisherian problem, while the latter the 

Marshallian problem. In essence, this adds another independent equation. The 

complication arises from the intricate additive relationships among transaction measures 

and the velocities. The algebraic derivation for the unique solution for individual 

velocities is simply the bifurcation process of the average velocity. In fact, this process 

can continue to any sub-level of transaction in a straightforward manner.

   

II. The Exchange Equations in the Fisherian Space

1. Basic Definitions

   Decomposing an economy into two sectors (or regions or industries, etc.), we start 

with an identity in each period

   

   A ≡ A 1 + A 2                                                              (4)

where A  , A 1  , and A 2  are total and two sectoral nominal transaction volumes in 

each period, respectively, which are observable. From the quantity of money aspect we 

may define

   M ≡ M 1 + M 2                                                              (5)

where M  is the total stock of money, M 1  is the quantity of money employed in the 

first sector, and M 2  is the quantity of money employed in the second sector. Following 

Keynes' definition (1930), we would distinguish between the 'average' velocity and the 

'true' velocities 

   V ≡
A
M

,    V 1 ≡
A 1
M 1

,      V 2 ≡
A 2
M 2

                                  (6)
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where V 1  is the first sector's 'true' velocity, V 2  is the second sector's 'true' velocity, 

and V  is the economy-wide overall 'average' velocity. All velocities are measured as the 

number of turnovers per unit of time. It may be convenient to name the expression (6) 

the Fisherian problem, where the i  sector's money Mi  and the i  sector's transaction 

volume Ai  are determined, as endogenous variables, in the general equilibrium system.

2. The Iso-velocity line 

   Substituting the Fisherian exchange equation (6) into the identity (4) would produce 

a straight line as follows :

   V = mV 1 + (1-m)V 2                                                     (7) 

where m  = M 1
M
, the first sector's money ratio.  Equation (7) is the same form as 

equation (3) that Keynes suggested with the statement that the economy's overall 

'average' velocity is the weighted 'arithmetic mean' of each sector's 'true' velocity, V 1  

and V 2  , where the weight m   should be, by definition, bounded as

    1 > m  > 0                                                               (8)

The geometrical expression of equation (7) is shown in Figure 1, which represents the 

Fisherian space. Not only V  but also m  is constant along the straight line V. 

Therefore, the location and slope of equation (7) depend upon V  and m  so that we 

would use the symbol V[m]  for the straight line and call it the iso-velocity line of V. 

                      Here is the place of <Figure 1>

        

3. The Velocity Indifference Curve

  Substituting (6) into (5) yields the second Fisherian equation :

   1
V
=

a
V 1
+
1-a
V 2

                                                       (9)

where a  = 
A 1
A
 the first sector's transaction ratio. This equation, a CES functional form 

with the elasticity of substitution being 1/2, forms the rectangular hyperbola V  in 

Figure 1, an indifference curve of velocity representing a constant level of V  in the 

( V 1, V 2  ) plane. Not only V   but also a  is constant along the indifference curve V.  
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Therefore, the location and curvature of the indifference curve depend upon V  and a  

so that we would denote it as V[a]  and name it the velocity indifference curve of V. 

It is interesting to note that equation (9), unlike equation (7), says that the economy's 

overall 'average' velocity V  is the weighted 'harmonic mean' of the sectoral 'true' 

velocities, where the weights are a  and 1- a  , respectively. The coordinates of its 

center are defined by OV  = [ aV, (1-a)V  ]. 

   The velocity indifference curve V[a]  meets the iso-velocity line V[m]  at point F  

and point E, defined by

     E  = (V, V ),           F  = ( am V,
1-a
1-m

V )                        (10)

These two solutions may be obtained by substituting the 'harmonic mean' in (9) into 

the 'arithmetic mean' in (7). Since it is likely that a  ≠ m  in general, the trivial 

solution E, situated on the 45 degree line in Figure 1,  would be ruled out and the 

solution F  is the 'true' solution. Then the 'true' velocities at point F  are characterized 

by

    V 1  ≠ V 2             as  a≠m                                     (11)

We now suppose that the economy is at point F, the precise location of which we are 

going to identify in the following by investigating the key properties of point F.

         

4. The Law of Equal Marginal Velocities

   The slope of the straight line connecting the center OV  and the point F  is equal to 

the absolute value of the slope of the slope, (- p  ), of a straight line tangent to the 

indifference curve V  at point F, which, in turn,  must equal the ratio of the marginal 

velocities2) at that point as follows :

   - p  = 
dV 2
dV 1 │

F

                                                           (12)

Then, at point F  the following condition holds from (9) and (12) :

   p =
a
1-a (

V 2
V 1 )

2

┃
F

                                                      (13)   

2) The marginal velocity with respect to time is sometimes called the accelerator. 



- 9 -

This is the equality of the rate of marginal velocity substitution of V 1  for V 2  and the 

absolute value of the slope p  at point F. If one would interpret the slope, (- p), as the 

ratio of the transaction costs of the two velocities, (-
p 1
p 2 ), another way of stating (13) 

is 

   
(
a

V
2
1 )
p 1

 = 
(
1-a

V
2
2 )
p 2

                                                      (14)

It follows from (14) that (13) may be called the law of equal marginal velocities per 

dollar at point F.  Since point F  may be defined by the slope, p,  we use the notation 

F[p]  as an indication of the point. It may be instructive to note that we are not 

necessarily required the optimization principle to obtain (13), but admit it as the 

mathematical definition of the slope at a point.

5. The Parallel Movement Effect

   Investigating the properties of point F  only is not sufficient for the decomposition. 

We need the comparative statics method that is the investigation of changes in a 

system from one situation of equilibrium to another without regard to the transitional 

process.3) The movement to point F  in the above may be considered as a composition 

of the parallel movement effect 4) and the substitution effect in the comparative statics 

sense. Suppose that the economy moves from a situation characterized by transactions 

{ C  , C 1  , C 2  } to another situation defined by transactions { A  , A 1  , A 2  } analyzed 

in the above. This arrangement gives us another definition of transactions in the 

comparative statics manner:

   C  = C 1  + C 2                                                              (15)

In order to exchange these transaction volumes, the economy needs the quantity of 

money in the economy-wide as well as in the sectoral levels:

   N  = N 1  + N 2                                                              (16)

It is also true that the first sector's money ratio N 1
N
 and the first sector's transaction 

3) Samuelson (1965), p.8.

4) This effect is equivalent to the income effect in Hicks sense.
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ratio C 1
C
 are determined in the general equilibrium system. It is the variety of velocities 

that would convert the quantity of money in (16) to the transaction volumes in (15) 

such that

   Z≡
C
N

 ,    Z 1≡
C 1
N 1

 ,     Z 2≡
C 2
N 2

                                     (17)

   Substituting the exchange equations (17) into (15) gives us a new iso-velocity line 

Z[n]  defined by

   Z = nZ 1 + (1-n)Z 2                                                       (18)

where n  = 
N 1
N
 the first sector's money ratio. This is another 'arithmetic mean' denoted 

by Z[n]. Figure 1 compares the iso-velocity line Z[ n  ] with the iso-velocity line 

V[m].

   In the similar manner, substituting (17) into (16) gives us another new indifference 

curve defined by

   1
Z
=

c
Z 1
+
1-c
Z 2

                                                      (19)

where c=
C 1
C

 the first sector's transaction ratio where c ≠ n  and 1≠c+n  in 

general. This is another 'harmonic mean' denoted by Z[c]. Figure 1 depicts equation 

(19) as the rectangular hyperbola Z[c], the coordinates of whose center is OZ  = 

[ cZ, (1-c)Z  ]. If V  > Z, the new indifference curve Z  is closer to the origin O  = 

(0, 0) than the old indifference curve V, and vice versa.  Figure 1 is, for convenience, 

drawn on the presumption that V  > Z. 

   The indifference curve  Z[ c  ] meets the iso-velocity curve Z[ n  ] at two points, 

point H  and point E  defined by

   E  = (Z, Z ),            H  = ( cn Z,
1-c
1-n

Z )                           (20)
 

These two solutions may be the result of substituting (18) into (19). Since it is also 

likely that c  ≠ n  in general,  the trivial solution E  would be ruled out and the point 

H  is the 'true' solution. Then the 'true' velocities at H  are
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   Z 1  ≠ Z 2                        c  ≠ n                                   (21)

Figure 1 shows the common coordinates for ( V 1  , V 2  ) and ( Z 1, Z 2  ) simultaneously. 

   The slope, (- p̂  ), of a straight line tangent to the indifference curve Z  at point H  

must equal the ratio of the marginal velocities as follows :

   - p̂  = 
dZ 2
dZ 1 │

H

                                                           (22)

Then, at point H  the following condition holds from (19) and (22) :

    p̂ =
c
1-c (

Z 2
Z 1 )

2

│
H

                                                    (23)

This is the equality of the rate of marginal velocity substitution of Z 1  for Z 2  and the 

absolute value of the slope p̂  at point H. Just as (13), this is also the law of equal 

marginal velocities per dollar at point H[ p̂ ].

   Suppose that the economy was located at point H[ p̂ ] on the old indifference curve 

Z[ c] right before it moved to point F[ p  ] on the new indifference curve V[ a  ]. The 

condition under which point F[ p  ] and point H[ p̂ ] have the identical slope is 

   p  = p̂                                                                     (24)

which is the definition of the parallel movement effect in the Fisherian space. 

6, The Substitution Effect

   The description of the parallel movement effect p= p̂   implies that point H[ p̂ ] is 

the intermediate point that completes the substitution effect and begins the parallel 

movement effect. Let us choose another point J  on the same old indifference curve Z

[ c], where the slope of the point J  is defined by po≠ p̂, and label the point as J[ po  ]. 

The fact that the two points J[p o ]  and H[ p̂ ]  are located on the same indifference 

curve Z[c]  verifies that the two points share the same average Z  and the same 

weight c  . Although their locations on the same indifference curve are different from 

each other, the coordinate of Z 1  of the point J[p o ]  is not the same as that of the point 

H[ p̂ ]  in accordance with the relation nZ 1= cZ   given by (20) so that the money ratio 



- 12 -

of point J[p o ]  , denoted by mo  , is different from the money ratio of point H[ p̂ ], 

denoted by n. Since the two points are not the same, mo≠n. As a result, we have 

another iso-velocity line, Z[mo ], connecting point J[ po] and point E, as follows: 

   Z = moZ 1 + (1-mo )Z 2  ,             mo≠n                              (25)

The dotted line, Z[mo ], in Figure 1 is equation (25). Since mo≠n  and mo ≠ m  and 

mo≠c, the iso-velocity line (25) is different from the iso-velocity line (18). This implies 

that Z[n]  and Z[mo ]  are completely different iso-velocity lines passing through the 

common indifference curve Z[c]  of (19). One of them, the new iso-velocity line Z[mo ]  

of (25), meets the indifference curve Z[c]  at two points; point E  and point J[p o ]  

   E  = (Z, Z ),           J  = ( cmo Z,
1-c
1-mo

Z )                          (26)
                                                          

This is equivalent to the result of substituting  (25) into (19). Point J[po]  is the 'true' 

solution.

7. Summary

   What we have investigated so far may be summarized as follows. The total effect of 

a change in the slope from po  to p  (≠ po  ) in the Fisherian space may be decomposed 

into the substitution effect from point J[ po] = ( cmo Z,
1-c
1-mo

Z )   to point H[ p̂  ] =

( cn Z,
1-c
1-n

Z )  along the same indifference curve Z[c]  with po  ≠ p̂  and the parallel 

movement effect from point H[ p̂ ] = ( cn Z,
1-c
1-n

Z )  on the old indifference curve Z[c]  to 

point F[ p] = ( am V,
1-a
1-m

V )   on the new indifference curve V[a]  with the condition that 

p̂= p. 5)   Point J[ po  ] may be labeled as the Fisherian initial point, point H[ p̂  ] as 

the Fisherian intermediate point, and point F[ p] as the Fisherian final point. 

III. The Exchange Equations in the Marshallian Space

   There are two approaches in explaining the quantity theory of money. The Fisherian 

5) Another way of stating the overall movement between the initial point and the final point 

is to define firstly the parallel movement between two different indifference curves and 

secondly the substitution effect along the same new indifference curve. This possibility 

will be discussed in footnote 14. 
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exchange equation and the Cambridge exchange equation.  The previous analysis has 

been conducted on the basis of the Fisherian equations (6) and (17), and the analysis 

has been labeled as the Fisherain problem for convenience. The Fisherain space is a 

two-dimensional space. This section is devoted to the same problem on the basis of the 

Cambridge (or Marshallian) equations and will be labeled as the Marshallian problem for 

convenience. The Marshallian space is also a two-dimensional space. This section 

inquires a question as to how the Marshallian space would reflect the Fisherian 

decomposition described in the above that the substitution effect moves the economy 

from the initial point J[ po  ] to the intermediate point H[ p̂ ] along the same indifference 

curve with po  ≠ p̂  and the parallel movement effect moves the economy further from 

the intermediate point H[ p̂ ] to the final point F[ p] on the different indifferent curve 

with the condition p̂= p  remaining unchanged. 

1. The Iso-transaction Time Line

   The velocity V  in the Fisherian equation indicates the number of turnovers per unit 

of time. Then, its inverse 1
V
 = k  (the Marshallian k  )  is defined as the time duration 

of the flows of goods and services money could purchase, for example, the average 

number of weeks or months income held in the form of money balances. Let us call it 

transactions time for convenience and its derivative the marginal transactions duration or 

time. We may use the definition of the variable transformation formula kV≡1  , 

k 1V 1≡1  , k 2V 2≡1  to convert the Fisherian equations (6) into the Marshallian 

equations (27) as follows :

   k ≡
M
A

 ,   k 1≡
M 1
A 1

 ,    k 2≡
M 2
A 2

                                (27) [= (6) ]

where (27)=(6) means they are arithmetically equivalent. Substituting (27) into (5) yields  

   k = ak 1 + (1-a)k 2                                                (28) [= (9) ]

According to (28), the average transactions time k  is the 'arithmetic mean' of the first 

sector's transaction time k 1  and the second sector's transaction time k 2  with the 

weight being a  and 1-a, respectively. Equation (28) may be labeled as the iso-time 

line of k, which is algebraically equivalent to the indifference curve of V  in (9) with 

the help of the variable transformation. Thus, the relationship between the Fisherian 

space and the Marshallian space is the 'harmonic mean' and 'arithmetic mean' relation 

algebraically and the curve  and line  relation geometrically. The iso-time line (28) is 
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labeled as k[ a] in Figure 2, which represents the Marshallian space. The iso-time line 

k[ a] in Figure 2 is the Marshallian image  of the Fisherian velocity indifference curve

V[ a] in Figure 1.

                 Here is the place of <Figure 2>

2. The Transaction Time Indifference Curve

   Let us substitute the Marshallian equation (27) into (4) to obtain the following 

rectangular hyperbola :

   1
k
=
m
k 1
+
1-m
k 2

                                                (29) [= (7) ]

Equation (29) is a rectangular hyperbola with the center Ok= [mk, (1-m)k ]  in the 

Marshallian coordinates of ( k 1, k 2  ), which may be obtained in an alternative way by 

transforming the iso-velocity line of V  in (7) in the Fisherian space of ( V 1, V 2  ). 

Thus (29)=(7). This is the case that the 'harmonic mean' in the Marshallian space 

becomes the 'arithmetic mean' in the Fisherian space. The harmonic mean (29) may be 

called the transactions time indifference curve and denoted by k[ m]. As expected, the 

time indifference curve k[m]  in Figure 2 is the Marshallian image  of the Fisherian 

iso-velocity line Z[m]  in Figure 1.

   Figure 2 shows that the indifference curve k[ m] and the iso-time line k[ a] meet at 

two points, point F ꠍ  and point E ꠍ. 

   E
ꠍ  = ( k , k ),    F

ꠍ  = ( ma k ,
1-m
1-a

k )                        (30) [= (10) ]

One may obtain the same result by substituting the arithmetic mean (28) into the 

harmonic mean (29). Since we can verify that E
ꠍ
E= I  and F

ꠍ
F= I, the Marshallian 

solution (30) is arithmetically equivalent to the Fisherian solution (10) and the point F ꠍ  

is the 'true' solution in the Marshallian space as much as the point F  is in the 

Fisherian space.

3. The Law of Equal Marginal Transactions Time

   Let us  take a close look at point F ꠍ  on the indifference curve k[ m]. The law of 

equal marginal transactions time is given from (29) as follows :
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   q =
m
1-m (

k 2
k 1 )

2

│
F ꠍ

                                                 (31)

where q  is the slope of the tangent line to the point F
ꠍ. The fact that 1≠ a+m   in 

general ensures that pq  ≠ 1 from (13) and (31). This implies that the law of equal 

marginal transactions time (31) is independent of the law of equal marginal transactions 

velocity (13). We denote point F ꠍ  as F ꠍ[q]. The Marshallian final point F ꠍ[q]  in 

Figure 2 is the Marshallian image of the Fisherian final point F[p]  in Figure 1.

4. The Parallel Movement Effect

   The previous section illustrates the properties of the Marshallian final point F
ꠍ
[q]  

in Figure 2, coupled with its image, the Fisherian final point F[ p] in Figure 1. The 

same manner would be applied to the investigation of the properties of the Marshallian 

intermediate point H ꠍ[ q̂ ]  in Figure 2 in comparison with its image, the Fisherian 

intermediate point H[ p̂  ] in Figure 1. With the aid of definitions ZK≡1  , Z 1K 1≡1  , 

and Z 2K 2≡1,  the Fisherian equations (17) may be transformed as follows:

   K ≡
N
C

 ,  K 1≡
N 1
C 1

 , K 2≡
N 2
C 2

                                (32) [= (17) ]

Substituting the Marshallian equations (32) into the definition (16) gives us  

   K = cK 1 + (1-c)K 2                                            (33) [= (19) ]

This is another iso-time line. Now substituting the Marshallian equations (32) into the 

definition (15) yields

   1
K
=

n
K 1

+
1-n
K 2

                                            (34) [= (18) ]

This is another transactions time indifference curve. Figure 2 shows both of the 

Marshallian coordinates ( k 1, k 2  ) and ( K 1, K 2  ) simultaneously. Since the harmonic 

mean expressed in (34) is characterized by K  and n,  it would be denoted by K[ n  ]. 

By the same manner the arithmetic mean (33) may be denoted by K[ c  ].  Z < V   in 

Figure 1 means that K  > k   in Figure 2. Hence, the location of k[ m  ] is closer to 

the origin O  = (0, 0) than the location of K[ n]. 
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   Substituting the arithmetic mean of (33) into the harmonic mean of (34) gives rise to 

two solutions.

   E ꠍ  = (K, K ),    H
ꠍ  = ( nc K ,

1-n
1-c

K )                     (35) [= (20) ]
                                                   

In Figure 2, the indifference curve K[ n] meets the iso-time line K[ c] at two points, 

point H
ꠍ  and point E

ꠍ.  One may verify that the Marshallian solution (35) is the 

image of the Fisherian solution (20) with the aid of E ꠍE= I  and H ꠍH= I.  Since n  

≠ c,  point H
ꠍ  in the Marshallian space is as 'true' a point as point H  in the 

Fisherian space.

   Let us consider point H ꠍ  on the indifference curve K[ n] as the true solution in the 

Marshallian space of Figure 2, and define q̂  as the slope of the tangent line to that 

point. Then, one may have the law of equal marginal transactions time from (34) as 

follows:

   q̂ =
n
1-n (

K 2
K 1 )

2

│
H ꠍ

                                                    (36)

The fact that 1≠c+n   in general ensures that 1≠ p̂ q̂   from (23) and (36), which 

implies independence between the law of equal marginal velocity (23) and the law of 

equal marginal time (36). Using q̂   at point H
ꠍ, we denote it as H

ꠍ[ q̂  ]. The point

H ꠍ[ q̂  ] in Figure 2 is the Marshallian intermediate point as the Marshallian image of 

the Fisherian intermediate point H[ p̂ ] in Figure 1 formed by the cross of the 

iso-velocity line Z[n]  and the velocity indifference curve Z[c].  The parallel movement 

effect in the Marshallian space may be also defined by the movement from the 

Marshallian intermediate point H ꠍ[ q̂ ]  to the Marshallian final point F ꠍ[q]  with the 

condition 

   q  = q̂                                                                     (37)

being held as much as the parallel movement effect in the Fisherian space is defined by 

the movement from the Fisherian intermediate point H[ p̂ ]  to the Fisherian final point 

F[p]  with the condition p  = p̂  being held in (24).

5. The Substitution Effect

   Final attention should be paid to the substitution effect in the Marshallian space for 
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completion. Let us investigate the location of the Marshallian initial point J ꠍ[ qo  ], the 

Marshallian image of the Fisherian initial point J[ po  ] expressed in (26). The Fisherian 

initial point J[p o ]  is the product of the intersection of the velocity indifference curve 

Z[c]  in (19) and the iso-velocity line Z[mo ]  in (25). This observation guarantees us 

that the Marshallian initial point J
ꠍ[ qo  ] must be located on the indifference curve 

K[mo ]  defined by

   1
K
=

mo
K 1

+
1-mo
K 2

                                          (38) [= (25) ]

which is transformed from the Fisherian iso-velocity line Z[mo ]  defined by (25). The 

indifference curve K[mo], defined by (38) and depicted as a dotted curve in Figure 2,  

is entirely different from the indifference curve K[n]  defined by (34) since the center 

of the indifference curve (38) is [ moK  , (1-mo )K  ], while the center of the 

indifference curve (34) is [ nK  , (1-n)K  ]. This is due to the fact that the weight n  

and the average transactions time K  creating the unique indifference curve K[n]  

makes  K[mo] ≠ K[ n].  In other words, the comparison of the  indifference   curve 

K[ mo  ] with the indifference curve K[ n  ] makes it possible that the two curves 

should meet once at the common point  E ꠍ  on the 45 degree line because of the same 

average transactions time K.  However, the overall curvatures are different within the 

entire range of the curves because of the different weights mo  ≠ n. As a result, it is 

impossible that the Marshallian initial point J ꠍ[ qo  ] is located on the same indifference 

curve K[ n  ] on which the Marshallian intermediate point  H ꠍ[ q̂ ]  is located.  Rather 

it is located on the different new indifference curve K[mo].  Thus the Marshallian 

initial point J ꠍ[ qo  ] is generated by the intersection of the new indifference curve K

[ mo] and the iso-time line K[c].  qo  is the slope of the tangent line to the 

indifference curve K[ mo] at the point J
ꠍ[ qo  ]. 

6. Summary

   The previous analysis ensures us the fact that the movement from the Marshallian 

initial point J
ꠍ[ qo  ] to the Marshallian intermediate point H ꠍ[ q̂ ]  is the exact duplicate 

of the movement from the Fisherian initial point J[ po  ] to the Fisherian intermediate 

point H[ p̂ ]. However, one important difference should be mentioned.  The movement 
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from the initial point J[ po] to the intermediate point H[ p̂ ]  along the "same velocity 

indifference curve" Z[c]  in the Fisherian space becomes the movement from the initial 

point J
ꠍ[ qo  ] to the intermediate point H ꠍ[ q̂ ]  along the "same iso-transaction time 

line" K[c ]  in the Marshallian space.  This result forces us to recognize the fact that it 

is impossible to define the co-existence of the substitution effect along the same 

indifference curve simultaneously in the Fisherian space as well as the Marshallian 

space.

Definition 1 : The Hicks strong substitution effect is the movement from the initial point 

to the intermediate point along the same indifference curve defined by the same 

parameter (weight) and the same magnitude (average) coupled with different slopes in 

both spaces.

IV. Impossibility of the Hicks Strong Substitution Effect and Strong Parallel Movement 

Effect 

1. Impossibility of the Hicks Strong Substitution Effect 

   The previous section recreates the Fisherian comparative analysis in terms of the 

Marshallian space. One interesting point we find is that when the Fisherian initial point 

J[po]  and the Fisherian intermediate point H[ p̂ ]  are located with different slopes on the 

same  indifference curve Z[c]  in the Fisherian space, the Marshallian initial point J
ꠍ[ qo] 

is located on the indifferent curve K[ mo] and the Marshallian intermediate point 

H ꠍ[ q̂ ]  is located on the different indifference curve  K[n]  in the Marshallian space, or 

the two points J ꠍ[ qo  ] and H
ꠍ
[ q̂ ]  are located with the same slopes  on the same 

iso-transaction time line  K[c]  in the Marshallian space.  This implies that if the 

strong substitution effect is defined in the Fisherian space, its image in the Marshallian 

space cannot be defined, and vice versa.

Theorem 1 (Impossibility of the Hicks Strong Substitution Effect) : The Hicks strong 

substitution effect described by the movement from the initial point J[ po  ] to the 

intermediate point H[ p̂  ] along the same indifference curve Z[ c] characterized by the 

average Z  and the weight c  in the Fisherian space cannot be defined by the Hicks 

strong substitution effect expressed by the movement from the initial point J ꠍ[ qo  ] to 

the intermediate point H ꠍ[ q̂ ]  along the same indifference curve K[n]  characterized by 

the average K  and the weight n  in the Marshallian space.  The reverse is also true. 6) 

6) If the strong substitution effect is defined in the Marshallian space, its counterpart in the 
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Proof : Consider the Fisherian movement between point R  = [Z 1,Z 2 ]  and point R'=

[Z 1',Z 2' ]  along the same indifference curve Z[c]  in the Fisherian space. Consider 

further the Marshallian movement between point R ꠍ= [K 1,K 2 ]  and point (R ')
ꠍ  = 

[K 1',K 2' ]  along the same indifference curve K[n]   in the Marshallian space, which is 

the counterpart of the Fisherian movement. Our purpose is to prove that R=R '  and 

R ꠍ=(R') ꠍ. Let us define 

   
Z 2'

Z 1'
= (λ' ) (

Z 2
Z 1 )  ,     λ'=

n '
1-n '

1-n
n

1-c'
c'

c
1-c

                  (39)

First, we investigate the Fisherian space. We know by definition that the transactions 

weight is c= c'  along the same indifference curve in the Fisherian space. As a result, 

it is true that the following same law of equal marginal velocity at point R  and point 

R'  with c= c'  is established. 

   p̂ '=
c
1-c (

Z 2'

Z 1' )
2

│
R '

  ,       p̂ =
c
1-c (

Z 2
Z 1 )

2

│
R

                      (40) 

It is also true that in order for point R  = [Z 1,Z 2 ]  to be different from point R'  = 

[Z 1',Z 2' ]  the sectoral money ratio should be different from point to point even though 

they are located on the same indifference curve in the Fisherian space so that n'≠n  

and c= c'. As a result, the duplicate of (40) in the Marshallian space with the same 

condition that n'≠n  and c= c'  is

   q̂ '=
n'
1-n' (

K 2'

K 1' )
2

   ,        q̂=
n
1-n (

K 2
K 1 )

2

                          (41)

But these are not located on the same indifference curve K[n].  By definition of the 

same indifference curve, the weight should be n=n '  along the same indifference curve 

K[n]  in the Marshallian space. Thus, the money ratio of the two points R
ꠍ  and 

(R ') ꠍ  should be n=n '. For the two movements along the 'same' indifferent curve in 

each space to be identical, (41) should become 

   ( 1λ' ) q̂ '=
n
1-n (

K 2'

K 1' )
2

│
(R ' ) ꠍ

   ,      q̂=
n
1-n (

K 2
K 1 )

2

│
R ꠍ

         (42)

Fisherian space cannot be defined.
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with the help of (39). As a result, we have from (39)～(42)

   p̂ '

q̂ '
= (λ' ) 3

p̂

q̂
   ,     p̂ '= (λ')

2
p̂      ,     q̂ '= ( 1λ' ) q̂               (43)

   Next, turn to the Marshallian space. As said in the above, since n=n '  at every 

point along the same indifference curve, the following same law of equal marginal 

transactions time is held at the two different points R ꠍ  and (R ' ) ꠍ  on the same 

indifference curve K[n]  with n=n '.

   q̂ '=
n
1-n (

K 2'

K 1' )
2

│
(R ' )

ꠍ

   ,     q̂=
n
1-n (

K 2
K 1 )

2

│
R

ꠍ

                (44)

In order for point R ꠍ= [K 1,K 2 ]  to be different from point (R ') ꠍ= [K 1',K 2' ]  the 

sectoral transaction ratio should be different from point to point even though they are 

located on the same indifference curve in the Marshallian space so that c'≠c  and 

n=n '. Thus the counterpart of (44) in the Fisherian space with the same condition 

that c'≠c  and n=n '  is 

   p̂ '=
c'
1-c' (

Z 2'

Z 1' )
2

   ,      p̂=
c
1-c (

Z 2
Z 1 )

2

                            (45)

But these are not located on the same indifference curve Z[c].  By definition the 

weight is c= c '  along the same indifference curve Z[c]  in the Marshallian space. 

Thus, the transaction ratio of the two points R  and R '  should be c= c '. For the two 

movements along the same indifferent curve in each space to be identical, (45) should 

become 

   (λ' )( p̂ ' )=
c
1-c (

Z 2'

Z 1' )
2

│
R '

   ,    p̂=
c
1-c (

Z 2
Z 1 )

2

│
R

                (46)

with the help of (39). As a result, we have from (44)～(45) 

   p̂ '

q̂ '
= (λ' ) 3

p̂

q̂
   ,      p̂ '= (λ') p̂     ,       q̂ '= ( 1λ' )

2

q̂             (47)

Therefore, we have from (43) and (47)
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    λ'= 1    ,     p̂ '= p̂      ,      q̂ '= q̂                                  (48)

From (39)～(41) and (48), R=R '  and R
ꠍ=(R') ꠍ.  Q.E.D.

2. The Hicks Weak Substitution Effect

   The movement from the initial point J [po]  to the intermediate point H[ p̂ ]  along the 

same indifference curve Z[c]  in the Fisherian space  must correspond to the movement 

from the initial point J ꠍ [q o ]  to the intermediate point H
ꠍ
[ q̂ ]  along the  same 

iso-transactions time line  K[c]  in the Marshallian space. Thus, we have 

Definition 2 : The Hicks weak substitution effect is the movement from the initial point 

to the intermediate point along the same indifference curve defined by the same 

parameter (weight) and the same magnitude (average) coupled with different slopes at 

least in one space.

3. Impossibility of the Hicks Strong Parallel Movement Effect

  Impossibility of the simultaneous achievement of the strong substitution effects in both 

spaces leads one to a situation where the simultaneous achievement of the strong 

parallel movement effects in both spaces is impossible.  Here the word "strong" is 

meant by referring the same slope of the two tangent lines to the two different 

indifference curve, respectively.7)  

Definition 3 : The Hicks strong parallel movement effect is the movement from the 

intermediate point on the old indifference curve to the final point on the new 

indifference curve, at which the tangent slope is the same as the tangent slope at the 

former in both spaces.

Definition 4 : The Hicks weak parallel movement effect 8) is the movement from the 

7) The Hicks parallel movement effect is the movement between the two different 

indifference curves with the condition that the slope of the tangent line to a point on each 

indifference curve remains the same. Let us call this movement with a strong condition 

the strong parallel movement effect. Since there exists a unique slope tangent to a point 

on a indifferent curve, the tangent point on each indifference curve with the same slope is 

unique. Thus, the point on an indifference curve which is associated with the strong 

parallel movement effect has one and only one corresponding point on the other 

indifference curve. 

8) The strong parallel movement is meant by the perfect parallel movement in both 

spaces, while the weak parallel movement is meant by the imperfect parallel 

movement at least in one space.
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intermediate point on the old indifference curve to the final point on the new 

indifference curve at which the tangent slope is (un)parallel to the slope at the former 

at least in one space. 

   Before we proceed further, we can provide an intuitive explanation of the 

impossibility of the Hick strong parallel movement effect. When the indifference curve 

moves from Z[c]  to V[a]  in the Fisherian space, the corresponding iso-time line  

moves from K[c]  to k[a]  in the Marshallian space.  Even if the Fisherian parallel 

movement effect accompanies the same slope by definition, the corresponding 

Marshallian movement cannot carry the same slope because the slope of the old 

iso-time line K[c]  is - c
1-c

 , while the slope of the new iso-time line k[a]  is 

-
a
1-a

. The two slopes are not identical since a≠c, which implies that in the 

Marshallian space it is impossible to move between the two points with the identical 

slope being maintained. This intuitive explanation will be thoroughly reexamined by the 

comparison of the slopes p  and q  with the slopes p̂   and q̂  , respectively.

Theorem 2 (Impossibility of the Hicks Strong Parallel Movement Effect) : It is 

impossible to meet simultaneously the condition p̂  = p  and q̂  = q  , which satisfies the 

movement from the intermediate points H  and H
ꠍ   on the old indifference curves 

where Z 1≠Z 2  ( K 1  ≠ K 2  ) to the final points F  and F
ꠍ   where V 1≠V 2  ( k 1≠ k 2  ) 

on the new indifference curves when the average transactions velocity (time) increases 

(decreases) from Z  ( K  ) to V  ( k  ) with a≠c  ( m≠n  ) in general.

Proof :  We select independent equations among the equations introduced in the above 

which describe the movement of H[ p̂ ] → F[ p] with p̂= p   in the Fisherian space 

and the movement of H ꠍ[ q̂] → F ꠍ[ q]  with q̂= q  in the Marshallian space. The 

simultaneous equations system for the strong parallel movement is given as follows.

<Simultaneous equations system I for the Strong Parallel Movement>

V[a]      
1
V
=

a
V 1
+
1-a
V 2

   (9)    V[m]       V = mV 1 + (1-m)V 2     (7)

F[p]      
a
1-a (

V 2
V 1 )

2

┃
F

= p   (13)    F ꠍ[q]      
m
1-m (

V 1
V 2 )

2

│
F

ꠍ

= q    (31)

Z[c]      
1
Z
=

c
Z 1
+
1-c
Z 2

   (19)    Z[n]        Z = nZ 1 + (1-n)Z 2      (18)

H[ p̂ ]     
c
1-c (

Z 2
Z 1 )

2

│
H

= p̂    (23)    H
ꠍ[ q̂ ]     

n
1-n (

Z 1
Z 2 )

2

│
H ꠍ

= q̂      (36)
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The definitions of the variable transformation formula k 1V 1≡1, k 2V 2  ≡ 1, 

K 1Z 1≡1, K 2Z 2≡1  have been already employed in (31) and (36). We add to 

simultaneous equations system I the two definitions of the Hick strong parallel 

movement effect: 

    p̂= p  ,            q̂= q                                                 (49) 

The system consists of 10 independent equations with  14 unknowns ( V 1, V 2, Z 1, Z 2, 

m, n, p, p̂, q, q̂, a, c, V, Z  ).  The solution may be expressed as a function of 4 

variables among them. Thus, we ends up with two solutions as follows : 

    V 1  ≠ V 2   with  Z 1=Z 2                                                 (50) 
9)

or 

 

    V 1  = V 2,  with   Z 1≠Z 2                                                 (51). 
10)

The result says that the solution satisfying the condition p̂= p  with q̂= q  contains the 

trivial solution, which contradicts the general presumption that the trivial solution is 

ruled out. Q.E.D.

V. Possibility of the Hicks Weak Parallel Movement Effect

   The impossibility theorem of the Hicks strong parallel movement effect in both 

spaces forces us to search alternative weak conditions with which the Fisherian 

movement from the intermediate point H[ p̂  ] to the final point F[ p  ] and the 

Marshallian movement from the intermediate point H
ꠍ
[ q̂ ]  to the final point F ꠍ[q ]  

comply. The weak conditions should be one of the three cases ; (i) p̂= p  with q̂≠q, 

(ii) p̂≠p  with q̂= q, (iii) p̂≠p  with q̂≠q.  But the general case that includes all of 

the three cases is p̂≠p  with q̂≠q   such that the tangent slope p̂  of the intermediate 

point H[ p̂] is uniquely associated with the tangent slope p  of the final point F[ p]  

on the basis of the one-to-one correspondence in the Fisherian space, and at the same 

9) V 1= a[1+( 1-aa
1
p )

½

]V   and V 2= (1-a) [1+( a
1-a

p)
½

]V  . 

10) Z 1= c[1+( 1-cc
1

p̂ )
½

]Z   and Z 2= (1-c) [1+( c
1-c

p̂ )
½

]Z  .
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time the tangent slope q̂   of the intermediate point H
ꠍ
[ q̂ ]  is uniquely  associated with 

the tangent slope q  of the final point F ꠍ[q]  on the basis of the one-to-one 

correspondence in the Marshallian space. This is the concept of the Hicks weak parallel 

movement effect and the weak here means the imperfect while the strong means the 

perfect. 

1. The Hicks Weak Parallel Movement Effect

   To identify the Hicks weak parallel movement effect with the condition that a≠c, 

m≠n, and V≠Z, we take the first step by defining the following two real numbers : 

   Δ =
(1-a)V-(1-c)Z

aV-cZ
 > 0,    Ω =

(1-m)k-(1-n)K
mk-nK

 > 0         (52)

The first definition stands for the slope of the moving distance of the centers of the 

two indifference curves in the Fisherian space, OZOV  , in Figure 1. The second 

definition represents the slope of the moving distance of the centers of the two 

indifference curves in the Marshallian space, OKOk  , in Figure 2. We call (52) the 

centerline slope. They are positive because indifference curves cannot intersect. [The 

proof is omitted].

 

Theorem 3 (Possibility of the Hicks weak parallel movement effect) : The Hicks weak 

parallel movement effect is expressed by a unique  relationship between p  and p̂  in the 

Fisherian space, and between q  and q̂  in the Marshallian space. First, the Fisherian 

movement from the intermediate point H[ p̂ ]  on the indifference curve Z[c]  to the final 

point F[p ]  on the indifference curve V[a]  in the Fisherian space is uniquely  defined 

by

    

    p =
1

p̂

a
1-a

c
1-c

Δ2                                                    (53). 

Second, the Marshallian movement from the intermediate point H
ꠍ
[ q̂ ]  on the 

indifference curve  K[n]  to the final point F
ꠍ[q ]  on the indifference curve k[m]  in 

the Marshallian space is uniquely defined by

   q =
1

q̂

m
1-m

n
1-n

Ω2                                                     (54).

Proof 11) : In the real number space, there exist two real numbers Δ̂  =
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( k
1-a )-(

K
1-c )

( ka )-(
K
c )

 and Ω̂  = ( V
1-m )-(

Z
1-n )

( Vm )-(
Z
n )

 such that

    Δ 2= ( 1- aa
1- c
c )

2

Δ̂ 2 ,       Ω2= ( 1-mm
1-n
n )

2

Ω̂ 2                  (55)

with the aid of (52). In the same real number space, there exist two real numbers V 2'
V 1'

 

and 
k 2''

k 1''
 such that 

   Δ2= (
V 2'

V 1' )
2

(
Z 2
Z 1 )

2

 ,                Ω2= (
k 2''

k 1'' )
2

(
K 2
K 1 )

2

                (56)

by substituting (13), (23), (31), and (36) into (55), where

   
V 2'

V 1'
= (μ')

V 2
V 1

 ,               
k 2''

k 1''
= ( 1μ'' )

k 2
k 1

                       (57) 

   μ '=
V 2
V 1

Z 2
Z 1

Δ̂

pp̂
  ,               1

μ''
=
k 2
k 1

K 2
K 1

Ω̂

q q̂
                      (58)

                      

Rearranging (55)～(58) yields 

   p p̂ =
a
1-a

c
1-c ( 1μ'

V 2'

V 1'

Z 2
Z 1 )

2

 ,  q q̂ =
m
1-m

n
1-n (μ''

k 2''

k 1''

K 2
K 1 )

2

    (59)  

The first equation of (57) indicates the Fisherian relationship between point 

S=[V 1,V 2 ]  and point S '=[V 1',V 2' ]  on the same indifference curve in the 

Fisherian space. The counterpart of this Fisherian relationship described in the 

Marshallian space is the Marshallian relationship between point S ꠍ=[k 1,k 2 ]  and point 

(S ')
ꠍ
=[k 1',k 2' ]. The two Marshallian points should be located on the same 

indifference curve so that μ '  = 1 in accordance with theorem 1.  The same can be 

said about the second equation of (57), which tells us the relationship between point 

S ꠍ=[k 1,k 2 ]  and point (S '')
ꠍ=[k 1'',k 2'' ]  on the same indifference curve.  The 

counterpart of this Marshallian relationship described in the Fisherian space is the 

11) The appendix at the end of this paper provides an alternative proof, which is 

extremely long but verifies the same result. The appendix may be cut off after 

verification due to its excessive length.
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Fisherian relationship between point S=[V 1,V 2 ]  and point S ''=[V 1'',V 2'' ].  The 

two Fisherian points should be located on the same indifference curve so that μ ''  = 1 

in accordance with theorem 1.  We use these results in (56)～(57) and (59) to get

   p p̂ =
a
1-a

c
1-c

Δ2  ,       q q̂ =
m
1-m

n
1-n

Ω2                         (60)  

This is (53)～(54). QED. [The proof for uniqueness is omitted]. 

2. The Copula between the Fisherian and Marshallian Space

   The definition of Hicks weak parallel movement effect (60) represents the general 

case, p̂≠p  with q̂≠q,  of the Hicks weak parallel movement effect, which includes  

the one special case that p̂= p  with q̂≠q   and the other special case that p̂≠p  with 

q̂= q.  Another way of stating (60) is simply

   Δ Ω  = 1                                                                  (61)

with the help of (13), (23), (31), and (36). This result is an additional example of the 

variable transformation formula like Vk=1, V 1k 1 = 1, V 2k 2 = 1  between the Fisherian 

space and the Marshallian space.12) The distinctive feature of (61) is the transformation 

of the centerline slope of one space to another, while Vk=1, V 1k 1 = 1, V 2k 2 = 1  are 

the transformation of a point between the two spaces. Thus, the discovery of (61) may 

confirms indirectly that the weak parallel movement effect exists in the form of (60).  It 

is important to notice that (61) still holds even when the one special case that p̂= p  

with q̂≠q   and the other special case that p̂≠p  with q̂= q  are applied to the general 

case of (60). 

VI.  The Decomposition of the Transactions Velocity of Money

     

1. Simultaneous Equations System II for the Weak Parallel Movement

   Simultaneous equations system I replaces the definitions of the Hicks strong parallel 

movement effect (24) and (37) by the definitions of the Hicks weak parallel movement 

effect (53) and (54)  with the rest of the 8 independent equations remaining the same to 

become simultaneous equations system II for the weak parallel movement. That is,

12) An alternative proof of the expression (61) is given by (A-28) in the appendix at 

the end of this paper.
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<Simultaneous Equations System II for the Weak Parallel Movement>

     1
V
=

a
V 1
+
1-a
V 2

   (9)           V = mV 1 + (1-m)V 2     (7)

     a
1-a (

V 2
V 1 )

2

┃
F

= p   (13)          
m
1-m (

V 1
V 2 )

2

│
F ꠍ

= q     (31)

     1
Z
=

c

Z
S
1

+
1-c

Z
S
2

   (19)          Z = nZS1 + (1-n)Z
S
2
     (18)

    c
1-c (

Z
S
2

ZS1 )
2

│
H

= p̂    (23)          
n
1-n (

Z
S
1

ZS2 )
2

│
H ꠍ

= q̂      (36)

     p p̂ =
a
1-a

c
1-c

Δ2   (53)          q q̂ =
m
1-m

n
1-n

Ω2      (54)  

Notice that equations (53) and (54) take the place of equations (24) and (37). Notice 

further that the superscript S  in (19), (18), (23), and (36) indicates the intermediate 

situation, which terminates the substitution movement and starts the parallel movement.

2. Solution   

  

   Simultaneous equations system II also consists of 10 independent equations with 14 

variables ( V 1, V 2, Z
S
1
, ZS2 , m, n, p, p̂, q, q̂, a, c, V, Z  ). Although it is true 

that all the variables are determined in the general equilibrium system, some of them 

are not observable in practice. It is fortunate that 4 variables ( a, c, V, Z  ) out of 14 

variables in the system are observable information making the number of independent 

equations equal the number of the unknowns. This observation enables us to solve the 

system. In practice, the ten equations can be reduced to two equations which contains 

two unknowns m  and n: 

       Δ Ω  = 1                                                             (61)

      m
1-m

n
1-m

=
a
1-a

c
1-c

Δ                                        (62)

(61) is derived from equations (13), (23), (31), (36) and (53)～(54). The rest of the 

equations gives us (62). By substituting the two equations (61) and (62) into each other 

with respect to n  , we come to the following quadratic equation for the solution 

   Βm 2 + 2 Γm + Φ  = 0,                                                 (63)

where Β , Γ  and Φ are functions of 4 knowns ( a, c, V, Z  ).13) Since it is easily 
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verified without presentation of the proof that Γ 2- ΒΦ  > 0, the quadratic equation 

(63) has two real solutions. One of them satisfies the condition (8) such that 1 > m > 0  

[The proof is omitted].  Thus, the 'true' solution of (63), the sectoral money ratio at the 

final point F[p], is given by

     m  = 
M 1
M │

F( p)

=
( a
1- a

c
1- c

Δ )
½

1+( a
1- a

c
1- c

Δ )
½
  -  G                              (64)

where 

   G  = 
( a
1- a

c
1- c

Δ)
½

[ ( 1-D ½)+ (D- VZ )
½

]
1-

a
1- a

c
1- c

Δ

                                  (65)

   D  = 1-a
a

1-c
c

1
Δ [
1
2

Δ
1+Δ (

V
Z
-1)(1+ a

1-a
c
1-c )]

2

+
V
Z
                        (66)

The relationship between the money ratio m  and the parameter ( a, c, V, Z  ) are not 

known a pri-o-ri. 

   Next, substituting (64) into (7) and using (9), we have the sectoral velocities at the 

final point F[p]  as follows:

   V 1
V │

F ( p )
=

a [ 1 + ( a
1-a

c
1-c

Δ )
½

]
( 1-G ) [ a

1-a
c
1-c

Δ ]
½

- G

                                      (67)

   V 2
V │

F ( p )
=

(1-a) [ 1 + ( a
1-a

c
1-c

Δ )
½

]
1+G [1+ ( a

1-a
c
1-c

Δ )
½

]
                                     (68)

It is verified that V 1≠V 2  at the final point F[p]  and V 1  > 0 and V 2   > 0. [The 

proof is omitted]. The relationship between the sectoral velocity ( V 1, V 2  ) and the 

parameter ( a, c, V, Z  ) are not known a pri-o-ri.  Finally, if we substitute (67)～(68) 

into system II, ZS1≠Z
S
2
 at the intermediate point H. [The proof is omitted]. The form 

of (64) and (67)～(68) is not simple by the looks but simple with numbers in practice. If 

it is not simple, the calculation for the sectoral velocity formula is tedious and time 

consuming to do by hand. To be practical use in practice, these must be calculated 

13)  Β= (1- a
1- a

c
1- c

Δ)(1+Δ) , Φ=-( VZ +Δ)
a
1- a

c
1- c

Δ ,

    Γ=
1
2 [

a
1-a

c
1- c (

V
Z
+Δ)-(1- a

1-a
c
1- c

Δ)+( VZ +
a
1-a

c
1-c )]Δ    
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quickly and repeatedly. Accordingly, it is essential that the practitioners have computer 

facilities available.14) 

VII. Conclusions

   This paper discusses the basic method behind the bifurcation process of 

decomposition of the economy-wide velocity. This process can continue to any sub-level 

of transactions in a straightforward manner. The importances of finding disaggregated 

monies and their velocities should not be overlooked. 

   In practice, for example, we could think of an immediate application to a country's 

annual series of real and financial transactions. Or one may find the decomposition 

useful in analyzing the effect of the newly born euro money on each member country's 

velocity after the European monetary union is established. Identifying regional or 

industrial monies and their velocities would assist the monetary authorities to allocate 

the limited amount of available credit more effectively. From the macroeconomic point of 

14) As we have witnessed thus far, this system can solve the final point F[p], but cannot 

solve the initial point J[po]. [The proof is omitted]. This is due to the decomposition of 

the overall movement into the substitution effect from point J[p o ]  to point H[ p̂ ]  along 

the same old indifference curve Z[c]  and the parallel movement effect from point H[ p̂ ]  

in the old indifference curve Z[c]  to point F[p]  in the new indifference curve V[a]. 

The second way of expressing the same overall movement is to define firstly the parallel 

movement effect from point J[p o ]  in the old indifference curve Z[c]  to point X[ p̂̂ ]  in 

the new indifference curve V[a], and define secondly the substitution effect from point 

X[ p̂̂ ]  to point F[p]  in the new indifference curve V[a]. This system can solve the 

initial point J[p o ], but cannot solve the final point F[p].  However, the solution of the 

initial point J[p o ]  is inappropriate and hence the second way is ruled out because the 

solution is a function of not only c  and Z  of the initial point J[p o ]  but also a  and V  

of the final point F[p]  which are not known at the initial point J[p o ]. That is, the 

solution of the initial point J[p o ]  in the second way of decomposition is forwarding. This 

implies that the solution of the final point F[p]  in the second way is forwarding as well. 

This is the reason the final point F[p]  cannot be solved in the second way. On the 

contrary, the solution of the final point F[p]  in the first way of decomposition is 

backward and a function of its contemporary weight a  and magnitude V, plus its 

previous weight c  and magnitude Z   all of which are known at the final point, as we 

saw in equation (67) and (68).  By the same token, the solution of the initial point J[p o ]  

in the second way is determined by not only its contemporary weight c  and magnitude 

Z  but also its previous weight and magnitude, which are known but not included in the 

simultaneous equation system in the above. This is the reason we take the backward 

solution. 
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view, the knowledge of financial and real velocities over time would be critically 

important in analyzing the episode like " the great velocity decline." The velocity series 

for real income process would provide clues on the short-run and long-run effects of 

monetary policy. 

  In theory, the decomposition of the transaction velocity of money presented in this 

paper would provide the general method for the reverse case that any aggregate 

measure is disaggregated into sub-level components with limited information.  One could 

apply the same method to the capital asset pricing model, among others, to calculate the 

beta, a measure of risk and an weight given to the linear combination of different rates 

of return.  In general, the possibilities of potential application to any linear combination 

seem unlimited.

References

Bain, K. and P.G.Howells(1991), "The Income and Transactions Velocities of Money,"    

    Review of Social Economy, 1991, 383-395.

Bank for International Settlements(1996), Statistics on Payment Systems in the Group of  

   Ten Countries,  Basle: Bank for International Settlements, 1996. 

________________________________(1999), Central Bank Survey of Foreign Exchange and  

    Derivative Market Activity,  Basle: Bank for International Settlements, 1999.

Boeschoten, W.J. and M.M.G. Fase (1984), The Volume of Payments and the Informal    

   Economy in the Netherlands 1965-1982. Monetary Monographs no. 1, Amsterdam: de  

   Netherlands Bank, and Dordrecht: Nijhoff.

Bordo, M.D. (1987), The Long-run Behavior of the Velocity of Circulation,  Cambridge :  

   Cambridge University Press, 1987.

____________ (1989), "Equation of Exchange," in J. Eatwell et. al. (eds.), Money, the new  

   Palgrave series, New York: Norton, 151-156.

Cramer, J.S. and G.M.Reekers (1976), "Money Demand by Sector," Journal of Monetary  

     Economics  2(1), January 99-112.

___________. (1981), "The Work Money Does - The Transaction Velocity of Circulation  

   of Money in the Netherlands, 1950-1978," European Economic Review, 1981, 307-26,

___________, (1981), "The Volume of Transactions and Payments in the United Kingdom,  

   1968-1977," Oxford Economic Papers  33(2), July, 234-55.

___________, (1989), "Velocity of Circulation," in J. Eatwell et. al. (eds.), Money, the new  

   Palgrave series, New York: Norton, 328-332.

Davidson, P. (1997), "Are Grains of Sand in the Wheels of International Finance         

    Sufficient to do the Job when Boulders are often Required ?" Economic Journal  107, 

    671-686.

des Essars, P. (1895), "La vitesse de la circulation de la monnaie," Journal de la Societe  

   de Statistique de Paris, vol. 36, 143-26.



- 31 -

Eichengreen and Wyplosz (1993), "The Unstable EMS," Brookings Papers on Economic  

    Activity, 51-143.

Fisher, I. (1909), "A Practical Method for Estimating the Velocity of Circulation of       

    Money," Journal of the Royal Statistical Society  72, September, 604-11.

_________  (1911), The Purchasing Power of Money,  New York: Macmillan

Friedman, M.(1987), "Quantity Theory of Money," in J. Eatwell et. al. (eds.), The New   

   Palgrave A Dictionary of Economics,  vol. 4, London: Macmillan, 3-20.

Garvy, G. and M. R. Blyn, The Velocity of Money, New York: Federal Reserve Bank of  

    New York, 1969.

Howells, P.G., and I.B-F. Mariscal (1992), "An Explanation for the Recent Behavior of   

   Income and Transaction Velocities in the United Kingdom," Journal of Post          

   Keynesian Economy,  1992, 367-88.

Humphrey, T. M. (1993), "The Origins of Velocity Functions," Federal Reserve Bank of  

   Richmond Economic Quarterly, Fall 1993, 1-17. 

Ireland, P. N. "Financial Evolution and the Long-Run Behavior of Velocity : New        

    Evidence from U.S. Regional Data," Federal Reserve Bank Richmond Economic     

    Review, vol. 77 (November / December 1991), pp.16-26.

Keynes, J.M. (1930), A Treatise on Money, London: Macmillan

Keynes, J.M.(1936), The General Theory of Interest, Employment and Money, London:   

    Macmillan.

Laurent, R.D. (1970), Currency Transfers by Denomination, Ph.D Dissertation, University  

    of Chicago.

McGouldrick, P. F., "A Sectoral Analysis of Velocity," Federal Reserve Bulletin          

    (December 1962).

Miller, R.D.(1979), "The Dynamic Properties of a Two Region Model of the Regional     

   Impact of Monetary Policy in the United States," Journal of Economics and Business,  

   1979, 90-102.

Petty, W.(1662), Treatise of Taxes and Contributions, 1662. In Charles Hull, ed., The     

   Economic Writings of Sir William Petty, I, Cambridge, 1899, reprinted, New York:   

   A. M. Kelly, 1964.

Samuelson, P.A. (1965), Foundations of Economic Analysis, New York: Atheneum.

Selden, R. T., "The Postwar Rise in the Velocity of Money : A Sectoral Analysis, "     

    Journal of Finance  (December 1961).

Snyder, C.(1924), "New Measures in the Equation of Exchange," American Economic     

   Review.

_________. (1934), "On the Statistical Relation of Trade, Credit, and Prices," Revue de    

    l'Institut International de Statistique  2, October, 278-91.

Tobin, J.(1984), "On the Efficiency of the Financial System," Lloyds Bank Review (July  

   1984), 1-15.           

Weinberg, J.A.(1994), "Selling Federal Reserve Payment Services: One Price Fits All ?"  

   Federal Reserve Bank of Richmond Economic Quarterly  (Fall 1994), 1-24.



- 32 -

Figure 1. The Decomposition of the Transactions Velocity in the Fisherian Space
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Figure 2. The Decomposition of the Transactions Time in the Marshallian Space 
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Appendix on Alternative Proof of Theorem 3 [  Equation (53) and (54) ]

             

This appendix may be cut off due to its excessive length after the verification of the 

same result as the one given by the proof in the main text.

             

Step 1. Our primary concern is to establish the relationship between the slope p  of 

point F[p]  and the slope p̂  of point H[ p̂ ], which is described by equation (53) in the 

Fisherian space. This relationship, as the exact copy of the Marshallian space, should be 

reflected by equation (54) between the slope q  of point F
ꠍ[q]  and the slope q̂  of 

point H ꠍ[ q̂ ].  In the Fisherian space of <Figure 1>, we take point G=(G,G )  in the 

place where the straight line FH, connecting point F[p]  and point H[ p̂ ], meets the 45 

degree line. Then, the slope of line FH  is defined by 

   slope of FH  =
V 2-Z 2
V 1-Z 1

=
V 2-G

V 1-G
  or  

V 2-Z 2
V 1-Z 1

=
Z 2-G

Z 1-G
           (A-1)

At the same time in the Marshallian space of <Figure 2>, we take point w=(w,w )  

in the place where the straight line F ꠍH ꠍ, connecting point F ꠍ[q]  and point H ꠍ[ q̂ ], 

meets the 45 degree line. Then, the slope of line F
ꠍ
H

ꠍ  is defined by 

    slope of F ꠍH ꠍ
=

k 2-K 2
k 1-K 1

=
k 2-w

k 1-w
  or 

k 2-K 2
k 1-K 1

=
K 2-w

K 1-w
       (A-2)

Step 2.  Theorem 2 implies implicitly that it is possible to meet simultaneously the 

double condition p= p̂  and q= q̂  in both spaces if one of the two solutions is allowed 

to be trivial on the 45 degree line, which is solution (50) or (51). To achieve this trivial 

solution, we add in imagination an instrumental indifference curve G[cG ]  which cuts 

through the 45 degree line at point G=(G,G )  in the Fisherian space of <Figure 1>: 

   1
G
=
cG
G 1
+
1-cG
G 2

                                                       (A-3)

The slope of the tangent line to at a point of this instrumental indifference curve 

G[cG ]  is defined as p̂ G  , Then, we have from the law of equal marginal velocities

    p̂ G=
cG
1-cG (

G 2
G 1 )

2

                                                       (A-4)
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   In the Marshallian space of <Figure 2>, we also add in imagination the counterpart 

indifference curve g[ng ]  to this Fisherian instrumental indifference curve G[cG ]  ; 

    1
g
=
ng
g 1
+
1-ng
g 2

                                                      (A-5)

  

where gG=1, g 1G 1=1, g 2G 2=1. The slope of the tangent line to a point of this 

indifference curve g[ng ]  is defined as q̂ g. Then, we have the law of equal marginal 

transactions time

   q̂ g=
ng
1-ng (

g 2
g 1 )

2

                                                       (A-6)

   

The above functions form the simultaneous equations system for the relationship  

between a point of the indifference curve G[cG ]  and point H[ p̂ ]= (Z 1,Z 2 )  of the 

indifference curve Z[c]  in the Fisherian space and the relationship between a point of 

the indifference curve g[ng ]  and point H
ꠍ[ q̂ ]   of the indifference curve K[n]  in the 

Marshallian space as follows:

    1
Z
=
c
Z 1
+
1-c
Z 2

              Z=n Z 1+(1-n )Z 2

    p̂=
c
1-c (

Z 2
Z 1 )

2

               q̂=
n
1-n (

Z 1
Z 2 )

2

   1
G
=
cG
G 1
+
1-cG
G 2

             G=ngG 1+(1-ng )G 2

    p̂ G=
cG
1-cG (

G 2
G 1 )

2

            q̂ g=  
ng
1-ng (

G 1
G 2 )

2

To investigate the co-presence of the strong parallel movement effects in both spaces, 

we add the following parallel movement conditions

    

    p̂= p̂ G  ,     q̂= q̂ g                                                     (A-7)

These conditions are equivalent to the conditions (49) in the main text. The solution to 

this system, according to Theorem 2,  is the following :

   G 1=G 2 =G                            g 1=g 2  =g                        (A-8)
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   Z 1=  c [ 1+( 1- cc
1

p̂ )
½

]Z              K 1=  n [ 1+( 1-nn
1

q̂ )
½

]K        (A-9)

   Z 2= (1- c) [1+( c
1- c

p̂)
½

]Z          K 2= (1-n) [1+( n
1-n

q̂)
½

]K    (A-10)

   

The solution is the specific form of the solution (51) in the main text [see footnote 10].

Step 3. The same step is taken for the indifference curve V[a]  in the Fisherian space 

of <Figure 1>. We take another point W =(W ,W )  between lower point E  and point 

G  on the 45 degree line where another instrumental indifference curve W [aW ]   passes 

through ;

   1
W
=
aW
W 1
+
1-aW
W 2

                                                     (A-11)

The slope of the tangent line to a point of this indifference curve W [aW ]  is defined as 

pW  . This leads us to the law of equal marginal velocities 

    pW =
aW
1-aW (

W 2
W 1 )

2

                                                      (A-12)

Now, we further imagine the counterpart indifference curve w[mw]  in the Marshallian 

space to the Fisherian indifference curve W [aW ]  as follows:

    1
w
=
mw
w 1
+
1-mw
w 2

                                                    (A-13)

  

where wW=1, w 1W 1=1, w 2W 2=1. The slope of the tangent line to a point of this 

indifference curve w[mw ]  is defined as qw  . This leads us to the law of equal 

marginal transactions time

   qw=
mw
1-mw (

w 1
w 2 )

2

                                                      (A-14)

 

The above equations form the simultaneous equations system for the relationship 

between point F[p]= (V 1,V 2 )  of the indifference curve V[a]  and a point of the 

indifference curve W [aW ]  in the Fisherian space and the relationship between point 

F
-1
[q]  of the indifference curve V[m]  and a point of the indifference curve W [mw ]  
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in the Marshallian space as follows:

   1
V
=
a
V 1
+
1-a
V 2

               V=mV 1+(1-m )V 2

    p=
a
1-a (

V 2
V 1 )

2

                q=  m
1-m (

V 1
V 2 )

2

   1
W
=
aW
W 1
+
1-aW
W 2

             W=mwW 1+(1-mw )W 2

    pW=
aW
1-aW (

W 2
W 1 )

2

             qw=  
mw
1-mw (

W 1
W 2 )

2

 

To investigate the co-existence of the strong  parallel movement effects in both spaces, 

we add the following conditions  

   p= pW  ,     q= qw                                                      (A-15)

These conditions are also equivalent to the conditions (49) in the main text. The 

solution to this system, according Theorem 2,  is

   W 1=W 2 =W                          w 1=w 2 =w                        (A-16)

   V 1=  a [1+( 1-aa
1
p )

½

]V           k 1=  m [1+( 1-mm
1
q )

½

]k         (A-17)

   V 2= (1-a) [ 1+( a
1-a

p)
½

]V       k 2= (1-m) [1+( m
1-m

q)
½

]Z      (A-18)

   

The solution is the concrete form of solution (50) in the main text [see footnote 9].

Step 4.  Now, let us transform Fisherian slope (A-1) of the straight line FH  into the 

Marshallian space. The result is

   

  
k 2-g

k 1-g
=(
K 1
K 2 )(

k 2-K 2
k 1-K 1 )      or    

K 2-g

K 1-g
=(
k 1
k 2 )(

k 2-K 2
k 1-K 1 )          (A-19)

                                                                             

These are different from slope (A-2), which stands for the slope of the straight line 

F ꠍH ꠍ  in the Marshallian space. Since K 1 >K 2, the first slope of (A-19) between point 

F ꠍ[q ]  and point g  is greater than the first slope of (A-2) between point F ꠍ[q]  and 

point H ꠍ[ q̂ ]. Since k 1 < k 2, the second slope of (A-19) between point H ꠍ[ q̂ ]  and g  is 

smaller than the second slope of (A-2) between H
ꠍ
[ q̂ ]  and point F ꠍ[q]. This implies 

that the Fisherian straight line FH  becomes kinky line F ꠍgH ꠍ  in the Marshallian 
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space with aid of the transformation and point g  is different from point w.  Point g  

plays a pivot role in transformation.   

   By the same token, let us further transform the Marshallian slope (A-2) of the 

straight line F ꠍH ꠍ  into the Fisherian space to become

  
V 2-W

V 1-W
=(
Z 1
Z 2 )(

V 2-Z 2
V 1-Z 1 )     or  

Z 2-W

Z 1-W
=(
V 1
V 2 )(

V 2-Z 2
V 1-Z 1 )           (A-20)

 

These are different from equation (A-1), which stands for the slope of the straight line 

FH  in the Fisherian space. Since Z 1 <Z 2,  the first slope of (A-20) between point 

F[p]  and point W   is smaller than the  first slope of (A-1) between point F[p]  and 

point H[ p̂ ]. Since V 1 >V 2, the second slope of (A-20) between point H[ p̂ ]  and point 

W   is greater than the second slope of (A-1) between point H[ p̂ ]  and F[p].  This 

implies that the Marshallian straight line F
ꠍ
H

ꠍ  becomes kinky line FWH  in the 

Fisherian space through transformation and point W  is different from point G. Point W   

is a pivot.

   The above analysis presents impossibility of the simultaneous straight lines in both 

spaces. The straight line FH  in the Fisherian space is transformed to become the 

kinky line F ꠍgH ꠍ  in the Marshallian space, while the straight line F ꠍH ꠍ  in the 

Marshallian space is transformed to become the kinky line FWH  in the Fisherian 

space. However, the Fisherian kinky line HGWF  which kinked twice at W  and G  

becomes the exact image of the Marshallian kinky line H
ꠍ
gwF

ꠍ  which kinked twice at 

w  and g. 

   The kinky line HGWF  in the Fisherian space is represented by the following two 

slopes:

   
V 2-W

V 1-W
=(
Z 1
Z 2 )(

V 2-Z 2
V 1-Z 1 )  ,       

Z 2-G

Z 1-G
=
V 2-Z 2
V 1-Z 1

                (A-21)

The first one represents the slope of the line segment FW   and the second one the 

slope of the line segment HG.  By the same way, the kinky line H
ꠍ
gwF

ꠍ  in the 

Marshallian space is represented by the following two slopes :

   
k 2-w

k 1-w
=
k 2-K 2
k 1-K 1

 ,              
K 2-g

K 1-g
=(
k 1
k 2 )(

k 2-K 2
k 1-K 1 )           (A-22)

   

The first one represents the slope of the line segment F
ꠍ
w   and the second one the 
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slope of the line segment H ꠍg. One may verify that first slope of (A-22) is 

transformed to become the first slope of (A-21) and the second slope of (A-22) is 

transformed to become the second slope of (A-21).

Step 5. Equations (A-9), (A-10), (A-17), (A-18), and (A-21) in the Fisherian space 

form the following simultaneous equations system for the kinky phenomenon :

   V 1=  a [1+( 1-aa
1
p )

½

]V             Z 1=  c [ 1+( 1- cc
1

p̂ )
½

]Z                 

   V 2= (1-a) [ 1+( a
1-a

p)
½

]V         Z 2= (1- c) [ 1+( c
1- c

p̂)
½

]Z

  
V 2-W

V 1-W
=(
Z 1
Z 2 )(

V 2-Z 2
V 1-Z 1 )            

Z 2-G

Z 1-G
=
V 2-Z 2
V 1-Z 1

    

                                           

Substituting the first four equations into the kinky slope of line segment FW   yields

   ( p p̂ ) ½ =
θ

aV- cZ
(p ) ½+( a

1- a
c
1- c )

½

Δ                          (A-23)

where

   θ= [ ( 1- a) ( a
1- a )

½

- a( c
1- c )

½

( pp̂ )
½

]V

      +[c ( a
1- a )

½

-(1- c) ( c
1- c )

½

( pp̂ )
½

]Z-[ ( a
1- a )

½

-( c
1- c )

½

( pp̂ )
½

]W    

This establishes the kinky relationship between point F[p]  and point H[ p̂ ]  in the 

Fisherian space.

   The same method may be applied to the Marshallian space with the aid of the 

simultaneous kinky line phenomenon (A-9), (A-10), (A-17), (A-18), and (A-22) in the 

Marshallian space to form the following simultaneous equations system.

   k 1=  m [ 1+( 1-mm
1
q )

½

]k            K 1=  n [1+( 1-nn
1

q̂ )
½

]K                 

   k 2= (1-m) [ 1+( m
1-m

q)
½

]k        K 2= (1-n) [ 1+( n
1-n

q̂)
½

]K

  
K 2-g

K 1-g
=(
k 1
k 2 )(

k 2-K 2
k 1-K 1 )            

k 2-w

k 1-w
=
k 2-K 2
k 1-K 1

   

Substituting the first four equations into the kinky slope of line gH
ꠍ  yields
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   (q q̂ ) ½ =
φ

mk- nK
(q ) ½+( m

1-m
n
1- n )

½

Ω                         (A-24)

 

where

   φ= [ (1-m ) ( m
1-m )

½

-m ( n
1- n )

½

( qq̂ )
½

] k                                     

       +[n ( m
1-m )

½

-(1-n) ( n
1-n )

½

( qq̂ )
½

]K-[ ( m
1-m )

½

-( n
1-n )

½

( qq̂ )
½

]g

This establishes the kinky relationship between point F ꠍ[q]  and point H
ꠍ
[ q̂ ]  in the 

Marshallian space. 

   The kinky relationship must be identical in both spaces. Let us multiply equation 

(A-23) and equation (A-24). The result is 

(p p̂ q q̂ ) ½ =
θ

aV- cZ
φ

mk-nK
( p̂ q̂ ) ½ +

θ
aV- cZ

( p̂ )
½ ( n
1-n

m
1-m )

½

Ω

    +
φ

mk- nK
( q̂ ) ½ ( a

1- a
c
1- c )

½

Δ +( a
1- a

c
1- c

m
1-m

n
1-n )

½

ΔΩ     (A-25)

On the other hand, equations (13), (23), (31), and (36) in the main text yield

    p p̂ q q̂=
a
1-a

c
1-c

m
1-m

n
1-n

                                        (A-26)

Comparing equation (A-25) with equation (A-26) furnishes us

   θ =  0  ,  φ =  0                                                         (A-27)

   ΔΩ =  1                                                                  (A-28)

Equation (A-28) is the same result as equation (61) in the main text even though we 

use the alternative approach. 

   Finally, substituting (A-27) and (A-28) into equations (A-23) and (A-24) provides us

   p p̂ =
a
1-a

c
1-c

Δ2  ,           q q̂ =
m
1-m

n
1-n

Ω2

which are equations (53) and (54) in the main text. Q.E.D.


