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Abstract
The inability of a wide array of dynamic stochastic general equilibrium (DSGE) models to
generate fluctuations that resemble actual business cycles has lead to the use of habit for-
mation in consumption. For example, habit formation has been shown to help explain the
negative response of labour input to a positive, permanent technology shock, several asset
pricing puzzles, and the impact of monetary shocks on real variables. Investigating four
different DSGE models with the Bayesian calibration approach, this paper observes that,
especially in a new Keynesian monetary business cycle model with both staggered price
and wage, habit formation fails to mimic the shape of the output growth in the frequency
domain: it counterfactually emphasizes low frequency fluctuations in the output growth,
compared to the U.S. data. On the other hand, habit formation has no clear implications on
other business cycle aspects including impulse responses and forecast error variance decom-
positions of output to permanent and transitory shocks. These observations cast doubt on
habit formation as an important ingredient of the DSGE model with a rich set of internal
propagation mechanisms.
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1. Introduction

It is ‘folk-theorem’ of macroeconomics that, “All models are false.” Given a suffi-

ciently rich collection of stylized facts, any dynamic stochastic general equilibrium (DSGE)

model of the business cycle will be rejected by the data. One response to this problem is to

find the most powerful sample moments for model evaluation in the econometric sense, a line

of attack begun by Hansen (1982). Another approach to the evaluation of DSGE models is

to focus on the sample moments most relevant for students of the business cycle.

This paper follows the latter tack to study a slew of DSGE business cycle models

that have consumption habits in common. Beginning with Constantinides (1990), habit

formation has been at the center of stories that unravel quandaries about asset prices and

returns. In general, past consumption restricts current and future consumption for a habit-

forming consumer. A consumer on a binge in the recent past tends to consume more in the

current period. Therefore, habit formation creates a smoother consumption process. Habit

formation resolves the equity premium puzzle and the risk-free rate puzzle because smoother

consumption implies a larger marginal rate of intertemporal substitution on average. In

turn, the risk-free rate is smaller given just a moderate degree of a risk aversion. Jermann

(1988) and Boldrin, Christiano and Fisher (2001) exploit consumption habits to match asset

pricing moments in a one-sector real business cycle (RBC) model and a two-sector RBC

(TSRBC) model, respectively. Consumption habits have been also proposed as propagation

mechanism to explain business cycle properties of the actual data. Francis and Ramey (2002),

Fuhrer (2000), Estrella and Fuhrer (2002), Christiano, Eichenbaum and Evans (2003), Smets

and Wouters (2003) adapt consumption habits to replicate the negative response of hours

worked to permanent technology shocks attributed to Gaĺı (1999), and explain the effects of

monetary policy shocks on real activity, respectively.

Questions linger about the precise role habit formation plays in the propagation of

business cycles, in spite of this success. Lettau and Uhlig (2000) show that habit formation

in consumption produces excessive smoothness in consumption compared to the actual U.S.

data. Similar results are obtained by Otrok, Ravikumar, and Whiteman (2002). They
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show that the power of habit formation to generate a small risk-free rate and a large equity

premium relies on short-run, high-frequency consumption dynamics not usually thought to

be important for asset pricing. Furthermore, in the context of a new Keyensian monetary

business cycle (NKMBC) model with a sticky price, Bouakez, Cardia, and Ruge-Murcia

(2003) observe that implausibly strong habit formation and adjustment costs of investment

must be accompanied together to generate the hump-shaped response of output to monetary

policy shocks.

This paper adds to the evidence that habit formation in consumption can solve busi-

ness cycle and asset pricing puzzles, but at a price. We evaluate the impact of consumption

habits on business cycle fluctuations in the frequency domain, based on four DSGE models

with consumption habits: a one-sector RBC model with costly adjustment of capital, a two-

sector RBC (TSRBC) model with limited intersectoral factor mobility, a monetary business

cycle (MBC) model with the money-in-utility function (MIUF) and flexible prices, and an

NKMBC model with both sticky price setting and staggered nominal wage contracts. In

the recent business cycle literature, a series of studies by Watson (1993), Cogley and Nason

(1995b), Ellison and Scott (2000), Christiano and Vigfusson (2003), and Jung (2004) evalu-

ates the empirical fit of DSGE models in the frequency domain. Among them, Jung (2004)

claims that, regarding the spectral density functions (SDFs), habit formation improves the

matching performance of several NKMBC models with sticky prices. We check the robust-

ness of this claim by examining a broad set of DSGE models, which includes an NKMBC

model with both staggered price and wage, as in Christiano, et al. (2003) and Smets and

Wouters (2003).

This paper addresses the fit of the four DSGE models in the frequency domain within

the context of the Bayesian calibration approach developed by DeJong, Ingram, and White-

man (1996). In this approach, we assess the fit of a DSGE model by comparing the theoretical

distributions of the statistical properties implied by the model with the empirical posterior

distributions of those statistical properties numerically generated by vector autoregressions

(VARs) under prior distributions of the parameters of the VARs.

We observe that, especially in the NKMBC model, habit formation fails to mimic
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the empirical posterior distributions of the SDFs of the growth rates of output: the model

counterfactually emphasizes low and business cycle frequency fluctuations in the output

growth, compared to the U.S. data. On the other hand, we find that, within the NKMBC

model, habit formation has no clear implications on other business cycle facts such as the

impulse response functions (IRFs) and the forecast error variance decompositions (FEVDs)

of output. This observation, together with the failure of habit formation with respect to

the SDFs, casts doubt on habit formation as an important ingredient of the DSGE model

endowed with a rich set of internal propagation mechanisms.

2. DSGE Models and Habit Formation

This section presents several closed-economy DSGE models with habit forming pref-

erences.1 The recent literature that claims habit formation is important in understanding

business cycle and asset pricing puzzles motivates our choice of DSGE models. Francis and

Ramey (2002) argue a one-sector RBC model with adjustment costs of investment and habit

formation is able to replicate the negative correlation between labor and the permanent com-

ponent of productivity. Boldrin, et al. (2001) claim a TSRBC model with habit formation

and limited intersectoral factor mobility resolves many outstanding asset pricing puzzles. In

their one-sector MBC models, Fuhrer (2000) and Estrella and Fuhrer (2002) contend that

habit formation captures the short-run dynamics of real variables and inflation and solves

the counterfactual jump behavior of real variables to monetary shocks implied by a broad set

of forward-looking, rational expectation models. Edge (2000), Christiano, et al. (2003), and

Bouakez, et al. (2003) champion habit-forming MBC models, but with the new Keynesian

features of staggered nominal contracts. Smets and Wouters (2003) and Amato and Laubach

(2004) embed a Taylor-type monetary policy rule into NKMBC models with habits. In this

section, we construct four DSGE models with habit-forming preferences: a one-sector RBC

model with adjustment costs of investment, a two-sector RBC model with limited intersec-

toral factor mobility, a one-sector MBC model with the MIUF, and an NKMBC model with

1Several recent papers also study the implications of habit formation in the small open economy-DSGE

models; see Bouakez (2003), Kano (2003), Karayalçin (2003), and Letendre (2003).
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sticky price and nominal wage. The next subsections introduce the four DSGE models this

paper studies.

2.1 A one-sector RBC model with adjustment costs of investment

Our version of the standard one-sector RBC model with habit formation assumes

period utility of the representative household is linear in the disutility of labor and adopts

the “internal habit” specification. The specification of internal habits assumes the lagged

household consumption enters period utility rather than aggregate past consumption as in

the “external habit” or “catching-up-with-the-Joneses” specification of Abel (1990). The

internal habit formation has been adopted by Boldrin, et al. (2001), Fuhrer (2000), Francis

and Ramey (2002), Edge (2000), Christiano, et al. (2003), Bouakez, et al. (2003), and

Amato and Laubach (2004).2

The period utility of the representative household is characterized with internal habits

and linear disutility of labor

(1) U(ct, ct−1, nt) = ln(ct − hct−1) − γ1nt, 0 < ct − hct−1, ∀ t,

where ct and nt denote household consumption and labour supply at period t, and h is the

habit parameter. If 0 < h < 1, the representative household faces habits in her consumption.3

In this case, the household wants to smooth the growth as well as the level of consumption

across time. This fact makes the optimal path of consumption more sluggish than in the case

without habits. In this paper, the period utility function is log with respect to consumption,

2The specification of habit formation is also distinguished with respect to its functional form. For example,

Fuhrer (2000), Bouakez, et al. (2003), and Amato and Laubach (2004) specify consumption habits so that

period utility is a function of the ratio of current consumption to the habit stock, while, in the models of

Francis and Ramey (2002), Edge (2000), Boldrin, et al. (2001), Christiano, et al. (2003), and Smets and

Wouters (2003), habit formation is specified so that period utility is a function of the difference between

current consumption and the habit stock. Campbell, et al. (1997, chapter 8) discuss the difference between

these two specifications in the asset-pricing context.
3When h is strictly negative, local substitutability in consumption arises in period utility. Heaton (1993)

contains a complete discussion of relationship between habit formation and durability in consumption.
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given h = 0. The utility function (1) also reflects the assumption that labour supply is

indivisible. As discussed by Hansen(1985), Rogerson (1988), and Christiano and Eichenbaum

(1992), given a constant γ1 > 0 the non-convexity in individual labour choice exists when

households buy lotteries over employment.

The expected lifetime utility function of the representative household is

(2) Et

∞∑
i=0

βiU(ct+i, ct+i−1, nt+i), 0 < β < 1,

where Et is the conditional expectation operator on the information set at period t and β is

the subjective discount factor. The budget constraint of the household is

(3) wtnt + rK,tkt = ct + xt + τt,

where wt, rK,t, kt, xt, and τt represent the real wage, the rental rate of capital, and in-

vestment, and government tax, respectively. Investment is implemented with adjustment

costs. Jermann (1998), Francis and Ramey (2002), Christiano, et al. (2003), Bouakez, et al.

(2003), and Smets and Wouters (2003) all combine habit formation with costly adjustment

of capital to improve the fit of their models to the data. We follow Christiano, et al. (2003)

and Smets and Wouters (2003) to specify the law of motion of capital with adjustment costs

of investment

(4) kt+1 = (1 − δ)kt +

[
1 + S

(
xt

xt−1

)]
xt,

where 0 < δ < 1 is the depreciation rate of capital. The function S is strictly convex and

characterized with S(1) = S ′(1) = 0 and S ′′(1) = κ > 0.4

The representative firm combines capital and (efficiency units of) labor to produce

output in a constant returns to scale (CRS) technology. Production of the single consumption-

investment goods employs

4As discussed by Christiano, et al (2003) and Smets and Wouters (2003), these assumptions on the

function S imply that the deterministic steady state of the economy is independent of adjustment costs.
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(5) Yt = Kψ
t (AtNt)

1−ψ 0 < ψ < 1,

where Yt, Kt, Nt, and At denote aggregate output, capital, labor, and labor-augmenting

technical change, respectively. We assume the log of At evolves as a random walk with drift

α

(6) At = At−1 exp(α + εt), εt ∼ N (0, σ2
ε).

The firm rents the household capital and purchases labor services from the household in

perfectly competitive markets.5 Throughout this paper, the government budget is balanced

at each period. In this model, government spending Gt is financed with lump-sum tax τt.

Therefore, the government budget constraint is given as Gt = τt.

The aggregate resource constraint of the economy is

(7) Yt = Ct + It + Gt,

where Ct is aggregate consumption and It is aggregate investment. The stochastic process

of government spending Gt is as the transitory component gt equal to the ratio of Gt to

aggregate output Yt follows an AR(1) process

(8) gt = g∗(1−ρg)g
ρg

t−1 exp(ηt), 0 < ρg < 1, ηt ∼ N (0, σ2
η).

This introduces an aggregate income shock to the RBC model in the spirit of Christiano and

Eichenbaum (1992).

Optimal allocations arise from the solution of the household’s and firm’s optimization

problems. The household maximizes (2) subject to (3) and (4), given (1) and the initial

5The firm is owned by households through equity holdings. We push the equity market into the back-

ground without loss of generality.
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conditions k0, and c−1 ≥ 0. The firm maximizes its profit function equal to the production

function (5) net of factor costs, wtnt + rK,tkt. The resulting optimality conditions, along

with the aggregate resource constraint (7) conditional on the exogenous shock processes (6)

and (8), provide necessary conditions a potential equilibrium path must satisfy. Equilibrium

in this decentralized RBC economy requires it to clear its goods and labor markets. At the

market clearing wage rate, wt, and rental rate of capital, rK,t, Nt = nt andKt = kt, Ct = ct,

and It = xt, which define the equilibrium of this economy. Together with the transversality

conditions for the state variables Kt and Ct−1, the optimality conditions evaluated at market

clearing characterize a unique equilibrium path for the economy.

2.2 A Two-Sector RBC Model

Boldrin, et al. (2001) examine the business cycle and asset pricing implications of

habit formation in a two-sector RBC (TSRBC) model with limited intersectoral factor mo-

bility. They show that their habit model is successful in replicating the U.S. sample moments

related to asset pricing (e.g., the mean risk free rate and equity premium, and the Sharp

ratio). However, there is no clear evidence that, in their TSRBC model, habits improve the

model’s ability to replicate the U.S. sample moments related to business cycles.6 We inves-

tigate the role of habits in this TSRBC model in explaining the U.S. statistical properties

in the frequency domain.

In their model, consumption goods and investment goods are produced with different

technologies:

(9) Yc,t = Kψ
c,t(AtNc,t)

1−ψ = Ct + Gt,

(10) Yi,t = Kψ
i,t(AtNi,t)

1−ψ = Kc,t+1 + Ki,t+1 − (1− δ)(Kc,t + Ki,t),

where Kc,t and Ki,t denote capital stocks in the consumption and investment sectors, respec-

tively. Similarly, Nc,t and Ni,t represent hours worked in the consumption and investment

6One exception is that the TSRBC model with habits can replicate the sample estimate of the coefficient

of the relative risk aversion in Campell and Mankiw’s (1989) regression fairly well.
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sectors, respectively, and are restricted with Nt = Nc,t +Ni,t. At and Gt follow the processes

(6) and (8), respectively.

In this model, Nt, Nc,t, and Ni,t are determined prior to the realization of εt and ηt: it

is difficult to adjust quickly aggregate employment and its sectoral allocation in response to

shocks. Moreover, once installed in one sector, capital cannot be shifted to the other sector:

Kc,t+1 and Ki,t+1 are determined prior to the realization of εt+1 and ηt+1.

Notice that the technologies in the two sectors are symmetric. This implies that in

the deterministic steady state, the relative price of investment goods to consumption goods

should be one. Boldrin, et al. (2001) measure aggregate output in the base year price, i.e.,

the unit relative price at the deterministic steady state. In this case, the aggregate output

Yt and aggregate capital Kt are simply constructed by adding up the two sector’s output

and capital: Yt = Yc,t + Yi,t and Kt = Kc,t + Ki,t. The law of motion of capital is without

adjustment costs of investment: Kt+1 = (1 − δ)Kt + It. The aggregate resource constraint

(7) and the impulse structure (6) and (8) are still applicable for this model.

2.4 An MBC model with the MIUF

The standard MBC model with the MIUF, which has the seminal works of Sidrauski

(1967) and Brock (1974) as its predecessors, is the basis of recent NKMBC models with

nominal and real rigidities. In an MBC model with a cash-in-advance (CIA) constraint, Na-

son and Cogley (1994) show that the simple MBC model lacks real propagation mechanisms

enough to replicate the IRFs of output and hours worked to monetary shocks observed in

the U.S. sample. Fuhrer (2000) claims that habits give strong business cycle propagation for

matching the U.S. real data in his one-sector MBC model. We scrutinize the business cycle

implication of habits in the frequency domain within the context of the MBC model with

the MIUF.

Let Mt and Pt denote the nominal money stock and the aggregate price level at period

t. In this model, the utility function contains the real balance Mt/Pt as its argument because

holding money reduces real transaction costs:
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(11) Et

∞∑
i=0

βiU(ct+i, ct+i−1, nt+i, Mt+i/Pt+i), 0 < β < 1,

where the period utility is specified as an additive-separable form

(12) U(ct, ct−1, nt, Mt/Pt) = ln(ct − hct−1)− n
1+ 1

γ2
t

1 + 1
γ2

+ ln(Mt/Pt), 0 < γ2.

The household maximizes the lifetime utility function (11) subject to the budget constraint

(13) Mt+1/Pt + ct + xt + τt = rK,tkt + wtnt + Mt/Pt,

and the law of motion of capital with adjustment costs of investment (4). As in the standard

one-sector RBC model, the representative firm maximizes its profit equal to the production

function (5) net of factor costs wtnt + rK,tkt.

In this model, the government finances its spending Gt by correcting lump-sum tax

τt and printing new money (i.e. seigniorage revenue) (Mt+1 −Mt)/Pt. Therefore the govern-

ment’s budget constraint at period t is

(14) Gt = τt + (Mt+1 −Mt)/Pt,

where the stochastic process of the government spending Gt is given as Gt = gYt with the

government spending-output ratio g constant. In the standard MBC model, the monetary

policy is characterized with the following exogenous process of the growth rate of the mon-

etary base

(15) ∆ lnMt+1 = (1− ρM)m∗ + ρM∆ lnMt + µt, 0 < ρM < 1, µt ∼ N (0, σ2
µ)

where m∗ is the steady state level of the money growth rate. Note that ∆ logMt+1 is in the

information set of the household at period t: the household’s decision at period t is taken
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place after the realization of the monetary policy shock µt. Note that, in this model, the

underlying shocks of this model are composed of the permanent technology shock and the

money growth rate shock.

2.5 An NKMBC model

The NKMBC model of this paper is a simplified version of Christiano, et al. (2003):

it is composed of (i) the Calvo (1983)-type staggered price-setting behavior of monopolistic

final goods firms, as in Yun (1996), (ii) the Calvo-type staggered wage setting behavior of

households as monopolistic suppliers of heterogenous labour, as in Erceg, Henderson, and

Levin (2000), (iii) variable capital utilization, (iv) adjustment costs of investment, and (v)

habit formation in consumption.7 Mainly due to staggered wage contracts, this model can

yield strong, hump-shaped responses of output, consumption, and investment to money

growth shocks.8

In this model, the households consume a Dixit-Stiglitz type consumption index, ct,

that consists of final goods produced by monopolistically competitive firm:

(16) ct =

[∫ 1

0

yD,t(j)
ξ−1

ξ dj

] ξ
ξ−1

,

where yD,t(j) is the demand for the final goods produced by a typical firm j under the

price pt(j). This consumption index implies the downward demand function with the price

elasticity ξ: yD,t(j) = [Pt/pt(j)]
ξYD,t, where YD,t is the aggregate demand and Pt is the

consumption price index Pt = [
∫ 1

0
pt(j)

1−ξ]
1

1−ξ . All final goods firms, which are endowed with

an identical Cobb-Douglas technology yt(j) = Kt(j)
ψ[AtNt(j)]

1−ψ and facing the downward

demand functions for their own goods, maximize their real profits by setting their prices

pt(j) optimally. However, in each period, a firm can set its price to the desired level pc,t only

7The complete specification of the Christiano, et al. (2003) model further requires limited participation

restriction of financial market.
8An NKMBC model with only staggered price setting behavior such as Chari, et al. (2000) is difficult to

generate the hump-shaped response of real variables to monetary shocks under plausible values of structural

parameters.
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with probability 1− µp. With probability µp, the firm should set its price to the one-period

past level multiplied by the steady state inflation rate, π∗Pt−1. Then, the aggregate price at

period t is shown as

(17) Pt = [(1− µ)P 1−ξ
c,t + µ (π∗Pt−1)

1−ξ]1/(1−ξ)

where π∗ = exp(m∗ − α). The optimal price of a firm at period t is

(18) pc,t =

(
ξ

ξ − 1

)
Et

∑∞
i=0

(
βµπ∗−ξ

)i
Γt+iφt+iYD,t+iP

ξ
t+i

Et

∑∞
i=0 (βµπ

∗1−ξ)i Γt+iYD,t+iP
ξ−1
t+i

,

where βiΓt+i is the stochastic discount factor. φt is the real marginal cost of producing final

goods, which is related to the real wage Wt/Pt and the real rate of return of capital RK,t/Pt

through

(19)
Wt

Pt

= (1− ψ)φt
YD,t

Nt

,
RK,t

Pt

= ψφt
YD,t

Kt

.

As shown in Erceg, et al. (2000), the households in this model are monopolistically

competitive suppliers of their heterogenous labour service, nt(j), which can set their own

nominal wage Wt(j) optimally. The final goods firms, which are competitive in the labour

market, need all differenciated labour services to produce their final goods through the

aggregate labour input function

(20) Nt =

[∫ 1

0

nt(j)
θ−1

θ dj

] θ
θ−1

where θ is the coefficient of the wage elasticity of labour demand. This labour input function

then implies downward labour demand functions for differenciated labour services: nt(j) =

[Wt/Wt(j)]
θNt, where Wt is the aggregate nominal wage index Wt = [

∫ 1

0
Wt(j)

1−θdj]
1

1−θ .

This model assumes complete financial markets in which the households can buy or sell

state-contingent claims to diversify away their idiosyncratic risks. Hence, in equilibrium, all
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the households are identical with respect to consumption and asset holdings. Furthermore,

we assume that the utilization rate of capital ut is variable and the households have to pay

costs in terms of consumption goods to set the utilization rate to the level ut ∈ [0, 1]. The

budget constraint of household j is given as

(21) Mt+1/Pt + ct + xt + a(ut)kt + + τt = rK,tutkt + wt(j)nt(j) + Mt/Pt + Dt/Pt,

where Dt is the nominal profits of the final goods firms, ut is the utilization rate of the

physical capital, and a(ut) is the costs of setting the utilization rate to ut.
9

Subject to the downward demand functions for their labour services, the budget

constraint (21), and the law of motion of capital with capital adjustment costs (4), the

households maximize the lifetime utility (11) with the period utility function (12) by setting

their nominal wage Wt(j) optimally. However, similar to the price setting behaviour of the

final goods firms, the households can set their nominal wages to the desired level Wc,t only

with probability 1−µω. With probability µω, the households should set their nominal wages

to the one-period past level multiplied by a constant π∗
W > 1, π∗

WWt−1.
10 Then, the aggregate

nominal wage at period t is shown as

(22) Wt = [(1− µω)W
1−θ
c,t + µω (π∗

WWt−1)
1−θ]1/(1−θ).

The desired nominal wage of the household at period t is

(23) Wc,t =

(
θ

θ − 1

)
Et

∑∞
i=0(βµω)

int+i(j)
1+1/γ2

Et

∑∞
i=0 (βµωπ∗

W )i λt+iP
−1
t+int+i(j)

where λt is the shadow price of consumption goods or the marginal utility of consumption

such that λt = (ct − hct−1)
−1 − βhEt(ct+1 − hct)

−1. Finally, we assume that the underlying

9As in Christiano, et al.(2003), we specify the increasing, convex function a(ut) with a(1) = 0 and

a′′(1)/a′(1) = 0.01.
10It can be shown that, to derive the balanced growth equilibrium path, we need to set π∗

W to exp(m∗)

i.e., the steady state growth of money. We impose this restriction through the analysis.
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impulse structure of this model consists of the random walk technology (6) and the exogenous

AR(1) money growth rate (15).

3. Model Evaluation Strategy, Calibration, and

Solution Method

This section discusses our model evaluation strategy and describes our calibration

and solution methods.

3.1 Model Evaluation Strategy — Bayesian Calibration Approach

In this paper, we assess the fit of the DSGE models by exploiting the Bayesian calibra-

tion approach developed by DeJong, et al. (1996). Using prior probability distributions, we

illustrate the calibrator’s uncertainty concerning structural parameters of theoretical DSGE

models in this approach. The calibrator then constructs the probability distributions of sta-

tistical properties — i.e. the SDFs, the IRFs, and the FEVDs — of artificial data generated

by the DSGE models. These theoretical distributions are then compared with the empirical

probability distributions of the statistical properties of the actual U.S. data. We employ

vector autoregressions (VARs) as statistical models, from which we can yield the posterior

distributions of the statistical properties of the actual U.S. data, given prior probability dis-

tributions defined over the parameters of VARs. The fit of the DSGE models is evaluated by

observing how well the theoretical distributions overlap the empirical posterior distributions.

As statistical models of the U.S. data, we use three bivariate VARs with the data

spanning the period 1954Q1 to 2002Q4. These VARs are different in their information

sets: VAR1 corresponds to [∆ lnYt lnNt]
′, VAR2 to [∆ lnYt ln(Ct/Yt)]

′, and VAR3 to

[∆ lnYt ln(It/Yt)]
′.11 For each VAR, we generate an empirical joint posterior distribution of

11The optimal lag for each VAR is chosen with the general to specific likelihood ratio tests, Starting 8 lags

as the maximum lag, the LR tests pick 3 lags for VAR1, 2 lags for VAR2, and 4 lags for VAR3, respectively.

We have also investigated four other information sets, [∆ lnCt lnNt]′, [∆ lnCt ln(Ct/Yt)]′, [∆ ln It lnNt]′,

and [∆ ln It ln(It/Yt)]′. The results based on these additional information sets are provided in the appendix.
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the unrestricted VAR coefficients.12 Using 5000 posterior draws of the VAR coefficients, we

then construct the posterior distributions of the SDFs, the IRFs, and the FEVDs, which we

discuss in the following subsections. More detailed account of the data is provided in the

appendix.

Our Bayesian Monte Carlo experiments are based on the four DSGE models discussed

in the last sections. For each DSGE model, we create two versions: the habit version and the

non-habit version. This is done by allowing the habit parameter h to take a positive value

with uncertainty for the former version and, for the latter version, setting the habit parameter

h to zero. The two versions of the DSGE models generate their own theoretical distributions

of the SDFs, the IRFs, and the FEVDs. We evaluate the two versions of each DSGE model

by measuring the degree of overlap between the theoretical and empirical distributions. For

example, if the theoretical distribution of the SDF of output growth implied by the non-habit

version of the NKMBC model overlaps the corresponding empirical posterior distribution to

a greater extent than that implied by the habit version, we conclude that habits are not

important when generating the SDF of output growth within the context of the NKMBC

model.

To measure the proximity of the theoretical distributions to the empirical distribu-

tions, we construct the confidence interval criterion (CIC) introduced by DeJong, et al.

(1996). In general, when we have the theoretical distribution P (s) and the empirical pos-

terior distribution D(s) with respect to a function s to be used to evaluate the model’s fit,

the CIC statistics is defined as the integral of P (s) over the inter-q quantile range of D(s),

normalized by 1/(1−q): CIC = (1−q)−1
∫ b

a
P (s)ds, where a and b equal the q/2 and 1−q/2

quantile of D(s). The measure CIC takes a value between 0 and 1/(1 − q), and the value

close to zero signifies a poor fit. The closer the CIC is to one, the more successful the model

is in replicating the empirical posterior distributions with respect to the statistical property

of interest s. Throughout this paper, we set q = 0.25, and hence we investigate whether

the inter-75 quantile range of the theoretical distribution can match that of the empirical

12We use John Geweke’s BCAA program (http://www2.cirano.qc.ac/ ∼ bacc/) to generate the posterior

distributions of the VAR coefficients.
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counterpart. We consider a CIC over 0.3 indicates a good fit of the underlying DSGE model,

as discussed by DeJong, et al. (1996) in evaluating the fit of their RBC models. In partic-

ular, when the CIC of the non-habit version with respect to a statistical property is greater

than 0.3, and that of the habit version is less than 0.3, we claim that habits deteriorate the

matching performance of the underlying DSGE model in the statistical dimension.

3.2 Calibration and Solution Methods

To construct the theoretical distributions of the statistical properties, we solve and

calibrate the DSGE models. This paper log-linearly approximates the equilibrium path

around the deterministic steady state for each model. The resulting linear rational expec-

tation model is solved by Sims’s (2001) method to derive the state-space representation of

the equilibrium path, which in turn is used to conduct Monte Carlo simulations to generate

artificial data of aggregate variables13.

The models are calibrated with prior distributions of their structural parameters. Our

prior assumes that all structural parameters are independently distributed with truncated

normal distributions with means and standard deviations summarized in Table 1. For in-

stance, β = 0.992 is an uncontroversial value for the subjective discount factor in the DSGE

literature, which includes Christiano and Eichenbaum (1992), Cogley and Nason (1995b),

and Christiano, et al.(2003). Therefore, we set a very small value of 1e− 7 as the standard

deviation of β to reflect our small uncertainty in this parameter. The means and standard

deviations of the deterministic growth rate α, the capital share ψ, the depreciation rate δ,

and the indivisible labour coefficient γ1, are based on the GMM estimates of Christiano

and Eichenbaum (1992). We use their sample point estimates as our prior means and their

standard errors as our prior standard deviations. The Bayesian estimation of Smets and

Wouters (2003) and Chang, Gomes, and Shorfheide (2002) reports the posterior means and

standard deviations of adjustment costs of investment χ and the elasticity of labour sup-

ply γ2, respectively, which we use as our prior means and standard deviations for the two

13We use the Gauss version of Sim’s Matlab code, which is written by Frank Schorfheide

(http://www.econ.upenn.edu// shorf/computing.html) accompanied with Paul Söderlind’s code of the gen-

eralized Schur decomposition.
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parameters.

The parameters, ξ, η, µp, and µw, are related to the NKMBC model. Yun(1996)

calibrates the elasticity of intermediate goods, ξ, to 6, which matches the estimate of Chris-

tiano, et al.(2003) in their limited information-minimum distance estimation. Bouakez, et

al. (2003) calibrate this parameter to 10. To include these two values in the existing studies

into the 95 per cent confidence interval of our prior distribution, we set our prior mean and

standard deviation of ξ to 8 and 1.1, respectively. Christiano, et al.(2003) and Smets and

Wouters (2003) calibrate the elasticity of labour demand, η, to 21. We also use this number

as our prior mean of ξ with a small prior standard deviation 1e − 7. Smets and Wouters

(2003) estimates the posterior mode of the probability of no price change µp to be 0.908. Our

prior distribution of µp has this number as the mean, and 0.035 as the standard deviation to

include the ML estimate of 0.847 reported by Bouakez, et al. (2003) within the 95 per cent

confidence interval. Similarly, as the prior mean of the probability of no wage change, µw,

we use Smets and Wouters’s (2003) estimate of the posterior mode of 0.737. As the prior

standard deviation of µw, we set 0.03 to include the estimate of Christiano, et al. (2003) of

0.64 within the 95 per cent confidence interval.14

We use our sample data to estimate g∗, ρg, and ση of the government spending-output

ratio process (8), and m, ρm, and σm of the monetary growth rate process (15) as well. The

OLS estimates (standard errors) of g∗, ρg, and ση are 0.253 (0.009), 0.958 (0.0203), and 0.012,

while the OLS estimates of m∗, ρm, and σµ are 0.0053 (0.0008), 0.649 (0.0579), and 0.0038,

respectively15. The OLS estimates are exploited to construct our prior distributions of these

parameters. The prior mean of the standard deviation of permanent technology shocks, ση,

is calibrated by matching the mean growth rate of output from each of the DSGE models to

14For the calibration of capital utilization, see footnote 9.
15The OLS estimates of the government spending-output ratio process are obtained by regressing ln gt

on ln gt−1, constant, and deterministic trend. To estimate the monetary growth rate process, we use the

M1 stock series distributed by the Federal Reserve Bank of St. Louis. The series are monthly and span

the periods 1959:1-2003:2. We convert the monthly series to quarterly series by taking 3 month average of

them and estimate the monetary growth process by using the quarterly series spanning the periods Q2:1959-

Q4:2002.
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the U.S. sample average of the output growth rate.

For each DSGE model, we construct the non-habit version by setting both the prior

mean and standard deviation of the habit parameter h to zero. On the other hand, to

construct the habit version, we set the prior mean and standard deviation of the habit

parameter h to 0.65 and 0.150, respectively. The two standard deviation interval implied by

this prior distribution is [0.35 0.95], and it includes almost all of the estimates of the habit

parameter h in the recent literature (e.g., Boldrin, et al. 2001, Christiano, et al. 2003, and

Smets and Wouters 2003).

4. Results

This section reports the results of our calibration exercises with respect to the SDFs,

the IRFs, and the FEVDs.

4.1 The SDFs

The theoretical and empirical means of the SDFs are plotted in Figures 1(a)-(d),

which correspond to the four DSGE models, the RBC, TSRBC, MBC, and NKMBC models,

respectively. Each figure is composed of four small windows, and each of the windows

plots the empirical posterior mean constructed with the VAR as the solid line, and the

theoretical means of the SDFs implied by the non-habit and habit versions of the underlying

DSGE model as the large dashed and small dotted lines, respectively.16 The first window

corresponds to output growth, ∆ lnY ; the second to the log of hours worked, lnN ; the

third to the log of the consumption-output ratio, lnC/Y ; and the fourth to the log of the

investment-output ratio, ln I/Y .

The most left window in Figure 1(a) shows that, even with the adjustment costs

of investment, the one-sector RBC model cannot replicate the well known property of the

U.S. data that the relatively large portion of the variations in output growth is attributed

16We observe that the three different information sets, VAR1, VAR2, and VAR3, predict the closely similar

shape of the empirical posterior mean of output growth. Therefore, we report only the empirical means of

the SDFs of output growth predicted with VAR1 in the most left window of each figure.
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to business cycle frequencies. While the non-habit version of the RBC model can explain

the empirical mean of the SDF of ∆ lnYt at zero frequency fairly well, the theoretical mean

predicted by this version monotonically declines over business cycle frequencies and deviates

away from the empirical counterpart. On the other hand, the habit version overstates the

mean of the SDF of output growth at zero frequency. However, at business cycle and higher

frequencies, this version can mimic the empirical mean of the SDF of output growth better

than the non-habit version. In the rest of the three windows in Figure 1(a), we cannot

observe the significant differences in the theoretical means of the SDFs of lnNt, lnCt/Yt,

and ln It/Yt between the two versions of the RBC model. While the habit version predicts

the SDF of lnNt slightly better than the non-habit version, both versions yield the almost

same shapes of the SDFs of lnCt/Yt and ln It/Yt through all frequencies. In particular, the

most right window implies that the one-sector RBC model fails to generate the spectral

shape of ln It/Yt in the U.S. data.

An astonishing result observed in Figure 1(b) is that the habit and non-habit versions

of the TSRBC model have the almost same implications on the spectral shapes of the four

variables, ∆ lnYt, lnNt, lnCt/Yt, and ln It/Yt, on average. In all windows, the theoretical

means of the SDFs predicted by the two versions of the model trace each other fairly closely.

This means that we cannot find any important role of habit formation in the frequency

domain in this model.

The results from the two monetary business cycle models, the MBC and NKMBC

models, are illustrated in Figures 1(c) and (d), respectively. Similarly to the case of the

one-sector RBC model, the simple MBC model without habits fails to mimic the posterior

means of the SDFs of ∆ lnYt over business cycle frequencies, while the habit version of the

model puts too much emphasis on long-run variations in output growth: it overstates the

SDF of output growth at zero frequency relatively to the empirical counterpart. This DSGE

model also has poor matching performance with respect to the mean SDFs of lnNt and

ln It/Yt. However, from the results of the MBC model, we cannot draw a strong inference

on whether habits help explain the business cycle fluctuations in frequency domain.

Contrary to the case of the MBC model, we can clearly distinguish the non-habit
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and habit versions of the NKMBC model with respect to the spectral shape of ∆ lnYt. As

shown in the most left window of Figure 1(d), the non-habit version can track the empirical

means of the SDFs of ∆ lnYt fairly closely at all frequencies. In fact, this version yields a

flat portion of the means of the SDFs at some business cycle frequencies, which Cogley and

Nason (1995b) point out as a stylized fact of the U.S. business cycle. On the other hand, the

habit version of the NKMBC model predicts extremely large power spectra of ∆ lnYt from

zero frequency throughout business cycle frequencies, which deviate away from the empirical

counterparts. In summary, we can infer that, within the context of the NKMBC model,

habit formation generates too much fluctuations of output growth at low and business cycle

frequencies to mimic the empirical posterior means of the output growth spectra observed

in the U.S. data.

The formal CIC statistics support the above inference from the “eye ball” comparison.

Table 2 reports the CICs calculated for the SDFs of ∆ lnYt, lnNt, lnCt/Yt, and ln It/Yt

implied by the two versions of the four DSGE models at the zero frequency (i.e. infinite

years per cycle), 8 years, 4 years, 2 years and a year per cycle, respectively. The most

striking difference in the CIC between the non-habit and habit versions is observed in the

SDF of ∆ lnYt predicted by the NKMBC model, which is shown in the last small table.

At the zero frequency, the non-habit version yields 0.81 of the CIC, while the habit version

generates only 0.07 of this statistic. We can observe this significant difference in the CIC

statistic between the two versions even at 8 years and 4 years per cycle, although the CIC

of the habit version becomes greater than that of the non-habit version at 2 years per cycle.

The average of the CICs over the low and business cycle frequencies is 0.64 for the non-habit

version and 0.24 for the habit version. Therefore, the CIC statistics also provide evidence

that habits deteriorate the matching performance of the NKMBC model with respect to the

SDF of ∆ lnYt.

The above analysis comparing the theoretical means of the SDFs with the empirical

counterparts is based only on piesewise information of the whole shapes of the empirical

and theoretical distributions. To reflect the whole information of the spectral shape into

our evaluation of the role of habit formation in the U.S. business cycle, we construct the
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quasi Kolmogorov-Smirnov (QKS) and quasi Cramer-von Mises (QCVM) statistics. These

statistics are Bayesian versions of the classical Kolmogorov-Smirnov and Cramer-von Mises

statistics, which Cogley and Nason (1995a) first applied to the business cycle literature.17 Let

fV AR
n (ω), fNH

n (ω), and fH
n (ω) denote the nth repetition within 5000 Monte Carlo simulations

of an SDF at frequency ω based on the VAR and the non-habit and habit versions of the

DSGE models, respectively. Moreover, we define variables RV AR
n (ω), RNH

n (ω), and RH
n (ω) as

the ratios of the posterior mean of fV AR
n (ω), EfV AR

n (ω), to fV AR
n (ω), fNH

n (ω), and fH
n (ω),

respectively:

(24) RV AR
n (ω) =

EfV AR
n (ω)

fV AR
n (ω)

, RNH
n (ω) =

EfV AR
n (ω)

fNH
n (ω)

, and RH
n (ω) =

EfV AR
n (ω)

fH
n (ω)

.

When we compute a partial sum of Rm
n (ω) as Um

n (2πj/T ) = (2π/T )
∑j

i=1 R
m
n (2πi/T ) for

m = {V AR,NH,H}, we can then construct the nth repetition of the QKS and QCVM

statistics, QKSm
n and QCVMm

n :

(25) QKSm
n = max |Bm

n (τ)|, and QCVMm
n =

∫ 1

0

Bm
n (τ)2fm

n (πτ)dτ,

where Bm
n (τ) = (

√
2T/2π) [Um

n (πτ)− τUm
n (π)]. We repeat the same process 5000 times,

and obtain the empirical posterior distribution of QKSm
n and QCVMm

n . Notice that, by

construction, if fH
n (ω) and fNH

n (ω) are distributed closely to fV AR
n (ω), the distributions

of QKSH
n and QKSNH

n should resemble that of QKSV AR
n in their shapes. The same is

17Cogley and Nason show that the Hodrick-Prescott (1980) filter can generate spurious business cycle

dynamics in the frequency domain by using the Kolgomorov-Smirnov (KS) and Cramer-von Mises (CVM)

statistics. These statistics are constructed as follows. Let IT (ω) and f(ω) denote the spectral density

of the sample and that implied by a DSGE model at frequency ω, respectively. Furthermore, let RT (ω)

denote the ratio of IT (ω) to f(ω): RT (ω) = IT (ω)/f(ω). In this case, a partial sum of RT (ω) over the

frequency domain, UT (2πj/T ) = (2π/T )
∑j

i=1RT (2πi/T ), converges to a uniform distribution function

under the hypothesis that IT (ω) is drawn from a population governed by f(ω). The KS statistic is given as

KS = max |BT (τ)|, where BT (τ) = (
√
2T/2π) [UT (πτ)− τUT (π)]. On the other hand, the CVM statistic is

defined as CVM =
∫ 1

0
BT (τ)2dτ . The null hypothesis can be tested with their limiting distributions.
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true for the QCVM statistic. To evaluate the non-habit and habit versions of each DSGE

model, we compare QKSH
n and QKSNH

n with QKSV AR
n , and QCVMH

n and QCVMNH
n

with QCVMV AR
n , by plotting their nonparametric density estimates and reporting the CIC

statistics.18

Figures 2(a)-(d) plot the estimated density functions of the QKS and QCVM statistics

for the RBC, TSRBC, MBC, and NKMBC models, respectively. Each figure contains two

rows: the first row corresponds to the QKS statistics, and the second row to the QCVM

statistics. The kernel-smoothed densities of the QKS statistics for ∆ lnYt, lnNt, lnCt/Yt, and

ln It/Yt are shown in the four small windows in the first row, while those of the corresponding

to the QCVM statistics are plotted in the four small windows in the second row. Each window

plots three kernel-smoothed densities: the first from the VAR as the solid line, the second

from the non-habit version as the dashed line, and the third from the habit version as the

dotted line. Besides, we report the CIC statistics corresponding to the non-habit and habit

versions inside each window.

In Figure 2(a), we observe the significant difference in both the QKS and QCVM

statistics for the SDF of ∆ lnYt in favour of the habit version of the RBC model. This

result is consistent with the observation in Figure 1(a): the habit version of the RBC model

can track the empirical mean of the SDF of ∆ lnYt at business cycle frequencies fairly well.

The same observation is applicable to the case of the MBC model, as shown in Figure 2(c).

As illustrated in Figure 2(b), the QKS and QCVM statistics also support evidence that we

cannot observe any significant differences in the SDFs of the four aggregate variables between

the non-habit and habit versions of the TSRBC model. Similarly to the RBC model, the

QKS and QCVM statistics show that the TSRBC model poorly explains the SDF of lnNt,

regardless of habit formation.

Finally, in Figure 2(d), the QKS and QCVM statistics reveal the superior of the non-

habit version of the NKMBC model to the habit version with respect to the SDFs of ∆ lnYt

and lnCt/Yt. In particular, the non-habit version yield the kernel-smoothed density of the

18Throughout this paper, we non-parametrically estimate probability density functions with the normal

density kernel N(x) = exp(−0.5x2)/
√
2π.
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QKS statistic for the SDF of ∆ lnYt overlapping the empirical counterpart to the greater

extent than the habit version. In fact, the estimated density corresponding to the habit

version is too diffused to explain the shape and position of the empirical density precisely

both in the cases of the QKS and QCVM statistics.

In summary, we obtain the following results from our analysis on the SDF.

• Habits improve the fits of the RBC and MBC models with respect to the power spectra

of the output growth at business cycle frequencies.

• Habits are neutral for the fit of the TSRBC model regarding output growth, the log of

hours worked, and the logs of the two golden ratios.

• Habits deteriorate the fit of the NKMBC model with respect to the power spectra of

output growth and the consumption-output ratio.

These results lead us to the following inference: habits are helpful to explain business cycle

fluctuations only if a DSGE model lacks a strong internal propagation mechanism, as in the

RBC and MBC models. On the other hand, if a DSGE model is already endowed with a

rich set of internal propagation mechanisms, as in the NKMBC model with nominal and real

rigidities of Christiano, et al. (2003), habits yield too much persistence of output growth

at low and business cycle frequencies. This might be the cost a researcher has to pay to

explain the other dimension of the data — e.g. the IRFs and FEVDs to monetary shocks

— by exploiting habit formation.

4.2 The IRFs and FEVDs

Christiano, et al. (2003) observe that habit formation in consumption is less impor-

tant in explaining the hump-shaped IRFs of output to monetary policy shocks in the U.S.

data than staggered nominal wage contracts and capital utilization costs. Based on different

identification with different information sets from Christiano, et al. (2003), we find that

habits are crucial for explaining none of the IRFs of output, hours worked, and the golden

ratios in the NKMBC model: its non-habit version yields almost the same shapes of the

IRFs as the habit version.
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We identify the IRFs of the aggregate variables to both permanent and tempo-

rary shocks by applying Blanchard and Quah’s (1989) long-run decomposition to bivariate

VARs.19 We evaluate the fit of the two versions of the NKMBC model with respect to the

IRFs in two ways. First, we compare the theoretical means of the IRFs with the corre-

sponding empirical posterior means. This comparison uses only piesewise information of the

IRF at each forecast horizon. To reflect joint information of the IRFs at several forecast

horizons in the comparison between the two versions, we construct a Bayesian version of the

quasi-LM (QLM) statistic of Cogley and Nason (1995b). Let IRF V AR
n (j), IRFNH

n (j), and

IRFH
n (j) denote the j × 1 column vector containing the nth repetitions within 5000 Monte

Carlo simulations of IRFs for j periods after the impact based on the VAR, the non-habit,

and habit versions of the NKMBC model, respectively. When we define EIRF V AR
n (j) as the

posterior mean of IRF V AR
n (j), we construct the QLM statistics, QLMm

n (j), as

(26) QLMm
n (j) = [IRFm

n (j)− EIRF V AR
n (j)]′[IRFm

n (j)− EIRF V AR
n (j)],

where m = {V AR,NH,H}. Notice that, by construction, if the distributions of IRFNH
n (j)

and IRFH
n (j) are close to that of IRF V AR

n (j), the distributions of QLMNH
n (j) and QLMH

n (j)

are also close to that of QLMV AR
n (j). We calculate the CIC statistics to evaluate how well

the theoretical QLMs overlap the empirical QLM.

Figure 3 plots empirical and theoretical means of the IRFs of lnYt, lnNt, lnCt/Yt,

and ln It/Yt to permanent and temporary shocks.20 Regardless of the non-habit and habit

versions, the NKMBC model generally does a good job in replicating the empirical means of

the IRFs of the four variables to the permanent shock.21 More importantly, we cannot find

any clear differences between the habit and non-habit versions of this model with respect to

19Since the model has only two structural shocks, we can interpret the permanent and temporary shocks

identified with the long-run restriction as the technology and monetary policy shocks, respectively. The IRFs

and FEVDs of output and hours worked are based on V AR1, and those of the consumption-output ratio on

V AR2, and those of the investment-output ratio on V AR3, respectively.
20The results of the IRFs of lnYt reported in Figure 3 are based on the information set V AR1. Even with

the information sets V AR2 and V AR3, we obtain the almost same inferences on the IRFs of lnYt as those

shown in Figure 3.
21An exception is observed in the IRF of lnNt to the permanent shock. Regardless of the habit and
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the IRFs to the permanent shocks.

On the other hand, the theoretical means of the IRFs to the temporary shocks are

far from their empirical counterparts. In particular, “eyeball” comparison detects differences

between the two versions regarding the IRFs of lnYt and lnNt to the temporary shocks in

the short run: the habit version seems to generate these IRFs closer to the empirical means

than the non-habit version. To check whether these differences are significant, we generate

the QLM statistics with eight and twelve forecast horizons, QLMm
n (8) and QLMm

n (12) for

m = {V AR,NH,H}, for the IRFs of lnYt and lnNt to the temporary shocks, and compute

the corresponding CIC statistics, as reported in Table 3. The non-habit and habit versions

yield the almost same value of the CICs calculated for the QLM statistics with eight and

twelve forecast horizons regarding the IRFs of lnYt to the temporary shocks. Similarly, the

two versions generate the same value of the CICs for the QLM statistics with eight and twelve

forecast horizons regarding the IRFs of lnNt to the temporary shocks. From these results,

we have no clear evidence that habits help significantly improve the matching performance

of the NKMBC model in the dimension of the IRFs.

Figure 4 illustrates the theoretical and empirical means of the FEVDs of lnYt, lnNt,

lnCt/Yt, and ln It/Yt in the case of the NKMBCmodel. Three results are worth noting. First,

the two versions of the NKMBC model predict the almost same FEVDs of lnYt, although

their predictions are far from the empirical posterior means. Combined with our inference

on the IRFs of lnYt, this result supports our claim that habit formation costs business cycle

researchers bizarre shapes of the power spectra of output growth at low and business cycle

frequencies when they exploit the NKMBC model to describe output dynamics.

Second, the non-habit version does a better job in matching the empirical means of

the FEVD of lnNt at impact than the habit version. Finally, as the third result, the habit

version implies the FEVDs of the two golden ratios much closer to the empirical means than

the non-habit versions. Notice that the FEVDs of ln It/Yt predicted by the habit version is

far from the empirical means yet. Hence, the FEVD of lnCt/Yt at short forecast horizons

non-habit versions, the NKMBC yields an extremely large negative IRF of hours worked to the permanent

technology shock, relative to the empirical counterpart.
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is the only statistical dimension in which we can observe the improvement of the matching

performance of the NKMBC model when introducing habit formation into the model.

5. Conclusion

[Material forthcoming.]
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Appendices

Appendix 1: Data Description and Construction

This appendix describes the source and construction of the data. All the time series data are

distributed by FRED II maintained by the Federal Reserve Bank of St.Louis (mnemonics

follow in parentheses)22. The NIPA data are quarterly, real at chained 1996 billion dollars,

and seasonally adjusted at annual rates. The consumption series are constructed by Real

Personal Consumption Expenditures on Nondurables (PCNDGC96) plus Real Personal Con-

sumption Expenditures on Services (PCESVC96). The investment series are constructed by

Real Personal Consumption Expenditures on Durables(PCDGCC96) plus Real Gross Private

Domestic Investment (GPDIC1) plus Real National Defense Gross Investment (DGIC96)

plus Real Federal Nondefense Gross Investment (NDGIC96). The government spending se-

ries are constructed by Real Government Consumption Expenditures and Gross Investment

(GCEC1) minus Real National Defense Gross Investment minus Real Federal Nondefense

Gross Investment. The output series are simply constructed by summing up the consump-

tion, investment and government spending series. All the series are divided by Civilian Labor

Force (CLF16OV) to convert them to the per capita series. The employment rate series are

obtained by diving Civilian Employment (CE16OV) by Civilian Labor Force. Since the series

of Civilian Labor Force and Civilian Employment are monthly, this paper takes three month

average of each series to construct the quarterly series. Finally, the monetary growth rate

series are constructed from nominal, seasonally adjusted, M1 Money Stock(M1SL). This is

monthly data. Hence, this paper takes three month average of the data to construct the

quarterly series.

22The webpage is http://research.stlouisfed.org/fred2/

30



Table 1: Calibrated Structural Parameters of the DSGE Models

Mean S.D. Source

β Subjective discount rate 0.992 1e-7 CE, CN, CEE

α Deterministic growth rate 0.004 0.0015 CE, CN, BCF

ψ Capital share 0.344 0.010 CE, CN, CEE

δ Depreciation rate 0.021 0.002 CE, CN, CEE, SW

χ Adjustment costs of investment 6.771 1.026 SW

γ1 Indivisible labour coefficient 0.0037 0.0005 CE, CN

γ2 Elasticity of labour supply 1.3088 0.3196 CGS

ξ Elasticity of intermediate goods demand 8 1.1 TK, CEE, BCR

η Elasticity of labour demand 21 1e-7 CEE, SW

µp Probability of no price change 0.908 0.035 SW, BCR

µw Probability of no wage change 0.737 0.03 SW, CEE

g∗ Mean of gt 0.253 0.009 U.S. data

m∗ Mean of ∆ lnMt 0.0053 0.0008 U.S. data

ρg AR coefficient of gt 0.9603 0.0203 U.S. data

ρm AR coefficient of ∆ lnMt 0.649 0.0579 U.S. data

σε S.D. of technology shock 0.010 1e-7 Simulation

ση S.D. of government expenditure shock 0.0116 1e-7 U.S. data

σm S.D. of money growth rate shock 0.0038 1e-7 U.S. data

h Habit parameter 0.650 0.150 CEE, BCF, SW

Note 1: All parameters are drawn from the normal density with the corresponding mean and standard

deviation.
Note 2: CE denotes Christiano and Eichenbaum (1992); CN, Cogley and Nason (1995b); CEE, Christiano,

et al. (2003); BCF, Boldrin et al. (2001); SW, Smets and Wouters (2003); CGS, Chang, et al. (2002), TK,

Yun (1996); BCR, Bouakez, et al. (2003).
Note 3: ”U.S. data” means that calibration is implemented with the U.S. data. The standard deviation of

technology shock, σε, is calibrated so that the mean of the output growth rate implied by the DSGE models

matches its U.S. sample counterpart.
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Table 2: The CIC Statistics of the SDFs

RBC

∆ lnYt lnNt lnCt/Yt ln It/Yt

Years per Cycle NHabit Habit NHabit Habit NHabit Habit NHabit Habit

∞ 0.94 0.47 0.42 0.80 0.72 0.57 0.67 0.64
8 0.72 0.76 0.47 0.79 0.76 0.95 0.50 0.52
4 0.02 0.69 0.29 0.45 1.13 0.92 0.55 0.52
2 0.29 0.58 0.69 1.02 1.01 1.12 0.64 0.57
1 0.46 0.89 0.53 0.06 0.80 0.86 0.47 0.43

Ave. 0.54 0.67 0.47 0.65 0.90 0.86 0.56 0.54

TSRBC

∆ lnYt lnNt lnCt/Yt ln It/Yt

Years per Cycle NHabit Habit NHabit Habit NHabit Habit NHabit Habit

∞ 0.96 0.96 0.89 0.88 1.13 0.69 1.19 0.84
8 0.75 0.77 0.92 0.91 1.16 0.99 0.75 0.75
4 0.42 0.46 0.56 0.56 1.15 1.13 0.77 0.55
2 1.02 0.99 1.12 1.12 0.91 1.17 1.06 0.78
1 0.18 0.16 0.05 0.06 1.00 1.16 0.76 0.54

Ave. 0.69 0.70 0.74 0.74 1.12 1.02 0.93 0.72

MBC

∆ lnYt lnNt lnCt/Yt ln It/Yt

Years per Cycle NHabit Habit NHabit Habit NHabit Habit NHabit Habit

∞ 0.83 0.24 0.26 0.38 0.63 0.53 0.77 0.55
8 0.37 0.33 0.28 0.17 0.69 0.61 0.59 0.45
4 0.01 0.82 0.24 0.43 1.02 0.80 0.73 0.43
2 0.33 0.99 0.47 0.32 0.95 0.74 0.65 0.49
1 0.33 0.74 0.85 0.32 0.87 0.81 0.46 0.43

Ave. 0.40 0.57 0.39 0.26 0.85 0.72 0.65 0.47

NKMBC

∆ lnYt lnNt lnCt/Yt ln It/Yt

Years per Cycle NHabit Habit NHabit Habit NHabit Habit NHabit Habit

∞ 0.81 0.07 0.83 0.93 0.63 0.51 0.66 0.55
8 0.69 0.06 0.76 0.91 0.55 0.60 0.49 0.50
4 0.47 0.19 1.11 1.01 1.04 0.84 0.52 0.44
2 0.45 0.77 0.71 0.62 0.75 0.80 0.52 0.58
1 0.65 0.31 0.21 0.47 0.87 0.80 0.47 0.43

Ave. 0.64 0.24 0.73 0.81 0.77 0.71 0.53 0.50
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Table 3: The CICs for the QLM Statistics of the IRFs to

Temporary Shocks

lnYt to T shock

CIC CIC

QLMNH(8) 0.321 QLMNH(12) 0.344

QLMH(8) 0.393 QLMH(12) 0.385

lnNt to T shock

CIC CIC

QLMNH(8) 0.000 QLMNH(12) 0.000

QLMH(8) 0.000 QLMH(12) 0.000
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