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Abstract

This paper provides a necessary and sufficient condition for weak exogeneity in vector
error correction models. An interesting property is that the statistics involved in the sequen-
tial procedure for testing this condition are distributed as χ2 variables and can therefore
easily be calculated with usual statistical computer packages, which makes our approach
fully operational empirically. Finally, the power and size distortions of this sequential test
procedure are analysed with Monte-Carlo simulations.

I Introduction

This last decade considerable interest has been shown in the issue of weak exogeneity testing in

a linear Vector Error Correction Model (VECM) with I (1) variables (see for instance Ericsson

and alii,1998; Hecq et al., 2000; Hendry and Mizon, 1993; Johansen, 1992, 1995; Urbain, 1992,

1995; Rault et al, 2003). Weak-exogeneity has also been extensively discussed in the two special

issues of the Journal of Policy Modeling (1992), vol 14, n◦3 and of the Journal of Business and

Economic Statistics (1998), vol 6, n◦ 4, and is now widely recognized as a crucial concept for

applied economic modeling1.

The motivation of this paper rests upon two key observations on recent theoretical works in

V ECM .

- Firstly, the usual weak-exogeneity conditions which can be expressed in term of coefficient

nullities are easily testable but sometimes imply “overly strong” restrictions. The conditions of

Johansen (1992, cf. theorem 1) and Urbain (1992, cf. proposition 1) for instance, which are

widely used in applied works, forbid the existence of long run relationships in the equations

describing the evolution of the (weakly) exogenous variables. These equations are thus a VAR

model in first differences. Besides Johansen makes the assumption that macro-economists have

a potential economic interest in all cointegrating relations existing between the variables being

∗Paris I, Maison des Sciences de l’Economie, 106-112 bd. de L’Hôpital, 75647 Paris Cedex 13, France. E-mail
: chrault@hotmail.com, web-site : http://www.multimania.com/chrault/index.html

1 In this paper, we shall confine ourselves to the concept of weak exogeneity proposed by Richard (1980) and
Engle et al (1983).
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investigated. But it is actually far from being always the case and a typical difficulty sometimes

arises when cointegration tests suggest in empirical applications the existence of r cointegrating

vectors, whereas according to economic theory there should only exist m, with m < r.

- Secondly, the sufficient weak exogeneity conditions of Hendry and Mizon (1993) and of Ericsson

et al. (1998, cf. lemma 2) which only consider a r1 subset of the cointegrating relationships as

parameters on interest, give a priori the partition of the r cointegrating vectors into r1 and r2.

The first r1 vectors then belong to the equations of the endogenous variables and the r2 last

appear in the equations of the exogenous variables. Furthermore, only the long-run parameters

of the conditional model are considered as possible economic parameters of interest for macro-

economists. Yet in some applied studies, they can also be interested in short-run parameters.

Indeed, modeling the short run adjustment structure, i.e. the feedbacks to deviations from the

long-run equilibrium, is an important step, because it can reveal information on the underlying

economic structure.

To address the above issues we propose in this note an extension of the existing weak ex-

ogeneity conditions, which is based on a canonical decomposition of the long-run matrix Π.

This representation exploits the fact that the β cointegrating and α loading factor matrices are

not unique in so far as Π = αβ
0
=
¡
αΨ−1

¢ ³
Ψβ

0´
for any r × r non singular matrix Ψ. An

interesting feature of this representation is that it enables us to give a necessary and sufficient

condition for weak-exogeneity. An appealing aspect of this condition for the practitioner is that

it can be tested using asymptotically chi-squared distributed test statistics which can easily be

computed with most statistical computer packages.

The plan of the paper is as follows. Section II sets out the general V ECM framework. Section

III introduces the canonical representation of the long run matrix Π and proposes a necessary and

sufficient condition for weak exogeneity. Section IV deals with inference and testing which are

conducted within the setting proposed by Johansen and reports some Monte Carlo simulations

to analyse the asymptotic and finite sample properties of the sequential procedure developed

here. Finally, concluding remarks are presented in section V and specific recommendations are

provided for applied researchers.

II Cointegrated vector autoregressions

We begin by setting out the basic framework and thus consider an n-dimensional V ECM(p)

process {Xt}, generated by

∆Xt =
p−1P
i=1
Γi∆Xt−i + αβ

0
Xt−1 + εt, t = 1, ..., T, (1)

where Γi,α,β are, respectively n × n, n × r, n × r, 0 < r < n matrices such that Π = αβ
0
; The

r linear combinations of Xt, the cointegrating vectors, β
0
Xt, are often interpreted as deviations

2



from equilibrium and α is the matrix of adjustment or feedback coefficients, which measure

how strongly the r stationary variables β
0
Xt−1 feedback onto the system. εt is an i.i.d normal

distributed vector of errors, with a zero mean and a positive definite covariance matrix Σ; and

p is a constant integer. To keep the notation as simple as possible we omit (without any loss of

generality) deterministic components.

It is assumed in addition that (i)

¯̄̄̄
(In −

p−1P
i=1
Γiz

i)(1− z) + αβ
0
z

¯̄̄̄
= 0 implies either |z| > 1 or

z = 1, and that (ii) the matrix α0⊥(In −
pP
i=1
Γi)β⊥ is invertible, where β⊥ and α⊥ are both full

rank n × n − r matrices satisfying α0⊥α⊥ = β
0
⊥β⊥ = 0, which rules out the possibility that

one or more elements of Xt are I(2). These two conditions ensure that {Xt} and
n
β
0
Xt

o
are

respectively I(1) and I(0) and that the conditions of the Granger theorem (1987) are satisfied.

Consider now the partition of the n dimensional cointegrated vector time series Xt = (Y
0
t ,

Z
0
t)
0
generated by equation (1), where Yt and Zt are distinct sub-vectors of dimension g × 1 and

k × 1 respectively with g + k = n. In this writing Yt and Zt denote respectively the dependent
and explanatory variables. Equation (1) can then be rewritten without loss of generality as a

conditional model for Yt given Zt and a marginal model for Zt, that is :



conditional model

∆Yt =
p−1P
i=1
Γ+Y Y,i∆Yt−i +

p−1P
i=0
Γ+Y Z,i∆Zt−i + α+Y β

0
Xt−1 + ηY,t

marginal model

∆Zt =
p−1P
i=1
ΓZY,i∆Yt−i +

p−1P
i=1
ΓZZ,i∆Zt−i + αZ β

0
Xt−1 + εZ,t

(2)

with



Γ+Y Y (L) = ΓY Y (L)−ΣY ZΣ−1ZZΓZY (L) = Ig −
p−1P
i=1
Γ+Y Y,iL

i

Γ+Y Z(L) = ΓY Z(L)− ΣY ZΣ−1ZZΓZZ(L) = −
p−1P
i=0
Γ+Y Z,iL

i

α+Y = αY −ΣY ZΣ−1ZZαZ
ηY t = εY t − ΣY ZΣ−1ZZεZt
Σ+Y Y = ΣY Y −ΣY ZΣ−1ZZ

where L denotes the lag operator

and
µ
ηY t
εZt

¶
∼ N

·µ
0

0

¶
,

µ
Σ+Y Y 0
0 ΣZZ

¶¸
with the partitioning of the matrices Γi,α and β being conformable to that of Xt.

Equation (2) is known as the V ECM block recursive form and its main interest is to provide

the analytic expression of the conditional error correction model. Note that the disturbance

orthogonalization doesn’t affect the equations describing the evolution of the Zt variables, i.e.

the marginal model.
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III A necessary and sufficient condition for weak exogeneity in
VECM models

As it is now well-admitted, the presence or lack of weak exogeneity2 depends crucially on

what parameters the focus of attention is, but contrary to what it is often assumed in a cointe-

grated framework, there is no obvious reason for the investigator to be necessarily interested in

all cointegrating vectors (as it is assumed in Johansen, 1992, theorem 1)3, or even in a structural

partition of the cointegrating vectors made a priori (as it is the case in Ericsson et al., 1998,

lemma 2). Indeed, when dealing with V ECM models, the parameters of interest might be for

instance only the cointegrating vectors that enter the conditional model, or both short-run and

long-run parameters of the conditional model. There are two arguments for this.

Firstly, applied economists are usually interested in the parameters of the conditional model

and not necessarily in those of the marginal model because the former represents short and

long-run behavioral parameters of interest such as supply and demand elasticities, propension

to consume or save, etc.... Indeed, when economists undertake practical modeling they are

typically interested in building a model of either a single variable or a small subset of the

variables. Many of the variables are there because economists think they are relevant to the

determination of the variables they want to model but they are not interested in explaining

them.

Secondly, cointegration tests often suggest in empirical applications the existence of r coin-

tegrating vectors, whereas according to economic theory there should only exist m, with m < r.

In this case the typical difficulty arises of how to interpret in an economic way the (r − m)
remaining statistical cointegrating relationships, which in many situations turn out to appear

only in the equations of the conditioning variables.

In this section we propose a necessary and sufficient condition for weak exogeneity in the

setting of a canonical decomposition of the Π matrix which takes the issues discussed above

into account. Before going into the CNS condition for weak-exogeneity we need to consider the

following preliminary theorem :

Theorem 1 Let Π = αβ
0
be a n × n reduced rank matrix of rank r (0 < r < n) and partition

α into
·
αY
αZ

¸
.

2Let’s remember that Engle et al (1983) define a vector of Zt variables to be weakly-exogenous for the parame-
ters of interest, if (i) the parameters of interest only depend on those of the conditional model, (ii) the parameters
of the conditional and marginal models are variation free, i.e. there exists a sequential cut of the two parameters
spaces (cf. Florens and Mouchart, 1980).

3 In his careful discussion of Boswijk’s paper (1995) on structural ECMs, Ericsson (1995) has already noted
that this is an “overly strong hypothesis”, since according to him, “any individual empirical investigation might
reasonably restrict its focus to only a subset of the cointegrating vectors in the economy”.
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(i) If we define m1 = rank(αY ) with m1 > 0 and r −m1 > 0
4, then the α and β matrices can

always be reparametrised as follows :

β = [β1 β2] =

·
βY 1
βZ1

βY 2
βZ2

¸

α = [α1 α2] =

·
αY 1
αZ1

0(g,r−m1)

αZ2

¸

, where βY 1, αY 1, βZ1, αZ1, βY 2, βZ2, αZ2 are respectively g × m1, g × m1, k × m1, k × m1,

g × r-m1, k × r-m1, k × r-m1 with rank (αY 1) = m1 and rank (αZ2) = r −m1.
(ii) m1 is uniquely defined and is invariant to the chosen reparametrisation. It is such as5

max(0, r − k) ≤ m1 ≤ min(g, r).

Proof. If αY has reduced rank m1, then αY = αY 1η
0
, for some g × m1 matrix αY 1 and

some n × m1 matrix η. Now define new parameters β
0
1 = η

0
β and β

0
2 = η

0
⊥β and αZ1 =

αZη(η
0
η)−1,αZ2 = αZη⊥(η

0
⊥η⊥)

−1. Then αY β
0
= αY 1η

0
β = αY 1β1 = (αY 1, 0)(β1, β2)

0
and

αZβ
0
= αZ(η(η

0
η)−1η0 + η⊥⊥(η

0
⊥η⊥)

−1η0⊥)β
0
= αZ1β

0
1 + αZ2β

0
2 = (αZ1, αZ2)(β1, β2)

0
, which

shows that theorem 1 is satisfied.

Under the reparametrisation of the α and β matrices, the conditional and marginal models

(cf. equation 2) become :



conditional model

∆Yt =
p−1P
i=1
Γ+Y Y,i∆Yt−i +

p−1P
i=0
Γ+Y Z,i∆Zt−i + α+Y 1β

0
1Xt−1 + ηY,t

marginal model

∆Zt =
p−1P
i=1
ΓZY,i∆Yt−i +

p−1P
i=1
ΓZZ,i∆Zt−i + αZ1β

0
1Xt−1 + αZ2β

0
2Xt−1 + εZ,t

(2.a)

The canonical representation given in theorem 1 exploits the indeterminacy existing on the α

and β matrices : it is indeed now well-known that the parameters of these two matrices are not

separately identified without r2 additional restrictions (cf. Bauwens and Lubrano, 1994), since

for any non-singular matrix Ψ of dimensions (r, r), we could define Π =
¡
αΨ−1

¢ ³
Ψβ

0´
, and

α∗ = αΨ−1, β∗ = βΨ0 would be equivalent matrices of adjustment coefficients and cointegrating

vectors. Theorem 1 implies no loss of generality, and only requires the determination of the m1

rank of the upper block of the α matrix, denoted αY
6 and reparametrised into [αY 1 0(g,r−m1)

¤
.

We are in a position to state the following result :
4We assume that β1 and β2 each contain at least one cointegrating vector to exclude the case where β1=β,

which entails that β2 is a null set.
5This condition is derived from rank (α) = r.
6The way this rank can be determined in applied studies is discussed in section 4.
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Proposition 2 : Necessary and sufficient weak exogeneity condition. Suppose that

the investigator’s parameters of interest are those of the conditional model, i.e. Ψ =(Γ+Y Y,i,

i = 1, ..., p− 1; Γ+Y Z,i, i = 0, ..., p− 1; α+Y 1;β
0
1), then Zt is weakly exogenous for Ψ if and only if

αZ1 = 0 in the canonical representation given by theorem 1.

The proof follows the same line of arguments as those presented in Johansen (1992) and is

omitted here to save space. Note that in our framework as in Johansen (1992) and Hendry and

Mizon (1993), the parameters of interest are chosen prior to testing for weak exogeneity in the

sense that they are the parameters of the conditional model which represents the subset of Yt

variables the investigator is interested in modeling conditionally on Zt other variables (cf. the

discussion above). Consequently, our approach also makes economic sense with economic theory

typically providing the parameters of interest to the empirical researcher prior to the modeling

exercise. Of course, a major difference with Hendry and Mizon’s weak exogeneity condition

(1993) which gives a priori the partition of β into [β1 β2] , so as β1 and β2 appear respectively

in the conditional and marginal models, is that we determine explicitly this partition, exploiting

the fact that the α and β are not unique (cf. infra). But the gain of doing this is that we

are then able to provide a necessary and sufficient condition for weak-exogenity which is very

convenient to use empirically since it only implies the nullity of some loading factors in the α

matrix. One could object that in certain applied studies, the investigator might not consider all

m1 cointegrating vectors entering the conditional model as parameters of interest. This makes

of course sense in some cases, and in such situations it is only the corresponding part of αZ1

which is required to vanish for weak exogeneity. Note that the argument is the same if only

the parameters of specific equations in the conditional model are of structural interest for the

purpose of the analysis.

It is important to observe that before testing for weak exogeneity, researchers usually im-

pose identifying assumptions on the cointegrating vectors β. Then testing for weak exogeneity

means testing zero restrictions on the α matrix. We cannot proceed likewise here since the

canonical decomposition of the Π matrix given in theorem 1 entails a reparameterization of the

cointegrating vectors resulting from the defined rotation of the cointegration space, but nothing

guarantees that the resulting cointegrating vectors are of economic interest, even if some of the

original just-identified cointegrating vectors were economically interpretable7. That is the reason

why we have to test first for weak-exogeneity and then if weak-exogeneity of the conditioning

variables Zt is empirically satisfied estimation and identification of adjustments coefficients and

cointegrating vectors can be carried out from the conditional model alone in the setting recently
7For instance, the two cointegrating vectors in Hendry and Mizon (1993) are interpretable as a money-demand

relationship and an output relationship. A rotation, however, generates new cointegrating vectors that are linear
combinations of those money-demand and output relationships, and those linear combinations are generally
economically uninteresting because they confound the underlying economically interesting relationships.
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proposed by Pesaran et al (2000), which is well-adapted for our purpose here. Indeed, Pesaran

et al have generalized the existing cointegration analysis literature in two respects. Firstly, they

examined the problem of efficient estimation of vector error correction models containing exoge-

nous I(1) variables. Secondly, they considered the efficient estimation of vector error correction

models subject to restrictions on the short-run dynamics, i.e. allowing the short-run dynamics

to differ within and between equations.

For us, this implies that having determined empirically the correct split of the Xt vector under

study into Yt and (weakly exogenous) Zt variables we can then follow Pesaran et al in imposing

a set of just-identifying restrictions on the cointegrating vectors entering the conditional model.

Then, the complete dynamic model may be estimated and the dynamics can be simpified at

the same time as the over-identifying restrictions on the cointegrating vectors are tested using

likelihood ratio tests.

Note that our CNS condition for weak exogeneity remains of course unchanged if only a

subset of the parameters of the conditional model (for instance the long-run parameters) are of

economic interest for the applied researcher. Furthermore, if the parameters of interest are given

by the first g equations of the conventional V ECM partitioned into Yt and Zt, it only requires

in addition that ΣY Z = 08. This latter case may turn out not to be very useful in practice

since actually it seldom occurs that the empirical researcher has some structural interest in the

unrestricted short-run dynamic parameters of the reduced form V ECM , exception maybe in

case of separation analyses (cf. Granger and Haldrup, 1997).

IV Inference and testing

The necessary and sufficient condition for weak exogeneity introduced in proposition 2 first

requires to rewrite the Π matrix under the canonical decomposition given in theorem 1. Then,

in this framework this condition has been expressed in term of coefficient nullities of the α

matrix, which permits to use the conventional chi-squared statistics (see Johansen, 1995). As

we have already noticed it, this representation requires the determination of the m1 rank of

the αY sub-matrix. The first subsection thus develops a sequential procedure to determine this

specific rank. Then, the second subsection describes how to test the weak exogeneity condition

introduced in proposition 2 and the third one reports some Monte Carlo simulations to analyse

the size distortions and power of the sequential procedure of rank tests.

IV.1 Determination of the m1 rank
8The proof is straightforward since as α+Y 1 = αY 1 −ΣY ZΣ

−1
ZZ αZ1,αZ1 = 0 =⇒ α+Y 1 = αY 1.
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The m1 rank of the αY sub-matrix can be determined using a sequential test procedure very

similar to that proposed by Rault (2000) (where it is the rank of a sub-matrix extracted from

the β matrix which is investigated). This procedure is based on asymptotically chi-squared

distributed LR statistics whose properties have been analyzed with Monte-Carlo experiments

for known r.

More precisely, following Rault (2000) the m1 rank of the αY sub-matrix can be determined

as follow. First, define ma = min(g, r), mb = max(0, r − k) and then consider the following
sequences of null hypotheses :



H0,1


There exists a basis of the adjustment space such as
α = (H1θr−ma+1,κr−ma+1)

with H1 =
µ
0(g,k)
Ik

¶
, that is mb ≤ rank (αY ) ≤ ma − 1.


:
for j = 2, ...,ma −mb, as long as H0,j−1 is not rejected,

H0,j


There exists a basis of the adjustment space such as
α = (H1θr−ma+j ,κr−ma+j)

with H2 =
µ
0(g,k)
Ik

¶
, that is mb ≤ rank (αY ) ≤ ma − j,


These different hypotheses can be tested using the following sequential test procedure :



Step 1 : test H0,1 with the ξ1 statistic at the α1 level
and reject H0,1 (=⇒ rank (αY ) = ma) if ξ1 ≥ χ21−α1(v1)
:
for j = 2, ...,ma −mb, as long as H0,j−1 is not rejected
Step j : test H0,j with the ξj statistic at the αj level
and reject H0,j (=⇒ rank (αY ) = ma − j + 1) if ξj ≥ χ21−αj (vj),
else accept H0,j (=⇒ rank (αY ) = ma − j) if ξj < χ21−αj (vj).

where νj = (g − r + j)j

As in Rault (2000), each statistic is a likelihood ratio test :

ξj = −2lnQ(Hj/H1) = T
"
jP
i=1
ln(1− bρi) + r−jP

i=1
ln(1− bλi)− rP

i=1
ln(1− eλi)# (3)

which is asymptotically distributed under H0,j as a χ2
vj
with νj = (g − r + j)j degrees of free-

dom. H1 corresponds to the cointegrating hypothesis Π = αβ
0
, eλi denotes the eigenvalues of

the unrestricted V ECM and bρi, eλi correspond to the eigenvalues associated respectively to the
j restricted and the r − j unrestricted vectors of the adjustment space.
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IV.2 Weak exogeneity testing

Having determined the m1 rank of the αY sub-matrix, the weak exogeneity hypothesis implies

the following parametric restrictions :

H0,we : αZ1 = 0.

As these restrictions only correspond to coefficient nullities in the marginal model several con-

ventional tests can be carried out (Likelihood Ratio test, Lagrange Multiplier (LM) test, Wald

test). Such tests can easily be implemented in empirical applications using most statistical com-

puter packages. Note that the LR test is generally preferable to the Wald and LM tests in this

situation as the restrictions are nonlinear in Π, even if they are linear in α. The LR test is at

least invariant to how those restrictions on Π are expressed.

IV.3 The Monte Carlo design and results

We now report some Monte Carlo replications and analyses the size distortions and power of

the sequential procedure of rank tests introduced above. Artificial data were generated from

five data generation processes (DGPs) depicted in Table 1 (cf. Appendix 1), each containing 11

variables (g = 5, k = 6), integrated of order one, cointegrated of order 4, expressed in V ECM

forms. They only differ from the others by the rank m1 of the αY matrix, which varies from 0

to 4, and have no short run dynamics. For each Monte Carlo simulation, we generated 10000

series of length T + 100 + p, where p denotes the lag length in the estimated V ECM . We

discarded the first 100 observations to eliminate startup effects. The vector of innovations εt

was a gaussian eleven dimensional white noise, with zero mean and covariance matrix I11. The

initial values (t = 0) have been set to zero for all variables in the model, that is X0 = 011, and

X1 = e1˜N(011, I11). All simulations were carried out on a 266 Pentium II, using the matrix

programming language GAUSS, the εt were generated by the function “RNDN” and the nominal

level of all tests was 5%. Some routines are partly adapted from Sam Ouliaris’s COINT GAUSS

program. For each DGP, five sample sizes were included; T ∈ {50, 100, 200, 500, 1000}, and the
adjusted LR tests statistics was used for T ≤ 100. In each replication, the dimension of the
cointegrating rank r is (in a first step) treated as known, so that we can assess our sequential

test procedure itself and not other factors affecting its performance9. The tabulated results of

the experiments are reported respectively in Tables 2 and 3 (cf. Appendix 1). These two tables

contain the estimated empirical size and power of the Ho,j null hypothesis tests, and the global

sample empirical size of the sequential test procedure.

9What motivates the detailed discussion of the case where the cointegrating rank (r) has correctly been esti-
mated using conventional likelihood ratio tests is that the performance of our sequential procedure remains almost
unchanged when r is over-estimated (cf. supra).
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We now discuss the performance of our sequential test procedure. Note that actually the

results are very close to those reported in Rault (2000) for the sequential procedure of rank tests

related to non-causality testing10. These results can be summarized as follows : all H0,j null

hypothesis tests (j = 1, .., 4) suffer from size distortion in small samples (T = 50, 100). As the

sample size increases they approximate quite well the correct size. It must be underlined that

the asymptotic is reached all the later as the number of tested restrictions is important : for the

least restricted null hypothesis (H0,1), the empirical size is close to the nominal size of the tests

for samples of size larger or equal to 500 (5.09 % for T = 500), whereas for the most restricted

null hypothesis (H0,4) the empirical size is still of 5.19 % for samples of size 1000. Furthermore,

the percentage of null hypothesis rejection when they are not true goes to 100 % for all sample

size considered in the experiment, indicating both finite distance and asymptotic power equal

to one.

As far as the sequential test procedure is concerned, the multiplicity of tests lead to a global size

problem in for small samples (T = 50, 100), since the sequential procedure estimated global size

turns out to be highly dependent on the number of tests necessary to conclude (respectively 6.23

%, 7.14 %, 9.74 %, 11.2 % for m1 = 3, ..., 1 and T = 100). On the contrary for large samples

(T = 200, 500 or 1000), the estimated global size doesn’t seem to vary a lot, indicating that the

test procedure doesn’t suffer from size distortion in large samples : for any possible m1 true

rank, the estimated global size is always very close to 5 % (respectively 5.05 %, 5.20 %, 5.53 %,

5.66 % form1 = 1, ..., 4 and T = 500). This result is due to the fact that the H0,j null hypothesis

tests (j = 1, .., 4) are extremely powerful and never reject any null hypothesis H0,j when it’s

true. Note that a “success” is obtained by both rejecting and not rejecting certain hypotheses

in combination, and therefore the probability of success is controlled by adjusting the size of the

tests to match the available power. It means in other terms that if we need to perform up to j

tests to determine the m1 rank of the αY matrix, the global size of the sequential test procedure

is simply given in large samples by α = 1− (1− αj). Note that this result is not true for finite

samples.

As in most practical applications it is inappropriate to assume that the cointegrating rank

(r) is a priori known, we finally conducted additional simulations in the case r is unknown and

determined using Johansen’s trace test (which had not been considered in Rault, 2000). The

results of the simulation experiments reported in Table 4 show that restricting the cointegrating

rank has little impact on the performance of the sequential test procedure, as least as long

as we do not restrict it to be less than the true rank. More precisely, if r is over-estimated

the sequential procedure estimated size is very close to the case where the cointegrating rank

10 In Rault (2000), it is the rank of a sub-matrix extracted from the β matrix which is investigated and not an
α sub-matrix rank, as it is the case here.
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is correctly specified. This finding should not surprise us since, if one supposes for instance

that r = 5 instead of r = 4, it is then possible to produce by linear combination a column

of zeros in the β and α matrices, which only adds a supplementary step in the sequential

procedure of rank tests, but doesn’t alter its performance since the H0,j null hypothesis tests are

very powerful. However the performance of the sequential test procedure is severely distorted

by underestimating the cointegrating rank. A similar result concerning the effectiveness of

restriction testing on long-run parameters in the Johansen’s framework has also been obtained

by Greenslade et al (1999) when r is underestimated. This is a useful and significant result

for the practitioner as it suggests that the sequential procedure may be conducted under the

assumption of full rank of the Π matrix without affecting its performance.

V Concluding remarks

In this paper we have provided a necessary and sufficient condition for weak exogeneity in

a VECM model. This condition has been given in the setting of a canonical decomposition of

the Π matrix and requires the determination of a specific sub-matrix rank, which can easily be

done for the practitioner using a simple sequential test procedure based on asymptotically χ2

statistics, whose properties have been analyzed with Monte-Carlo experiments.

Our Monte-Carlo exercises have shown that the performance of the sequential test procedure

is heavily dependent on the choice of the rank of the cointegrating matrix (Π). Indeed, provided

this rank is correctly selected or under-estimated, sequential testing to determine the “true”

αY rank has asymptotically a frequency of success comparable to linear restriction testing on

cointegrating parameters by usual Johansen’s tests (1991). By contrast, the performance of

the sequential procedure is distorted by under-estimating the cointegrating rank and performs

poorly with respect to size distortion, whatever the size of the sample is.

Our conclusions therefore are to recommend to investigate the αY matrix rank under the

assumption of full rank of the cointegrating matrix since Monte Carlo simulations have shown

that in small samples of the sort typically used by the applied researcher (about 100 quarterly

observations say), there is in this case very much prospect of successfully detecting the true

αY matrix rank. More precisely, our guideline for the practitioner is : (i) apply the standard

Johansen tests for detecting the number of cointegrating vectors in the full system, (ii) investigate

the rank of the αY matrix using our sequential test procedure in the way advocated above, (iii)

decide on the endogeneity and weak exogeneity status of the variables keeping in mind that weak

exogeneity is not invariant to the marginalisation of the model. Indeed, it is not an absolute

property of a variable, rather a property of a particular model.
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Appendix 1 : Simulation results 

 
 

Table 1: Data Generation Processes (DGP) (n = 11, g = 5, k = 6)1 
 

DGP (1) : m1 = 4 DGP (2) : m1 = 3 DGP (3) : m1 = 2 DGP (4) : m1 = 1 DGP (5) : m1 = 0 
Beta 
  0.10  1.70  0.60 –0.10 
 -0.10 -2.00 –0.40 -0.40 
 -0.30  0.50 –0.20  0.50 
 -1.00  0.10  0.20  0.20 
  0.10 -1.00 -0.80  0.30 
  0.20 -0.10 –0.20  0.10 
  0.10  0.20  0.10  0.20 
  0.10 -0.20 -0.30 -0.20 
  0.20 -0.10  0.20 -0.10 
  0.60  0.50  0.30  0.00 
  0.10 -0.30 -0.30  0.00 
alpha 
 -0.50 -0.30 -0.40  0.30 
  0.30  0.20  0.60  0.50 
 -0.20 -0.20 -0.20  0.00 
  0.70  0.10  0.50  0.10 
 -0.90 -0.50 -1.10  0.00 
 -1.00  0.00 -0.20  0.10 
 -0.20  0.40  0.00  0.10 
 -0.50 -0.50  0.60  0.00 
  0.10  0.50  0.10 -0.20 
  0.10  0.30 -0.30  0.20 
 -0.90  0.40  0.30 -0.50 

Beta 
  0.10  1.70  0.60 –0.10 
 -0.10 -2.00 –0.40 -0.40 
 -0.30  0.50 –0.20  0.50 
 -1.00  0.10  0.20  0.20 
  0.10 -1.00 -0.80  0.30 
  0.20 -0.10 –0.20  0.10 
  0.10  0.20  0.10  0.20 
  0.10 -0.20 -0.30 -0.20 
  0.20 -0.10  0.20 -0.10 
  0.60  0.50  0.30  0.00 
  0.10 -0.30 -0.30  0.00 
alpha 
 -0.50 -0.30 -0.40  0.00 
  0.30  0.20  0.60  0.00 
 -0.20 -0.20 -0.20  0.00 
  0.70  0.10  0.50  0.00 
 -0.90 -0.50 -1.10  0.00 
 -1.00  0.00 -0.20  0.10 
 -0.20  0.40  0.00  0.10 
 -0.50 -0.50  0.60  0.00 
  0.10  0.50  0.10 -0.20 
  0.10  0.30 -0.30  0.20 
 -0.90  0.40  0.30 -0.50 

Beta 
  0.10  1.70  0.60 –0.10 
 -0.10 -2.00 –0.40 -0.40 
 -0.30  0.50 –0.20  0.50 
 -1.00  0.10  0.20  0.20 
  0.10 -1.00 -0.80  0.30 
  0.20 -0.10 –0.20  0.10 
  0.10  0.20  0.10  0.20 
  0.10 -0.20 -0.30 -0.20 
  0.20 -0.10  0.20 -0.10 
  0.60  0.50  0.30  0.00 
  0.10 -0.30 -0.30  0.00 
alpha 
 -0.50 -0.30 -0.60  0.00 
  0.30  0.20  0.40  0.00 
 -0.20 -0.20 -0.40  0.00 
  0.70  0.10  0.20  0.00 
 -0.90 -0.50 -1.00  0.00 
 -1.00  0.00 -0.20  0.10 
 -0.20  0.40  0.00  0.10 
 -0.50 -0.50  0.60  0.00 
  0.10  0.50  0.10 -0.20 
  0.10  0.30 -0.30  0.20 
 -0.90  0.40  0.30  0.50 

Beta 
  0.10  1.70  0.60 –0.10 
 -0.10 -2.00 –0.40 -0.40 
 -0.30  0.50 –0.20  0.50 
 -1.00  0.10  0.20  0.20 
  0.10 -1.00 -0.80  0.30 
  0.20 -0.10 –0.20  0.10 
  0.10  0.20  0.10  0.20 
  0.10 -0.20 -0.30 -0.20 
  0.20 -0.10  0.20 -0.10 
  0.60  0.50  0.30  0.00 
  0.10 -0.30 -0.30  0.00 
alpha 
 -0.90 -0.30 -0.60  0.00 
  0.60  0.20  0.40  0.00 
 -0.60 -0.20 -0.40  0.00 
  0.30  0.10  0.20  0.00 
 -1.50 -0.50 -1.00  0.00 
 -1.00  0.00 -0.20  0.10 
 -0.20  0.40  0.00  0.10 
 -0.50 -0.50  0.60  0.00 
  0.10  0.50  0.10 -0.20 
  0.10  0.30 -0.30  0.20 
 -0.90 0.40  0.30 -0.50. 

b Beta 
  0.10  1.70  0.60 –0.10 
 -0.10 -2.00 –0.40 -0.40 
 -0.30  0.50 –0.20  0.50 
 -1.00  0.10  0.20  0.20 
  0.10 -1.00 -0.80  0.30 
  0.20 -0.10 –0.20  0.10 
  0.10  0.20  0.10  0.20 
  0.10 -0.20 -0.30 -0.20 
  0.20 -0.10  0.20 -0.10 
  0.60  0.50  0.30  0.00 
  0.10 -0.30 -0.30  0.00 
alpha 
  0.00  0.00  0.00  0.00 
  0.00  0.00  0.00  0.00 
  0.00  0.00  0.00  0.00 
  0.00  0.00  0.00  0.00 
  0.00  0.00  0.00  0.00 
 -1.00  0.00 -0.20  0.10 
 -0.20  0.40  0.00  0.10 
 -0.50 -0.50  0.60  0.00 
  0.10  0.50  0.10 -0.20 
  0.10  0.30 -0.30  0.20 
 -0.20  0.50  0.30  0.30 

 
Table 2: Empirical size and power of the Ho,j null hypothesis tests (j = 1,..,4) (rejection per 100), with 10000 replications at the 5 % nominal level of significance 2 

 
DGPS DGP (1) : m1 = 4 DGP (2) : m1 = 3 DGP (3) : m1 = 2 DGP (4) : m1 = 1 DGP (5) : m1 = 0 Hypothesis tested 
Sample size T 50 100 200 500 1000 50 100 200 500 1000 50 100 200 500 1000 50 100 200 500 1000 50 100 200 500 1000  
α1   W1 = Ψ1 > A1 

3 100 100 100 100 100 7.87 6.35 5.23 5.09 5.03 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 H0,1: {rang (αY) ≤ 3} contre{rang (αY) =  4} 
α2   W2 = Ψ2 > A2 100 100 100 100 100 100 100 100 100 100 12.4 7.22 6.12 5.27 5.11 0.21 0.00 0.00 0.00 0.00 0.42 0.00 0.00 0.00 0.00 H0,2: {rang (αY) ≤ 2} contre{rang (αY) ≥ 3} 
α3   W3 = Ψ3 > A3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 17.5 9.57 7.02 5.58 5.11 1.30 1.05 0.40 0.00 0.00 H0,3: {rang (αY) ≤ 1} contre{rang (αY) ≥ 2} 
α4   W4 = Ψ4> A4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 20.4 9.86 7.12 5.72 5.19 H0,4: {rang (αY) = 0} contre{rang (αY) ≥ 1} 
 
Table3: Empirical size of the sequential test procedure (rejection per 100), with 10000 replications at the 5 % nominal level of significance 
              in the case where the cointegating rank (ie. r = 4) is known 
 
DGPS DGP (2) : m1 = 3 

P ( 1W )  

DGP (3) : m1 = 2 

P ( 1W  2W ) 4 

DGP (4) : m1 = 1 

P ( 1W  2W  3W ) 

DGP (5) : m1 = 0 

P ( 1W  2W  3W  4W ) 

Sample size T 50 100 200 500 1000 50 100 200 500 1000 50 100 200 500 1000 50 100 200 500 1000 
m1 estimated = m1 7.44 6.23 5.19 5.05 5.01 12.8 7.14 5.99 5.20 5.05 18.6 9.74 6.91 5.53 5.13 20.9 11.2 7.09 5.66 5.18 

                                                           
1 DGP (1), (2) and (5) can easily be seen to be respectively of rank m1 = 4, 3, 0. However the fact that DGP (3) and (4) are of rank m1 = 2 and m1=1 is less straightforward : it requires noticing that the αY columns of these two DGPs are not linearly independent 
since they are respectively linked by C3 =2 C2, for DGP (3) and by C3 =2 C2, C1 = C2 + C3 for DGP (4). 
2 The adjusted version of the test statistic was used for T = 50, 100. 
3 Ai, i = 1,..,4 denotes the critical value from the χ2 distribution at the 5 % level of significance. 

4 P ( 1W  2W ) represents the probability to be at the same time in the acceptance region 1W  of test 1 and in the critical region 2W of  test 2. 



Appendix 1 : Simulation results 

 
 

 
 

Table 4. Empirical size of the sequential test procedure (rejection per 100), with 10000 replications at the 5 % nominal level of significance 
                  in the case where the cointegating rank (ie. r = 4) is not correctly selected 
 
DGPS DGP (2) : m1 = 3 

P ( 1W )  

DGP (3) : m1 = 2 

P ( 1W  2W ) 5 

DGP (4) : m1 = 1 

P ( 1W  2W  3W ) 

DGP (5) : m1 = 0 

P ( 1W  2W  3W  4W ) 

Sample size T 50 100 200 500 1000 50 100 200 500 1000 50 100 200 500 1000 50 100 200 500 1000 
r=2 m1 estimated = m1 24.7 21.8 19.6 16.3 13.8 32.2 24.3 20.8 18.8 15.5 39.2 27.6 22.4 20.0 16.3 43.2 30.4 25.3 22.1 18.1 
r=3 m1 estimated = m1 15.7 13.94 12.4 11.4 10.1 22.1 15.9 13.9 12.4 11.7 28.9 18.5 14.8 13.9 12.1 31.1 20.4 16.1 14.1 12.4 
r=5 m1 estimated = m1 7.95 6.63 5.50 5.26 5.12 13.5 7.75 6.40 5.51 5.24 19.2 10.1 7.31 5.78 5.28 22.1 12.0 7.78 6.11 5.32 
r= 6 m1 estimated = m1 8.26 6. 77 5.64 5.42 5.26 14.0 8.12 6.65 5.71 5.36 19.7 10.5 7.66 5.99 5.42 22.9 12.7 8.37 6.52 5.60 
 
 

                                                           
5 P ( 1W  2W ) represents the probability to be at the same time in the acceptance region 1W  of test 1 and in the critical region 2W of  test 2. 


