
Investment Effect of Emission Permits Banking

under Technological Uncertainty∗

Hojeong Park†and Lars J. Olson‡

June 29, 2004

Abstract

The purpose of this paper is to analyze investment effect of tradable
permit program (TPP) when emission permits are bankable and there
is technological uncertainty regarding abatement cost. In the absence
of abatement cost uncertainty, a bankable TPP decreases a firm’s in-
centive to environmental investment because the firm can use banked
permits for future abatement compliance instead of abatement invest-
ment. However, when cost uncertainty is prevalent, there arises a real
option value associated with the investment and it may change a firm’s
investment strategy. The condition is derived under which a bankable
TPP provides higher investment incentive than a non-bankable TPP.

Keywords: tradable emission permits, real option, investment,
uncertainty

1 Introduction

Among environmental economists, there has been a consensus that a trad-
able permit program (TPP) is an efficient environmental management sys-
tem to achieve environmental targets. One important criterion for evalu-
ating the performance of TPPs is their effect on environmental investment.
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Although primary objective of environmental regulation is to correct exter-
nalities, its effect on investment in costly new pollution abatement equip-
ment is a critical element to be considered since investment-inducing regu-
lation improves social welfare as well as facilitates technology adoption and
diffusion processes (Jaffe, Newell and Stavins, 2002). Many papers are mo-
tivated by this to examine investment effect of TPPs and their partial list
includes Millman and Prince (1989), Jung, Krutilla and Boyd (1996) and
Montero (1999).
Since many TPPs such as the U.S. Acid Rain Program and the Kyoto

Protocol currently allow banking, it is essential to understand how banking
affects a firm’s incentive for the adoption of pollution abatement technol-
ogy. Note that the previously cited papers do not analyze permit banking.
On the other hand, while a series of papers including Cronshaw and Kruse
(1996), Rubin (1996), Kling and Rubin (1997) and Yates and Cronshaw
(2001) analyze banking system, they do not consider investment in pollu-
tion abatement technology. Their main purpose is rather to analyze how
emission permit banking system changes the emission flow over time.
In response to inquiry on investment effect of banking system, recently,

Phaneuf and Requate (2002) provide a two-stage optimization model. Their
finding is that banking system unambiguously reduces abatement invest-
ment. If there were no banking system allowed, the only feasible strategy
to reduce future abatement cost is an investment in cost-reducing abate-
ment technology. However, under a bankable TPP, the firm can use banked
permits for future abatement compliance strategy instead of relying on envi-
ronmental investment. Extending their model from a deterministic setting,
they argue that even the introduction of cost uncertainty does not change
such substitution effect of banking for investment.
Although their finding is intuitive, some important aspects that may po-

tentially change their result are disregarded in their model. As well known by
Dixit and Pindyck (1994) among others, when uncertainty and irreversibil-
ity of investment are prevalent, a real option value arises for the investment
and it increases investment hysteresis. Under such circumstance, a firm may
exhibit different investment schedule depending on the presence of banking
system.
As for the real option literature analyzing investment effect of TPPs, the

first study is Herberlot (1994) which develops a model from the perspective
of individual power plant firm. He considers two investment strategies, fuel
switching and installation of FGD (flue gas desulfurization), during earlier
periods of the 1990 Clean Air Act Amendment. His binomial real option
model incorporates cost uncertainty as well as permit price uncertainty.
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However, the model does not account for a bankable permits system.
Zhao (2003) presents a real option model in a general equilibrium frame-

work. He investigates how investment incentive to the adoption of abate-
ment technology is affected under TPPs and emission charge system. Ac-
cording to Zhao (2003), investment incentive is decreasing in cost uncer-
tainty as consistent with real option argument but such adverse effect of
uncertainty is less aggravated under TPPs than under emission charge sys-
tem. Therefore, he concludes that TPPs in fact help maintain firms’ invest-
ment incentives in the presence of uncertainty, compared to emission charge
system. However, a bankable TPP is neither modeled in Zhao (2003).
In the paper, we provide a real option model to analyze the implications

of bankable TPPs on dynamic capital adjustment. Stochastic feature is
introduced via abatement cost uncertainty. An investment model is devel-
oped from the perspective of an individual firm and it compares the resulting
investment rule under abatement cost uncertainty with deterministic invest-
ment rule. In a deterministic framework, we obtain unambiguous result as
consistent with Phaneuf and Requate (2002): banking system weakens a
firm’s incentive to expand abatement capital. The reason is that invest-
ment reduces the value of permit stock because the banked permits become
less valuable assets for future abatement compliance strategy once a firm’s
abatement capital increases.
If the abatement cost uncertainty is taken into account, the incentive

to investment is reduced by hysteresis effect (Dixit and Pindyck, 1994).
However, the degree of incentive reduction may come from different form
depending on whether banking is allowed or not. In the case where banking
is not allowed, the opportunity cost of exercising the investment option is
substantial since the residual permits acquired through an investment should
be immediately sold, otherwise they retain no value afterwards. Under such
circumstance, a bankable TPP can facilitate more investment than a non-
bankable TPP does when the residual permits can be used in later periods
and the permits are valuable in the future. It implies that banking and
investment are not exclusive strategies for firms to achieve cost minimization
over time. In the paper, we derive a condition under which a bankable TPP
provides higher investment incentive than a non-bankable TPP does.
The rest of paper is organized as follows: Section 2 presents an invest-

ment option model, encompassing banking system as well as non-banking
system. Section 3 performs numerical simulations to explore empirical im-
plications of the model using the data on the U.S. Acid Rain Program.
Lastly, Section 4 provides conclusion.
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2 Model

2.1 General model

Consider a firm regulated by a TPP whose baseline emission rate is e(t).
At each instant in time it receives emission permits ē(t) < e(t) from a
regulatory agency. A firm has two options for compliance. It can either
abate emissions at rate a (t) ≤ e (t) or puchase additional permits at rate
q(t). If a firm reduces its emissions below ē(t) the excess permits can
either be sold, q(t) < 0, or banked for future use. The market for emission
permits is assumed to be competitive so that firms take the permit price,
p(t), as given. The firm’s stock of emission permits banked up to time
t is denoted by B (t). Its initial value, B(0) = B0 ≥ 0, is exogenously
determined by the environmental regulatory agency. Let b(t) denote permits
that are instantaneously banked, b (t) > 0, or withdrawn, b (t) < 0. The
stock of banked permits evolves according to the transition equation Ḃ(t) =
b(t). Emissions, abatement, permit transactions and banking satify the
accounting identity:

q(t) = e(t)− ē(t)− a(t) + b (t) . (1)

Note that if b (t) > 0, the opportunity cost of the instantaneous bank is
p (t) b (t), the amount the firm could earn if those permits were sold. On
the other hand, when b (t) < 0, a firm receives p (t) b (t), the cost saving it
achieves by not having to purchase an equivalent quantity of permits from
the market. In what follows, time t is suppressed for notational convenience
unless it is needed for clarity.
Emission abatement costs depend on installed abatement capital, k(t),

the instantaneous rate of abatement, a(t), and a parameter, θ, that repre-
sents industry-wide cost uncertainty common to all firms. The abatement
cost function is given by:

C(a, θ, k) = θc(k)aγ . (2)

The term c(k) captures the effect of installed capital on abatement costs.
It is assumed that c′(k) < 0. The implication is that a firm can reduce
its future abatement costs by investing in more efficient abatement capital.
At each instant the firm must decide whether to undertake investment and
expand captial from k to k + dk, or maintain its current level of k without
any adjustment. The unit cost of capital is w. Investment is considered
irreversible so that dk > 0, and for simplicity, there is no depreciation.

4



Current abatement cost is known but there is uncertainty over future
abatement costs. Uncertainty is represented by assuming the cost parame-
ter, θ, follows the geometric Brownian motion stochastic process:

dθ = −αθdt+ σθdz,

where dz is the increment of a standard Wiener process, uncorrelated over
time, with E(dz) = 0, V ar(dz) = dt and θ(0) = θ0 ≥ 0. The drift pa-
rameter, −α, measures the expected growth rate of the stochastic process.
The fact that it is negative implies that firms face uncertainty over cost
reducing technical change. The parameter σ represents the volatility rate
of the stochastic process and σ > 0 implies that the variance of future costs
increases with the time horizon over which forecasts are being made. The
parameter γ is the elasticity of cost with respect to abatement. To sim-
plify the presentation and obtain an explicit analytical solution we assume
a quadratic specification where γ = 2.1

Total compliance cost is given by abatement cost plus permit purchase
cost (or less permit sales revenue). Using (1) and (2) this can be expressed
as:

C(a, θ, k) + pq = θc(k)a2 + p(e− ē− a+ b). (3)

The decision problem for the firm can be summarized as follows. Given
the state, (θ(t), k (t) , B(t)), the firm chooses a policy for abatement, per-
mit transactions, permit banking and investment in abatement capital to
minimize the expected discounted stream of costs over time. Formally, the
cost minimizing value of an optimal investment and abatement policy can
be represented as:

V (θ, k,B) = max
a,b,dk

−E

∫ ∞

0
e−rt

[
(θc(k)a2 + p(e− ē− a+ b))dt−wdk

]
,

(4)

where r is the discount rate.
First, consider the firm’s optimal policy for abatement. Minimizing (3)

with respect to a yields the optimal abatement schedule

a(t) =
p(t)

2θ(t)c(k(t))
. (5)

1Zhao (2003) takes a similar approach.
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Optimal abatement is increasing in the permit price and decreasing in the
abatement cost parameter, θ. Investment in capital reduces the marginal
cost of instantaneous abatement which increases optimal abatement.
Next, consider a firm’s investment decision. When the marginal value of

investment, Vk (θ, k,B), is less than the cost of capital, w, the optimal policy
is to maintain the current capital stock k. Conversely, if Vk (θ, k,B) ≥ w,
investment occurs and the stock of capital is increased. This problem is
a barrier control problem where the main task is to determine the optimal
threshold at which investment occurs.2

Suppose that the initial value of the cost parameter, θ0, is sufficiently
high so that immediate investment is not optimal. Then the value function
can be expressed as:

rV (θ, k,B) = max
a,b

[
−θc(k)a2 − p(e− ē− a+ b) +

1

dt
EtdV (θ, k,B)

]
.

Using Ito’s Lemma this leads to the Hamilton-Jacobi-Bellman (HJB) equa-
tion:

rV (θ, k,B) = max
a,b

−θc(k)a2 − p(e− ē− a+ b)

+bVB (θ, k,B)− αθVθ(θ, k,B) +
1

2
σ2θ2Vθθ(θ, k,B). (6)

The second partial subscript denotes partial derivative. The optimization
problem can be solved in stages by first substituting the optimal abatement
schedule (5) to obtain the reduced form HJB equation:

rV (θ, k,B) = max
b

π (k) θ−1 − p(e− ē+ b) + bVB (θ, k,B)

−αθVθ (θ, k,B) +
1

2
σ2θ2Vθθ (θ, k,B) , (7)

where π (k) = p2/4c (k).
The main objective of the paper is to analyze the optimal investment

policy of a firm under both a non-bankable and a bankable TPP. To this end
define V N (θ, k) and V B (θ, k,B) to be the cost minimizing value functions
under a non-bankable and bankable TPP, respectively. We first consider
investment under a non-bankable TPP.

2See Harrison and Taskar (1983), Harrison (1985, ch. 6) or Dumas (1991) for a formal
discussion of barrier control. Dixit (1993) and Dixit and Pindyk (1994) provide a less
rigorous, but more intuitive exposition.
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2.2 Investment option value under a non-bankable TPP

Let θ∗ denote the optimal investment threshold under a non-bankable TPP.
Under a non-bankable TPP, B = b = 0, and the HJB equation (7) is:

rV N (θ, k) = π (k) θ−1 − p(e− ē)− αθV Nθ (θ, k) +
1

2
σ2θ2V Nθθ (θ, k) . (8)

It is natural to require that a solution to this equation should satisfy the
boundary condition:

lim
θ→∞

V N (θ, k) = −p(e− ē)/r (9)

so that no abatement occurs when the abatement cost is infinite and the
expected present value of compliance is comprised only of permit purchase
cost.
Using the method of undetermined coefficients, a particular solution for

the non-homogeneous component of (8) is given by

V Np(θ, k) =
π (k)

θ (r − α− σ2)
−

p(e− ē)

r
. (10)

Superscript p denotes particular solution. The second term on the right
hand side is the present value of net permit purchase cost after taking into
account the cost savings through the abatement. The first term represents
the present value of abatement at currently installed k. The following
assumption insures the existence of a strictly positive threshold from which
it is optimal to invest:

A.1. r − α− σ2 > 0.

The option value of investment is obtained by solving the homogeneous
part of (8), rV N = −αθV Nθ + (1/2)σ2θ2V N

θθ . The general solution denoted
with superscript g is given by

V Ng(θ, k) = AN1(k)θ
φ
N1 +AN2(k)θ

φ
N2 (11)

where AN1(k) and AN2(k) are constants to be determined using additional
boundary conditions. φN1 and φN2 are the positive and negative roots,
respectively, of the characteristic equation ΩN = 0.5σ

2φN (φN−1)−αφN−r:

φN1 =
1

2
+

α

σ2
+

√(
1

2
+

α

σ2

)2
+
2r

σ2
> 1, (12)

φN2 =
1

2
+

α

σ2
−

√(
1

2
+

α

σ2

)2
+
2r

σ2
< −1 (13)
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where the inequality of (13) follows from A.1.3 If AN1(k) �= 0, then φN1 > 1
implies limθ→∞ V Ng (θ, k) =∞. Since this violates the boundary condition
(9) the first option term in (11) is eliminated by setting AN1(k) = 0. The in-
tuition is that infinite abatement costs are sufficient to deter any investment
in abatement capital. Given that AN1(k) = 0 we can simplify notation and
express the subscript N2 as N throughout the remaining analysis.
Combining (10) and (11), the solution for the value function V N is given

by

V N (θ, k) =
π (k)

θ (r − α− σ2)
−

p(e− ē)

r
+AN (k)θ

φN . (14)

In what follows, it is important to comprehend a property of φN (i.e.,
φN2) with respect to the drift and volatility parameters. First, φN is
increasing in α: ∂φN/∂α > 0. This can be checked using the char-
acteristic equation by letting ΩN = 0. From the total differentiation,
[∂ΩN/∂φN ] [∂φN/∂α] + ∂ΩN/∂α = 0. Since ∂ΩN/∂α = −φN > 0 and
∂ΩN/∂φN < 0 with φN < 0, the substitution of them to the total differen-
tiation yields ∂φN/∂α > 0. In a similar manner, it can be shown that φN is
increasing in σ: ∂φN/∂σ > 0. In sum, the properties of φN (i.e., φN2) are
summarized as follows:

Remark 1 (i) φN < 0, (ii) ∂φN/∂α > 0, (iii) ∂φN/∂σ > 0, and (iv)
∂φN/∂r < 0

To determine the optimal investment trigger θ∗ and the constant term
AN(k), the value-matching condition (15) and super-contact condition (16)
are required (Dumas, 1991):

V Nk (θ
∗, k) = w, (15)

V Nkθ (θ
∗, k) = 0. (16)

The value-matching condition states that the marginal value of investment
is equal to the marginal capital adjustment cost at the optimal threshold of
θ∗. The super-contact condition (16) allows a smooth transition from the
no-investment regime to the investment regime. By solving two boundary
conditions simultaneously, we have

3Suppose, by contradiction, φ
N
+ 1 ≥ 0. From (13), 3/2 + α/σ2 ≥√

(1/2 + α/σ2)2 + 2r/σ2. Take squares to both RHS and LHS. By rearranging terms,

one obtains r − α− σ2 ≤ 0 that is contradictory to the assumption A.
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Lemma 1 The optimal investment threshold that specifies an investment
rule, (15) and (16), is

θ∗ =
π′ (k)

(r − α− σ2)

(
1

wHN

)
> 0 (17)

where HN = φN/(φN + 1).

Proof. The derivation of θ∗ is straightforward from two boundary condi-
tions, (15) and (16). Note that they can be explicitly rewritten as

A′N(k)θ
∗φN =

−π′(k)

θ∗ (r − α− σ2)
+w (18)

φNA
′
N(k)θ

∗φN =
π′ (k)

θ∗ (r − α− σ2)
(19)

where π′ (k) = −c′ (k) p2/4c (k)2 . By substituting A′N(k)θ
∗φN of (19) into

(18), and then rearranging terms, θ∗ is obtained as (17). Since r−α−σ2 > 0
and HN > 0 from the assumption A, θ∗ is an intuitively valid threshold that
is positive.

Note that θ∗ in (17) is represented with the marginal expected present
value of abatement devided by the capital adjustment cost, w, and the op-
tion value multiple, HN . We shall discuss more about HN shortly. The
LHS in (18) is the marginal option value for an investment and the RHS
in (18) represents the marginal change of the expected present value of the
compliance cost plus the capital adjustment cost. A waiting value at θ is

measured by −A′N (k)θ
φN −

[
π′(k)

θ(r−α−σ2) −w
]
. Until θ reaches θ∗, a positive

waiting value prevails but at θ ≤ θ∗, no more waiting value exists. There-
fore, the value-matching condition implies that the waiting value becomes
zero at θ∗ and it is optimal for the firm to adjust its capital immediately.
Figure 1 depicts how the waiting value changes as θ evolves from the right
to the left and how θ∗ is determined.

The option value multipleHN captures hysteresis effect in a non-bankable
TPP, measuring degree of reluctance to undertake an investment. The
larger value of HN indicates greater reluctance to adjust capital since it
lowers the investment threshold. From Remark 1, following properties of
HN are immediate:

Lemma 2 (i) ∂HN/∂α > 0, (ii) ∂HN/∂σ > 0, and (iii) ∂HN/∂r < 0.
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Figure 1: Determination of Investment Threshold
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Figure 2:

As consistent with conventional real option result, larger uncertainty
creates larger hysteresis: ∂HN/∂σ > 0. When technological progress rate is
high due to larger value of α, the attraction for the immediate investment
may decrease. By this we mean that α is associated with the opportunity
cost of exercising the option (Dixit and Pindyck, 1994; Trigeorgis, 1996).
Therefore, we observe from Lemma 2 that the higher is α, the higher is
the opportunity cost for undertaking an investment rather than holding
the option. As we shall see later, this property plays a critical role by
distinguishing the investment threshold under a bankable TPP from the one
under a non-bankable TPP, by changing the opportunity cost of exercising
the option.
Now, combined with Lemma 2, Lemma 1 develops following comparative

statics on θ∗:

Lemma 3 (i) ∂θ∗/∂w < 0, (ii) ∂θ∗/∂p > 0, but (iii) the signs of ∂θ∗/∂σ,
∂θ∗/∂α, and ∂θ∗/∂r are indeterminate.

An increase in irreversible investment cost lowers the threshold and con-
sequently creates further delay for the capital adjustment. On the other
hand, an increase in permit price raises the investment incentive. However,
the effects of α, σ and r are not determinate because these parameters have
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opposite effects on the option value multiple and the marginal expected
present value of abatement. For example, suppose σ increases. Then
greater uncertainty implies larger HN as explained in Lemma 2. This
will reduce the level of θ∗. However, greater uncertainty results in a lager
marginal expected present value of abatement and it will increase the level
of θ∗. Consequently, the total effect of uncertainty on θ∗ is determined
depending on underlying parameter values.
The investment trigger θ∗ can be compared to a deterministic optimal

threshold derived under the NPV approach. Denote θ∗NPV as the NPV
investment threshold. In the absence of uncertainty, a firm’s present value
becomes

[
θc(k)a2 + p(e− ē− a)

]
/r. After substituting the optimal abate-

ment schedule into the present value, we differentiate it with respect to k.
Then, equating the unit investment cost w to the marginal option value of
investment produces

θ∗NPV =
π′(k)

r

(
1

w

)
. (20)

θ∗NPV is often called aMarshallian NPV trigger in a sense that it equates the
marginal benefit from investment to the marginal investment cost. Notice
that θ∗NPV includes no option value multiple, HN , as in θ∗. Finally, the
ordering of investment thresholds between θ∗ and θ∗NPV are

Proposition 1 Deterministic investment threshold is always higher than
investment threshold under uncertainty, i.e., θ∗ < θ∗NPV .

Proof. We prove by contradiction. Suppose θ∗ ≥ θ∗NPV . Then 1/(r − α−
σ2)HN ≥ 1/r. After transposing terms, this is reduced to r

α+σ2
≤ −φN

that can be explicitly rewritten using (13):

1

2
+

α

σ2
+

r

α+ σ2
≤

√(
1

2
+

α

σ2

)2
+
2r

σ2
.

By taking squares to both terms and rearranging, we have r−α−σ
2

(α+σ2)2
≤ 0. But

this is contradictory to the assumption A.

Proposition 1 implies that, by failing to account for managerial flexibil-
ity, a deterministic decision rule induces earlier investment relative to the
uncertainty case.
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So far, we have only solved for θ∗. Remaining task is to derive A
′

N (k)
by solving (15) and (16) with θ∗:

A′N(k) =
1

θ∗φN+1

(
p

2c(k)

)2
−c′(k)

φN (r − α− σ2)
.

The fact that A′N (k) is negative is intuitive because the investment option
value is decreasing in abatement capital. Therefore, the marginal option
value in dollar terms is denoted as −A′N (k)θ

φN . By integrating −A′N(k),
the constant term of integration is calculated:

AN(k) =

∫ k

0

[
−A′N(s)

]
ds =

p2

4φN (r − α− σ2)

∫ k

0

c′ (s)

c (s)2 θ∗φN+1
ds.

Now we have all necessary information to evaluate the investment option
under a non-bankable TPP. In the next section, the investment option value
under a bankable TPP is analyzed.

2.3 Investment option value under a bankable TPP

Denote θ∗∗ as an investment threshold when emission permits are bankable.
According to the transition equation governing the evolution of the permit
stock, Ḃ (t) = b (t), a firm considers its permits intuitively as a natural
resource and allocates them over time through the saving and withdrawing.
Under banking system, a firm retains two compliance strategies, permit
banking or investment in pollution abatement technology. We focus only
on permit banking and do not consider permit borrowing in the paper since
there are few borrowable TPPs in place.
Under banking system, a particular concern has been raised on the emis-

sion clustering that may be caused by excessive concentration of permits as
a result of trading. Hence, similar to Kling and Rubin (1997), we assume
that a constraint under a bankable TPP is imposed on the maximum num-
ber of permits that can be instantly bought and sold.4 Denote q̄ and q as
the maximal constrained rates at which a firm is allowed to buy and sell per-
mits, respectively. Then along with q̄ and q given e, ē, and a, the accounting
equation (1) produces the maximal saving rate, b̄, and the maximal with-
drawing rate, b, respectively. As before, the constrained HJB is obtained

4However, when Kling and Rubin (1997) actually solve the problem, they disregard
the bounding condition to simplify model exposition.
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by inserting the optimal abatement schedule to (6):

rV B (θ, k,B) = max
b

π (k) θ−1 − p(e− ē+ b) + bV BB (θ, k,B)

−αθV Bθ (θ, k,B) +
1

2
σ2θ2V Bθθ (θ, k,B) . (21)

The HJB (21) should be solved with boundary conditions:

lim
θ→∞,B→0

V B(θ, k,B) = −p (e− ē) /r, (22)

lim
B→0

V B(θ, k,B) = V N (θ, k). (23)

The boundary condition (22) implies that when cost grows infinitely and
there is no available banked permit stock, a firm’s compliance cost entirely
consists only of the permit purchase cost. The boundary condition (23)
states that the value function is reduced to the value function of a non-
bankable permit program when the permit stock is exhausted.
Linearity of (21) with respect to the control variable b ensures the ex-

istence of an optimal bang-bang solution because b is bounded by b̄ and b.
The solution is then characterized by

b = b̄ if p < V BB (θ, k,B) ,
b = b if p > V BB (θ, k,B) .

(24)

The optimality condition (24) reflects an intertemporal trading condi-
tion which relates the permit price to the marginal value of permit stock.5

The first inequality corresponds to the saving regime where a firm saves
permits at the maximal saving rate, b, because the current permit price is
less than the marginal value of permit stock. On the other hand, the sec-
ond inequality in (24) corresponds to the withdrawing regime where a firm

5Another special case of interest is when p = V B

B . In the context of the current model,
it can be achieved for two cases. First is when B = 0 and this case shall be discussed below.
The other case is when there are no trading constraints. Under the circumstance, firms
can infinitely bank or withdraw permits and V B (θ,B, k) degenerates to V N (θ, k). But,
as discussed above, environmental regulations more likely implement a maximal capacity
of intertemporally tradable permits so as to avoid excessive emissions onto some period.
Also, infinite speculation or trades of permits is not possible in equilibrium as argued by
Phaneuf and Requate (2002, p.373).
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withdraws permits at the maximal rate, b, to sell permit surplus when the
current permit price is greater than the marginal value of permit stock.
The maximal saving and withdrawing rates are endogenously dependent

of k when, through the optimal abatement schedule (5), a is increasing in
k. Then, from the accounting equation (1), for given level of q̄, an increase
of a at p < V BB results in an increase of b̄. Similarly, for given level of q,

an increase of a at p > V BB also results in an increase of b. Therefore, we
can represent the maximal rate as a function of k when there is abatement
activity.
To solve the value function, we start with the non-homogeneous com-

ponent, denoted by V Bp. To keep notation simple, let m (k) denote the
maximal rate, either to represent b̄ (k) or b (k). The non-homogeneous com-
ponent for the HJB equation (21) is constrained one further step by replacing
b with the maximal rate, m (k):

rV Bp(θ, k,B) = π (k) θ−1 − p(e− ē+m (k)) +m (k)V BpB (θ, k,B)

−αθV Bpθ (θ, k,B) +
1

2
σ2θ2V Bpθθ (θ, k,B) . (25)

It can be verified that the particular solution is

V Bp(θ, k,B) =
π (k)

θ (r − α− σ2)
−

p(e− ē)

r
−

pm (k)

r
+

m (k)

r
perT (k)

where T (k) = B/m (k).
The next task is to solve for the general solution of the homogeneous

equation, denoted by V Bg (θ, k,B). Intuitively, the homogeneous compo-
nent corresponds to the case where there is neither abatement nor permit
trades. Then, the homogeneous equation for V Bg (θ, k,B) is

rV Bg (θ, k,B) =mV Bg
B (θ, k,B)− αθV Bgθ (θ, k,B) + (1/2)σ2θ2V Bgθθ (θ, k,B) .

Notice that m is independent of k in the homogeneous component because
there is no abatement and hence the abatement capital has no relevance
with the maximal rate. The general solution is

V Bg (θ, k,B) = AB(k)
(
eξBθ

)φB
(26)

where AB (k) is a constant term and ξ is a scaling parameter that will be
determined later. φB is the negative root of the characteristic equation,
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ΩB = (1/2)σ
2φB(φB − 1)− α̂φB − r:

φB =
1

2
+

α̂

σ2
−

√(
1

2
+

α̂

σ2

)2
+
2r

σ2
< 0 (27)

where α̂ = α−ξm. Notice that φB is similar to φN except for changing from
α to α̂. As was the case for α in φN , α̂ is also related to the opportunity
cost of exercising the investment. However, α̂ is now adjusted by ξm and
it results in substantial ordering change of investment thresholds, compared
to a non-bankable TPP.
Combining the particular and the general solution, the value function is

V B(θ, k,B) =
π (k)

θ (r − α− σ2)
−

p(e− ē)

r

−
pm (k)

r
+

m (k)

r
perT (k) +AB (k)

(
eξBθ

)φ
B

(28)

that depends on the current states of θ, B, and k. Using additional bound-
ary conditions, θ∗∗, AB (k) , and ξ will be solved below. The interpretation
of the first and the second terms in (28) is the same as in (10): the present
value of abatement and the present value of net permit purchase cost, respec-
tively. The last term shows the option value of investment for abatement
technology.
The third term on the RHS of (28) represents the present value of bank-

ing cost incurred to a firm when it saves permits by not using them now.
However, the saved permits retain some value because they can be used
in the future. This value is reflected in the fourth term. Note that the
value of instantaneously banked permits grows exponentially with the con-
tinuous compounding factor erT (k). Finally, if we let Ψ(k) = −pm (k) /r +
m (k) perT (k)/r, the sum of the third and fourth terms, this is nothing but
the net present value of instantaneously banked permits. Therefore, its
derivative with respect to k denoted by ψ (k) is the marginal net present
value of instantaneously banked permits with respect to k:

ψ (k) =
pm′ (k)

r

(
erT (k) (1− rT (k))− 1

)
.

Observe that the total capital adjustment cost under a bankable TPP is
represented by w − ψ (k), the capital adjustment cost less the marginal net
present value of banked permits with respect to k. Then, we have

Lemma 4 The capital adjustment cost under a non-bankable TPP, w, is
always less than or equal to the capital adjustment cost under a bankable
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TPP, w−ψ (k) , because the latter includes the opportunity cost of the capital
adjustment on instantaneously banked permits.

Proof. It is sufficient to show that ψ (k) ≤ 0 holds always. Let F (T (k)) =
erT (k)(1 − rT (k)) − 1. Then its first derivative yields the maximal point,
T (k) = 0. At T (k) = 0, F (T (k)) = 0. Also, we see limT (k)→∞ F (T (k)) =
−∞ and limT (k)→−∞ F (T (k)) = −1 < 0 from the limiting property. Thus,
combined with m′ (k) > 0, we know that ψ (k) is always non-positive.
The reason for the marginal net present value of instantaneously banked

permits to be non-positive is that the banked permits become less valuable
assets when a firm’s abatement capital increases. Now, we are in a position
to derive the investment thresholds. To solve for θ∗∗, AB (k) and ξ, we use
the following boundary conditions:

V Bk (θ
∗∗, k,B) = w, (29)

V Bkθ(θ
∗∗, k,B) = 0, (30)

V B
kB(θ

∗∗, k,B) = 0. (31)

The first condition (29) is the conventional value-matching condition and
(30) and (31) are the super-contact conditions that ensure the continuity of
the marginal value function at the optimal threshold with respect to θ and
B, respectively. By solving them simultaneously, we obtain

Lemma 5 The optimal investment threshold under a bankable TPP is

θ∗∗ =
π′ (k)

(r − α− σ2)

(
1

(w− ψ(k))HB

)
> 0 (32)

where HB = φB/(φB + 1), and

ξ =
rpm′ (k)T (k) erT (k)

(w− ψ (k))m (k)HB
. (33)

Proof. Solving (29) and rearranging terms yields

A′B(k)
(
eξBθ∗∗

)φB
=

−π′ (k)

θ∗∗ (r − α− σ2)
− ψ (k) +w. (34)

The scaling parameter ξ can be calculated by solving (30) and (31) (Pindyck,
2002). The super-contact condition with respect to B is:

φBA
′
B(k)

(
eξBθ∗∗

)φB
ξ =

rpm′ (k)T (k) erT (k)

m (k)
. (35)
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The super-contact condition for θ∗∗ is obtained by differentiating (34) with
respect to θ∗∗. This gives

φBA
′
B(k)

(
eξBθ∗∗

)φB
=

π′(k)

θ∗∗ (r − α− σ2)
. (36)

By solving (35) and (36) in terms of ξ, we obtain (33). Then, substitute

(36) into (34) to cancel out the term A′B(k)
(
eξBθ∗∗

)φ
B . This results in (32).

Similar to a non-bankable permit program, HB > 0 always holds assuring a
positive level of θ∗∗.

The interpretation of (32) under a bankable permit is analogous to θ∗∗

under a non-bankable permit and the option value multiple ,HB, represents
hysteresis effect. The calculation of ξ involves a complicated procedure to
find the fixed point satisfying (33). Fortunately, however, we only need to
verify the sign of ξ to construct the ordering of investment thresholds.
The marginal option value is calculated by

A′B(k)
(
eξBθ

)φB
=

(
θφB

θ∗∗φB+1

)(
p

2c(k)

)2
−c′(k)

φB(r − α− σ2)
(37)

that is negative because the value of investment must be decreasing in the
stock of abatement capital. By integrating (37) with respect to k, the
investment option value is obtained as before. The NPV threshold under a
bankable TPP is derived as follows:

θ∗∗NPV =
π′(k)

r

(
1

w − ψ(k)

)
. (38)

Consequently, we characterize the ordering of investment thresholds, θ∗, θ∗∗,
θ∗NPV and θ∗∗NPV by pulling together all the results above.

2.4 Characterization of investment thresholds

The relationship between θ∗∗ and θ∗∗NPV is consistent with the conventional
real option argument: θ∗∗ < θ∗∗NPV . This can be proved in a manner
similar to Proposition 1. The ordering of the deterministic thresholds is
unambiguous:

Proposition 2 In the absence of uncertainty, θ∗∗NPV < θ∗NPV for B > 0
and θ∗NPV = θ∗∗NPV at B = 0.
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The proof is immediate with reference to (20) and (38) along with Lemma
4. The rationale behind this result is the negative value of the marginal
net present value of instantaneously banked permits. Also, the result is
consistent to Phaneuf and Requate (2002) arguing that a banking system
discourages investment in pollution abatement technology.6 However, as we
shall show below, the presence of uncertainty affects the investment incen-
tive by creating the option value. Next we compare the thresholds under
uncertainty.

Proposition 3 In the presence of uncertainty, θ∗∗ > θ∗ if (w − ψ(k))HB <
wHN in the saving regime whereas θ∗∗ < θ∗ in the withdrawing regime.

Proof. Firstly, consider where p < V BB (θ, k,B). Then following from
m (k) = b̄ (k) and m′ (k) > 0, we know ξ > 0. Combined with ξm > 0, α̂ <
α results in HB < HN due to Lemma 2. Consequently, we obtain θ∗∗ > (<)
θ∗ if (w− ψ(k))HB < (>) wHN . Next, consider where p > V B

B (θ, k,B).
Then, m (k) = b (k), m′ (k) > 0 and ξ > 0 yield ξm < 0. This results in
HB > HN due to α̂ > α. Finally, θ∗∗ < θ∗ in the withdrawing regime.

In the saving regime where p < V BB (θ, k,B), investment hysteresis is
reduced because the opportunity cost of exercising the investment option
under a bankable TPP is less than the one under a non-bankable TPP. It is
because when banking is profitable, investment can be a better compliance
strategy as the residual permits to be saved increases through the invest-
ment. However, the final ordering of θ∗ and θ∗∗ is going to be determined
by comparing the relative effect of the hysteresis and the capital adjustment
costs under both regimes of TPPs. If the effect of the reduced hysteresis
under a bankable TPP is sufficient to offset the relatively higher capital
adjustment cost, we have θ∗∗ > θ∗. On the other hand, in the withdraw-
ing regime where p > V BB (θ, k,B), the opportunity cost of exercising the
investment option increases and it yields θ∗∗ < θ∗ always. In sum, the
above proposition argues that, unlike the certainty case, when a firm facing
future cost uncertainty can increase its permit stock through an investment,
there exists a condition under which a bankable TPP increases investment
incentive more than a non-bankable TPP does.

6Phaneuf and Requate (2002) show that the investment size under a bankable TPP is
less than under a non-bankable TPP. On the other hand, we focus on investment timing
under a non-bankable and a bankable TPP.
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2.4.1 Effect of an intertemporal offset provision

According to Krupnick, Oates and Verg (1983), the offset provision allows
new sources of a pollutant in a particular area to be offset by compensating
abatement in other sources of that pollutant in that area. Traditionally
this concept has been applied in a static framework to offset permits within
emission sources or certain geographical locations, as long as the aggregate
emissions after the offset do not exceed a prespecified environmental stan-
dard.
We translate this concept to an intertemporal setting under which an

environmental agency allows an incremental change in the maximal lower
rate to the extent that emissions are additionally abated by adjustment of
k as long as the ex-post emission level does not exceed the predetermined
environmental capacity. Therefore, the level of maximal lower rate, q, is set
to be increasing proportional to k: q (k) < 0 and q′ (k) < 0. Consequently,

b′ (k) < 0 holds if
∫ k+∆k
k

a (s)ds < −
∫ k+∆k
k

q (s)ds. Then we obtain

Corollary to Proposition 3. Consider an intertemporal offset provi-
sion under which q is increasing in k in terms of absoulte value. Then
θ∗∗ > θ∗ holds if HB (w − ψ) < HNw in the withdrawing regime.

2.4.2 Effect of initial free permit allocation

Another interesting issue is to analyze the effect of the initial allocation of
free permits. Careful examination of (33) with B (0) = 0 or equivalently
T (k) = 0 reveals θ∗ = θ∗∗ because of ψ(k) = 0. It implies that when there
is no available permit stock in the initial period, the investment incentive is
the same under a non-bankable and a bankable TPP.
When there is a positive advance allocation, B (0) > 0, the relative

ordering of θ∗ and θ∗∗ changes. Note that

∂θ∗∗

∂B
=

(
p

2c (k)

)2
−c′ (k)

(r − α− σ2) (w− ψ (k))2H2
B

×





−∂ (w − ψ (k))

∂B︸ ︷︷ ︸
(−)

HB − (w− ψ (k))
∂HB

∂ξ︸ ︷︷ ︸
(−)

∂ξ

∂B






in which the signs of all terms are easily verified except for ∂ξ/∂B in the
last term inside the bracket. Suppose ∂ξ/∂B ≤ 0, then ∂θ∗∗/∂B < 0,
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Figure 3: Sensitivity of Parameter ξ

but otherwise the sign of ∂θ∗∗/∂B becomes dependent of all underlying
parameters. Given the specification of model, it is hard to show analytically
the relationship of ξ with respect to B. Hence, a graphical visualization is
helpful to examine how the sign of ∂ξ/∂B changes. With some hypothetical
parameter values (r = 0.06, b = 10, b′ = 4, w = 230, p = 150), Figure 2
illustrates that the sign of ∂ξ/∂B is positive over low values of B (in this
case, up to B = 40) and after then it becomes negative and asymptotically
approaches to 0 as the permit stock grows. The example illustrates the
inverse relationship of the advanced allocation and investment incentives.

2.4.3 Effect of an emission credit bonus

The investment effect of an emission credit bonus can be easily examined in
the context of the current model. For instance, the emission credit bonus
provision was adopted in the U.S. Acid Rain Program to sustain demand for
high sulfur coal in several states, mostly high sulfur coal producing states.
According to the bonus provision, a total of 3.5 million tons emission permits
were provided for utilities that installed scrubbers (flue gas desulfurization)
rather than switching input lines to low sulfur coal.
This emission credit can be incorporated into the model by changing ē

to ē (k) and ē′ (k) > 0. To simplify discussion, we focus only on a non-
bankable TPP. When the bonus permits are given in accordance with ē (k),
the investment threshold is derived as

θ∗∗∗ =

(
p

2c (k)

)2
−c′ (k)

(w − pē′ (k) /r) (r − α− σ2)HN
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and it can be readily verified that θ∗∗∗ is always larger than θ∗, implying
that emission credit facilitates investment.

3 Numerical Illustration

This section provides a numerical illustration by calculating investment op-
tion values using the U.S. Acid Rain Program, Title IV of the 1990 Clean
Air Act Amendments. This program is the first large scale environmental
program relying on bankable tradable allowances. If an emission allowance
is not used to cover SO2 in its specified year, it can be banked for future
use.
Before calibrating investment option values are estimated some model

parameters specifying the abatement cost function. Rest of parameter values
that are necessary to calculate option values are appropriately assumed or,
if feasible, imported from other sources.
Since the amount of abatement is endogenously determined in the model,

we use a reduced form of the abatement cost function: C = f (x) where x
is the vector of variables that determine SO2 abatement. Explicitly, when
there are observations on a panel of I plants through T periods, we estimate
the following Cobb-Douglas cost function:

lnCOSTit = constant+ β1TIME+ β2 lnWAGEit + β3 lnREMit (39)

+β4REGit + β5 lnKAPit + uit

where uit is error component. The dependent variable, COST, represents
FGD expenditure of plant i. The vector of explanatory variables, x, con-
sists of the time variable (TIME), the FGD stock (KAP), the wage rate for
the employed labor to operate FGDs (WAGE), removal efficiency (REM),
and regional-specific dummy variable (REG). The variable TIME is used to
identify technological progress that is common to all plants. The dummy
variable REG is introduced because, as once adequately predicted by Crop-
per and Oates (1992, p.691), several state governments or public utility com-
missions introduced some restrictions on the use of lower sulfur coal prior
to or during Phase I. The high sulfur coal deposit states such as Illinois,
Indiana, Iowa, Kentucky, Ohio, Oklahoma, Pennsylvania and West Virginia
(Lie and Burtraw, 1998) imposed regulations to induce firms to commit to
use of high sulfur coal. Hence, the dummy variable is set to be equal to
1 if the plants are located in these states, otherwise equal to 0. Appendix
provides detail explanations for each variables and data sources.
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Parameter Value Description of parameters

r 0.09 risk-adjusted discount rate

α 0.0745 expected growth rate of abatement cost

σ (0∼0.12) volatility rate of abatement cost

k 106.00 installed abatement capital ($/kwh)

η -0.0089 scale parameter of investment

Table 1: Parameter Values for Numerical Analysis

The cost function specified in (39) is similar to a short-run variable
abatement cost function with abatement capital stock as a quasi fixed input.
Many papers use short-run cost functions to represent how firms adjust
quasi fixed factors in response to changes in exogenous variables (Kulatilaka,
1987; Kolstad and Lee, 1993). The use of the short-run cost function is
justified in the current context since a barrier control policy described in the
previous section is consistent with a short-run specification. Recall that the
barrier control policy explains occasional bursts of investment only when the
underlying stochastic process crosses the investment threshold. Likewise,
the quasi-fixed input is adjusted not by a continuous flow of investment.
For the estimation, we use panel data on coal-fired electric power plants
regulated by the U.S. Acid Rain Program. The data ranges from 1996 to
2000. Table A.1 reports the estimation results.
Drift parameter α is set to be 0.0745 using the estimate of β1 for TIME.

It captures exogenous technological progress over time. If we let c (k) = kη,
the value of η is imported from the estimate of β4: −0.0089. We allow
a range for the capital adjustment cost, w, from $100 to $400 per kwh.
Based on the empirical observation, the permit price is set, as a benchmark,
at p = $150. But, if necessary, some range is provided for p. The value
for k is imported from the EIA-767. The amount of SO2 abatement is
imputed using the EIA-767, showing average abatement is 2,790 thousand
tons. We assume r = 0.09. For the volatility level, σ, a range between 0 to
0.12 is chosen to ensure r − α− σ2 > 0. The parameter values to be used
in the following numerical analyses are summarized in Table 1. First, the
optimal investment threshold under a non-bankable TPP, θ∗, is calibrated
while varying allowance price from $150 to $300 and the capital adjustment
cost from $100 to $300. Figure 3 illustrates the result of sensitivity analysis,
showing that, consistent with Lemma 3, θ∗ is increasing in p but decreasing
in w.
Figure 4 provides a sensitivity analysis of θ∗ with respect to σ and w,

22



Figure 4: Sensitivity of θ∗ with respect to p and w
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illustrating that the firm’s investment decision is inversely related to σ and
w. In this particular illustration, θ∗ appears to be more sensitive to w
than σ, implying that for determining the investment trigger level, capital
adjustment cost plays a more critical role than the volatility of technological
progress does.
It is hard to comprehend the economic implication by just comparing

the thresholds, θ∗ and θ∗∗. Therefore, given the model parameter values,
we translate them using (2) so as to obtain the trigger abatement cost be-
low which it is optimal to undertake investment. Table 2 shows the trigger
costs under a non-bankable and a bankable TPP.7 The trigger costs un-
der the non-bankable TPP is lower than the one under the saving regime
(third column in the table), but higher than the withdrawing regime (fourth
column). However, the fifth column shows a case where an intertempo-
ral offset provision is provided so that this hypothetical firm increase the
number of instantaneously withdrawn permits in accordance with increase
of abatement capital. In this case, as argued in the corollary to Proposition
3, the trigger cost may increase.

7Since ξ involves transcendental functions of the variables in an essentially non-
algebraic way, the appropriate value of ξ can be obtained computationally by finding
a fixed point which satisfies equation (33). Then, ξ is substituted into (27) to calculate
φ
B
. For the numerical analysis, we use Newton-Raphson method.
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Figure 5: Sensitivity of θ∗ with respect to σ and w
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w non-bankable
bankable

p < V B
B

bankable

p > V BB

bankable

p > V B
B

200 1.80 5.37 0.50 5.59

220 1.63 4.59 0.48 4.29

240 1.50 3.98 0.47 3.48

260 1.38 3.50 0.46 2.92

280 1.28 3.11 0.45 2.52

300 1.20 2.79 0.44 2.21

320 1.12 2.52 0.43 1.97

340 1.06 2.29 0.42 1.78

B = 10
b̄ = 100
b̄′ (k) = 2

B = 10
b = −5
b′ (k) = 2

B = 10
b = −10
b′ (k) = −1

Table 2: Trigger Costs (unit: cents per kWh)
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4 Conclusion

In spite of a growing number of environmental policies that allow permit
banking, the effects of banking on environmental investment has received less
attention than the effects of a non-bankable TPP. The foregoing analysis
develops a model for investment option valuation that encompasses non-
bankable as well as bankable TPPs.
We show uncertainty may be a major source of investment delay under

TPPs, but it does not always discourage investment. Depending on all the
underlying parameter values, uncertainty may facilitate investment because
under uncertainty a firm is willing to undertake investment to increase the
size of permit stock as a future compliance measure. As opposed to Phaneuf
and Requate (2002), we show that one cannot simply argue that a bankable
system is inferior to a non-bankable system in terms of investment incentives.
An intertemporal variant of an emission offset provision is proposed to

facilitate investment but this topic needs more comprehensive analysis to
determine its effect on firms’ optimal abatement behavior and the associated
social welfare. In addition, we show that the advance allocation of permits
would have a positive effect on investment only for a small range of advance
allocation amounts. The allocation of free permits in advance reduces firms’
investment incentive in long-run.
Since the design of TPPs accompanies more or less practical questions

including all these policy alternatives, the results derived in this paper should
serve to provide some limited policy implications. Particularly, it should
be noted that, by focusing on a model of an individual firm’s investment
behavior, social aspects of the effect of TPPs on firms’ emission behavior
are disregarded.
Several possible extensions of the model should be discussed. One way

is to consider the investment option in a general equilibrium framework as
in Zhao (2003). Also, the present model implicitly relies on the efficiency
of permit markets without considering issues of market power and trans-
action costs. A firm with market power can strategically manipulate the
holding of permits in order to raise its rivals’ costs or to build entry barriers
and thereby gain market power on a product market, as well known in the
literature of ‘exclusionary manipulation’. The presence of dominant firms
exercising market power may change strategic investment option behavior.
In order to preempt others from acquiring permits each firm may invest ear-
lier than in the case without a dominant firm. Lastly, the present model
does not discuss normative issues such as social efficiency and equity. For a
more complete understanding of the effects of TPPs, future research should
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include normative issues as well.

Appendix

Data for estimating the abatement cost function mainly comes from the
Energy Information Administration’s EIA-767 form. This form is used
for various economic and regulatory analyses as in Carlson et al. (2000),
Arimura (2002) and Popp (2001). For the analysis, we use the data for
coal-fired electric power plants, ranging from 1996 to 2000.
FGD O&M expenditure is provided by the database RANNUAL in EIA-

767. Although it would be more appropriate to deduct the sales revenue
of commercially salable waste products from FGD O&M costs, it is not
considered because of substantial number of non-responses.
As for wage rate, we distinguish maintenance labor and operating la-

bor. In general, maintenance labor cost is more expensive than operating
labor cost since maintenance requires more skilled personnel. In every
year the Department of Labor reports in its Monthly Labor Review hourly
wage rates associated with labor employed for maintenance of environmen-
tal protection facilities. We use this wage rate to represent maintenance
wage rates. Maintenance wages for each plant are compiled by matching
each county’s wage rate to the county code of each plant. To compute
an annual wage rate for each plant, we use the convention that, following
the EPA Air Pollution Control Cost Manual of the EPA (2002, p.2-31),
supervisory labor is a flat fifteen per cent of the operating labor require-
ment. Also, according to EPA (2002, p.2-31), many cost studies use a
10% premium over the operations labor wage rate for maintenance labor
costs. Hence, the annual labor wage (WAGE) is decomposed such that
WAGE = OP × (0.85wageo + 0.15× 1.1×wageo) where wageo is hourly
wage rate for operating labor and OP is annual in service hours reported in
the EIA-767.
As for the capital stock related to scrubbing, we import the construction

cost data from the EIA-767. The manual of the EIA-767 instructs firms to
report all costs incurred to bring a planned system to commercial operation,
including the cost of all major modifications. We assume 5 percent depreci-
ation rate for the capital stock remaining in each year. Removal efficiency
of the installed FGDs are provided by the EIA-767.
The number of observations is reduced from 195 to 120 after eliminating

inconsistent or non-response observations. In estimation, we transform
each variables by dividing them with electricity generation capacity (kWh)
of each plants. Table A.1 provides the estimation result.
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Table A.1 Estimation Results for the Abatement Cost Function

Variable Coefficients Stand. Error T-ratio

constant -12.0340 0.9618 -12.511
TIME -0.0745 0.0207 -3.597
WAGE 0.5371 0.0450 11.928
REM -0.2722 0.0731 -3.721
REG 0.8064 0.0727 11.902
KAP -0.0089 0.0018 -5.075
R2 0.9998

Log likelihood -498.3487

27



REFERENCES

Arimura, T. (2002), An Empirical Study of The SO2 Allowance Mar-
ket: Effects of PUC Regulations, Journal of Environmental Economics and
Management 44, 271-289.
Burtraw, D. (1996), The SO2 Emissions Trading Program: Cost Savings

without Allowance Trades, Contemporary Economic Policy 14, 79-94.
Carlson, Curtis, Dallas Burtraw, Maureen Cropper, and Karen L. Palmer

(2000), Sulfur Dioxide Control by Electric Utilities: What Are the Gains
from Trade?, Journal of Political Economy 108 (6), 1292-1326.
Cronshaw, Mark B., and Jamie B. Kruse (1996), Regulated Firms in

Pollution Permit Markets with Banking, Journal of Regulatory Economics
9, 179-189.
Cropper, Maureen L., and Wallace E. Oates (1992), Environmental Eco-

nomics: A Survey, Journal of Economic Literature 30(2), 675-740.
Department of Energy and the Energy Information Administration (DOE/EIA)

(1997), The Effects of Title IV of the Clean Air Act Amendments of 1990
on Electric Utilities: an Update, DOE/EIA-0582.
Dixit, Avinash and Robert S. Pindyck (1994), Investment under Uncer-

tainty, Princeton University Press.
Dumas, Bernard (1991), Super Contact and Related Optimality Condi-

tions, Journal of Economic Dynamics and Control 15, 675-695.
Harrison, J. Michael, and Michael I. Taskar (1983), Instantaneous Con-

trol of Brownian Motion, Mathematics of Operations Research 8, 439-453.
Harrison, J. Michael (1985), Brownian Motion and Stochastic Flow Sys-

tems, John Wiley and Sons, New York.
Herbelot, Olivier (1994), Option Valuation of Flexible Investments: The

Case of a Scrubber for Coal-Fired Power Plant, MIT-CEEPR 94-001, work-
ing paper.
Jaffe, Adam B., Richard G. Newell, and Robert N. Stavins (2002), En-

vironmental Policy and Technological Change, Environmental and Resource
Economics 22, 41-69.
Jung, C.H., K. Krutilla, and R. Boyd (1996), Incentives for Advanced

Pollution Abatement Technology at the Industry Level: An Evaluation of
Policy Alternatives, Journal of Environmental Economics and Management
30 (1), 95-111.
Kling, Catherine, and Jonathan Rubin (1997), Bankable Permits for The

Control of Environmental Pollution, Journal of Public Economics 64, 101-
115.

28



Kolstad, Charles D., and Jong-Kun Lee (1993), The Specification of
Dynamics in Cost Function and Factor Demand Estimation, Review of Eco-
nomics and Statistics 75(4), 721-726.
Krupnick, Alan J., Wallace E. Oates, and Eric Van De Verg (1983),

On Marketable Air-Pollution Permits: The Case for a System of Pollution
Offsets, Journal of Environmental Economics and Management 10, 233-247.
Kulatilaka, N. (1987), The Specification of Partial Static Equilibrium

Models, Review of Economics and Statistics 69, 327—335.
Lie, Ron, and Dallas Burtraw (1998), State-level Policies and Regulat-

ing Guidance for Compliance in The Early Years of The SO2 Emissions
Allowance Trading Program, Discussion paper 98-35, Resources for the Fu-
ture, Washington D.C.
Millman, S. R., and R. Prince (1989), Firm Incentives to Promote Tech-

nological Change in Pollution Control, Journal of Environmental Economics
and Management 17, 247-265.
Montero, Juan-Pablo (1999), Voluntary Compliance with Market-based

Environmental Policy: Evidence from The U.S. Acid Rain Program, Journal
of Political Economy 107 (5), 998-1033.
Phaneuf, D. and Till Requate (2002), Incentives for Investment in Ad-

vanced Pollution Abatement Technology in Emission Permit Markets with
Banking, Environmental and Resource Economics 22, 369-390.
Pindyck, Robert S. (2002), Optimal Tming Problems in Environmental

Economics, Journal of Economic Dynamics and Control 26, 1677-1697.
Popp, David (2001), Pollution Control Innovations and The Clean Air

Act of 1990, NBER working paper no. 8593.
Rubin, J.D. (1996), A Model of Intertemporal Emission Trading, Bank-

ing, and Borrowing, Journal of Environmental Economics and Management
31 (3), 269-286.
Stavins, R.N. (1995), Transaction Costs and Tradable Permits, Journal

of Environmental Economics and Management 29 (2), 133-148.
Trigeorgis, L. (1996), Real Options, MIT Press, Cambridge, MA.
Yates, A.J. and M.B. Cronshaw (2001), Pollution Permit Markets with

Intertemporal Trading and Asymmetric Information, Journal of Environ-
mental Economics and Management 42(1), 104-118.
Zhao, Jinhua (2003), Irreversible Abatement Investment under Cost Un-

certainties: Tradable Emission Permits and Emission Charges, Journal of
Public Economics 87(12), 2765-2789.

29


