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Abstract

In this paper, starting from continuous-time local level unobserved components models
for stock and flow data we derive locally best invariant (LBI) stationarity tests for
data available at potentially irregularly spaced points in time. We demonstrate that
the form of the LBI test differs between stock and flow variables. In cases where the
data are observed at regular intervals throughout the sample we show that the LBI
tests for stock and flow data both reduce to the form of the standard stationarity test
in the discrete-time local level model. Here we also show that the asymptotic local
power of the LBI test increases with the sampling frequency in the case of stock, but
not flow, variables. Moreover, for a fixed time span we show that the LBI test for
stock (flow) variables is (is not) consistent against a fixed alternative as the sampling
frequency increases to infinity. We also consider the case of mixed frequency data in
some detail, providing asymptotic critical values for the LBI tests for both stock and
flow variables, together with a finite sample power study. Our results suggest that tests
which ignore the infra-period aspect of the data involve rather small losses in efficiency
relative to the LBI test in the case of flow variables, but can result in significant losses
of efficiency when analysing stock variables.
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1 Introduction

Consider the discrete-time local level, or random walk plus noise, unobserved components
model of Harvey (1989,p.19), extended to allow for a deterministic kernel, a;, for the uni-

variate time series process {y;}:

Yy = ai+pete, e~ NIID(0,0?) (1.1)
/,Lt = /,Lt,I +T’t y Th ~ NIID(0,0'%), (12)
t =1,...,T. We assume the initial condition gy = 0, which implies no loss of generality,

provided a; includes a constant and, for the present, that the irregular and level disturbance
processes {&;} and {n;} are uncorrelated, both temporally and contemporaneously.

In the context of (1.1)-(1.2) considerable theoretical and empirical interest has focused
on the, so-called, stationarity testing problem. That is, defining the signal-to-noise ratio in
(1.1)-(1.2) as ¢ = ag/of, testing the null hypothesis of stationarity, Hy : ¢ = 0, against the
unit root alternative, H; : ¢ > 0. Setting a; = a, a constant, Nyblom and Makeldinen (1983)
[NM] demonstrate that the locally best invariant [L.BI] test of Hy against H; rejects for large

values of the statistic

e'We
= 1.3
NM Te'e (13)
where e = (ey, ..., er)" is the T-vector of Ordinary Least Squares (OLS) residuals obtained

from regressing y; on an intercept, t = 1, ..., T, and W is the so-called random walk generating
matrix with (4, j)th element equal to the minimum of i and j, 7, j = 1,..., 7. King and Hillier
(1985) show that this is also a one-sided Lagrange multiplier test of Hy against H;. Nyblom
(1986) has extended the analysis of NM to the case where a; = a+ bt, a linear time trend, in
which case the LBI test is as given in (1.3) except that e is now the vector of OLS residuals
from regressing y; on an intercept and trend. Further generalisations are provided by Nabeya
and Tanaka (1988), Kwiatkowski et al. (1992), Busetti and Harvey (2001).
Tanaka (1996,p.368), inter alia, demonstrates that under the local alternative, H, : ¢ =
2/T?, ¢>0,as T — oo
NM = /01 Ve(r; ¢)?dr, (1.4)

with

Vi(rie) = Bi(r)+c (/0 Wi(s)ds — 7"/01 Wl(r)dr> (1.5)
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Vo(r;e) = Vi(r;e) —6r(1 —r) /01 Vi(s;e)ds,

where “=" denotes weak convergence of the associated probability measures, and the nomen-
clature £ = 1,2, is used exclusively throughout this paper to indicate whether the determin-
istic kernel is a constant, in which case £ = 1, or a linear time trend, in which case £ = 2. In
(1.4), Bi(r) = Wy(r) —rWy(1), r € [0, 1], is a standard Brownian bridge process, defined via
the standard Brownian motion Wy(r), while Wy(r) is a standard Brownian motion process
independent of Wo(r).!

Where ¢ = 0, H, reduces to Hy and hence (1.4) will give the limiting null distribution
of the LBI statistic, N M of (1.3). For £ = 1 and £ = 2 these are respectively first- and
second-level Cramér-von Mises distributions with one degree of freedom; see Harvey (2001)
for further discussion on the Cramér-von Mises family of distributions. In what follows we
will denote these Cramér-von Mises distributions by VM (1), & = 1,2, upper tail critical
values from which are provided in, for example, Kwiatkowski et al. (1992, p.166) [KPSS]
and Harvey (2001, p.4,8). Moreover, from (1.4) the limiting (local) power function of N'M

under H,. for an a-level test will be given by
1
me(c) = Pr {/ Ve(r;e)*dr > k‘ayg} , £€=1,2, (1.6)
0

where kq ¢ is such that Pr{ ] Ve(r;0)%dr > kag} = a, € = 1,2. For both £ = 1 and & = 2,
(1.6) is monotonically increasing in ¢. These limiting power functions are graphed in Tanaka
(1996, Figure 10.4, p.389). Under the fixed alternative H; : ¢ > 0, NM is of O,(T) and
positive; see, inter alia, KPSS pp.165-9. Consequently, the LBI test is consistent against
fixed alternatives.

Although the foregoing results were derived under the assumption of uncorrelated distur-
bances, Bailey and Taylor (2002) have recently demonstrated that the form of the LBI test,
for a given deterministic kernel, is unaltered by allowing for contemporaneous correlation
between ¢; and 7;: the, so-called, non-orthogonal model. Moreover, they demonstrate that
the limiting distribution theory in (1.4) for N M of (1.3) also remains appropriate under the
non-orthogonal model.

The stationarity testing literature to date has started from the basic presumption that

the data is generated by the regularly-spaced discrete-time local level model, (1.1)-(1.2).

!The result in (1.4) and those which follow also hold under considerably weaker, martingale difference,

conditions on the irregular and level disturbance processes; see Stock (1994,pp.2745,2794-2799) for details.
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However, as argued in Harvey (1989,p.479), “A continuous time model is, in some ways,
more fundamental than a discrete time model ... a good deal of the theory in economics

” Notably, continuous-time models

and other subjects is based on continuous time models.
provide a framework which allows us to handle irregularly-spaced data and highlights the
important distinctions that exist, in particular when the data are irregularly-spaced, between
stock and flow variables. Stocks are variables such as prices, unemployment, temperature,
interest rates, and the capital stock which can, in principle, be observed at any given point
in time, while flows are variables such as rainfall, income, and consumption expenditures
which are defined with respect to an interval of time. It is perhaps surprising, therefore,
that stationarity tests have been widely applied to both macroeconomic and financial data
without any formal investigation into what effects the stock-flow distinction has on the
underlying testing problem. Using continuous-time formulations of the local level model for
stock and flow variables, we undertake a detailed exploration of these issues in this paper.

In section 2 we set out the continuous-time formulation of the local level model for both
stock and flow variables and derive the corresponding discrete-time analogue models. In
neither case do these analogue models reduce to the discrete-time model (1.1)-(1.2), except
where the observations are regularly-spaced. Even then, in the case of flow variables one
obtains the non-orthogonal discrete-time local level model. This then allows us, in section 3,
to derive the LBI tests for the null hypothesis that the signal-to-noise ratio in the continuous
time model is zero against the alternative that it is positive in cases where the sample
observations are irregularly spaced through time. We demonstrate that the form of the
resulting LBI test, for a given pattern of intra-observation intervals, is different for stock
vis-a-vis flow variables. The limiting null distributions of the LBI statistics are, in general,
non-pivotal. An exception occurs where the data are regularly sampled. Here the LBI tests
for stock and flow data both have pivotal Cramér-von Mises distributions.

In section 4 we analyse the case where the data are regularly sampled and show that for
stock variables the local limiting power of the LBI test increases with the sampling frequency;
that is, ceteris paribus, power is higher for N years of monthly data than for N years of annual
data. Moreover, for stock variables we also show that the LBI test is consistent against fixed
alternatives for cases where the continuous-time model is generated for a fixed time span but
with the sampling interval tending to zero. In contrast, we show that for flow variables the

local limiting power of the LBI test does not increase with the sampling frequency, and that
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the LBI test is not consistent when the time span is fixed and the sampling interval tends to
zero. Interestingly, these findings contrast with what has been found for the Dickey-Fuller
test by Phillips (1987), Perron (1991), Ng (1995) and Chambers (2004). However, this is
perhaps not surprising given that our model effectively reverses the role of the null and
the alternative hypotheses, relative to the Dickey-Fuller set-up. Loosely speaking, in both
models a stock variable which admits a unit root appears “more nonstationary” when it is
observed with higher frequency, while a parallel, but reversed, argument holds in the case of
flow variables.

An interesting case of irregularly-spaced data is provided by mixed frequency data. An
example of this is where some sub-sample of the complete data-set is observed annually and
the remaining sub-sample comprises quarterly observations. In section 5 we derive explicit
expressions for the LBI stationarity tests for mixed frequency data, as special cases of the
tests derived in section 3. We provide representations for the limiting null distributions of
the LBI statistics, demonstrating that these depend on the fraction of the data observed in
each sub-sample and on the relative observation frequencies in the two sub-samples. These
representations differ considerably between stock and flow variables. A selection of critical
values from these asymptotic distributions is provided. We also consider tests which are
based on statistics modified, either by considering the two sub-samples separately or by
data-aggregation, so as to have limiting null distributions belonging to the Cramér-von
Mises family. The finite-sample power properties of these tests are compared, via Monte
Carlo simulation, with the LBI tests. Our results suggest that the use of the aggregate data
involves only a negligible losses in efficiency for the case of flow variables, but not for stock
variables; in the latter case our simulations are decisively in favour of the exact LBI tests

developed in this paper.

2 Continuous-time local level models for stock and flow

data and their discrete-time analogues

The continuous-time analogue of the discrete-time random walk transition equation (1.2) is
given by
du(t) = &x(dt), >0, (2.1)

[4]



where & (dt) is a random measure, defined formally below. Formulating the continuous-time
analogue of the observation equation (1.1) is more involved. Due to the static nature of
(1.1), different continuous-time formulations of the observation equation will necessarily be
required for the separate cases of stock and flow data, since the former are measured at
single points in time while the latter are measured as integrals over the sampling interval.

Consider first the case of stock data. Here the appropriate observation equation is given by
y(t) =al(t) +pt) +e(t), t>0 (2.2)

where a(t) is a deterministic kernel and £(¢) is heuristically a serially uncorrelated mean-

2
€9

zero process with variance o2, as in Wymer (1993). For the case of flow variables, the

corresponding observation equation is given by
y(t)dt = [a(t) + p(t)] dt + & (dt), t >0 (2.3)

where ¢ = (£1,£,) is a two-dimensional random measure, defined on all subsets of the half-
line 0 < t < oo with finite Lebesgue measure, satisfying Assumption 2.1 of Bergstrom
(1986), with E[¢(dt)] = 0 and B[¢(dt)¢'(dt)] = (d)%, ¥ = diag (02, 0%). Heuristically
speaking, £(dt) can be thought of as a continuous-time white noise process (see Bergstrom,
1984,p.1157) for further discussion, and, moreover, (2.3) may be viewed as (2.2) multiplied
through by dt and with e(t)dt replaced by & (dt).

Our continuous-time local level models for stock and flow data are therefore given by (2.2)-
(2.1) and (2.3)-(2.1), respectively. As with (1.1)-(1.2), for both (2.2)-(2.1) and (2.3)-(2.1) we
may assume the initial condition 1(0) = 0 with no loss of generality, provided a(t) contains
an intercept term. Harvey and Stock (1993,pp.58-59) and Chambers and McGarry (2002)
specify the discrete-time observation equations for stock and flow data directly. However, a
comparison of (2.6)-(2.7) and (2.9)-(2.10), below, with Equations (9),(10),(12),(25) of Harvey
and Stock (1993,pp.58-64) shows that the discrete-time analogues of (2.2)-(2.1) and (2.3)-
(2.1) coincide with the discrete-time models specified for stock and flow variables in Harvey
and Stock (1993). This point is also recognised by Chambers and McGarry (2002) who
argue in the context of the discrete-time analogues that “... the random disturbance ...
can be interpreted either as the discrete time realization of a genuine irregular component

in continuous time .. or as a measurement error that is associated with the discrete time

sampling of the continuous time process”, op. cit., p.393.
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Our formulations of the local level model for stock and flow variables provide a general
framework from which to examine the corresponding exact discrete-time models, where the
observations are sampled at possibly irregular intervals. As with the stationarity tests out-
lined for the case of the discrete-time local level model, (1.1)-(1.2), in section 1, our interest
focuses on testing the null hypothesis of stationarity against the unit root alternative in
the continuous-time local level models. That is, we wish to test the following hypothesis

regarding the structural, signal-to-noise ratio, parameter® ¢ = o7 /o?
Hy:q=0 (2.4)

versus

in (2.2)-(2.1)for stock variables and in (2.3)-(2.1) for flow variables, using observations on the

process which are available at possibly irregular spaced discrete time points. In particular,

we suppose that the data are observed over the interval 0 < ¢ < N, where N denotes the

span of the data, at T irregular observation times {t,}, 7 = 1,....,T, where t , = t, 1 + 6,

to = 0, with the intra-observation intervals, 6, expressed in calendar time units, such that
T 6, =N.

In a series of influential papers Bergstrom (1983,1984 and 1985), inter alia, sets out
the theoretical treatment of continuous-time autoregressive models and their estimation
by Choleski factorization of the Gaussian likelihood. Building upon this work, Harvey
(1989, Ch.9) and Harvey and Stock (1993) consider a general class of state space models
in continuous-time where the Gaussian likelihood estimation is carried out via the Kalman
filter. The continuous-time models in (2.2)-(2.1) and (2.3)-(2.1) may be regarded as simple
examples from this class of state space models.® They are, nevertheless, important from the
point of view of constructing stationarity tests for the case of irregularly spaced observations
on stock and flow data respectively. We now derive the discrete-time analogues of (2.2)-(2.1)

and (2.3)-(2.1).

2Notice that the signal-to-noise ratios which are subsequently obtained for the discrete-time analogues

for stock and flow variables are derived, rather than structural, parameters.
3More sophisticated models, including those with common trends and co-integration in continuous time,

have been considered by Harvey and Stock (1988, 1989), Phillips (1991) and Comte (1999), inter alia.



2.1 Stock Variables

Consider first the case of a stock variable. Let y, = y(t,), ur = p(t;), a, = a(t,), and
e; = e(t;). Evaluating (2.2)-(2.1) at t = t,, yields the discrete-time analogue

Yr = Qr+ lr+eq, (26)

Ur = Wro1+ 04, ,UOZO (27)

where €, and 7, are mean zero, serially uncorrelated and mutually orthogonal disturbances
with variances o2 and &.02 respectively. It is important to notice that, unlike the discrete-
time model in (1.1)-(1.2), the disturbances driving the level equation, (2.7), are heteroscedas-
tic when the observations are irregularly sampled; that is, where 6, is not constant through
the observed sample. In the case where a(t) = a, then so a, = a, so that a constant in
the continuous-time local-level model, (2.2)-(2.1), implies a constant in the discrete-time
analogue, (2.6)-(2.7). However, if a(t) = a + bt, a linear trend, then a, = a + bt; which will
not, in general, be of the form of a linear trend in 7. An obvious exception occurs where
6, is fixed through the sample (the observations occur at regular time points). In this case

(2.6)-(2.7) clearly reduces to a discrete-time local level of the form (1.1)-(1.2).

2.2 Flow Variables

An observed flow variable, which we denote by Y7, is obtained by integrating the (unob-

served) continuous-time analogue y(t) over the interval (¢, 1,t.]; viz.,

v, = [ Tyt (2.8)

T—1
As demonstrated in Appendix A, one therefore obtains that the discrete-time analogue of
(2.3)-(2.1) is given by
Y, = A +6;p,+6%, (2.9)
pr = fir1+1ns, po=0 (2.10)
where A; = [/7 a(t)dt, p, = p(t;) and €% and 7, are mean zero, serially uncorrelated

disturbances. However, and in contrast to the case of a stock variable, the disturbance in

the measurement equation £* is contemporaneously (but not temporally) correlated with
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that of the transition equation 7., viz.,

* 3 2 2 142 2

| 57 2 6705 /3 + 6,07 —50%07
162 92 2
e —5070% 607

see also Harvey and Stock (1993).1

As regards the deterministic kernel, if a(t) = a, then A, = aé,, so that a constant in the
continuous-time local level model (2.3)-(2.1) does not imply a constant in the discrete-time
analogue model, unless ¢, is fixed through the sample. Moreover, if a(t) = a + bt, a linear
trend, then A, = (a + bt, — 367) Or: as with the case of a stock variable, this reduces to a
standard linear trend where 6, is constant across the sample.

It is crucial to notice that, and again in contrast to the case of stock variables, even where
6, is constant across the sample, (2.9)-(2.10) does not reduce to the class of discrete-time
local level models as in (1.1)-(1.2), due to the contemporaneous correlation between % and
n.. However, since our interest in this paper lies solely in developing optimal tests of Hy of
(2.4) against H; of (2.5), we know from the results of Bailey and Taylor (2002) that, in this
regard, the orthogonal and non-orthogonal local level models may be treated as if they were

the same. This point is pursued further in section 3.3.

3 The LBI Test against the Presence of a Random
Walk Component

In this section we derive the LBI test of Hy of (2.4) against H; of (2.5) for the cases of both
stock and flow variables observed at (possibly irregularly spaced) discrete points. These
results show that there are significant and important differences between the two cases. The
LBI tests are obtained using the framework of King and Hillier (1985).

The structure of the resulting LBI test statistics is shown to depend on the intra-

observation intervals, 6., 7 = 1, ..., T, which may be regular or irregular. The former case is

“Notice that Harvey and Stock (1993) write (2.9) with x,_q in place of y,, and redefine &% accord-
ingly. Save for the minus sign in the expression for Cov (¢X,7,), the two representations coincide. Moreover,
Chambers and McGarry (2002,p.395) choose a different formulation where the disturbance terms in the
discrete-time observation and transition equations are uncorrelated (both temporally and contemporaneo-
suly) but the latter follows an MA(1) process. The non-orthogonal representation, (2.9)-(2.10), is clearly the

more useful in the context of this paper.
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pursued further in sections 3.3 and 4, where it is shown that the statistics simplify consider-
ably. Two interesting examples of the latter are the mixed frequency data and missing data
cases. The first example is pursued in detail in section 5. Stationarity tests in the presence
of missing data obtain as special cases of the LBI tests outlined for stock and flow variables
in sections 3.1 and 3.2 respectively, and we shall not pursue such tests in any further detail
here. However, for a set-up which is analogous to our stock variable case and under cer-
tain restrictions on the intra-observation intervals, Nishino (2002) provides an exploration

of stationarity testing with missing data.

3.1 Stock Variables

Let ys = (y1, .-, yT)/ denote the T x 1 vector of observations when the observed variable is

a stock. From (2.6)-(2.7) and assuming Gaussianity, we immediately obtain that

ys~N (as, O'QEQS(Q)) (3.1)

where ag is a T' x 1 vector with 7-th element a ., and Qg(q) =Ir + ¢Vs, with Vs a (T x T')
matrix with (7, j)th element equal to the minimum of ¢; and ¢;, 4,7 =1, ..., T.

A straightforward application of Equation 6 of King and Hillier (1985,p.99) then yields
that the LBI test of Hy of (2.4) against H; of (2.5) in the case of a stock variable rejects for
large values of the statistic

B eingeS

Ls= (3.2)

Teses
In (3.2), es = (1,5, ..., er,s)" is the vector of OLS residuals obtained from the projection onto
the deterministic component ag. For the linear trend case, a(t) = a+ bt, eg is obtained from
regressing 4, on zs, = (1,¢,)', while in the case of a constant level, a(t) = a, the elements
of eg are simply the deviations from the sample mean.

The numerator of the statistic Lg of (3.2) may be written equivalently as the weighted

sum of squared (reverse) partial sums of the OLS residuals,

T=1

T T 2
egV(geS = Z (57— Z €;.5 s (33)
=T

the weights being the sequence of intra-observation intervals {61, ...,67}. Because of this
dependence on the 61, ..., 67 the null distribution of Lg cannot be easily obtained. An ob-

vious exception, considered in the section 3.3, occurs when the observations are sampled at
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regularly spaced intervals; that is, where ¢, is constant across the sample. However, since Lg
is formed as the ratio of two quadratic forms in Gaussian variables, the exact distribution of
Lg under both Hy of (2.4) and H; of (2.5), for a given sequence, {61, ..., 67}, can be obtained
using the well-known Imhof (1961) routine.

3.2 Flow Variables

Consider now the case of a flow variable. Let yz = (Y7,...,Yr)" denote the T' x 1 vector
of observations on the flow variable and let D = diag(éy,...,67). In Appendix B it is
demonstrated that, from (2.9)-(2.10) and assuming Gaussianity,

yr ~ N (ar, 0?D2Qp(q)D?) (3.4)
where ar is a T x 1 vector with 7-th element A., and
Qp(q) = Iy + qD2V;D? + ¢V,

with Vs defined as above, and where V, is a symmetric matrix with (4, j)th element, i <
j=1,...T,
., 39
207 i<

Again using Equation 6 of King and Hillier (1985,p.99), it then follows that the LBI test
of Hy of (2.4) against H; of (2.5) for the case of a flow variable rejects for large values of the

statistic

e (D%V(;D% + V*) er

Ly =
Teer

(3.6)

In the context of (3.6), er = (e1 p,...,erF)

is the vector of OLS residuals from regressing
D_%y r on the deterministic component D_%aF. For example, in the case of a constant level
a(t) = a, so that A, = ad,, one obtains that e p = 6;% Y, =62V, /N), 7=1,..,T.
Noting that the variance of €V ,er is of smaller order (in 7") than that of e%D%V(gD%e P
under both Hy of (2.4) and H; of (2.5), it follows that Lp is asymptotically equivalent to

the simplified statistic
e, D2V Diey
Terer

L= (3.7)

In what follows we will therefore concentrate our attention on Lj}.. As with Lg of (3.2), the

numerator of L}, of (3.7) depends on the sequence of intra-observation intervals {61, ..., ér}.
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For a given sequence, {61, ...,6r}, the exact distribution of L},, and indeed Lp, can again
be obtained using the Imhof (1961) routine, while matters again simplify greatly when ¢, is

constant across the sample.

3.3 LBI Tests when ¢, is Constant

Suppose now that the intra-observation interval ¢, is constant, taking the fixed value 9,

known as the sampling interval, throughout the sample. As a consequence we obtain that,

Vs = OW, where W is the random-walk generating matrix introduced in section 1.
Consider first the case of a stock variable. Here we immediately obtain from (3.2) that

be'sWeg
[o—=—5"""° 3.8
§ Teseg (38)

where eg are as defined below (3.2) but with ¢, = 6. This implies that the elements of eg are
simply the de-meaned or de-trended observations on y; for the case of a constant or linear

trend respectively. Similarly, in the case of flow variables, we obtain from (3.7) that

24/
_ 6“epWep

L= (3.9)

Terer
where er are similarly the de-meaned or de-trended observations on the flow variable Y, for
a constant or linear trend respectively.

Given the distributional properties established for the stock data, y;, in (3.1) and the
flow data, Y;, in (3.4), it follows immediately from (1.4) and applications of the continuous
mapping theorem [CMT] that, under Hy of (2.4), Lg and L}, weakly converge, as T — o0, to
6 times a V M¢(1) distribution and 6% times a V M¢(1) distribution, respectively.” Moreover,
notice from the discussion immediately following (3.6), that this result will also hold for
Lp. Indeed, we can say rather more than that in this case: it is straightforward to show
that when 6, is constant throughout the sample, for a given value of T', (e} V.er)/(Te€per)
collapses to a constant with respect to ep. Consequently, Ly and L% will have identical
critical regions. There is, therefore, no loss in efficiency from considering the test based on
the L% statistic in this case, which is exact LBI.

In practice, when constructing the statistics Lg and L} we may set the calendar time unit

6, = 1 without altering the critical regions of the associated tests. We may therefore define

Recall from section 1 that the nomenclature VMg (1), £ = 1,2, denotes respectively first- and second-level

Cramér-von Mises distributions with one degree of freedom.
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the resulting LBI statistics as Lg(6) = Lg/6 and L,.(6) = L% /62, respectively, which clearly
coincide with the standard discrete-time stationarity test statistic, N M of (1.3), applied to
the observed stock and flow data, respectively. Moreover, both Lg(6) and Ly () will clearly
have pivotal V M (1) limiting null distributions so that the critical values tabulated in KPSS
and Harvey (2001) may be applied directly. For the remainder of this paper, where ¢, is
fixed throughout the sample, any reference to LBI tests will be taken to mean those based
on the statistics Lg(8) and L (6).

Empirical applications of the standard stationarity tests of section 1 have concentrated
in the main on regularly spaced macroeconomic aggregates, such as income, output and con-
sumption, which are, by definition, flow variables and, hence, will generate non-orthogonal
discrete-time local level models; see the discussion at the end of section 2. Although Bai-
ley and Taylor (2002) motivated their research from purely statistical grounds, our results
demonstrate that their findings are also of central importance to the problem of stationarity
testing in economic data. They tell us that the standard stationarity test will be exact LBI
and with the same limiting null distribution, irrespective of whether the data is generated
as a stock or flow variable, provided the data are observed at regularly spaced intervals.
However, as we shall see in the next section, the power properties of the LBI tests do differ
across the stock and flow cases. Specifically, we show that the local limiting power function
of the LBI test for stock (flow) data depends (does not depend) on the sampling frequency,
67!, and that for a fixed data span the LBI test for stock (flow) data is consistent (not

consistent) against fixed alternatives as the sampling frequency tends to infinity.

4 Test Power and the Sampling Frequency

In this section we suppose that the underlying process is generated by the continuous-time
local level model (2.2)-(2.1) for stock variables or (2.3)-(2.1) for flow variables, and that
observations on y(t) are made at intervals of length § > 0 over the interval 0 < ¢ < N, where
N denotes the span of the data. The number of observations is therefore given by T'= N/6,
and this quantity will clearly increase if either N increases or ¢ decreases, or both. Our aim
in this section is to study the large sample power properties of the LBI tests appropriate for
stock and flow variables. We first analyse in section 4.1 the behaviour of the test statistics

under a sequence of local alternatives on the signal-to-noise ratio in the underlying continuous
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time models, which are useful for computing the local limiting power function of the tests
as the time span increases to infinity. Subsequently, in section 4.2 we look at the limiting
behaviour of the statistics under fixed alternatives in order to establish the consistency (or
otherwise) of the tests. We show that fundamentally different results emerge for stock and
flow variables. Monte Carlo simulation results and two empirical illustrations are provided

in section 4.3 and 4.4 respectively.

4.1 Behaviour under Local Alternatives

The structural parameter of interest in both (2.2)-(2.1) and (2.3)-(2.1), is the signal-to-noise
ratio, ¢ = 0'2 /o?. For this parameter, a sequence of alternatives local to Hy of (2.4) in the

span of the data, IV, is therefore given by
Hy(c) : gy = */N?, ¢>0. (4.1)

The subscript N has been placed on the signal-to-noise ratio to highlight that this corre-

sponds to a local alternative hypothesis and also to distinguish it from the nomenclature

2
n

used in section 1. Notice that o2 = ¢*¢c2N~2, under (4.1). Moreover, for ¢ = 0, Hy(c) again
reduces to Hg.

We now analyse the power properties of the LBI tests for both stock and flow variables
under Hy(c) of (4.1) as N — co. We show that for stock variables asymptotic local power
is an increasing function of the sampling frequency §=!, while for flow variables power is
unaffected by 6 1. As is subsequently demonstrated numerically by Monte Carlo methods in
section 4.3, the asymptotic local distribution theory provides a good approximation to the
finite sample impact of the sampling frequency on power in both cases.

Consider first the case of a stock variable. It was demonstrated in section 2 that the
exact discrete time analogue of the continuous-time model (2.2)-(2.1) is a random walk plus
noise model with variances o2 and 50’727 respectively, observed for 7' = N/§ periods. Using
(2.6)-(2.7), the derived signal-to-noise ratio, say gr s (where we use S to denote stock), in

the discrete-time analogue under Hy(c) of (4.1) is therefore given by

Scto? 6t E
5= Gan2 = T2g2 = T2 (42)

where cg = ¢//6, which is clearly an increasing function of the sampling frequency, 6.
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Therefore, it immediately follows from the results in section 3.3 and a comparison with
(1.4) that, for given values of ¢ and &, m¢(¢/v/§) will be an increasing function of the sampling
frequency. The implication of this is that the asymptotic local power of the LBI test in the
case of a stock variable will be higher the larger is the sampling frequency, ceteris paribus,
being a function of ¢/ V6.

Consider now the model for a flow variable. Noting again from Bailey and Taylor (2002)
that the contemporaneous correlation between the signal and noise processes has no effect
on the local limiting distribution of the LBI statistic, exactly the same line of argument can
be used to analyse the power properties of the LBI test for flow variables.

Using (2.9)-(2.10), noting that in this case the signal is du,, it follows that the derived
signal-to-noise ratio for a discretely sampled flow variable, say g7 r (where F' denotes flow),

under the local alternative Hy(c) is given by

5 cPo? /N? c? 2
QT7F215322]EV/2 S02 L2 T2ET_F2’ (4-3)
303c202/N? + 602 3% +
where
2
Cr= .72 1
o

and is clearly such that limy . cp = c. As N — oo with 6 fixed, we see from (4.3) that the
local limiting power of the LBI test in the case of flow data depends only on ¢ and the non-
centrality parameter, ¢, of (4.1). Crucially, it does not depend on the sampling frequency
671, Consequently, and in contrast to the case of stock variables, the local limiting power
of the LBI test for a given non-centrality parameter, ¢, will not increase with the sampling

frequency.

4.2 Behaviour under Fixed Alternatives

We now consider the continuous time model for stock and flow variables (2.2)-(2.1) and (2.3)-
(2.1) under the hypothesis that the signal-to-noise ratio ¢ = o7 /02 is fixed and strictly greater
than zero; that is, we are interested in the behaviour of the tests under a fixed alternative
rather than under the local alternative (4.1) of the previous subsection. In particular we will
show that, for a fixed time span N, as the sampling frequency tends to infinity (6 — 0) the

LBI test is consistent for the case of stock variables but it is not consistent for flows. Where
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N — oo the test is consistent for both stock and flow data. The proof for this case is not
provided here since it follows immediately from KPSS and Bailey and Taylor (2002).
Consider first the case of a stock variable. From (2.6)-(2.7), the discrete time analogue,

observed at a fixed time interval 6, can be written as

Yy, = aT—l—(S%,u,*TjLET, T=12,..,T = N/,

pry = Mro+nr, o =0,
where €., n% are serially uncorrelated and mutually orthogonal Gaussian disturbances with
variances 02 and 0%] respectively, and a, = X/ is a deterministic component represented in
terms of a k-dimensional non-stochastic regressor X, with associated coefficient vector 5. We
assume that X satisfies standard regularity conditions as in Phillips and Xiao (1998); that
is, there exists a scaling matrix A and a bounded piecewise continuous function X (r) such
that: (a) Ay X7, — X(r) as T — oo uniformly in r € [0, 1]; and (b) fy X (r)X (r)'dr — Qx,
a positive definite matrix, as T — oo. These conditions are clearly met if the deterministic
component is a constant level or a linear trend, but they also allow for more general functions

such as piecewise polynomial trends.

From section 3.3, the LBI statistic takes the form

— T2 (ST e ?
LS((S) = T-1 lz:(T ]62 ]) ) (44)

T=1"7

where e, is the 7-th element of the vector of OLS residuals eg, obtained from regressing
the observation vector ys = (y1,...,yr) on the deterministic variables Xg = (X!, ..., X7)".
As discussed in section 3.3, (4.4) is the usual form of the LBI test of stationarity for data
sampled at constant intervals.

For a T-dimensional vector z denote by z its orthogonal projection onto the space spanned
by Xg, i.e. Z = Xg( gXS)fl ‘sz, with Z, being the 7-th element of z; clearly, if X, is
a constant regressor then Z, is just the average of the elements of z. Then we can write
the OLS residuals as e, = y, — ¥, = 63(ut — 1) + (¢, — &,). Now, as § — 0 with N
fixed, and recalling that T'= N/§, standard applications of the Invariance Principle and the
Continuous Mapping Theorem then yield, for r € [0, 1], the following limiting results,

T2 (g = i) = o (W) =W (r)) = 0,(1), (4.5)

T2 Y (uiry — Firg) = o /Tl (W(r) = W) dr = 0,(1), (4.6)

J=ITr]
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where W (r) is a standard Brownian motion process, W (r) = X'(r)Q%" J5 X'(r)W (r)dr and
[-] denotes the integer part of its argument. Notice that if X, is a constant regressor, then
W(r) = [, W(r)dr.

Therefore we immediately obtain from (4.5) and (4.6), that (,LLE‘TT] - ﬁE‘TT]) = Op(é_%) and
Z]T:[Tr] (u’["TT] — ﬁ’[“TT]) = Op(éfg), while using similar arguments (qTT] — 5[%]) = 0,(1) and
Z]T:[TT] (E[TT] - E[TT]) — 0,(672). The numerator of the LBI statistic (4.4) is then seen to be
of O,(671) while, since e,) = O,(1), the denominator is of O,(1) . Consequently, as § — 0
with fixed time span N, the LBI statistic (4.4) is of O,(6~!) and the consistency property of
the test follows. The qualitative prediction of this large sample result also appears evident
in the finite-sample simulation results reported in Table 1 of section 4.3.

Consider now the case of a flow variable. From (2.9)-(2.10) the discrete time analogue,

observed at a fixed time interval 6, can be written as

Y, = AT+5%,UJJTF—|—5L r=12,..,T = N/6,

py = i +ny, pg =0,

/ . . . .
where (e,nT)" are serially uncorrelated Gaussian disturbances with

+ 2 | £2 2 16,2

. oL+ 6%03/3 —5607
+ _ 15,2 2 ’
nt 5007, oy

and A, = X% is a deterministic component. From section 3.3, the LBI statistic is

_TPELL(S1)

-1 5T 2 !
T ZT:I ej

Lp(5) (4.7)

where e is the 7-th element of the vector of OLS residuals e, obtained from regressing the
observation vector yr = (Y7, ..., YT)/ on the deterministic variables Xp = (Xf“’, e X;f’)/.
Again, (4.7) is the usual form of the LBI test of stationarity for data sampled at constant
intervals.

Noticing that the random walk component in the observation equation is scaled by 6%,
rather than 62 as in the stock variable case, and adapting the previous arguments used for
the stock case, it is easily demonstrated that as § — 0 with N fixed, Lr(8) is of O,(1) and

consequently the LBI test is not consistent in the case of flow data; cf. Table 1 of section

4.3.
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4.3 Monte Carlo Simulations

In this section we use Monte Carlo simulation methods to investigate the finite-sample power
properties of the LBI tests of section 3.3. All experiments reported in this paper were
programmed using the random number generator of the matrix programming language Ox
2.20 of Doornik (1998), over 10,000 Monte Carlo replications. All tests were run at the
nominal 5% asymptotic level, although other choices of the nominal level did not alter the
results qualitatively.

Specifically, we simulate data according to the discrete-time analogues (2.6)-(2.7) for stock
data and (2.9)-(2.10) for flow data over a time span of N = 100 and setting 6, = ¢ constant.
Without loss of generality we set o2 = 1 and compute the tests across a range of values of
o2 = c*/N?, for ¢ = 0,2.5,5,10,25, and of the sampling interval § = 1,1/2,1/4,1/6,1/12. In
each case the number of observations is therefore 100/6. Notice, therefore, that the implied
signal-to-noise ratios in the discrete-time analogue models for the cases of stock and flow
variables will be 6¢?/100? and %%/ (%6202 - 1002), respectively; cf. (4.2)-(4.3).

We may think of this as data from an underlying continuous time process observed over
a 100 year span at regular discrete intervals in time corresponding to an annual, biannual,
quarterly, bi-monthly and monthly sampling frequency when 6 = 1,1/2,1/4,1/6,1/12, re-
spectively. Without loss of generality, we have set the deterministic kernel a(t) = 0 in what
follows, since our tests are constructed from exact invariant statistics.

Tables 1a and 1b report the empirical rejection frequencies, as functions of ¢ and 6, for
the tests which reject for large values of the LBI statistics Lg(8) and L,(6), for stock and
flow variables respectively. The stock and flow statistics were constructed from the residual
vectors eg and er whose elements are the de-meaned (§ = 1 in Table 1a) or de-trended
(¢ = 2 in Table 1b) observations on the observed stock and flow variables respectively.
Consequently all of the statistics possess a V Mg(1) limiting distribution under Hy of (2.4);
cf. section 3.3. The 5% asymptotic critical value for the tests is therefore 0.461 for £ = 1
and 0.149 for & = 2; see, for example, Harvey (2001).

Tables 1a — 1b about here

A number of important observations can be drawn from the results presented in Tables

la and 1b. Firstly, in the case where 6 = 1 the power of the tests for stock and flow variables
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are almost identical throughout. This is, of course, to be expected given that the signal-to-
noise ratio for stock variables is given by ¢?/ (T?6) while for flow variables it tends to ¢?/T?,
as T, the number of sample observations, increases; see sections 4.1 and 4.2. Moreover, the
observed powers reported in Tables 1a and 1b for 6 = 1 closely correspond with the limiting
power functions of Model A and Model B of Tanaka (1996,p.390), respectively, despite being
obtained for the moderately small sample size of 1" = 100.

Secondly, for the case of flow variables we see from the results in Tables 1a and 1b that,
ceteris paribus, power does not increase as the sampling interval ¢ decreases, as predicted
by the limiting distribution theory in section 4.2. Indeed, for a given value of ¢, there are
virtually no differences in power across the various values of 6 considered.

Thirdly, in the case of stock variables we see that power increases as § decreases, other
things equal. For example, in Table 1la with ¢ = 5 the power for 6 = 1, where we have
annual observations on the underlying continuous-time process, is 30.3% but for data which
have been observed monthly throughout the sample the power of the test is dramatically
increased to 82.1%. Moreover, as predicted by the limiting distribution theory in section 4.1,
the finite sample local power of the test appears closely related to the quantity cg = ¢/ V6.
For example, ¢ = 2.5,6 = 1/4 and ¢ = 5,6 = 1 both give c¢g = 5, while ¢ = 5,6 = 1/4 and
¢ = 10,6 = 1 both equate to cg = 10. We see from the results in Tables 1a,1b that the power
of the stock test for ¢ =2.5,6 = 1/4 and ¢ = 5,8 = 1 is very similar, and is also very similar
forc=5,6=1/4 and ¢ = 10,6 = 1.

Finally, notice that, as expected, the simulated powers reported in Table la are higher
than the corresponding entries in Table 1b. This is due to the usual efficiency loss resulting

from the estimation of an extra parameter in the model with a linear trend.

4.4 Empirical Illustrations

Figure 1 graphs the quarterly seasonally unadjusted series of the Italian unemployment rate
over the period 1980Q1-2003Q4; the data source is Istat, the Italian statistical office. A
random walk plus noise model, where a time-varying seasonal component is also included
as in Harvey (1989, p. 42), satisfactorily tracks the data, with a standard error of 0.41
and with no evidence of serial correlation in the Kalman filter residuals. The maximum

likelihood estimates of 0'727 and (7? are 0.1279 and 0.0109, with signal-to-noise ratio ¢ = 11.73,
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while the variance of the seasonal component is only 0.0003. The LBI test, applied to the
seasonally adjusted data,® provides a sound rejection of the null hypothesis of stationarity:
the statistic (4.4) is equal to 1.827 compared with the 10%, 5% and 1% asymptotic critical
values of 0.347, 0.461 and 0.743, respectively. Even with a (superfluous) non-parametric
long-run variance correction of the form considered in KPSS pp.164-65 employed, the null
is still rejected at at least the 5% significance level when a lag truncation of three or less
is used in the long-run variance estimator. As the unemployment rate is a stock variable,
on the basis of the foregoing theoretical development one would expect, other things equal,
less evidence for rejection under the alternative if the stationarity test were to be applied to
annual data. Indeed, the LBI statistic applied to the annual data (with no long-run variance
correction) takes the greatly reduced value 0.374, which is now only a borderline rejection
at the 10% significance level. It is also interesting to notice that fitting a random walk plus
noise model to the annual data yields 0'727 = 0.6418 (with o2 approximately zero); this is
not inconsistent with what one would compute by multiplying by four the variance in the

quarterly model; cf. (2.6)-(2.7).

Figures 1 — 3 about here

Consider now Figure 2 which graphs annual and biennial data (the latter divided by two
in the graph) on the flow of the Nile over the period 1871-1970. The unit of measurement
is cubic metres times 10%; see Koopman et al. (2000). It is known that the Aswan dam
was constructed in 1899 and consequently one has to account for a structural break in the
level of the series. The stationarity tests therefore have to be run with a level change in the
deterministic component. Critical values for this case are provided in Busetti and Harvey
(2001); for a breakpoint fraction equal to 0.3 the 10% asymptotic critical value is 0.189.
The LBI statistic for the biennial data takes the value 0.086, signalling no evidence that a
random walk component is present in the data. Consonant with the large sample theory,
doubling the number of observations by running the test on the annual data does not alter
our inference; the LBI statistic takes the value 0.089, which is virtually unchanged from that
obtained from the biennial data.

Figure 3 depicts the monthly inflation rate in Japan, computed as first difference of the

6The data were seasonally adjusted in the context of the Basic Structural Model of Harvey (1989, p. 47),
using the inbuilt seasonal adjustment procedure in the STAMP 6.0 package of Koopman et al. (2000).
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logarithm of the Consumer’s Price Index; the source is the Bank of International Settlements.
Inflation can be regarded as a flow variable since it is the first difference of a stock and it is
clearly measured with respect to an interval of time. Quarterly inflation can be calculated
equivalently as a three-period average of the monthly data or as the three-month differences
of the logarithm of the price index. In order to allow for serial dependence in the series, we
calculated the statistic of KPSS, Equation (13) p.165 (notice that this is just the LBI statistic
of (4.7) with the OLS variance estimator in the denominator replaced by a corresponding
long-run variance estimator), on both monthly and quarterly inflation. We computed KPSS
statistics over the full sample data (1985-2002, with a time span,V, equal to 72 quarters) and
over the two sub-samples 1985-1993 and 1994-2002, each of which has N = 36. The statistics
were calculated for two values, x = 4 and x = 8 of the lag trucation parameter suggested
in KPSS, ¢ = int[z(T/100)1], T the the number of sample observations. The OLS residuals,
el where obtained in each case from regressing the observed data on a set of conventional
seasonal dummies, so as to account for the deterministic seasonal fluctuations displayed by
the series. Doing so does not affect the limiting null distributions of the resulting statistics
vis-a-vis the case where only a constant is included; cf. Phillips and Jin (2002).

For the full sample data there is a rather strong evidence against the null hypothesis
of stationarity: for the monthly data with z = 4 and = = 8 the KPSS statistic takes the
values 0.863 and 0.662, respectively, which are significant at the 1% and 5% significance
levels, respectively; for the quarterly data the corresponding outcomes are 0.573 and 0.420
which are significant at the 5% and 10% levels, respectively. In contrast, for the first sub-
sample, 1985-1993, the outcomes for the monthly (quarterly) data with z = 4 and = = 8
are 0.367 and 0.330 (0.311 and 0.229), while for the second sub-sample, 1994-2002, the
corresponding outcomes are 0.282 and 0.283 (0.283 and 0.235), all but the first of which are
insignificant at the 10% level. These outcomes are consistent with the theoretical prediction
that the limiting power of the test can only be increased by enlarging the span of the data.
Qualitatively similar results were also found for other sub-samples of length N = 36, so that

the observed results are not merely attributable to the particular sample split reported.
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5 Stationarity Tests with Mixed Frequency Data

As Harvey (1989,p.325) comments, “A series may sometimes consist of observations at two
different timing intervals. For example, observations may, at first, only be available on an
annual basis, whereas later on they are collected every quarter.” In this section we explore
the impact of such mixed frequency data on tests of Hy of (2.4) against H; of (2.5) for both
stock and flow variables. Since both sub-samples include information about the trend, how
we handle the mixed frequency data is potentially important for the power properties of the
resulting test.

In this section we derive the exact LBI tests for both stock and flow variables in cases
where we have a sample of mixed frequency data. We show that the LBI statistics have non-
pivotal limiting distributions. We compare the exact LBI tests with simple modifications of
these statistics, constructed to have pivotal limiting distributions, and also tests which are
constructed from the aggregated data. The former are obtained by applying the statistic
N M of (1.3) to each of the two sub-samples and adding the resulting statistics together,
while the latter are tests which aggregate the more frequently observed data so as to have
the same sampling frequency as the data from the first interval; see Harvey (1989,p.310).

In what follows, we suppose that for some A € [0, 1] the first [AT"] observations have been
made with a sampling frequency of one, possibly annually as in Harvey’s example above,
while the remaining T — [\T] observations are made with a sampling frequency of §=! > 1;7
for example, the case where the first half of the available sample data consists of annual
observations and the second half quarterly observations corresponds to A = 0.5 and 6 = 1/4.

The corresponding sequence of intra-observation intervals will therefore be given by

1 1 <7 <[\
5§  M)+1<r<T

5, =

Consequently, the LBI tests for Hy of (2.4) against H; of (2.5) for the case of stock and

flow variables reject for large values of the statistics given in (3.2) and (3.6) respectively, on

"One might also consider the case where §~1 < 1, that is where observations become available at less
frequent intervals after time [AT]. The theory which follows is also appropriate to this case but we choose to
focus on 6~ > 1 because this seems more likely in practice. Moreover, although we have set the sampling

frequency in the first sub-sample to be one this also involves no loss of generality.
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setting the ¢, as above in the formulation thereof. Moreover, notice that

T 1 <7 <[NT]

(5.1)
§r+(1—&NT]  [M]+1<7<T

tT = Z 6j =
j=1
and thus N =ty = [A\T] + 6(T — [\T)).
The limiting distribution of the LBI statistic for the case of a stock variable, Lg, under
Hy of (2.4) follows using (3.3), (C.4) and the CMT. Specifically,

A 1
Ls = / Bse(r)%dr + 6 /A Bse(r)dr. (5.2)
0

The form of the limiting process Bg¢(r) depends on the deterministic component a(t). For
¢ = 1, the constant case, it was demonstrated in section 2.1 that a, = a in (2.6)-(2.7),
regardless of 4., and hence eg are simply the de-meaned observations on y,. Consequently,
Bg1(r) will be a standard Brownian bridge process. For & = 2, the linear trend case, the
form of the limiting process Bgs(r) is more complicated and is given in Appendix C1.
Turning to the flow variable case, the limiting distribution® of L} under Hy of (2.4) can

similarly be established as
A 1
Lh = / Bre(r)2dr + 6 /A Brg(r)2dr. (5.3)
0

Again the form of the limiting process Br¢(r) depends on a(t). For £ = 1, it follows from
the results in section 2.2 that A, =afor 1 <7 < [AT] and A, = ad for [ NT|+1 <7 <T,
in (2.6)-(2.7). It then follows, that the residual vector ey has 7th element

52 (Y, — 8§ Y,/N) T > [AT).

IN

err =087 (Y, — 6 YV, /N) =

From which it follows, as demonstrated in Appendix C2, that

855 (W (1) — W)+ (W) = W) — (1 =AN)+A—r)J <A

Bl =1 s (W(1) = W(r) —8(1—r)J P> A

where J = (A +6(1— X)) " (W()\) +6Y2(W (1) — W()\))), and W(r) is a standard Brown-
ian motion. The form of the limiting process Bpo(r) is more complicated and is given in

Appendix C3.

8Recall from section 3.2 that L% and Ly are asymptotically equivalent.
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As is clear from (5.2) and (5.3) the limiting null distributions of the Lg and L7, statistics
depend in a complicated manner on two nuisance parameters, 6 and A. Consequently, asymp-
totic critical values for the two tests will need to be tabulated across these two parameters.
In Tables 2a and 2b we present the upper-tail 1%, 5% and 10% fractiles from the right mem-
bers of (5.2) and (5.3), respectively, for A € {0.25,0.50,0.75} and 6 € {1,1/2,1/4,1/6,1/12},
for both £ =1 (constant) and £ = 2 (linear trend). In each case these were calculated via
direct simulation (that is, approximating the limit functionals using partial sums of normal

random variables) for 7' = 5000, using 50000 Monte Carlo replications.

Tables 2a — 2b about here

There is, however, a simple way of obtaining statistics in both stock and flow cases which
have pivotal limiting null distributions in the presence of mixed frequency observations. In
what follows the subscript index i is used to denote either the case of a stock variable,
i =S, or of a flow variable, i = F'. Define the vectors of OLS residuals & = (€ ;,...,é7,),
i = S, F, as follows. For the case of stock variables these are obtained from regressing v,
on either (1,h-(\))’, for the constant case, or, for the linear trend case, (1,7, h;(\), 7h:(\))’,
T =1,...T, where h.(\) = 1(7 < [AT]), 1(-) the usual indicator function. For the case of
flow variables the same regressions are computed on replacing y, by Y.

Using these residuals we then construct the modified statistics

AT ~ 2 - \2
SIS Tamlha)
1 [AT] > ez, (T — [AT]) ZZ:[/\THI e, 7

It is important to notice that for both stock and flow variables, the left member of (5.4) is
constructed by applying the statistic N'M of (1.3) separately to each of the two sub-samples,
{1,...,[AT]} and {[A\T] +1,...,T}, of stock or flow data and then taking the sum of the two
resulting sub-sample statistics. In doing so we are clearly ignoring the information on the
sequence of intra-observation intervals 6,, 7 =1,....T.

Since, in all cases considered, Z:E:[AT] 41 €x,i = 0, the two terms which appear in the right
member of (5.4) are asymptotically independent. Consequently, it trivially follows from the

results in section 3 and the CMT that, under Hy of (2.4),

. 1 1
L = / Be(r)dr + / Beo(r)?dr, i=F,S, (5.5)
0 0
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where B¢ (r) and Bgo(r) are independent V M¢(1) distributions, £ = 1,2. By the additive
properties of the Cramér-von Mises family of distributions (see, Busetti and Harvey, 2001,
p.136), we obtain that the right member of (5.5) is a pivotal {th-level Cramér-von Mises
distribution with two degrees of freedom; denoted V M¢(2), £ = 1,2. Critical values from the
V M;(2) and V M,(2) distributions are tabulated in Nyblom and Harvey (2000) and Harvey
(2001).

One might also consider aggregating the second sub-sample of data such that the ag-
gregated observations in the second sub-sample have the same sampling frequency as the
data from the first interval. The aggregated stock and flow data are given by y, = y(7)
and Y, = [T y(r)dr, 7 = 1,2,..., N, which we collect into the N-dimensional vectors
vi = (1,92, yn)and yi = (Y1,Ys,...,Yy)', respectively. We then simply apply the
standard stationarity test, N M of (1.3) to y% and y3., respectively. In what follows we
will denote the resulting statistics as Lso and L, respectively. It is trivial to show that
both Lgo and L}, weakly converge under Hy of (2.4), as T — oo, to V M(1) distributions,
§ = 1,2. For § = 1 the residuals used in constructing the Lgo and L}, statistics are the
de-meaned y§ and y7} respectively, while for £ = 2 they are formed as the de-trended y%§
and yJ respectively.

Both the modified statistics of (5.4) and the statistics based on the aggregated data ignore
the infra-period aspect of the data. One might expect that in the case of flow variables these
tests will have very similar power properties to the test based on L}, (which is approximately
LBI) since, as shown in section 4, power does not increase with the sampling frequency in the
case of flow variables. In contrast, the results in section 4.3 would lead us to expect significant

power losses from ignoring the infra-period information in the case of stock variables. We

now use numerical methods to explore these issues further.

5.1 Monte Carlo

In this section we simulate mixed frequency data for § € {1,1/2,1/4,1/6,1/12}, and
A € {0.25,0.50,0.75} . Using the observed data, y, (stock) and Y, (flow), we compute the
statistics Lg, L}, E*s and IA/} The first two statistics are then compared with the asymptotic
5% critical values from Tables 2a and 2b, and the latter two with the upper 5% point from
the V. M¢(2) distribution; that is, 0.748 for a constant level £ = 1 and 0.247 for the linear
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trend case £ = 2; see, for example, Harvey (2001). In addition we also consider the standard
N M statistics, denoted Lggo and L, applied to the aggregated stock and flow data, y§
and y7, as described above.

Specifically, we simulate the local level process (1.1)-(1.2) for ¢t = 1,2,...,96/6, across
6€{1,1/2,1/4,1/6,1/12}. Taking 6 =1 to represent yearly data, we consider the cases of
annual observations that become biannual, quarterly, bi-monthly, monthly when ¢ assume the
values 1/2,1/4,1/6,1/12 respectively. The signal-to-noise ratio is set to o7 /02 = ¢*/(96/6)?,
for ¢ = 0,2.5,5,10, in order that we may simulate the power functions of the tests in terms
of the magnitude of the local alternative hypothesis in a process generated with constant
sampling frequency 671.

From this underlying DGP we obtain mixed frequency observations for stock and flow
variables, where the first [AT] observations are sampled with unit frequency (annual) and
the remaining 7' — [\T| observations are sampled with frequency §~! > 1. In particular, for
each 8, data have been generated with frequency 6! and then aggregated only in the first
subsample in order to obtain observations with unit frequency.” Notice that T = 96 in all

cases, while \ varies among {0.25,0.50,0.75}.

Tables 3a — 3¢ about here

Tables 3a-3c report the empirical rejection frequencies, as functions of ¢, 6 and A\, for
the tests which reject for large values of the LBI statistics Lg, L}, the simplified statistics
Afg, f/} and the standard N'M statistics Lgy, L7 applied to the aggregated stock and flow
data, as explained in the previous section. Notice that the latter two are computed for a
number of observations equal to (A +6(1 — X)) T <T.

First notice that for 6 = 1 the results in Tables 3a-3c are much the same, since here the
observation frequency is constant throughout the sample. Moreover, here the results for the
LBI tests closely resemble the simulated local limiting powers reported in Tables la-1b for
0 = 1. Notice also that in Tables 3a-3c, but not in Tables 1a-1b, the time span N increases
as 0 reduces: N = (A/6+1— \)T. It is therefore no surprise that the simulated power of

the tests for both stock and flow turns out to be, in general, an increasing function of the

9Notice that the Monte Carlo experiments reported in this section involve (partial) temporal aggregation
over fixed time intervals and thus are slightly different from those of section 4.3 where data were generated

from the exact discrete-time analogues of the underlying continuous-time process.
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sample frequency 6.

Consider now in particular Table 3b, where A = 0.50, that is the case where half of
the data are observed on an annual basis and the remaining half at higher frequency. The
empirical size, contained in the first 6 rows of the table where ¢ = 0, is reasonably close to
the nominal asymptotic 5% level for all reported tests. For stock variables the highest power
is achieved by using the LBI test Lg. Here the power loss from ignoring the more finely
available observations and running the standard NM test on the aggregated data, namely
using the statistic Lg, is not negligible; for example, in the case of constant level with ¢ = 2.5
and 6 = 1/12 the use of the LBI test yields power of 42.1%, as against 26.8% when using
the corresponding aggregated data. Despite using all available data, the modified test Lg
which combines the evidence in the two subsamples is less powerful than 2570, with power of
21.3% in the foregoing example. This is attributable to the efficiency loss incurred by having
to estimate additional parameters. For flow variables, on the other hand, the power losses
from using aggregate data appear negligible. In the example used above, where ¢ = 2.5 and
6 = 1/12, the rejection frequencies are 77.8% for the LBI test L}, and 74.5% for the NM test
L7 for the case of constant level. Again, and for the same reason, lower power, 65.9%, is
obtained by running the modified test Lp.

The results for the linear trend case are qualitatively similar to those reported for a
constant level, although for each configuration of §, A and ¢ power is smaller. This is
analogous to what happens in the standard NM tests; cf. KPSS.

The results reported in Tables 3a and 3¢, where A is 0.25 and 0.75 respectively, are also
broadly similar to the corresponding results for A = 0.50. The main difference is the lower
(respectively higher) power than in Table 3b. This can be easily explained by looking at the
span of the data N = (A/6 + 1 — X\) T, which, for 6 < 1, is increasing in A.

In summary, the Monte Carlo results strongly suggest using the LBI test if the variables
are stock; the critical values for A € {0.25,0.50,0.75} are provided in Tables 2a and 2b, for
other values of A they can be obtained from the authors on request. For flow variables, on
the other hand, it appears that near-efficient tests can be obtained even when one ignores
the more finely available observations, since, as we have already seen, the limiting power
properties of the tests for flow variables depend on the span of the data and not the number

of sample observations.
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6 Conclusions

Using a continuous-time framework in this paper we have derived locally best invariant (LBI)
stationarity tests for both stock and flow data available at potentially irregularly spaced
points in time. The resulting tests were shown to differ between stock and flow variables.
The special case of mixed frequency data was analysed in detail with asymptotic critical
values and a power study provided. Our results suggested that tests based on statistics which
ignore the infra-period aspect of the data, such as those constructed from aggregated data,
involve rather small losses in efficiency, relative to the LBI test, for the case of flow variables,
but can incur significant efficiency losses when dealing with stock variables. We have also
demonstrated that where the data are observed at regular intervals throughout the sample
the LBI tests for stock and flow data reduce to the form of the standard stationarity test
of, inter alia, NM applied to the observed stock and flow data, respectively. These statistics
were shown to have Cramér-von Mises limiting null distributions. For regularly sampled
data we also demonstrated that the asymptotic local power of the LBI test increases with
the sampling frequency in the case of stock variables but not for flow variables. Moreover,
for a fixed time span the LBI test for stock variables was shown to be consistent against a
fixed alternative as the sampling frequency increased to infinity. This was shown not to be
true in the case of flow variables.

Although we have focused on issues concerned with testing against a unit root at fre-
quency zero, the analysis of this paper can be extended to the seasonal stationarity tests
developed in, inter alia, Canova and Hansen (1995). As an example, if one had mixed fre-
quency data observed first annually then subsequently quarterly it is clear that only the
second sub-sample contains information useful in constructing tests against seasonal fre-
quency unit roots. However, if our data were available first quarterly and then monthly,
information on the seasonal spectral frequencies 7 and 7/2 (37/2) would be contained in
both sub-samples. Consequently, seasonal unit root tests for mixed frequency data, akin
to those developed in section 5, can be constructed to be more powerful (in the case of
stock variables) than those based on data where the monthly data is aggregated to quarterly
data. Moreover, by adopting a continuous-time framework one can also show that, in the
case of stock variables, tests against, for example, a pair of complex conjugate unit roots at

frequency 7/2 (37/2) will be consistent against fixed alternatives for the case where a fixed
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data span is available but where the sampling frequency tends to infinity as a multiple of

four.
Appendix A

From (2.2)-(2.1) we have that
tr

Y, = / y(t)dt
tr—1

= K;a(t)dw tt_ (/()t§2(ds)> dt+£; &1(dt)

— o [ (wte - [T etas)ar+ [T et
_ AT+57u(tT)—/:1 /tt’gg(ds)dH[l &(dt). (A1)

where integrals are defined in the wide sense, with the exception of those taken with respect
to the random measure; see Bergstrom (1984). Defining p, = p(t;), and ef = [/7 & (dt) —
CJE &(ds)dt, write (A1) as

Y;- == AT +6T,UJT +5>:->

where the transition equation is given by
Br = fr—1+ 17,

with 7. = [{7  &(dt).
Using, for example, Bergstrom (1984,1986), we first have that E [ftil &(dt)} =0,i=1,2.

Moreover,
tr 2
B[ an| = @10
tr—1
= 602, (A.2)

and, similarly, E [n,]* = 6-0%, which establishes the result for Var(n,). Notice also that {n,}
is serially independent.

The result for Var(e*) follows from (A.2) and noting that

E Mt_ /ttng(ds)dtr - E l&n—/tt_ ([_ gz(ds)> dtr
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tr e ¢ v
— o2+ K A EU £5(ds) /t gQ(ds)] dtdv

—28,E [( [_ 52(d3)> [_ ( tj_l 52(d3)> dt]

& 6r
= 537(737 + 0%/ / min(t,v)dtdv
o Jo

—25, tt_ < /tt_ E [52(d3)]2> dt

| o
_ 3 2 3 2 2
= 0%+ 2607 26,07 [ vat

1 3 2
= 567_0',,7.

Again notice that {e*} is serially independent. Finally,

Cov(n,,el) = —E —777 </,:1 /ttfg(ds)dt)]
el [ ([ @~ [ @)
I / dt — 1, / ( / &(ds)) dt]

. l(sz_/” (t—tT_l)dt] &

tr—1

1
_ [53_5 (2 -,) +57t7_1] o
1 2 2
= —567_0'77,

while all non-contemporaneous covariances are zero.

Appendix B

From (2.9)-(2.10) the data generating process for Y* =Y, — A, isgiven by Y = 6, pu,+e% =
o, (Z]T-Zl 77]-) + ¢%. Consequently,

2
B (YT*Q) = §E (; 77]') + E(e})? + 26, E (1,)

= 630'7271} + (5?;0%/3 + 670'25) — (5?(7?27
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and, hence,
E(8,1;?) = 02 (14 gb,t, — 2/3¢62) .

Similarly, for 7 < s,
E(Y}Y]) = 6:6.E (an Zm) +F (8*76327%)
j=1  i=1 i=1
= 67630727757 — 1/2(53(530727
and, consequently,

E (8,27 8,1%) = 02 (q67/26}/%t, — 1/2q6)/26%/?) .

Appendix C: Limiting distributions of LBI statistics for mixed fre-
quency data
C1: Stock variables with linear trend.

Under Hy of (2.4) the discrete-time model may be written as

yr=a+bz +e., & ~ NIID(0,0?), (C.1)
where
T T < AT},
Zr =
o1 + (1 —6) [\T] T > [AT).

Let @, b denote the OLS estimators from (C.1). Using the following limiting results (see
also Busetti and Harvey, 2001, p.146)

T
7Yz L %6(1—/\)2+%>\(2—)\) =y (C.2)
=1
£l s 1 1
T3 22 B 5(1 — P62+ A1 — N)26 + gA2(3 —2)\) =k (C.3)
T=1
1)
T2 e:fo. = W(r), rel0,1] (C.4)
=1

73 E}T&/% = /0A rdW (r) + 5/; rdW (r) + A1 — 8) (W(1) — W(\) = J*(C.5)

where W(r), r € [0,1], is a standard Brownian motion process, it is straightforward to

establish that
T3 (@ — a) Lo [ W) =k
T% (b—1b) ks \ —kyWw (1) + J*
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where k3 = ky — k%

Now, let e, = &, — (@ —a) — 2, (5— b), 7 = 1,...,T, denote the corresponding OLS
residuals from (C.1). Using the foregoing limiting results and applications of the CMT we
obtain that

1] 1] 1
T2 efo. = T2 efo.—T2(@a—a)[Tr]/(To.)
7=1 T7=1
o
—T72> 2T (b - b) /o
=1

= W) —r (kW) — k1 J*) [ks — %m(r) (J* — kaW (1)) /ks = Bsa(r)

where
r? r <A,

m(r) = A2 46 (r2 — N2) 4+ 2M(1 = 6)(r — \) r> A

2
Notice that, since there is a constant term in the regression, Z;‘-le e; = 0 and thus Zle (Z]T:T ej)
2
=T, (Z]T-Zl ej) . Since T-1YT_ e2 2 42, the stated limiting distribution, (5.2), then
follows immediately using applications of the CMT. Notice that for A = 0,1 and/or § = 1,

Bg (1) reduces to a standard second level Brownian bridge process.

C2: Flow variables with constant level.

Under Hj of (2.4) the discrete-time model may be written as
1
6-°Y, = az +¢e,, e ~ NIID(0,0?), (C.6)

where
1 T < [N,

53 T > [AT].

2, =

The OLS estimator a from (C.6) therefore satisfies

a—a= ZZ:I Zr€r . Z’[r)\:Tl] €r + 51/2 ZZ:[)\T]Jrl Er (C 7)
> 22 NI+ 8(T — ]AT)) |
Proceeding as in Appendix C1, it is straightforward to show that
T3 (@ — a) = o0..]. (C.8)
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where J = (A +6(1 = X)) (W(A) + 6V2(W(1) = W(X))) , and W (r), r € [0, 1] is a standard

Brownian motion process. Routine algebra establishes that

1 1 T p ?
erD2V;sD2ep T S br <Z] 76]6])

LF - Te%'eF N - 127 1 T
1N 2
(Z[/\T] (E 52) )y NT]+1 <ZJTT €j6j2> )
— C.9
T ZT 1 T ( )

where e, = ¢, — z; (@ —a), 7 =1, ..., T, are the OLS residuals from (C.6). Using (C.8) and
applications of the CMT it is straightforward but tedious to demonstrate that

| ]

T 2 267—67— :>O'EBF1( ) (C].O)

=1
where Bp;(r) is as defined in the main text. Notice that for A = 0,1 and/or 6 =1, Bp1(r)
reduces to a standard Brownian bridge process. The stated result then follows directly from

(C.9), (C.10), applications of the CMT, and the fact that T-' 37, €2 2 42,

T=1"%T

C3: Flow variables with linear trend.

Under Hy of (2.4) the discrete-time model may be written as

6;%}/;— — CLZLT + sz,T + 67‘7 8’l' ~ NID(O7O-?)7 (Cll)
where
1 T S [)‘T]u
211 = 1

62 T > [\,

— % T < [\T],

221 =
53 (T - _) + 62 (1 — 8)[NT] T > [AT].

Using the following limiting results (see also Busetti and Harvey, 2001, p.146)

Ty 2, B A+6(1-N)=k
T2 21,2, & % (W +8(1=N) +260A(1 = 8)(1 =) = ks
T3y 2 L é(AS 51— X) 4 38A(1 = 6)(1 = (A +6)) =
T2y 2,8 /0. = W) +62 (W(1)-W)) =1
TEY oo, = [ W) 48t [ raiWir) 4550 - O (W)~ W) =



where W(r), r € [0,1], is a standard Brownian motion process, it is straightforward to
demonstrate that
3 (@ —a) o. | ksJi — koo
3 [~ =
Tz (b — b) k4 —koJ1 + k1Jo
where k4 = k1k3 — k’%
Now let e; = e, — 21, (@ —a) — 22, (5 — b), 7 =1,...,T, denote the OLS residuals from

(C.11). Consequently, from the foregoing limiting results and applications of the CMT, we
obtain that

T T T 1
T 3 Z §2jo. = T Z 620, —T 1 S 2,62T% (@ —a) Jo.
T=| T=[T'r]
1 ~
—7? Z 2,62T% (b—1) /0.
T=[Tr]
= prz(r),

where
62 (W(1) = W(N) + (W) = W(r))
Bra(r) = = (fl) + A =1) Ju = (SN + 5002 =79)) Jpy 7 <X
63 (W(1) = W(r) = fa(r)Ja = fo(r) Jo, 7> A

and where f,(r) = 6(1 —7), fo(r) = 3821 = r?) + X6(1 — &) (L —7), Jo = ky ' (ks Jy — ko'Ja)
Jy = —ki' (ko Jy — k1.Jo) . The stated result then follows directly from (C.9), where e,, 7 =
1,...,T, in (C.9) are now the OLS residuals from (C.11), applications of the CMT, and the
fact that T-' S7_, €2 % 2. Again, notice that for A = 0,1 and/or § = 1, Bps(r) reduces to

T=1"“7

a standard second level Brownian bridge process.
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Table la: Simulated rejection probabilities (x100):

constant level case.

)

1 1/2 1/4 1/6 1/12

c=0 Ls(6) 5.3 53 5.1 47 4.7
L.(6) 53 53 51 47 47
c=25 Lg(6) 129 203 31.7 394 54.8
L.(6) 128 131 13.0 12.8 127

c=5 Lg(6) 303 455 60.5 69.5 82.1
L.(8) 302 317 31.7 310 31.3

c=10 TLg(6) 581 744 858 91.0 96.5
L(8) 581 60.8 60.6 60.4 60.8

c=25 TLg(6) 88.3 955 98.8 99.6 99.9
L-(6) 881 904 909 91.4 91.6

Table 1b: Simulated rejection probabilities (x100):

linear trend case.

5

1 /2 1/4 1/6 1/12

c=0 Ls(6) 48 52 46 50 438
L.(6) 48 52 46 50 4.8
c=25 Lg(6) 6.7 95 132 179 29.7
L.(6) 67 73 68 7.0 6.9

c=5 Lg(6) 129 223 351 47.0 66.8
Lp(6) 12.8 139 132 135 13.2

c=10 TLg(6) 342 550 734 833 94.0
L-(6) 342 355 352 36.6 36.5

c=25 TLg(6) 79.6 93.0 98.5 99.4 99.9
L-(6) 80.1 827 835 84.1 845
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Table 2a: Upper tail fractiles from the asymptotic null distributions

of the Lg and L}, statistics: constant level case.

Sampling Interval 6
1 1/2 1/4 1/6 1/12
0.90 0.347 0.196 0.124 0.101 0.080
A=025 0.95 0.461 0.259 0.164 0.134 0.107
0.99 0.743 0.416 0.264 0.217 0.176
0.90 0.347 0.260 0.221 0.209 0.197
Lg A=0.50 0.95 0.461 0.345 0.295 0.280 0.264
0.99 0.743 0.562 0.490 0.468 0.448
0.90 0.347 0.324 0.315 0.311 0.308
A=0.75 0.95 0.461 0.434 0.420 0.416 0.412
0.99 0.743 0.707 0.690 0.684 0.678
0.90 0.347 0.135 0.066 0.049 0.034
A=0.25 0.95 0.461 0.180 0.088 0.064 0.045
0.99 0.743 0.288 0.143 0.106 0.073
0.90 0.347 0.194 0.134 0.117 0.102
L3 A=0.50 0.95 0.461 0.253 0.176 0.154 0.133
0.99 0.743 0.416 0.287 0.249 0.213
0.90 0.347 0.267 0.231 0.219 0.208
A=0.75 0.95 0.461 0.354 0.307 0.293 0.278
0.99 0.743 0.566 0.486 0.460 0.438
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Table 2b: Upper tail fractiles from the asymptotic null distributions

of the Lg and L}, statistics: linear trend case.

Sampling Interval 6
1 1/2 1/4 1/6 1/12
0.90 0.119 0.074 0.048 0.038 0.025
A=025 0.95 0.149 0.092 0.060 0.047 0.031
0.99 0.218 0.138 0.091 0.070 0.045
0.90 0.119 0.085 0.065 0.057 0.050
Lg A=0.50 0.95 0.149 0.105 0.079 0.071 0.062
0.99 0.218 0.152 0.115 0.104 0.094
0.90 0.119 0.104 0.097 0.094 0.092
A=0.75 0.95 0.149 0.130 0.121 0.118 0.116
0.99 0.218 0.190 0.179 0.176 0.173
0.90 0.119 0.046 0.023 0.017 0.012
A=0.25 0.95 0.149 0.057 0.028 0.021 0.014
0.99 0.218 0.085 0.041 0.030 0.021
0.90 0.119 0.067 0.046 0.040 0.035
L3 A=0.50 0.95 0.149 0.083 0.058 0.050 0.043
0.99 0.218 0.121 0.065 0.074 0.063
0.90 0.119 0.092 0.079 0.075 0.071
A=0.75 0.95 0.149 0.114 0.098 0.093 0.088
0.99 0.218 0.166 0.143 0.137 0.129
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Table 3a: Simulated rejection probabilities (x100) for the mixed frequency DGP: A = 0.25.

constant level linear trend
6 1 1/2 1/4 1/6 1/12 1 1/2 1/4 1/6 1/12
Lg 53 49 45 41 47 47 54 58 52 50
Lg 52 50 48 51 44 53 53 57 51 49
c=0 Lgo 53 49 49 51 5.0 47 49 53 51 52
L 53 51 46 48 4.9 47 54 54 47 49
Ly 52 50 51 48 44 53 55 56 52 48

L 5.3 5.1 46 48 49 4.7 49 50 48 46
Lg 13.3 131 149 16.6 22.7 69 83 93 94 104
Lg 86 87 89 96 104 62 63 70 63 6.6
c=25 Lgp 13.3 10.3 103 11.0 13.1 69 66 67 64 68
L% 13.3 16.8 25.8 349 56.5 6.9 89 122 152 31.8
Lp 8.6 93 13.6 180 38.1 6.2 6.7 77 87 162
Ly 13.3 16.8 25.0 33.3 522 6.9 84 11.2 145 274
Lg 30.7 322 372 41.1 49.2 13.2 16.5 203 21.1 259
Lg 18.8 20.1 228 24.0 30.0 91 95 103 104 119
c=5.0 Lgp 30.7 252 246 25.8 309 132 11.7 114 11.0 128
L3 30.7 39.2 529 64.1 81.6 13.2 18.8 29.7 39.8 68.1
Lp 18.8 223 353 46.0 66.0 91 104 142 194 39.6
Ly 30.7 38.7 509 599 74.5 13.2 177 274 36.0 57.0
Lg 99.5 625 67.8 70.5 75.6 34.6 41.0 48.0 51.2 60.1
Lg 45.7 487 549 583 66.2 20.8 224 249 269 33.0
Lgs 99.5 522 51.0 51.8 56.7 34.6 281 275 27.6 318
c=10 L% 99.5 679 793 86.6 94.9 34.6 46.8 63.8 T74.6 929
Lp 45.7 55.1 70.0 77.2 83.7 20.8 25.1 37.7 49.6 70.1
L 99.5 66.5 749 799 85.6 34.6 438 582 66.9 79.6

[40]



Table 3b: Simulated rejection probabilities (x100) for the mixed frequency DGP: A = 0.5.

constant level linear trend
6 1 1/2 1/4 1/6 1/12 1 1/2 1/4 1/6 1/12
Lg 53 54 51 51 54 47 53 54 53 58
Lg 49 51 49 49 48 54 53 55 51 52
c=0 Lgo 53 48 49 50 5.0 47 51 49 51 5.1
L 53 58 51 53 5.0 47 55 49 49 50

Lp 49 55 46 46 49 24 54 57 50 49
L 2.3 54 49 52 49 4.7 54 49 47 48
Lg 13.3 164 23.8 295 42.1 6.9 84 97 11.0 16.5
Lg 74 9.1 11.2 13.7 21.3 58 6.5 71 75 95
c=25 Lgp 13.3 129 16.7 196 26.8 69 74 79 86 11.6
L% 13.3 223 39.7 539 778 6.9 10.2 183 29.1 39.7
Lp 74 122 25.6 40.1 65.9 5.8 7.0 11.5 18.3 44.2
Ly 13.3 214 384 523 74.5 6.9 10.0 17.8 27.7 55.8
Lg 30.7 38.1 49.7 56.3 68.1 13.2 181 226 276 41.1
Lg 15.8 21.1 29.5 364 488 8.0 98 13.0 149 23.0
c=5.0 Lgp 30.7 319 384 439 54.2 13.2 145 17.0 203 29.7
L3 30.7 474 69.0 80.2 93.2 13.2 23.6 45.8 64.1 88.9
Lp 15.8 30.5 54.5 68.5 84.8 8.0 12.6 28.8 455 749
Ly 30.7 46.3 66.6 774 89.7 13.2 229 442 60.5 84.0
Lg 99.5 669 74.6 79.2 86.4 34.6 44.0 554 62.1 75.0
Lg 43.0 527 63.7 69.2 787 17.3 232 333 41.1 554
Lgs 99.5 60.2 66.4 70.8 784 34.6 36.6 439 494 63.1
c=10 L% 99.5 T4.7 89.1 942 98.2 34.6 559 79.3 90.7 98.1
Lp 43.0 64.2 82.6 885 93.9 17.3 333 625 779 90.8
L 99.5 732 86.7 91.5 95.1 34.6 543 76.0 86.6 94.8

[41]



Table 3c: Simulated rejection probabilities (x100) for the mixed frequency DGP: A = 0.75.

constant level linear trend
6 1 1/2 1/4 1/6 1/12 1 1/2 1/4 1/6 1/12
Lg 53 49 49 48 45 47 51 51 55 47
Lg 51 49 50 53 45 52 54 49 55 5.1
c=0 Lgo 53 53 47 49 49 47 51 47 53 5.0
L 53 49 45 47 44 47 51 46 45 49
Ly 51 54 50 51 4.6 52 56 51 56 4.9

L 5.3 5.0 47 50 4.5 4.7 5.1 45 44 48
Lg 13.3 189 28.9 35.0 51.0 69 89 11.7 15.7 238
Lg 8.7 11.0 17,5 229 344 59 73 86 106 15.5
c=25 Lgp 13.3 16.3 23.2 28.7 41.0 6.9 81 95 1277 19.2
Ly 13.3 25.8 49.6 65.6 86.8 6.9 11.8 26.1 425 76.9
Lp 87 17.6 409 574 80.9 59 89 195 322 674
Ly 13.3 25.8 498 655 8&85.8 6.9 11.7 25,5 415 75.1
Lg 30.7 426 56.8 64.2 76.2 13.2 19.8 29.7 38.5 54.8
Lg 189 284 41.5 499 63.5 8.6 12.7 19.5 253 40.2
c=5.0 Lgp 30.7 385 49.5 57.0 69.9 132 174 25.0 31.6 47.5
Ly 30.7 53.0 77.1 873 96.5 13.2 29.1 59.8 77.6 95.1
Lp 189 422 69.0 81.3 92.5 8.6 20.2 48.1 66.7 89.9
Ly 30.7 528 76.6 86.6 95.4 13.2 29.2 589 76.3 93.7
Lg 59.5 70.6 81.2 86.0 91.8 34.6 477 63.8 72.0 85.1
Lg 446 581 T1.2 773 83.7 20.1 329 49.0 58.1 743
Lgs 99.5 672 76.1 81.4 88.9 34.6 442 588 66.7 80.2
c=10 L% 99.5 794 93.1 96.5 98.9 346 63.6 89.1 95.5 99.2
Lp 44.6 709 88.6 934 96.5 20.1 49.0 80.4 90.1 96.6
L 99.5 789 925 95.8 98.2 346 63.0 879 943 984

[42]
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Figure 1. Italian unemployment rate, 1980Q1-2003Q4.
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Figure 2. Flow of the Nile, 1871-1970.
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