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Abstract

This paper concerns a new statistical approach to instrumental variables (IV) method for

nonparametric structural models with additive errors. A general identifying condition of the

model is proposed, based on richness of the space generated by marginal discretizations of joint

density functions. For consistent estimation, we develop statistical regularization theory to solve

a random Fredholm integral equation of the first kind. A minimal set of conditions are given

for consistency of a general regularization method. Using an abstract smoothness condition, we

derive some optimal bounds, given the accuracies of preliminary estimates, and show the con-

vergence rates of various regularization methods, including (the ordinary/iterated/generalized)

Tikhonov and Showalter’s methods. An application of the general regularization theory is dis-

cussed with a focus on a kernel smoothing method. We show an exact closed form, as well
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as the optimal convergence rate, of the kernel IV estimates of various regularization methods.

The finite sample properties of the estimates are investigated via a small-scale Monte Carlo

experiment.

1 Introduction

In econometric models, explanatory variables are often presumed to be endogenous (i.e., correlated

with error terms), when their relation to dependent variables represents optimizing behaviors of indi-

viduals or market equilibrium. The relations thereof are called ‘structural’ to be differentiated from

a reduced form that comes out of a pure statistical underpinning. The literature abounds in stud-

ies of various structural models with different sources of endogeneity, including linear simultaneous

equations, measurement errors, heterogenous treatment effects, random effects in panel data, and

sample selection, etc. Common to the previous studies, however, is a restrictive assumption that

the true structural relation is known a priori up to some parametric class. When misspecification

is one’s main concern, nonparametric methods can be a useful alternative, whose development in a

structural setup is of only recent interest. This paper, specializing in structural models with additive

errors, contributes to nonparametric instrumental variables method, by providing new results for

both identification and estimation. Suppose that the random variables (Yi, Xi) are generated by the

following regression models, with Xi including some endogenous variables, say, Zi;

Yi = m(Xi) + εi, (1)

where εi is iid(0, σ2) and m(·) is an unknown function. Due to endogeneity in X, the structural

function m(·) needs to be identified by postulating a set of instrumental variables (IV) W that

satisfy certain stochastic restrictions w.r.t. the errors ε. W is allowed to have common elements with

X;

X = (Z,W1), and W = (W1,W2). (2)

With infinite dimensional parameters to be identified, the instrumental variables are required to

satisfy stronger restrictions than for parametric models. For example, Roehrig (1988) assumed that

W is independent of ε, to identify m(·). Alternatively, one may prefer to assume weaker restrictions

on W in form of conditional moments so that the models can afford more general features such as

conditional heteroscedasticity. Along this line, two different methods have recently been considered.

One is the instrumental variable method of Newey and Powell (1988, 2002) and Darolles, Florens,
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and Renault (2001) that use a restriction

E(ε|W ) = 0, (3)

and the other is the control function method by Newey, Powell and Vella (1999) that assume E(ε|X, η)

= E(ε|η), where η = X − E(X|W ). Although either restriction does not imply the other, the

moment condition (3) is the one that is more familiar and easily interpretable. Including the standard

regression as a special case (for W = X), (1) through (3) give rise to nonparametric generalization

of various structural models analyzed by the IV methods of Sargan (1958) and Amemiya (1974) as

well as the GMM of Hansen (1982); henceforth the name comes.1 Simplicity of the models, however,

comes only at a cost of nonstandard identification and estimation. Since the seminal work by Newey

and Powell (1988), it has been well noted that, under (3), m(·) is characterized only implicitly via

an integral equation. For identification of m, it is crucial to know the algebraic properties of an

integral operator which is defined on an infinite dimensional functional space. For estimation, we

need to solve a random Fredholm integral equation of the first kind. Since there may exist no or more

than one solutions to the random integral equation, a natural estimator can be defined by using a

generalized inverse. However, as will be shown later in section 3.1, such estimator is not consistent in

general. Inconsistency of such naive estimator, called as ill-posedness of inverse problems, is related

to discontinuity of the underlying mapping from a reduced-form to a structural function. For these

reasons, adequate statistical theory has not as yet been fully developed for an IV estimator of the

nonparametric structural model in (1) through (3). Only a consistency result was shown for a general

case of common elements by Newey and Powell (1988, 2002), who also suggested a primitive condition

for identification under a parametric assumption of exponential family. For a special case of disjoint

X and W , Darolles, Florens, and Renault (2001) made some important improvements, succeeding

in deriving a lower bound on the convergence rate of their estimates.2

This paper, trying to improve upon the previous works, provides a more general approach to

identification and estimation of the structural model in (1) through (3). We give a new identifica-

tion result that does not rely on any parametric assumption. The suggested identifying condition is

closely related to richness of the linear space that are generated by marginal discretizations of the

1As an alternative generalization of the linear 2SLS, the control function approach treats endogeniety of X as an

omitted variable problem, and corrects endogeneity bias by inclusion of some ‘control’ variables (η in the above), as

in Heckman(1979)’s two-step estimator for selcetivity bias. See Blundell and Powell (2001) for a detailed comparison

of two methods.
2In a more recent work, Hall and Horowitz (2003) tried to provide deeper results on the convergence rates for

nonparametric IV estimation.
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joint density function. Under continuity of the density function, the condition is also shown to be

necessary for identification. For consistent estimation, a general theory of statistical regularization

is developed to find a stable solution to a random Fredholm integral equation of the first kind. In

contrast to the ad-hoc approaches in the previous works, we give more systematic analysis of regu-

larization to resolve the ill-posedness of statistical inverse problems. For example, applying random

operator theory, we show a minimal set of conditions under which a large class of regularized esti-

mators are consistent. Also, the optimal bounds of the convergence rates, given the accuracies of the

preliminary estimates, are derived, using a notion of the modulus of stochastic equicontinuity of a

random operator. For comparison of asymptotic properties of various regularization, we calculate the

convergence rates of the ordinary/iterated/generalized Tikhonov and Showalter’s methods. Accord-

ing to our results, Showalter’s method can attain the optimal bounds in a general case, while three

types of Tikhonov methods are suboptimal in some cases. A specific example of kernel IV estimates

is considered to illustrate how the general theory can be applied in practice. Unlike the previous

works, we show an exact closed form of the regularized kernel estimates explicit in a regularization

parameter. Computations of the regularized estimates only require standard finite-dimensional ma-

trix operations. The convergence rates of those estimates are derived, based on the general theory

of statistical regularization.

There are many works on nonparametric estimation of other structural models. An extensive list

can be found in a recent survey by Blundell and Powell (2001a) and the references therein. Some of

them, among others, are Altonji and Matzkin (2001), Imbens and Newey (2001), and Chesher (2002)

that develop nonparametric methods for nonseparable structural models. Ai and Chen (2001), who

consider semiparametric GMM estimation of structural models, show
√

n-consistency of parametric

terms as well as the semiparametric asymptotic efficiency. In Blundell and Powell (2001b), a control

function approach is used for a semiparametric binary response model with endogenous variables. In

statistics literature, there are some earlier works on ill-posed inverse problems, such as deconvolution

(Fan, 1991) and noisy integral equations (Nychka and Cox, 1989); see the survey by O’Sullivan (1986)

and van Rooij and Ruymgaart (1999), for more results. Those works, however, are different from our

approach in that they assume a known integral operator. For nonparametric estimation of additive

models, Mammen, Linton, and Nielsen (1999) and Linton and Mammen (2003) work with random

integral equations, but their inverse problems are well-posed.

The rest of paper proceeds as follows. Section 2 concerns an identification issue, and suggest

a general identification condition. In section 3, we first show ill-posedness of the IV estimation
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problem, and develop general theory of statistical regularization for consistent estimation, including

a discussion for optimal bounds. Section 4 is devoted to derivation of the convergence rates for

various regularization methods. Section 5 applies the general results to a specific example of kernel

IV estimation. Both closed forms and asymptotic properties of the estimates are shown. The finite

sample properties of the estimates are investigated via a small-scale Monte Carlo experiment. All

the technical proofs for the theorems are collected in the appendices.

Notations: w.p.1 ( or a.s.) stands for ‘with probability one’, and w.p.a.1, for ‘with probability

approaching to one’.

2 Identification

Throughout the paper, we assume that the sample observations {(Yi, Zi,Wi): i = 1, 2, .., n} are

randomly drawn out from a distribution FY,Z,W (Y, Z,W ) defined on Y ×Z ×W (⊂ R× Rdz ×Rd2),

where W = W1×W2 ⊂ Rdw1 ×Rdw2 and d2 = dw1 + dw2 . The support of X is given by X ≡ Z ×W1

⊂ Rd1 , where d1 = dz + dw1 . FY,Z,W (·) is assumed to be absolutely continuous with density fY,Z,W (·).
The joint density function for (Y,W ) and (Z, W ) is denoted by fY,W (·) and fZ,W (·), respectively. Let

L2(X ) be the infinite-dimensional Hilbert space of square-integrable functions defined on X , with

norm given by ||m(·)||2L2(X ) =
∫
X m2(x)dx. Below, we give a precise definition for identification of the

model. When (3) holds for m(·) and m̃(·), the two functions are called ‘observationally equivalent’.

Definition 2.1 The structural function m(·) in (1) is identified in L2(X ) by instrumental

variables W , if and only if (3) holds for m(·) ∈ L2(X ), and any observationally equivalent functions,

m(·) and m̃(·), are identical in the sense that m(X) = m̃(X), w.p.1.

Given FY,Z,W (·) in a class of distributions F , we define

hF (w) =

∫

Y
yfY,W (y, w)dy,

and an integral operator by

TF : L2(X ) → L2(W), with (TF m)(w) =

∫

Z
m(z, w1)fZ,W (z, w)dz,

where the subscript of T and h means that they are defined by the underlying distribution F . The

subscript will be omitted unless confusion arises. For a linear operator T : L2(X ) → L2(W), its

operator norm is defined by ||T ||L2(X )→L2(W) ≡ supm∈L2(X ),(m6=0) ||Tm||L2(W)/||m||L2(X ). Throughout
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the paper, we assume that the joint density is square-integrable so that the linear operator T is

bounded in the sense of ||T ||L2(X )→L2(W) < ∞. N (T ) and R(T ) denotes the null space and the

range, respectively, of T . Since two conditions in Def.2.1 are equivalent to existence of a unique

solution to ‘TF (m)(w) = hF (w)’, we get the following result.

Proposition 2.1 Let F∗ be such that

F∗ = {FY,Z,W (·) ∈ F : (a) N (TF ) = {0} and (b) hF ∈ R(TF )} . (4)

Given a model (1)-(3) with a true distribution F 0
Y,Z,W (·), m(·) is identified to be T

−1

F (hF ) in L2(X )

by the instrumental variables W , if and only if F 0
Y,Z,W (·) ∈ F∗.

Proposition 2.1 makes clear that some distributional assumptions are needed for valid identification.

In the previous works, most considerations are given to the uniqueness condition, with less known

about existence. For example, as Newey and Powell (2002, p3) note, the injectivity condition in (4)-

(a) is equivalent to statistical completeness of FZ|W (·|·) in the ‘parameter’ W . Using a parametric

distributional assumption that F 0
Z,W is in a class of exponential family, they derived some primitive

condition for identifiability. A more flexible nonparametric approach was made by Darolles, Florens,

and Renault (2001), under an assumption that there is no common element between X and W . Both

conditions of uniqueness and existence are discussed in detail, based on singular-values expansion of a

compact operator T . It is shown that an equivalent characterization of (4)-(a) can be given in terms

of nonlinear canonical correlations of X and W , and the existence condition in (4)-(b) translates

into imposing some smoothness on a reduced form function.3 Unlike Newey and Powell (2002),

their results, however, are delimited by a strong restriction that prevents an element of explanatory

variables being used as an instrument. One more comment deserves note, concerning the scope of

generality of the conditions in (4). Obviously, certain distributional assumptions on (Z,W ) will suffice

for identifiability, i.e., for T to be one-to-one. Existence, however, cannot be ensured in a similar

manner, since an operator acting on an infinite-dimensional space does not necessarily possess a

closed range, i.e., T is not onto in general. It is well known in functional analysis (Kress, 1989, p20)

that, given a compact operator T , R(T ) is closed if and only if dim(R(T )) < ∞. Therefore, what

one can expect as most favorable to (4)-(b) will be that T has a dense range in L2(W). In the rest

of this section, we provide an alternative but more general identification result, showing when T is

one-to-one or has a dense range. Noncompactness of T is allowed.

3That is, the generalized Fourier coefficients of h (w.r.t. the singular functions) decay fast enough relative to the

singular values.
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For convenience of exposition, we first consider a case with disjoint X and W , and then give an

extension to a common-element case. Given {ωl}L
l=1 ⊂ W , we define a marginal discretization (w.r.t.

W ) of a joint density function, by

fω
L (x) = [fX,W (x, ω1), .., fX,W (x, ωL)]′,

and let lin({fL(·, ωl)}L
l=1) be the linear space generated by {fL(·, ωl)}L

l=1. For a sequence {ωl}∞l=1 ⊂
W , let lin{fX,W (·, ωl)}∞l=1 be the closure of lin{fX,W (·, ωl)}∞l=1 in L2(X ), and [lin{fX,W (·, ωl)}∞l=1]

⊥

the orthogonal compliment of lin{fX,W (·, ωl)}∞l=1, i.e.,

L2(X ) = lin{fX,W (·, ωl)}∞l=1 ⊕ [lin{fX,W (·, ωl)}∞l=1]
⊥.

Our identification results make use of the following conditions.

C.2.1 For a sequence W = {ωl}∞l=1 ⊂ W , lin{fX,W (·, ωl)}∞l=1 is dense in L2(X ); i.e.,

lin{fX,W (·, ωl)}∞l=1 = L2(X ).

C.2.2 For a sequence X = {κl}∞l=1 ⊂ X , lin{fX,W (κl, ·)}∞l=1 is dense in L2(W); i.e.,

lin{fX,W (κl, ·)}∞l=1 = L2(W).

Both conditions address richness of the linear spaces that are generated by marginal discretizations

of the joint density function. C.2.1 will hold, if a complete orthogonal basis of L2(X ) is generated

by linear combinations of {fX,W (·, ωl)}∞l=1. We below show sufficiency of C.2.1 and C.2.2 for T to be

one-to-one and have a dense range, respectively.

Theorem 2.2 Suppose that a structural model is given by (1)-(3) with W1 empty.

(i) If C.2.1 holds, then, the integral operator T : L2(X ) → L2(W) is one-to-one, i.e., m(·) is

identifiable in L2(X ).

(ii) If C.2.2 holds, then, T has a dense range in L2(W); i.e., at least one m(·) ∈ L2(X ) satisfies

the given structural model, for h(·) in some ‘dense’ subspace.

Symmetry of two conditions in Theorem 2.2 can be explained easily by introducing an adjoint op-

erator. If G : M → H is a bounded linear operator from a Hilbert space M to a Hilbert space
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H, the adjoint of G is the operator G∗ : H → M satisfying < Gm, h >M = < m, G∗h >H , for all

m ∈ M and h ∈ H, where < ·, · >M is the inner product of M . In the present case, the adjoint

of T : L2(X ) → L2(W) is T ∗ : L2(W) → L2(X ) with (T ∗h)(x) =
∫

fX,W (x,w)h(w)dw. From the

relation ‘R(T ) = N⊥(T ∗)’, T has a dense range, if and only if T ∗ is one-to-one. In consequence, the

second assertion of Theorem 2.2 follows as a mirror image, once the first is true. The suggested iden-

tifying condition seems rather abstract, partly because we do not use any parametric assumptions.

Roughly speaking, identifiability depends on the way that the density function of X, conditional

on W = ωl, varies over different values of ωl’s.
4 For example, the model is identifiable, if some

sequence of the conditional density functions, {fX|W (·|ωl)}∞l=1, includes (or spans) a complete basis

of L2(X ). Although it is not easy to check the condition in a practical case, it allows for a useful

finite-dimensional approximation of the underlying structural function. Let Pfω
L

be the orthogonal

projection onto lin({fX,W (x, ωl)}L
l=1);

(Pfω
L
m)(x) = fω

L (x)′Q∗†
ω

∫

X
fω

L (z)m(z)dz,

where Q∗
ω =

∫
X fω

L (z)fω
L (z)′dz. Suppose that the joint distribution FY,Z,W is known, i.e., we know

both the density function fX,W (·, ·) and the reduced form h(·). Then, from hω
L = [h(ω1), .., h(ωL)]′ =∫

X fω
L (z)m(z)dz, we can calculate the exact form of the projection of m via

(Pfω
L
m)(x) = fω

L (x)′Q∗†
ω hω

L. (5)

If C.2.1 holds, the above projection delivers a valid approximation of m, since ||Pfω
L
m−m||L2(X ) → 0,

as L →∞, under denseness of the linear span of {fX,W (·, ωl)}∞l=1. Identifiability of m is now obvious

from uniqueness of the limit of a convergent sequence in a Hilbert space. In mathematical literature,

the method of moment collocation uses (5) to find a numerical solution to an integral equation-

see Kress (1989, p. 267), for example. The following theorem concerns necessariness of C.2.1 for

identifiability. Under a weak condition on a joint density function, it shows that C.2.1 should hold

for any ‘dense’ discretization points, when the model is identified.

Theorem 2.3 Suppose that a structural model is given by (1)-(3) with W1 empty. In addition,

assume that fX,W (·, ·) is continuous on X ×W .

(i) If m(·) is identifiable, then, C.2.1 holds for any dense subset W of W .

(ii) If T has a dense range in L2(W), then, C.2.2 holds for any dense subset X of X .

4Here, fX,W (·, ωl) is normalized implicitly by fW (ωl) so that
∫
X fX,W (x, ωl)/fW (ωl)dx = 1.
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The symmetry argument also applies to Theorem 2.3. We remark that the conclusions of Theorem

2.3 are not stronger, in its context, than the assumptions of Theorem 2.2, since the former does not

extend to general discretization points other than a dense subset of W . For an immediate application

of the above results, one may consider a joint density function, fX,W (x,w) =
∑K

k=1 pk(x)qk(w). This

includes a trivial case with X independent of W . Since lin{fX,W (·, ωl)}∞l=1 is at most of K-dimension,

C.2.1 is violated for any W in W , so the model is not identifiable. Another implication of Theorem

2.3 concerns validity of {fX,W (·, ωl)}∞l=1 as approximating functions. It shows, under identifiability

of m, that the finite-dimensional approximation in (5) will be consistent, if the sequence {ωl}L
l=1

becomes dense in W as L →∞. The moment collocation method showed a similar but more general

result by applying theory of a reproducing kernel Hilbert space; see Nashed and Wahba (1974). Our

development here is much simpler, only based on Theorem 2.3.

We close the section by extending the above results to a case where X and W have some common

elements of W1. A slight modification of C.2.1 and 2.2 is enough to obtain the same conclusions.

C.2.3 For all w1 ∈ W1, there exists a sequence {ω2l}∞l=1 ⊂ W2 such that lin{fZ,W1,W2(·, w1, ω2l)}∞l=1

is dense in L2
Z .

C.2.4 For all w1 ∈ W1, there exists a sequence {ξl}∞l=1 ⊂ Z such that lin{fZ,W1,W2(ξl, w1, ·)}∞l=1

is dense in L2
W2

.

Theorem 2.4 Suppose that a structural model is given by (1)-(3) with W1 possibly not empty.

(i) If C.2.3 holds, then, the integral operator T : L2(X ) → L2(W) is one-to-one; i.e., m(·) is

identifiable in L2(X ).

(ii) If C.2.4 holds, then, T has a dense range in L2(W); i.e., at least one m(·) ∈ L2(X ) satisfies

the given structural model, for h(·) in some ‘dense’ subspace.

Extension of Theorem 2.3 is done in a similar way. In this case, C.2.3 and C.2.4 holds for any dense

subset {ω2l}∞l=1 and {ξl}∞l=1, respectively. We omit the details, since they are straightforward.
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3 Statistical Theory of Regularization for Ill-Posed Prob-

lems

This section considers statistical estimation of a structural function which we assume to be identified

by m0 = T−1(h0), where h0(w) =
∫
Y yf 0

Y,W (y, w)dy and (Tm)(w) =
∫
Z m(z, w1)f

0
Z,W (z, w)dz. In

mathematics theory for integral equations, it has been a central issue how to estimate m0 from an

approximate of h0, when T is known. Ill-posedness of such inverse problems is now well known

in the literature, and can be treated by regularization theory. Our statistical problems are more

complicated, since the operator itself needs to be estimated. Some additional works are required, if

one wants to apply regularization theory for solving an integral equation of a random operator. Newey

and Powell (1988, 2002), Darolles, Florens, and Renault (2001), and Hall and Horowitz (2003) have

recently attacked the issue, showing consistency and the convergence rates of their estimators. Those

methods, categorized as (the classical or ordinary) Tikhonov regularization, possess a common form

of ridge estimation which turns out be suboptimal in some cases. This paper takes a more general

approach to the statistical inverse problems, trying to extend regularization theory into random

integral equations. The statistical issues, such as consistency, optimal bounds, and the convergence

rates, are discussed with no limitation on specific estimation of h0 or T .

3.1 Generalized Inverse and Ill-Posed Problems

In a practical case where h0 and f 0
Z,W are unknown, approximate characterization of m0 relies neces-

sarily on some preliminary estimates, ĥ0,n and f̂Z,W , given an observed sample {(Yi, Zi,Wi)}n
i=1. The

actual problem to be solved is a ‘random’ Fredholm integral equation of the first kind,

(T̂nm)(w) ≡
∫

Z
m(z, w1)f̂Z,W,n(z, w)dz = ĥ0,n(w). (6)

Like mathematical inverse problems, several difficulties arise in estimating m0 by inverting ĥ0,n

through T̂n. Estimation of T is usually carried out by a certain discretization scheme-i.e., by deter-

mining finitely many unknowns. Since, in that case, T̂n is generally of finite rank, it is likely that

ĥ0,n /∈ R(T̂n), or T̂n is not invertible.5 The integral equation in (6) may possess no or more than one

solutions. A common practice in econometric theory is to extend the notion of solution to the idea

5An operator G has a finite rank, if dim[R(G)] < ∞. It is obvious that any integral operator with a degenerate

kernel is of finite rank. Throughout the paper, it will be assumed implicitly that dim[R(T̂n)] < ∞, for n fixed, unless

otherwise stated.

10



of the best approximation, based on minimum-distance. Given ĥ0,n and T̂n, the minimum-distance

estimator of m0 is defined by

m̂†
n = arg min

m(·)∈L2(X )

||T̂nm− ĥ0,n||2L2(W), (7)

where m̂†
n is the solution of minimum norm, unless the minimum-distance estimator is unique. The

underlying mapping from ĥ0,n to m̂†
n is so called the (Moore-Penrose) generalized inverse of T̂n;

m̂†
n = T̂ †

n(ĥ0,n),

where T̂ †
n is such that T̂nT̂ †

nT̂n = T̂n. From the first order condition of (7), it follows that T̂ ∗
n T̂nm̂

†
n =

T̂ ∗
n ĥ0,n, leading to T̂ †

n = (T̂ ∗
n T̂n)†T̂ ∗

n , where T̂ ∗
n : L2(W) → L2(X ) is the adjoint of T̂n : L2(X ) →

L2(W). The generalized inverse of T̂n has a domain given by R⊥(T̂n)⊕R(T̂n); see Groetsch (1993,

p.80), for example. SinceR(T̂n) is finite-dimensional and thus closed, it holds thatR⊥(T̂n)⊕R(T̂n) =

L2(W), for any fixed n. That is, m̂†
n is well defined for any ĥ0,n ∈ L2(W). When T̂ ∗

n T̂n is one-to-one

on the range space of T̂ ∗
n , the minimum distance estimator is simplified to m̂†

n = (T̂ ∗
n T̂n)−1T̂ ∗

n ĥ0,n.

Remark 3.1 (Closed form of solutions) Although m̂†
n serves as an approximate solution to

(6), it may seem elusive to find the exact functional form of m̂†
n. Below in section 5, we show

that it is possible to derive the exact closed form of m̂†
n, when h0 and fZ,W are estimated by the

kernel smoothing method. Instead of the exact form of m̂†
n, one may try to define an alternative

minimum-distance estimator, by discretizing (6) on collocation points, say, {ωl}L
l=1 ⊂ W . With

T̂ ω
n,L : L2(X ) → RL defined by T̂ ω

n,L(m) = [(T̂nm)(ω1), ..(T̂nm)(ωL)]′, the relevant minimization

problem is

m̃†
n,L = arg min

m(·)∈L2(X )

||T̂ ω
n,Lm− ĥω

L||2RL = arg min
m(·)∈L2(X )

L∑

l=1

[(T̂nm)(ωl)− ĥ0,n(ωl)]
2,

where ĥω
L = [ĥ0,n(ω1), .., ĥ0,n(ωL)]. The closed form of m̃†

n,L is available, regardless of an estimation

method used for h0 and fZ,W . When X and W are disjoint, the minimum distance estimator is

exactly of the same form as (5) with h0 and fZ,W replaced by their estimates

m̃†
n,L(x) ≡ T̂ ω†

n,L(ĥω
L) = f̂ω

L (x)′Q̂∗†
ω ĥω

L,

where f̂ω
L (x) = [f̂X,W (x, ω1), .., f̂X,W (x, ωL)], and Q∗

ω =
∫
X fω

L (u)fω
L (u)′du. ¥

Consistency of the natural estimator m̂†
n, however, is not ensured by consistency of the preliminary

estimates ĥ0,n and T̂n. For clarity of the statement, we need to define statistical properties of random
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operators. As usual, ĥ0,n is said to be (L2-) consistent for h0, if and only if ||ĥ0,n − h0||L2(W)
p→ 0, as

n →∞.

Definition 3.1 (i) A random operator T̂n : L2(X ) → L2(W) is consistent for T : L2(X ) →
L2(W), if and only if ||T̂nm − Tm||L2(W)

p→ 0, for all m ∈ L2(X ), i.e., T̂n converges pointwise to

T (in L2(X )) in probability. (ii) T̂n is uniformly consistent for T on MX ⊂ L2(X ), if and only if

plimn→∞ supm∈MX , m 6=0 ||T̂nm− Tm||L2(W)/||m||L2(X ) = 0, i.e., T̂n converges to T uniformly on MX ,

in probability.

Recalling the definition of ||T̂n−T ||MX→L2(W), uniform convergence in Definition 3.1(ii) with MX =

L2(X ) is equivalent to convergence in operator norm. Asymptotic properties of m̂†
n are explained

from the decomposition

T̂ †
n(ĥ0,n)−m0 = T̂ †

n[ĥ0,n − T̂nm0] + [(T̂ ∗
n T̂n)†T̂ ∗

n T̂n − I]m0. (8)

The term in the first square bracket, written as (ĥ0,n − h0)− (T̂n − T )m0, represents the composite

errors associated with estimation of h0 and T . The term will converge to zero in L2-norm, if ĥ0,n and

T̂n are consistent. The second term, due to non-invertibility of T̂n, reduces to −PN (T̂n)m0, by the

identity (T̂ ∗
n T̂n)†T̂ ∗

n T̂n = I− P̂N (T̂n), where PN (T̂n) is the orthogonal projector onto N (T̂n); see Nashed

(1976). or Groetsch (1977). Applying Lemma 3.1 in the appendix, we can show that the second term

converges to zero in probability, under consistency of T̂n and invertibility of T . For consistency of

m̂†
n, it remains crucial to know whether T̂ †

n is bounded uniformly in n. If ||T̂ †
n||L2(W)→L2(X ) = Op(1),

consistency of m̂†
n will follow from a direct extension of the Slutzky Theorem to infinite-dimensional

spaces. The following result, however, shows that uniform boundedness of T̂ †
n does not obtain in a

fairly regular situation.

Proposition 3.1 Suppose that T : L2(X ) → L2(W) is one-to-one, and T̂n has a finite rank.

Assume that T̂n : L2(X ) → L2(W) is uniformly consistent for T onMX ⊂ L2(X ) s.t. dim(MX) = ∞.

Then,

plimn→∞ ||T̂ †
n||L2(W)→L2(X ) = ∞.

The only binding condition in Proposition 3.1 is uniform convergence of T̂n to T on some infinite-

dimensional subspace of L2(X ), which in fact holds under a quite regular condition such that

f̂Z,W,n(·, ·) converges to the truth in L2-norm. To see this, we just observe that, by Cauchy-Schwartz

12



inequality, for all m(·) ∈ L2(X ),

||(T̂n − T )m||2L2(W) ≤ ||||f̂Z,W,n(z, w)− fZ,W (z, w)||L2(Z)||m(z, w1)||L2(Z)||2L2(W)

≤ ||f̂Z,W (·)− fZ,W (·)||2L2(Z×W)||m||2L2(X ), (9)

i.e., ||T̂n−T ||L2(X )→L2(W) ≤ ||f̂Z,W (·)−fZ,W (·)||2L2(Z×W). With no strong restrictions imposed, Propo-

sition 3.1 characterizes asymptotic unboundedness of T̂ †
n as a generic property. It dose not mean

inconsistency of m̂†
n automatically, since uniform boundedness of T̂ †

n is not a necessary condition for

consistency.6 However, the estimator, in general, lacks stability w.r.t. the statistical errors in T̂n or

ĥ0,n. Even small perturbations of T̂n or ĥ0,n may result in unacceptably large errors in m̂†
n = T̂ †

n(ĥ0,n).

Since T̂ †
n becomes more explosive as n →∞, the approximate solutions may get worse, as more ob-

servations (and thus more discretizations) are used in estimating T̂n and ĥ0,n. In this sense, the

estimation problem in (6) is called statistically ill-posed. It needs to be pointed out that such ill-

posedness occurs, because the underlying mapping from a reduced form to a structural function is

not continuous. By Bounded Inverse Theorem, the inverse operator T−1 : R(T ) → L2(X ) is bounded

(i.e., continuous), if and only if R(T ) is closed. In infinite dimensional Hilbert spaces, R(T ) is closed,

only when T has a degenerate kernel such as fZ,W (z, w) =
∑K

k=1 pk(z)qk(w). We showed that such

density functions are excluded by identifiability. It then appeals to our intuition that T̂ †
n will be

unbounded, as T̂n gets close to T .

3.2 Consistent Estimation by Regularization

Difficulties in the estimation problem (6) are closely related to the smoothing effects of the (esti-

mated) integral operator. Since nonsmooth components, like cusps or edges, in m are smoothed

out by integration, the reverse operation will amplify any high-frequency parts of ĥ0,n, just as simple

differentiation does. Considering that the estimation errors in ĥ0,n correspond to such high-frequency

parts, naive inversion of ĥ0,n may end up with extremely large errors in estimating m. From this ob-

servation, two points are essential in dealing with an ill-posed problem. Firstly, to cure the instability

problem, one needs to be able to filter out the high-frequency components of ĥ0,n, in a controllable

way. Secondly, such filtering should not make substantial loss of information in restoring a true solu-

tion. The first problem is resolved by ‘regularization’ that amounts to a bounded approximation of

the unbounded inverse operator. For the second, certain ‘smoothness’ needs to be imposed on a true

6Consistency of m̂†
n depends on whether ||ĥ0,n− T̂nm0||L2(W) converges to zero at a faster rate than the square-root

of the minimum eigenvalue of T̂nT̂ ∗n decays.
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solution, since the loss of information due to a bounded approximation concentrates on nonsmooth

components. The following example shows how one can make use of additional knowledge about

smoothness of m(·) to regularize an ill-posed problem.

Example 3.1 (the classical Tikhonov regularization; compactification) Suppose that the true

solution m0 is continuously differentiable, having square-integrable derivatives. A set of admissible

solutions is now given by MB
X = {m(·) ∈ L2(X ): ||m||L2(X ) + ||m′||L2(X ) ≤ B, for some B > 0}, where

m is of bounded Sobolev norm. Since MB
X is compact in L2(X ) by the Sobolev Imbedding Theorem,

the (injective) operator T , when restricted to MB
X , has a ‘bounded’ inverse, say, T−1

|MB
X

.7 That is, an

ill-posed problem can be regularized via compactification. Stable approximation of m0 is possible,

if the ‘bounded’ operator, T−1
|MB

X
can be estimated consistently. Letting T̂|MB

X
be a restriction of T̂n

on MB
X , we define an estimator by m̂B

n = T̂ †
|MB

X
(ĥ0,n), where T̂ †

|MB
X

is the Moore-Penrose generalized

inverse of T̂|MB
X

. Comparing to (7), m̂B
n comes from solving constrained minimum-distance; for

B > 0,

m̂B
n = arg min

m(·)∈L2(X )

||T̂nm− ĥ0,n||L2(W) s.t. ||m||L2(X ) + ||m′||L2(X ) ≤ B. (10)

For fixed B, T̂ †
|MB

X
is uniformly bounded, and hence consistency of T̂|MB

X
and ĥ0,n is sufficient for

consistency of m̂B
n . (10) shows clearly that a filtering effect is achieved by damping out highly-

oscillating parts of the approximate solutions. In Newey and Powell (2002), (10) was combined with

orthogonal series expansions, to define a regularized nonparametric 2SLS estimator. ¥

An implicit regularization effect is used in the compactification method by imposing integral

bounds on the derivatives. An alternative but more general class of regularization methods are

generated by a direct way of bounded approximation for the inverse operator T−1. As a sensible

modification of T̂ †
n = (T̂ ∗

n T̂n)†T̂ ∗
n , we suggest a family of bounded operators

R̂α,n = Uα(T̂ ∗
n T̂n)T̂ ∗

n , α > 0 (11)

that satisfies:

(a) Uα(T̂ ∗
n T̂n) is close to (T̂ ∗

n T̂n)†, for small α, in the sense that R̂α,nT̂n converges pointwise to the

identity, I, in L2(X ), and

(b) Uα(T̂ ∗
n T̂n) is uniformly bounded (in n) by a known function of α, say, 1/α.

7Let T|K : K ⊂ L2(X ) → L2(W) be a restriction of a bounded injective operator, T : L2(X ) → L2(W). If K is

compact in L2(X ), then, T−1
|K : R(T|K) → K, is continuous, by Tikhonov’s theorem-see Groetsch (1993, p.79).
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By the former condition, R̂α,n (with α small) serves as an approximation of T−1, as T̂ †
n does. The

second condition means that R̂α,n, unlike T̂ †
n, is stabilized through a newly-introduced term α called

a regularization parameter. Note that, in contrast to T̂ †
|MB

X
, boundedness of R̂α,n is controlled in an

explicit way, via the regularization parameter. To guarantee the properties of (a) and (b), we will

need the following conditions on Uα(·) that are borrowed from mathematical regularization theory.

Condition 3.1 Let λ≡ supn≥n0
||T̂ ∗

n T̂n||L2(X )→L2(X ). A parameter dependent family of continuous

functions, {Uα(·)}α>0, defined on (0, λ], satisfy that (i) supλ∈(0,λ] |Uα(λ)λ| ≤ C < ∞, for α > 0, (ii)

limα→0+ Uα(λ) = 1
λ
, for all λ ∈ (0, λ], and (iii) supλ∈(0,λ] |Uα(λ)| = O( 1

α
), as α → 0+.8

From the fact that T̂ ∗
n T̂n is self-adjoint, Uα(T̂ ∗

n T̂n) is well defined based on spectral theory for self-

adjoint linear operators, as long as the real-valued function Uα(·) is defined on the spectrum of T̂ ∗
n T̂n.

Since the random operator T̂n in practice is of finite rank and thereby compact, it is sufficient to

define Uα(·) on a bounded interval, (0, λ], where λ = supn≥n0
||T̂ ∗

n T̂n||L2(X )→L2(X ). For such Uα(·), an

approximate solution to (6) is defined by

m̂α,n = R̂α,nĥ0,n = Uα(T̂ ∗
n T̂n)T̂ ∗

n ĥ0,n, (12)

which we call a regularized IV estimator of m0. In Lemma 3.2 of the appendix, we show that, for Uα(·)
satisfying C.3.1, two properties of (a) and (b) in the above hold with ||R̂α,n||L2(W)→L2(X ) = Oas(α

−1/2),

whenever T̂n converges pointwise to the true (injective) operator T in L2(X ). To see the implications,

we consider an error decomposition of the regularized estimates, which is given, similar to (8), by

m̂α,n −m0 = ŝα + b̂α ≡ R̂α,n(ĥ0,n − T̂nm0) + [Uα(T̂ ∗
n T̂n)T̂ ∗

n T̂n − I]m0. (13)

The first term corresponds to propagation of the composite errors, and the second, an extra error term

due to regularization. From uniform boundedness of R̂α,n (by 1/
√

α), it follows that ŝα converges to

zero in probability, if the decaying rate of
√

α is slower than the convergence rates of ĥ0,n and T̂n.

Negligibility of b̂α (as α → 0) is obvious from the property (a), i.e., from pointwise convergence of

Uα(T̂ ∗
n T̂n)T̂ ∗

n T̂n to I in L2(X ). In sum, given consistency of T̂n and ĥ0,n, the regularization methods in

(11), with Uα(·) satisfying C.3.1, yield consistent estimation of m0, for some choices of a regularization

parameter, α = α(n), converging to zero.

Theorem 3.2 Suppose that Uα(·) satisfies C.3.1, and the linear operator T̂n : L2(X ) → L2(W)

has a finite rank. Also, assume that ||ĥ0,n − T̂nm0||L2(W)
p→ 0, and T̂n is a consistent estimator for

8Section 4 gives a detailed discussion about several examples of Uα(·) satisfying C.3.1.
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the true operator T : L2(X ) → L2(W) which is bounded and injective. If α = α(n) is such that

α(n) → 0 and ||ĥ0,n− T̂nm0||L2(W)/
√

α(n)
p→ 0, as n →∞, then, ||m̂α,n−m0||L2(X )

p→ 0, as n →∞,

for all m0 ∈ L2(X ).

In contrast to Example 3.1, the consistency result of Theorem 3.2 applies to any square-integrable

function, m0 ∈ L2(X ), with no constraint on smoothness of m0. It instead requires implicitly to

know the convergence rate of the composite errors, ζn ≡ ĥ0,n − T̂nm0. For standard nonparametric

procedures, such rate will be available under some smoothness conditions on h0 and fZ,W . An

immediate choice of α = α(n) follows, for example, from (9) which, together with the triangle

inequality, leads to

||ζn||L2(W) ≤ ||ĥ0,n − h0||L2(W) + C||f̂Z,W − fZ,W ||2L2(Z×W),

for m0 ∈ L2(X ) with ||m0|| ≤ C < ∞. Under the identification relation (h0 = Tm0), a reduced form

function is equivalent to an integral of the underlying structural function, so, it will satisfy some

smoothness automatically, if fZ,W (·) does.

Remark 3.2 (strong L2-consistency of m̂α,n) It is possible to show a strong form of Theorem

3.2 with an replacement of ‘
p→’ by ‘

as→’, through a straightforward extension of the proofs for Lemma

3.1 and 3.2 in the appendix. Suppose that ĥ0,n and f̂Z,W are strongly L2-consistent for h0 and fZ,W ,

respectively, in the sense that ||ĥ0,n−h0||L2(W) = oas(1), and ||f̂Z,W − fZ,W ||2L2(Z×W) = oas(1). Again,

from (9), the latter condition implies ||T̂n − T ||L2(X )→L2(W) = oas(1), which is sufficient for Lemma

3.1 as well as Lemma 3.2.(iii) to hold almost surely. In consequence, strong L2-consistency of m̂α,n

obtains, under α = α(n) → 0 such that ||ĥ0,n − T̂nm0||L2(W)/
√

α(n)
as→ 0. ¥

3.3 Smoothness Condition and Optimal Bounds

Smoothness of m0 needs to be assumed for further asymptotic properties of the estimators. Following

mathematical regularization theory, this section introduces an abstract smoothness condition, based

on a sourcewise-representation of m0. Use of such condition is illustrated by deriving some lower

bounds on the convergence rates for the estimators in (12). The same smoothness condition turns

out to play a crucial role in defining new optimal bounds. More analyses of the convergence rates

will be given in the next section.

In Theorem 3.2, we already discussed the convergence rate of the first term in (13). The

L2-norm of ŝα is determined by the noise level, ||ζn||L2(W), multiplied by the condition number,
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||R̂α,n||L2(W)→L2(X ). More careful investigation reveals that ζn consists of stochastic errors from esti-

mating h0 and a bias from estimating m0-see Proposition 5.3 in Section 5. For the convergence rate

of m̂α,n, it remains to calculate the asymptotic order of the regularization errors, b̂α = (Γ̂α − I)m0,

where Γ̂α = Uα(T̂ ∗
n T̂n)T̂ ∗

n T̂n. Unlike the consistency result in Theorem 3.2, the convergence rate of

b̂α cannot be fixed, for arbitrary m0 ∈ L2(X ). This is because Γ̂α does not converge ‘uniformly’ to

I, on L2(X ), for any choice of Uα(·).9 A meaningful question then will be whether the convergence

rate of b̂α is available, still on a large subset of L2(X ), by strengthening some of the conditions in

C.3.1 appropriately.

Condition 3.2 Given Uα : (0, λ] → R, it holds for any µ ∈ (0, µ] that supλ∈(0,λ] λµ|Uα(λ)λ− 1|
≤ Cαµ, for any α ∈ (0, α0), where α0 > 0.

It is clear that C.3.1(ii) follows from C.3.2. The latter condition also implies C.3.1(i), by Principle

of Uniform Boundedness; see Taylor and Lay (1980, p.190). In Lemma 3.3 of the appendix, we show

that, for Uα(·) satisfying C.3.2,

||(Γ̂α − I)(T̂ ∗
n T̂n)µ||L2(X )→L2(X ) ≤ Cαmin(µ,µ), a.s, (14)

implying that b̂α decays at the rate of αmin(µ,µ), if m0 lies in the range space of (T̂ ∗
n T̂n)µ, for all n

sufficiently large. Suppose that T̂n converges uniformly T in L2(X ), then, it makes a sense that a

similar argument will hold on the range space of (T ∗T )µ. Below, we will use this observation to

calculate the convergence rate of m̂α,n, by assuming additional information about the true solution

such that

m0 ∈Mµ ≡ R((T ∗T )µ), for µ > 0. (15)

Remark 3.3 (i) Since T is an integral operator of smoothing effects, the sourcewise representa-

tion of m0 in (15) can be understood as an abstract smoothness condition. The alternative definition

of smoothness is indeed one of the features that distinguish regularization theory from the standard

nonparametric methods. To get some idea of the condition, suppose that bivariate r.v. (X, W ),

supported by [0, 1]× [0, 1], have uniform distributions such that fX,W (x,w) = 1, for 0 ≤ x ≤ w ≤ 1,

and fX,W (x,w) = 0, otherwise. For µ = 1, (15) reduces to ‘m0(x) =
∫ 1

x

∫ w

0
mµ(u)dudw, for some

9Such property of Γ̂α, in fact, obtains only on a finite-dimensional subspace of L2(X ). For this, we only remark

that (i) the limit (in operator norm) of a sequence of compact operators is also compact; and (ii) the identity operator

I : MX →MX is compact if and only if dim(MX) < ∞; see Kress (1989, p.18, Theorem 2.16 and 2.19).
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mµ ∈ L2[0, 1]’, implying that m0 has square-integrable (generalized) second-derivatives. In general,

the abstract smoothness condition imposes stronger smoothness on m0, as the kernel of the integral

operator becomes smoother, or µ increases.

(ii) By definition,Mµ ⊂Mµ′ , for µ′ ≤ µ. Also, fromR((T ∗T )µ) = N⊥((T ∗T )µ) andN ((T ∗T )µ) =

N (T ), it follows that Mµ is dense in L2(X ), if T is one-to-one, i.e., m0 is identifiable.

(ii) As indicated by (14), the decaying rate of the pure regularization bias can be quite slow for µ

close to zero, and cannot exceed αµ even for µ > µ. The latter phenomenon, known as saturation of

regularization, depends on the way that R̂α,n approximates the inverse operator, T−1. We define the

qualification of a regularization method to be µ(> 0), if and only if C.3.2 holds only for µ ∈ (0, µ],

but not for µ > µ. ¥

For m0 ∈Mµ, the regularization errors separate into two parts

b̂α = (Γ̂α − I)(T̂ ∗
n T̂n)µmµ − (Γ̂α − I)[(T̂ ∗

n T̂n)µ − (T ∗T )µ]mµ, (16)

where mµ = (T ∗T )−µm0 ∈ L2(X ). For a benchmark case of m0 ∈ R(T ∗) or R(T ∗T ), the convergence

rate of b̂α follows easily from (14), since the second term is quite simple in this case. We remark

that R(T ∗) = R((T ∗T )1/2), since, by polar decomposition, T ∗ = (T ∗T )1/2U , where U is a unitary

operator such that U∗U = ID(T ∗); see Taylor and Lay (1980, p.379). Let C and Ci denote a generic

constant that is a finite real number.

Theorem 3.3 Let Uα(·) satisfy C.3.1 and C.3.2, with µ ≥ 1. Then, (i) for m0 ∈ R((T ∗T )1/2),

it holds that, for any n,

||m̂α,n −m0||L2(X ) ≤ C1√
α
||ĥ0,n − T̂nm0||L2(W) + C2α

1/2||h1||L2(W) + C3||(T̂ ∗
n − T ∗)h1||L2(X ), a.s. (17)

where h1 = T ∗−1(m0). And, (ii) for any m0 ∈M1 = R(T ∗T ), it holds that, for any n,

||m̂α,n −m0||L2(X ) ≤ C1√
α
||ĥ0,n − T̂nm0||L2(W) + C2α||m1||L2(X )

+C3

√
α||(T̂n − T )m1||L2(W) + C4||(T̂ ∗

n − T ∗)h1||L2(X )}, a.s. (18)

where m1 = (T ∗T )−1m0, and h1 = Tm1.

Theorem 3.3 shows sufficiency of C.3.1 and 3.2 for derivation of the convergence rates for the general

regularization method in (11)-at least, for specific orders of smoothness.10 The first term in (17)

10We need to know the shape of Uα(·), for the convergence rates in a more general case of µ; see the analyses in

section 4.
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or (18) is already explained. The remaining terms correspond to the asymptotic orders of the

regularization errors (̂bα). The second term represents the decaying rate of the (stochastic) pure

regularization bias, which is given by (14). It decays to zero at a faster rate, as m0 is smoother. The

last terms reflect how the estimation of the unknown operator affects the convergence rates. If m0

is further restricted to be in Mµ,ρ = (T ∗T )µ(Bρ), Theorem 4.3 can be expressed more conveniently,

by means of the uniform convergence rate of T̂n and T̂ ∗
n , where Bρ is the sphere (with radius ρ) in

L2(X ).

Corollary 3.4 Assume the conditions of Theorem 3.3. If T̂n (and T̂ ∗
n) converges uniformly to

T on L2(X ) (and T ∗ on L2(W), respectively), then, (i) for m0 ∈M1/2,ρ,

||m̂α,n −m0||L2(X ) ≤ C{ 1√
α
||ĥ0,n − T̂nm0||L2(W) + α1/2 + ||T̂ ∗

n − T ∗||L2(X )→L2(W)}, a.s.

and (ii) for m0 ∈M1,ρ,

||m̂α,n −m0||L2(X ) ≤ C{ 1√
α
||ĥ0,n − T̂nm0||L2(W) + α

+
√

α||T̂n − T ||L2(X )→L2(W) + ||T̂ ∗
n − T ∗||T (M0,ρ)→L2(X )}, a.s.

Once the estimators for ĥ0,n and T̂n are fixed, the asymptotic order of each term appearing in Corollary

3.4 can be calculated from the standard results on nonparametric estimation. To be rigorous, the

above results give only a lower bound on the convergence rates of m̂α,n. In Theorem 4.4 of the

next section, we show that a sharper bound in fact is available for a specific regularization method,

through improvements upon the last term in (18). Related to this issue, an interesting question

concerns the best-possible convergence rate attainable by approximate solutions to (6).

In mathematical inverse problems with T known, Tautenhahn (1998) showed that the best-

possible convergence rate for m0 ∈ Mµ,ρ is given by O(δ
2µ

2µ+1
n ), where δn denotes the (deterministic)

errors in estimating h0; i.e., δn = ||ĥ0,n−h0||L2(W). In the rest of the section, we extend the argument

of Tautenhahn (1998) to a statistical inverse problem in (6). To this effect, we first need to set up

a meaningful criterion for optimal bounds. Assuming that any reasonable estimation of m0 makes

use of the relation in (6), proper optimal bounds may well depend on accuracies of the preliminary

estimates, ĥ0,n or T̂n, or both. As will be made clear shortly, our characterization of the best-possible

convergence rate is closely related to the composite error bound, ||ĥ0,n − T̂nm0||L2(W). Let a large

class of estimation methods, R, consist of a (possibly nonlinear) mapping R : L2(W) → L2(X ) such
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that R(0) = 0, and the resulting estimate for m0 is defined by R(h̃), where h̃ is a given estimate of

h0. Given preliminary estimates, ĥ0,n and T̂n, such that ||ĥ0,n − T̂nm0||L2(W) = Op(δn), we define the

worst-case convergence rate of R ∈ R, for m0 ∈M ⊂ L2(X ), by

Ξ({δk},M, R) = sup
m0∈M, ||ĥ0,k−T̂km0||L2(W)=Op(δk)

E(||R(ĥ0,n)−m0||L2(X )).

A rate-optimal method R∗ in R is the one for which there exists N (≥ 1) such that

Ξ({δk},M, R∗) ≤ C inf
R∈R

Ξ({δk},M, R),

for all n ≥ N . In the appendix (the proof of Theorem 3.5), it is shown that the best-possible conver-

gence rates of any estimation method (in minimax sense) is bounded by the modulus of stochastic

equicontinuity of T̂ †
n. This generalizes the result by Ivanov et al (1978) for a deterministic case with

T known. An explicit form of such bound can be calculated, especially when M is given by Mµ,ρ.

The following theorem, in this way, establishes the best-possible convergence rate for m ∈ Mµ,ρ,

given some consistent estimates, ĥn and T̂n.

Theorem 3.5 Assume that T̂n converges pointwise to T in L2(X ), and that {δ2
k/ρ

2}∞k≥N ∈
σ((T ∗T )1+2µ), for some N ≥ 1, where σ(T ∗T ) denotes the spectrum of the self-adjoint operator T ∗T .

Then,

inf
R∈R

Ξ({δk} ,Mµ,ρ, R) = Op(δ
2µ

2µ+1
n ). (19)

According to Theorem 3.5, the optimal bound is determined jointly by the composite error bound

(δn), and the order of smoothness (µ). A faster convergence rate is possible, as both T and h are

estimated with more accuracies, and m0 becomes smoother (i.e., µ increases). The only difference

of Theorem 3.5 from the result of Tautenhahn (1998) is the replacement of the error bound, δn

= ||ĥ0,n − h0||L2(W), by δn = ||ĥ0,n − T̂nm0||L2(W). The extension is somewhat natural, since T also

has to be estimated in the statistical inverse problem. It should be pointed out that (19) cannot be

used in the same way as the usual statistical bounds, since optimality in (19) is only relative to the

accuracies of ĥ0,n and T̂n. Without additional assumptions, it does not seem possible to tell which δn

is minimal, while Stone (1982)’s bounds directly applies to δn. In this sense, we will call (19) as the

quasi-optimal bounds. An important application of the quasi-optimal bounds concerns derivation of

the actual convergence rate of a regularization method. In the rest of the paper, we will use δn to

denote the convergence rate of the composite errors, given some preliminary estimates, ĥ0,n and T̂n;

||ĥ0,n − T̂nm0||L2(W) = Op(δn).
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Remark 3.4 Let m̂α,n be a regularized estimator of m0 ∈ R(T ∗), defined by (12), where Uα(·)
satisfies C.3.1 and C.3.2, with µ ≥ 1. We suppose, as a side condition, that the given preliminary

estimates, ĥ0,n and T̂n, satisfy

||T̂ ∗
n − T ∗||L2(X )→L2(W) ≤ C||ĥ0,n − T̂nm0||1/2

L2(W).

In section 5, we will show that no strong restrictions are imposed by the side condition. From

Theorem 3.5 and Corollary 3.4(i), we obtain both lower and upper bounds on the convergence rate

of m̂α,n;

Op(δ
1/2
n ) ≤ ||m̂α,n −m0||L2(X ) ≤ Op(δn/

√
α) + Op(

√
α) + Op(δ

1/2
n ).

If we choose a regularization parameter such that α = α∗n = Cδn, the actual convergence rate

of m̂α,n is given by δ1/2
n . In other words, the above lower bound, which is in fact sharp, attains

quasi-optimality in (19), given the side condition and α = α∗n. ¥

Remark 3.5 For derivation of the optimal bound, we do not assume special properties of the

estimates for ĥn or T̂n, except that the sequence, {||ĥn − T̂nm||2L2(W)}, lies in the spectrum of the

operator, (T ∗T )1+2µ. Such assumption does not seem so strong in general, since zero is always an

accumulation point in the spectrum of T ∗T , when T has a non-closed range. If there is additional

information about the preliminary estimates, or the side condition of Theorem 3.5 is violated, one

may possibly get a faster convergence rate. ¥

4 Optimal Convergence Rates of Various Regularization Meth-

ods

While Theorem 3.3 sheds light on the asymptotic properties of the general regularization methods,

it is not clear how those results extend to a more general case of µ > 0. The main difficulties are

involved with finding a sharp bound of the term, ||(T̂ ∗
n T̂n)µ − (T ∗T )µ||L2(X )→L2(X ).

11 In this section,

11By Vainikko and Veretennikov (1986), an obvious bound is available;

||(T̂ ∗n T̂n)µ − (T ∗T )µ||L2(X )→L2(X ) ≤ C max{||T̂ ∗n − T ∗||min(µ,1)
L2(X )→L2(W), ||T̂n − T ||min(µ,1)

L2(X )→L2(W)}, a.s.

Unfortunately, the resulting bound ends up only with a quite slower convergence rate, when µ is arbitrarily close to

zero.
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we use an alternative decomposition of b̂α, to derive the convergence rates for m0 ∈Mµ (with µ > 0);

b̂α = b1α + b̂2α ≡ (Γα − I)(T ∗T )µmµ + (Γ̂α − Γα)(T ∗T )µmµ, (20)

where Γα = Uα(T ∗T )T ∗T . The first term (b1α) stands for a (deterministic) pure regularization bias,

whose asymptotic behaviors have been analyzed in detail by mathematical regularization theory.

Under C.3.2, the decaying rate of b1α is the same as (14), from Lemma 3.3. The remaining error

term (̂b2α), specific to statistical inverse problems, arises from use of estimated operators. Asymptotic

properties of b̂2α, in general, depend on a particular shape of Uα(·) as well as given estimates of T .

In mathematics literature, various regularization methods have been suggested, that satisfy the

conditions in C.3.1 and C.3.2. We select some of popular methods that are different in qualification,

and show how special features of Uα(·) affect the statistical properties of R̂α,n.

Ordinary Tikhonov Method With a choice of U1,α(λ) = (α+λ)−1, (12) leads to the ordinary

Tikhonov regularization method (OTR) such that

m̂1,α = R̂1,αĥ0,n = U1,α(T̂ ∗
n T̂n)T̂ ∗

n ĥ0,n = (αI + T̂ ∗
n T̂n)−1T̂ ∗

n ĥ0,n, (21)

By applying differential calculus in Hilbert space, one can show that m̂1,α is a unique minimizer of

the Tikhonov functional, i.e.,

m̂1,α = arg min
m(·)∈L2(X )

||T̂nm− ĥ0,n||2L2(W) + α||m||2L2(X ), (22)

see Tikhonov and Arsenin (1977). OTR cures for instability of the generalized inverse, via penal-

ization of (7), comparing to constrained minimum-distance in the compactification method.12 If the

constraint in (10) is specified in L2-norm rather than the Sobolev norm, both types of minimum-

distance are in a dual relation. They will yield the same estimates, if the regularization parameter

of OTR (α) is equal to the Lagrange multiplier implied by (10). It is straightforward to check that

C.3.1 and C.3.2 are satisfied by U1,α(·). The latter condition holds for µ ≤ 1, but not for µ > 1;

namely, the qualification of OTR is µOTR = 1. Consistency of OTR is obvious from Theorem 3.2.

For a limited case of µ (equal to 1/2 or 1), the convergence rate of OTR is also available by Theorem

3.3. The following theorem, coinciding with Theorem 3.3 in the limited case, shows how the latter

theorem extends to a general value of µ (> 0), at least for OTR.

12In the classical papers on ill-posed problems, Tikhonov (1963) and Phillips (1962) used, as a penalty term, Sobolev

norm of m and L2-norm of its derivatives, instead of ||m||2L2(X ) in (22).
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Theorem 4.1 (i) For m0 ∈ R((T ∗T )µ) with µ > 0, it holds that

||m̂1,α −m0||L2(X ) ≤ C1√
α
||ĥ0,n − T̂nm0||L2(W) + C2α

min(µ,1)||mµ||L2(X )

+C3α
min(µ−1/2,1/2)||(T̂n − T )mα,µ||L2(W) + C4α

min(µ−1/2,0)||(T̂ ∗
n − T ∗)hα,µ||L2(X ), a.s.

where mµ = (T ∗T )max(µ−1,0)mµ, mα,µ = αmin(1−µ,0)(αI + T ∗T )−1(T ∗T )µmµ ∈ Mmax(µ−1,0), and hα,µ

= αmin(1/2−µ,0)T (αI + T ∗T )−1(T ∗T )µmµ ∈ T ∗−1(Mmax(µ,1/2)).

(ii) For m0 ∈Mµ,ρ, with µ > 0, it holds that

||m̂1,α −m0||L2(X ) ≤ C{ 1√
α
||ĥ0,n − T̂nm0||L2(W) + αmin(µ,1) + αmin(µ−1/2,1/2)||T̂n − T ||Mmax(µ−1,0)→L2(W)

+αmin(µ−1/2,0)||T̂ ∗
n − T ∗||T ∗−1(Mmax(µ,1/2))→L2(X )}, a.s. (23)

Owing to the unit qualification (µOTR = 1), the decaying rate of the regularization bias of OTR (b1α),

which is given in the second term of (23), cannot be faster than α, regardless of smoothness of m0.

Similar saturation effects take place in the error term corresponding to b̂2α. Its relevant bounds, given

in the last two terms of (23), cannot be improved beyond the benchmark case of µ = 1. Applying

an argument used in Remark 3.4, we can show that the lower bounds in Theorem 4.1 leads to the

actual convergence rate of OTR, in some cases. Let µq = min{µ, q} and µ†q = max(µq, 1/2), where q

is a positive integer.

Remark 4.1 (Suboptimality of OTR) (a) Assume a side condition such that max{||T̂n −
T ||L2(X )→L2(W), ||T̂ ∗

n − T ∗||L2(W)→L2(X )} ≤ Op(δ
2µ†1/(2µ1+1)
n ). If we choose a regularization parameter,

α = α∗n = Cδ2/(2µ1+1)
n so that α−1/2||ĥ0,n − T̂nm0||L2(W) ' αµ1 , then, the last two terms in (23) are

of order, not greater than Op(α
µ1). Consequently, by Theorem 3.5 and Theorem 4.1, we have, for

m0 ∈Mµ (µ > 0), that

Op(δ
2µ

2µ+1
n ) ≤ ||m̂1,α −m0||L2(X ) ≤ Op(δ

2µ1
2µ1+1
n ).

The given choice of α = α∗(n) ensures quasi-optimality of m̂1,α, for m0 ∈Mµ with µ ≤ 1, but not for

µ > 1. Due to early saturation, the optimal bounds δ2µ/(2µ+1)
n , with µ > 1, are in facts not attainable

by OTR with any choice of α = α(n), for a similar reason in Groetsch (1983, Proposition 2.2).
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(b) If we note that constrained minimum-distance in (10) is dual to OTR (with penalization by

the Sobolev norm), suboptimality of the compactification method can be understood in a similar

way. ¥

Iterated Tikhonov Regularization A direct improvement upon OTR can be made by bias-

reduction in m̂1,α. Noting that the regularization bias of OTR (̂bα) can be estimated consistently by

(Γ̂α − I)m̂1,α, a bias-corrected version of m̂1,α is given by m̂2,α = (I + Êα)m̂1,α, where Êα = I − Γ̂α

= α(αI + T̂ ∗
n T̂n)−1. In form of (12), the estimator is written as m̂2,α = R̂2,αĥ0,n = U2,α(T̂ ∗

n T̂n)T̂ ∗
n ĥ0,n,

where U2,α(λ) = [1+α(α+λ)−1](α+λ)−1. Rewriting U2,α(λ) as [(λ+α)2−α2]/[λ(λ+α)2], it is easy

to check that C.3.1 as well as C.3.2 (with µ = 2) hold. By means of the larger qualification of R̂2,α,

the pure regularization bias of m̂α
2,n decays at the rate of O(αmin(µ,2)), leading to a faster convergence

rate than that of OTR, for m0 ∈ R((T ∗T )µ) with µ > 1. For µ > 2, further improvements are

possible, by applying a similar argument repeatedly. Letting Uq,α(λ) = [(λ + α)q − αq]/[λ(λ + α)q],

we define the iterated Tikhonov regularization of order q (hereafter, ITR(q)) by

m̂q,α = R̂q,αĥ0,n = Uq,α(T̂ ∗
n T̂n)T̂ ∗

n ĥ0,n =

q∑
j=1

Êj−1
α (αI + T̂ ∗

n T̂n)−1T̂ ∗
n ĥ0,n,

where the last equality comes from Uq,α(λ) =
∑q

j=1(
α

α+λ
)j−1( 1

α+λ
). Straightforward calculations show

that both C.3.1 and C.3.2 are satisfied by Uq,α(·), with the qualification of ITR(q) equal to q. In an

alternative way, m̂q,α can be induced from an iterative procedure

(αI + T̂ ∗
n T̂n)m̂q,α = T̂ ∗

n ĥ0,n + αm̂q−1,α, with m̂0,α = 0. (24)

The initial condition shows that OTR is equivalent to ITR(1). In (24), each step of iteration requires

the same operator to be inverted, and thus the computational costs of ITR(q) is almost the same as

that of OTR. For a variational characterization of m̂q,α, we remark that (24) is the normal equation

of the penalized minimum-distance

min
m∈L2(X )

||T̂nm− ĥ0,n||2L2(W) + α||m− m̂q−1,α||2L2(X ).

When T is known, the asymptotic properties of ITR are studied by King and Chillingworth (1979)

and Engl (1987). The following theorem gives an extension to a statistical inverse problem.

Theorem 4.2 For m0 ∈Mµ,ρ, with µ > 0, it holds that

||m̂q,α −m0||L2(X ) ≤ C{ 1√
α
||ĥ0,n − T̂nm0||L2(W) + αmin(µ,q) + αmin(µ−1/2,1/2)||T̂n − T ||Mmax(µ−1,0)→L2(W)

+αmin(µ−1/2,0)||T̂ ∗
n − T ∗||T ∗−1(Mmax(µ,1/2))→L2(X )}, a.s.
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where q is any (finite) positive integer.

The only difference of Theorem 4.2 from Theorem 4.1 lies in the faster convergence rate of the pure

regularization bias (the second term in the above bound), improving upon OTR for µ > 1.

Remark 4.2 For m0 ∈Mµ with µ ≤ q, the quasi-optimality of ITR(q) is proved in the same way

as Remark 4.1. Here, the relevant side condition to be assumed is max{||T̂n− T ||L2(X )→L2(W), ||T̂ ∗
n −

T ∗||L2(W)→L2(X )} ≤ Op(δ
2µ†q/(2µq+1)
n ). Under a choice of α = α∗n ' δ

2/(2µ
q
+1)

n , the actual convergence

rate of ITR(q) is quasi-optimal, i.e., ||m̂q,α −m0||L2(X ) = Op(δ
2µq/(2µq+1)
n ). ¥

Generalized Tikhonov Regularization Another extension of OTR has been suggested,

by Plato and Vainikko (1990) and Tautenhahn (1998), to overcome a disadvantage due to early

saturation. As in ITR, their method generalizes OTR by choosing an alternative penalty term,

but the motivation is rather different. Suppose that the true solution is known to be sufficiently

smooth, say, m ∈ R((T ∗T )µ) with µ ≥ (q − 1)/2, for positive integer q. Then, one may try to

penalize variability of m through ||(T ∗T )−(q−1)/2m||L2(X ), instead of the standard L2-norm of m.

From T being an integral operator, (T ∗T )−(q−1)/2 behaves like a differential operator, implying that

||(T ∗T )−(q−1)/2m||L2(X ) serves as L2-norm of a generalized derivative of m. The differential norm will

be useful, especially for control over highly-oscillating behaviors of a function, just like the Sobolev

norm. Those considerations give rise to the generalized Tikhonov regularization method of order q

(hereafter, GTR(q)), defined as

m̂g
q,α = min

m∈L2(X )
||T̂nm− ĥ0,n||2L2(W) + αq||(T̂ ∗

n T̂n)−(q−1)/2m||2L2(X ), for q ≥ 1.

Applying differential calculus, we can show that m̂g
q,α is the solution to the normal equation, T̂ ∗

n(T̂nm̂
g
q,α−

ĥ0,n) + αq(T̂ ∗
n T̂n)−(q−1)m̂g

q,α = 0. Hence, using U g
q,α(λ) = (αq + λq)−1λ(q−1), we can represent GTR(q)

in form of (12)

m̂g
q,α = R̂g

q,αĥ0,n = U g
q,α(T̂ ∗

n T̂n)T̂ ∗
n ĥ0,n = [αqI + (T̂ ∗

n T̂n)q]−1(T̂ ∗
n T̂n)(q−1)T̂ ∗

n ĥ0,n.

Obviously, GTR(1) reduces to OTR. All the conditions in C.3.1 and C.3.2 are satisfied by Uq,α(·),
with the qualification of GTR(q) equal to q. The theorem below shows that the convergence rate

of GTR(q) is the same as that of ITR(q). Following Remark 4.2, we also can establish the quasi-

optimality of GTR(q), for m0 ∈Mµ,ρ with µ ≤ q.

Theorem 4.3 For m0 ∈ Mµ,ρ, (with µ > 0), the same bounds as in Theorem 4.2, apply to

m̂g
q,α.
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Showalter’s Regularization The analyses so far have been confined to regularization meth-

ods of finite qualification. To give an example of infinite-qualification regularization, we consider

Showalter’s integral formula for the generalized inverse of T̂n

T̂ †
n =

∫ ∞

0

exp(−sT̂ ∗
n T̂n)T̂ ∗

nds.

Showalter (1967) showed that the above equality holds precisely on the domain of T̂ †
n, which, by the

argument above Remark 3.1, is equal to L2(W), for any finite n. A bounded approximation of T̂ †
n is

obtained by replacing the infinite interval of integral by a finite one, say, [0, 1/α]. Using

U s
α(λ) =

∫ 1/α

0

exp(−sλ)ds =

{
λ−1[1− exp(−λ

α
)], for λ > 0,

α−1 otherwise
, (25)

we define Showalter’s regularization (SW) by

m̂s
α,n = R̂s

αĥ0,n = U s
α(T̂ ∗

n T̂n)T̂ ∗
n ĥ0,n = [

∫ 1/α

0

exp(−sT̂ ∗
n T̂n)ds]T̂ ∗

n ĥ0,n.

From supx>0 x−1[1−exp(−x)] ≤ 1, C.3.1(i) holds for U s
α(·). The rest of conditions of C.3.1 and C.3.2

follow from supx≥0 exp(−x)xµ ≤ e−µµµ, and λµ|U s
α(λ)λ− 1| = αµ exp(−λ

α
)
(

λ
α

)µ
, for any µ > 0. The

latter condition implies that the qualification of SW is infinite. For mathematical inverse problems

with T known, the convergence rate of Showalter’s regularization was studied by Schock (1985) and

Engl and Gfrerer (1988). Below we extend those results to a stochastic case.

Theorem 4.4 For m0 ∈Mµ,ρ, with µ > 0, it holds that,

||m̂s
α,n −m0||L2(X ) ≤ C{ 1√

α
||ĥ0,n − T̂nm0||L2(W) + αµ

+αµ−1/2||T̂n − T ||L2(X )→L2(W) + αµ−1/2||T̂ ∗
n − T ∗||L2(W)→L2(X )}, a.s.(26)

By means of the infinite qualification, Showalter’s method does not suffer from any saturation effects,

accounting for simplicity of the convergence rate in (26), which is free of other nature of the regular-

ization scheme. The second term in (26) indicates that smoothness of m0 is sufficient to determine

the decaying rate of the pure regularization bias. The last two terms reflect additional gains of SW,

by sharpening the corresponding bounds in the previous theorems. For example, when µ > 1/2, the
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last term in (26) is of smaller order than those in Theorem 3.3(b) and Theorem 4.1 through 4.3,

since, in that case, the former decays at the rate of oa.s(||T̂ ∗
n − T ∗||L2(W)→L2(X )).

Remark 4.3 Advantages of SW over other methods are highlighted in attaining the optimal

bounds in (19), for an arbitrary order of smoothness in m0. Under a simple side condition such that

max{||T̂n− T ||L2(X )→L2(W), ||T̂ ∗
n − T ∗||L2(W)→L2(X )} ≤ Op(δ

1/(2µ+1)
n ), it follows from Theorem 3.5 and

4.4 that

Op(δ
2µ/(2µ+1)
n ) ≤ ||m̂s

α,n −m0||L2(X ) ≤ Op(δn/
√

α) + Op(α
µ) + Op(α

µ−1/2δ1/(2µ+1)
n ).

For α = α∗n ' δ
2

2µ+1
n , the actual convergence rate of SW is given by ||m̂s

α,n−m0||L2(X ) = Op(δ
2µ/(2µ+1)
n ),

which ensures quasi-optimality of m̂s
α,n, for any µ > 0. Note that the necessary side condition is

weaker than the previous ones. ¥

5 Nonparametric Kernel IV Estimates

Various types of regularized estimates are conceivable, according to different nonparametric proce-

dures for estimating h0 and T . As a preeminent example, this section applies a kernel smoothing

method to obtain the preliminary estimates. A general class of regularized kernel estimators for m0

then follow from (12). Those estimators include, as a special case, the kernel estimator (regularized

by OTR) in Darolles, Florens, and Renault (2001), although the latter depends on a slightly different

definition for h0 and T . Their estimator, lacking an exact closed form, can be computed only ap-

proximately, via an additional discretization method, such as the collocation method in Remark 3.1.

A lower bound on the convergence rate was shown for the estimator, under a simplifying condition

on the bandwidth parameters. Such a lower bound, however, turns out to be too rough to evalu-

ate the actual convergence rate, not allowing for an optimal choice of bandwidth and regularization

parameters. Moreover, early saturation of OTR prevents their estimator attaining the optimality

bounds in (19), for relatively smooth functions. In this section, we develop more advanced results

for kernel IV estimation. Using spectral theory for compact self-adjoint operators, we figure out the

closed form of the kernel estimator which is defined by the general regularization method in (12).

Consistency as well as the ‘actual’ convergence rates of those estimators are shown by applying the

statistical results in section 3 or 4. Quasi-optimal bounds play a crucial role in our developments for

the optimal choice of smoothing parameters.
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5.1 Closed Form of Kernel IV Estimates

We start with a case where there is no common element between X and W . Assume that the

underlying structural function is identified by m0 = T−1h0, where h0(w) =
∫
Y yfY,W (y, w)dy, and

T : L2(X ) → L2(W) is given by (Tm)(w) =
∫
X m(x)fX,W (x,w)dx. Let f̂Y,W,n(·, ·) and f̂X,W,n(·, ·) be a

typical kernel estimator for fY,W (·, ·) and fX,W (·, ·), respectively, from the observations {(Yi, Zi,Wi)}n
i=1

f̂Y,W,n(y, w) = n−1

n∑
i=1

Kg0(yi − y)Kg2(Wi − w),

f̂X,W,n(x,w) = n−1

n∑
i=1

Kg1(Xi − x)Kg2(Wi − w),

where Kg(s) = Πd
r=1

1
g
K(s/g), with K(·) being a symmetric function defined on the real line, and

d = dim(s). The preliminary estimates for h0 and T : L2(X ) → L2(W) are defined by

ĥ0,n(w) =

∫

Y
yf̂Y,W,n(y, w)dy = n−1

n∑
i=1

Kg2(Wi − w)Yi, (27)

and T̂n : L2(X ) → L2(W) such that

(T̂nm)(w) =

∫
f̂X,W,n(x,w)m(x)dx =

∫ [
n−1

n∑
i=1

Kg1(Xi − x)Kg2(Wi − w)

]
m(x)dx. (28)

Also, define T̂ ∗
n : L2(W) → L2(X ), by

(T̂ ∗
nh)(x) =

∫
f̂X,W,n(x, w)h(w)dw =

∫ [
n−1

n∑
i=1

Kg1(Xi − x)Kg2(Wi − w)

]
h(w)dw.

By Fubini’s Theorem, < T̂nm,h >L2(W) = < m, T̂ ∗
nh >L2(X ), a.s.; two random operators, T̂n and T̂ ∗

n ,

are adjoint to each other. The integral operator T̂n has a degenerate kernel, i.e., f̂X,W,n(·, ·) is a finite

sum of products of kernel weights on each observation (Xi,Wi). Thus, T̂n has a finite rank, with

dim(R(T̂n)) ≤ n, from which follow boundedness as well as compactness, of T̂n and the self-adjoint

operator T̂ ∗
n T̂n : L2(X ) → L2(X ).13 Applying spectral theory for compact self-adjoint operators, a

regularized kernel estimator of m0 is now well defined by (12), with T̂n and ĥ0,n given as above, as

long as Uα(·) is defined on a bounded interval, (0, λ], where λ = supn≥n0
||T̂ ∗

n T̂n||L2(X )→L2(X ).

13Namely, ||T̂n||L2(X )→L2(W)

a.s.≤ Bn, for some Bn < ∞, and for Mρ = {m ∈ L2(X ) : ||m||L2(X ) ≤ ρ}, T̂n(Mρ) is

compact in L2(W), a.s.

28



To show the closed form of the kernel IV estimator, we need the following definitions. Letting

KX
n (x) = [Kg1(X1 − x), .., Kg1(Xn − x)]′, and KW

n (w) = [Kg2(W1 − w), .., Kg1(Wn − w)]′, we define

MX =

∫

X
KX

n (x)KX
n (x)′dx, and MW =

∫

W
KW

n (w)KW
n (w)′dw.

Using integration-by-substitution, the (i, j)-th element of MW , for example, is written more com-

pactly, via a convolution-kernel function, as

MW
ij =

∫

W
Kg2(Wi − w)Kg2(Wj − w)dw = Kc

g2
(Wi −Wj),

where Kc
g2

(w) = (1/g2)
∫
W K(w/g2 − s)K(s)ds. A straightforward calculation shows that MW is a

(n× n) symmetric nonnegative semi-definite matrix, for which the square-root matrix M
1/2
W is well-

defined, satisfying MW = M
1/2
W M

1/2
W .14 Letting QX,W = n−2M

1/2
W MXM

1/2
W , QX,W is also a (n × n)

symmetric nonnegative semi-definite matrix, whose eigenvalues are all real and positive. We denote,

by λmax(QX,W ), the maximum of those eigenvalues.

Theorem 5.1 Let ĥ0,n and T̂n be defined by (27) and (28), respectively, and T̂ ∗
n be the adjoint

of T̂n. Assume that Uα(·) is any real-valued function defined on a bounded interval, (0, λ] where λ

≥ supn≥n0
λmax(QX,W ). Then, for any n ≥ n0,

m̂α,n(x) = [Uα(T̂ ∗
n T̂n)(T̂ ∗

n ĥ0,n)](x) = n−2KX
n (x)′M1/2

W Uα(QX,W )M
1/2
W y, (29)

where y = (Y1, ..Yn)′.

By Theorem 5.1, the abstract operator-form of the kernel IV estimator translates into a concrete

matrix-form. With Uα(QX,W ) calculated by the standard eigenvalues decomposition, computations

of m̂α,n only involve simple operation of finite-dimensional matrices, when the convolution-kernel

weights in MX and MW are given. For example, the kernel IV estimates, regularized by Showalter’s

method, are computed by

m̂s
α,n = [

∫ 1/α

0

exp(−sT̂ ∗
n T̂n)ds]T̂ ∗

n ĥ0,n = n−2KX
n (x)′M1/2

W U s
α(QX,W )M

1/2
W y,

with U s
α(QX,W ) = FnU s

α(Λn)F ′
n, where Λn is a diagonal matrix consisting of eigenvalues of QX,W , and

Fn is a matrix of corresponding eigenvectors.15

14a′MWW a =
∑

1≤i,,j≤n aiM
W
ij aj =

∫
W [

∑n
i=1 aiKh(Wi − w)]2 dw ≥ 0, for any a( 6= 0) ∈ Rn. For positive-

definiteness of MW , it suffices to assume that {Kh(Wi − ·)}n
i=1 is linearly independent.

15Letting λi,n be the i-th eigenvalue of QX,W , [Us
α(Λn)](i,i) is equal to λ−1

i,n[1 − exp(−λi,n/α)], for λi,n > 0, and

equal to α−1, otherwise; see (25) in section 4.
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Remark 5.1. (i) Suppose that K(·) is a density function from a stable distribution, say, a

gaussian kernel. Then, a further simplification of the convolution-kernel weight is available;

MW
ij = Kc

g2
(Wi −Wj) = K√

2g2
(Wi −Wj),

from Kc(s) = K(s/
√

2)/
√

2, since, by the stability assumption, the shape of a convoluted density

function is not changed, except that the variance doubles. In that case, all the matrices in (29) are

calculated in a straightforward way. In general, when there is no explicit form for the convolution

kernel, we can compute Kc(·) by numerical integration.

(ii) By Theorem 5.1, the naive minimum-distance estimator in section 3.1 has a closed form

m̂†
n(x) = KX

n (x)′M1/2
W (M

1/2
W MXM

1/2
W )†M1/2

W y.

If both KX
n (·) and KW

n (·) are assumed to be linearly independent, then, MW and MX are positive

definite, from which we get m̂†
n(x) = KX

n (x)′M−1
X y. From

(T̂nm̂†
n)(w) =

∫
f̂X,W,n(x,w)m̂†

n(x)dx = n−1KW
n (w)′ < KX

n (·), KX′
n (·) >L2(X ) M−1

X y

= n−1KW
n (w)′y = ĥ0,n(w),

m̂†
n(·) is confirmed to be one of the exact solutions to the integral equation, T̂nm = ĥ0,n, where T̂n

is in general not invertible. By definition of the generalized inverse, m̂†
n(·) will be the solution of

minimum-norm. Instability of m̂†
n is obvious from the minimum eigenvalue of MX converging to zero,

as n →∞, since a pair of elements in KX
n (·) should become arbitrarily close to each other.

(iii) In Darolles, Florens, and Renault (2001), an alternative kernel estimator of m0 is defined,

based on OTR, by m̃α,n = [αI + T̃ ∗
n T̃n]−1T̃ ∗

n h̃n, where (T̃nm)(w) =
∫

f̂X|W,n(x|w)m(x)dx, and h̃n(w)

=
∫
Y yf̂Y |W,n(y|w)dy. Unlike m̂α,n in (29), their estimator does not possess an exact closed form.

(iv) Let f̂ c
X,W,n(x,w) = n−1

∑n
i=1 Kg1(Xi − x)Kc

g2
(Wi − w), where Kc(·) be a convolution kernel

function in the above. Denote, by f̂ c
X,W,n(x,W), the column vector of the joint density estimates,

[f̂ c
X,W,n(x,W1), .., f̂

c
X,W,n(x,Wn)]′. In a matrix form, f̂ c′

X,W,n(x,W) = n−1KX′
n (x)MW . From T̂ ∗

n ĥn =

n−2KX′
n (·)MWy = n−1f̂ c′

X,W,n(·,W)y, we rewrite m̂α,n(·) in (29) as

[Rα
n(ĥ0,n)](x) = [Uα(T̂ ∗

n T̂n)(n−1f̂ c′
X,W (·,W)y)](x) = n−1

n∑
i=1

[
Uα(T̂ ∗

n T̂n)f̂ c
XW (·,Wi)

]
(x)yi.

This shows that m̂α,n(·) includes, as a special case with Uα(λ) = (α + λ)−1, the kernel estimator

suggested by Hall and Horowitz (2003). ¥
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We turn to an extension to a common-element case, where X = (Z,W1) and W = (W1,W2). Let

m0 be identified by T−1h0, where h0(w) =
∫
Y yfY,W (y, w)dy, and T : L2(X ) → L2(W) is given by

(Tm)(w) =
∫
Z m(z, w1)fZ,W (z, w)dz. We will use the same estimate of h0 as (27). Using

f̂Z,W1,W2(z, w1, w2) = n−1

n∑
i=1

Kg1(Zi − x)Kg2(W1i − w1)Kg2(W2i − w2),

the preliminary estimates of T and its adjoint are defined, in a similar way to (28), by

(T̂nm)(w1, w2) =

∫

Z
m(z, w1)f̂Z,W1,W2(z, w1, w2)dz, and (30)

(T̂ ∗
nh)(z, w1) =

∫

W2

h(w1, w2)f̂Z,W1,W2(z, w1, w2)dw2,

respectively. A regularized kernel estimator of m0, in the presence of common elements between X

and W , is defined by (12), with T̂n and T̂ ∗
n are modified as above. Letting KX

n (z, w1) = [Kg1(Z1 −
z)Kg2(W11−w1), .., Kg1(Zn− z)Kg2(W1n−w1)]

′, and KW2
n (w2) = [Kg2(W21−w2), .., Kg1(W2n−w2)]

′,

we define

M(Z,W1)(w1) =

∫

Z
KX

n (z, w1)K
X
n (z, w1)

′dz, MW2 =

∫

W2

KW2
n (w2)K

W2
n (w2)

′dw2,

and

QZ,W (w1) = n−2M
1/2
W2

M(Z,W1)(w1)M
1/2
W2

,

where M
1/2
W2

is the square-root of MW2 . With A ¯ B denoting the matrix Hadamard product (i.e.,

element-by-element multiplication), M(Z,W1)(w1) is equivalent to [MZ ¯KW1(w1)], where the (i, j)-th

element of MZ and KW1(w1) is given by MZ
ij = Kc

g1
(Zi − Zj) and KW1

ij (w1) = Kg2(W1i − W1j),

respectively. Note that QZ,W (w1), a function of w1, is symmetric and nonnegative semi-definite, for

any w1 ∈ W1.

Theorem 5.2 Let ĥ0,n and T̂n be defined by (27) and (30), respectively, and T̂ ∗
n be the adjoint

of T̂n. Assume that Uα(·) is any real-valued function defined on a bounded interval, (0, λ] where λ

≥ supw1∈W1
supn≥n0

λmax(QZ,W (w1)). Then, for any n ≥ n0,

m̂α,n(z, w1) = [Uα(T̂ ∗
n T̂n)(T̂ ∗

n ĥ0,n)](z, w1) = n−2KX
n (z, w1)

′M1/2
W2

Uα(QZ,W (w1))M
1/2
W2

[KW1
n (w1)¯ y].

(31)

Using the matrix Hadamard product, we may rewrite m̂α,n(z, w1) in Theorem 5.2 as

n−2[KZ
n (z)¯KW1

n (w1)]
′M1/2

W2
Uα(n−2M

1/2
W2

[MZ ¯ {KW1
n (w1)K

W1
n (w1)

′}]M1/2
W2

)M
1/2
W2

[KW1
n (w1)¯ y],

31



which shows how the kernel IV estimator in (29) is generalized by the presence of W1, the common

elements between X and W . No additional difficulties arise in computing m̂α,n(z, w1), compared to

m̂α,n(x) in Theorem 5.1.

5.2 Optimal Convergence Rates

We continue to analyze asymptotic properties of the kernel estimators in the previous section. Con-

sidering that (29) is a special case of (31), our asymptotic derivations will focus on a common-element

case, as specified by the first condition below.

C.5.1 (a) The random vector (Yi, Zi,Wi) is independent and identically distributed, satisfying

(1)-(3), with m0 identified by T−1h0, where h0(w) =
∫
Y yfY,W (y, w)dy, and the injective operator

T : L2(X ) → L2(W) is such that (Tm)(w) =
∫
Z m(z, w1)fZ,W (z, w)dz. We assume that d2 ≥ d1. (b)

E(Y 2|W = w) is bounded uniformly in w, a.s.

C.5.2 Let K(·) ∈ Kp∗ , where Kp∗ is the class of all Borel measurable symmetric real-valued

functions K(s) such that (a)

∫
|K(s)|ds < ∞,

∫
K(s)ds = 1,

∫
K2(s)ds < ∞, sup |K(s)| < ∞,

and (b)
∫

sjK(s)ds = 0, for j = 1, .., p∗ − 1, and µp∗(K) =
∫

sp∗K(s)ds < ∞, where p∗ is an even

integer.

C.5.3 The joint density functions fZ,W (·, ·) is square-integrable and bounded;

∫

W

∫

Z
f 2

Z,W (z, w)dzdw < ∞, and sup
(z,w)∈Z×W

fZ,W (z, w) ≤ C < ∞.

C.5.4 fZ,W (·, ·) and m0(·) have continuous p0-th and p1-th partial derivatives, respectively, that

are square-integrable, where p0 ≥ d1/2.

C.5.5 (a) The bandwidth parameters (g1, g2) satisfy that max(g1, g2) → 0, ngd2
2 →∞. (a) The

regularization parameter α satisfies that α → 0, ngd2
2 α →∞, and gp0

1 /
√

α → 0, as n →∞.

All the technical conditions in C.5.2 through C.5.4 are standard in nonparametric kernel estimation.

The joint density function is not required to have a compact support, nor restricted to be bounded

away from zero. The square-integrability condition in C.5.3 entails boundedness of the linear operator

T . C.5.5(b), which is rather stronger than C.5.5(a), is necessary for consistency of the regularized
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kernel estimates. Let ĥ0,n and T̂n be given by (27) and (30), respectively. Our first result concerns

sufficiency of the above conditions for derivation of the basic properties of the preliminary estimates,

including consistency and the convergence rates.

Proposition 5.3 Suppose that C.5.1 through C.5.3, and C.5.5(a) hold. Then,

(i) T̂n is uniformly consistent for T , i.e., ||T̂n − T ||L2(X )→L2(W)
p→ 0, as n →∞.

Assume additionally that C.5.4 holds and K(·) ∈ Kp∗ , with p∗ ≥ p = max(p0, p1). Then,

(ii) ||T̂n − T ||L2(X )→L2(W) = Op(1/

√
ngd2

2 + gp0

1 + gp0

2 }),

||T̂ ∗
n − T ∗||L2(W)→L2(X ) = Op(1/

√
ngd1

1 + gp0

1 + gp0

2 }), and

(iii) ||ĥ0,n − T̂nm0||L2(W) = Op(1/

√
ngd2

2 + gp
1).

Let m̂α,n be the kernel estimates defined by (31). When Uα(·) satisfies C.3.1 and 3.2, the asymptotic

properties of the general kernel estimates can be shown from Proposition 5.3, applied to Theorem

3.2 and Theorem 3.3 (or Corollary 3.4).

Theorem 5.4 Assume that C.5.1 through C.5.5 hold, with p0 = p1, and Uα(·) satisfies C.3.1.

Then,

(i) ||m̂α,n −m0||L2(X )
p→ 0, as n →∞, for all m0 ∈ L2(X ).

Assume additionally that Uα(·) satisfies C.3.2, with µ ≥ 1. Then,

(ii) ||m̂α,n−m0||L2(X ) ≤ Op(
1√
α

[
1√
ngd2

2

+ gp0

1 ]) + Op(
1√
ngd1

1

+ gp0

2 ) +

{
Op(

√
α), for m0 ∈M1/2,ρ,

Op(α), for m0 ∈M1,ρ,

Using the argument in Remark 3.4, we can show that, under additional conditions on (g1, g2, α), the

lower bounds in Theorem 5.4 gives rise to the actual convergence rates of m̂α,n. Throughout this

section, a vector of smoothing parameters (g1, g2, α) is called quasi-optimal, if it allows for m̂α,n in

(31) to attain the bounds in (19).

Theorem 5.5 Assume that C.5.1 through C.5.5 hold, with p0 = p1, and Uα(·) satisfies C.3.1

and C.3.2, with µ ≥ 1.
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(i) Let m0 be any function in M1/2,ρ. Suppose that the bandwidth parameters (g1, g2) satisfy

a side condition such that (ngd1
1 )−1/2 ≤ O(g

p0/2
1 ), and g2p0

2 ≤ O([ngd2
2 ]−1/2). Then, the optimal

convergence rate of m̂α,n is given by ||m̂α,n − m0||L2(X ) = Op(n
− p0

4p0+d2 ), under the of smoothing

parameters such that g∗1n = C0n
− 1

p0+d1 , g∗2n = C1n
− 1

4p0+d2 , and α∗n = C2n
− 2p0

4p0+d2 .

(ii) Let m0 be any function in M1,ρ. Suppose a side condition on (g1, g2) such that (ngd1
1 )−1/2

≤ O(g
2p0/3
1 ), and g

3p0/2
2 ≤ O([ngd2

2 ]−1/2). Then, the optimal convergence rate of m̂α,n is given by

||m̂α,n −m0||L2(X ) = Op(n
− p0

3p0+d2 ), under the optimal choice of smoothing parameters such that g∗1n

= C0n
− 1

(4/3)p0+d1 , g∗2n = C1n
− 1

3p0+d2 , and α∗n = C2n
− p0

3p0+d2 .

Remark 5.2 (i) Minimizing the lower bounds in Theorem 5.4 w.r.t. (g1, g2, α) can provide an

alternative way to find the optimal choice of the smoothing parameters. Due to trade-off between the

variance and bias terms, the lower bounds corresponding to m0 ∈M1,ρ, for example, are minimized

by (g∗∗1n, g
∗∗
2n, α∗∗n ) such that 1/

√
nα∗∗n g∗∗d2

2n ' g∗∗p0

2n , 1/
√

ng∗∗d1
1n ' g∗∗p0

1n /
√

α∗∗n , and α∗∗n ' (1/
√

ng∗∗d2
2n +

g∗∗p0

1n )/
√

α∗∗n . From g∗∗2n ' (nα∗∗n )−1/(2p0+d2) and g∗∗1n ' (n/α∗∗n )−1/(2p0+d1), it follows that g∗∗p0

1

√
ng∗∗d2

2n

= o(α
∗∗(p0−d2/2)/(2p0+d2)
n ) = o(1), by the assumptions of d1 ≤ d2 and d2/2 ≤ p0, implying that α∗∗n '

1/
√

nα∗∗n g∗∗d2
2n . As a consequence, α∗∗n ' α∗n ' n

− p0
3p0+d2 and g∗∗2n ' g∗2n ' n

− 1
3p0+d2 , which leads to the

same convergence rate as in Theorem 5.5.(ii). Difference of g∗∗1n from g∗1n only affects the terms of

second order.

(ii) When p0 = 2 and d2 = 1, we get, from Theorem 5.5.(ii), ||m̂α,n−m0||L2(X ) = Op(n
− 2

7 ), which

is faster than the rate Op(n
− 1

4 ) of Darolles, Florens, and Renault (2001), but slower than Op(n
− 2

5 )

available for kernel estimation of reduced forms. Roughly speaking, the optimal choice (g∗1n, g
∗
2n)

requires undersmoothing in the direction of Z and oversmoothing in the direction of W , compared

to the standard kernel estimation of joint density functions. ¥

Results in Theorem 5.4 and 5.5 have been derived only for the benchmark case of m0 ∈ M1/2 or

M1, although no specific form of Uα(·) is assumed except C.3.1 and C.3.2. For a general case of

m0 ∈ Mµ(with µ > 0), we will use Theorem 4.1 through 4.4 to show the convergence rates of m̂α,n,

regularized by (the ordinary/iterated/generalized) Tikhonov and Showalter’s methods.

Theorem 5.6 Assume that C.5.1 through C.5.5 hold with p0 = p1, and m0(·) ∈ Mµ,ρ, with

µ > 0.
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(i) Let m̂s
α,n be given by (31), with Uα(·) = U s

α(·) in (25). Then, it holds

||m̂s
α,n −m0||L2(X ) ≤ Op(

1√
α

[
1√
ngd2

2

+ gp0

1 ]) + Op(α
µ) + Op(α

µ−1/2[
1√
ngd1

1

+ gp0

2 ]).

Assume a side condition on (g1, g2) such that

(ngd1
1n)−1/2 ≤ O(g

p0/(2µ+1)
1n ), and g

p0(2µ+1)
2n ≤ O(1/

√
ngd2

2n).

Then, the optimal convergence rate of m̂α,n is given by

||m̂s
α,n −m0||L2(X ) = Op(n

− 2µp0
2(2µ+1)p0+d2 ),

under the choice of smoothing parameters such that

g∗1n = C0n
− (2µ+1)

2p0+(2µ+1)d1 , g∗2n = C1n
− 1

2(2µ+1)p0+d2 , and α∗n = C2n
− 2p0

2(2µ+1)p0+d2 .

(ii) Let m̂q
α,n be given by (31) with Uα(·) = Uq,α(·) or U g

q,α(·), as defined in section 4, where q ≥ 1.

Then, it holds

||m̂q
α,n −m0||L2(X ) ≤ Op(

1√
α

[
1√
ngd2

2

+ gp0

1 ]) + Op(α
min(µ,q)) + Op(α

min(µ−1/2,0)[
1√
ngd1

1

+ gp0

2 ]).

Assume a side condition on (g1, g2) such that

(ngd1
1n)−1/2 ≤ O(g

2µ†qp0/(2µq+1)

1n ), and g
p0(2µq+1)/2µ†q
2n ≤ O(1/

√
ngd2

2n),

where µq = min(µ, q) and µ†q = max(µq, 1/2). Then, the optimal convergence rate is given by

||m̂q
α,n −m0||L2(X ) = Op(n

− 2µqp0

2(2µq+1)p0+2µ
†
qd2 ),

under the choice of smoothing parameters such that

g∗1n = C0n
− (2µq+1)

4µ
†
qp0+(2µq+1)d1 , g∗2n = C1n

− 2µ
†
q

2(2µq+1)p0+2µ
†
qd2 , and α∗n = C2n

− 2p0

2(2µq+1)p0+2µ
†
qd2 .
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The optimal rates of convergence in Theorem 5.6 can be obtained by minimizing (w.r.t. g1, g2, and

α) the lower bounds given in Theorem 5.6. As in Remark 5.2, two methods give rise to the same

choice of (g∗2n, α∗n), with different g1’s of only second-order effect.

Remark 5.3 (i) Note that the lower bounds in Theorem 5.6.(i) are sharper than that of Theorem

5.4.(ii), at least for m0 ∈ M1,ρ. The improvement occurs because the former, unlike the latter, has

been derived under a specific feature of Showalter’s method. By means of a weaker side condition,

Showalter’s method can possibly give the faster optimal rate of convergence than are allowed by

Theorem 5.5.(ii), which is based on a general regularization method of C.3.1 and C.3.3. The optimal

rates of convergence of m̂s
α,n and m̂q

α,n are the same, only for the case with µ ≤ 1/2, where µq = µ

and µ†q = 1/2. Otherwise, the former is better. For q < µ, the convergence rates of m̂q
α,n do not

improve, as µ increases. This confirms the fact that the three variants of Tikhonov methods are not

free from the saturation effects, due to finite-qualification.

(ii) Theorem 5.6 shows that the convergence rate of m̂s
α,n gets faster, as p1(= p0) or µ increase,

i.e., m0 becomes smoother. Kernel estimation of structural functions also suffers from the curse of

dimensionality. Here, the dimensionality is determined by W , rather than X. This may seem natural,

if we consider that statistical properties of m̂α,n depend crucially on the accuracies of the preliminary

estimates ĥ0 and T̂n. Assuming dim(W ) ≥ dim(X) as a regularity condition, the optimal convergence

rate of m̂s
α,n will deteriorate as dim(X) increases. Owing to ill-posedness of the problems, Stones’s

bounds are not attainable by m̂s
α,n, when p0 > (d2/2)(2µ + 1). We think that the condition is not

too strong, since greater µ is generally accompanied by higher order of differentiability. ¥

5.3 Numerical Example

In this section, we carry out a small scale Monte Carlo experiment to investigate the finite sample

properties of the kernel IV estimators studied in the previous sections. The design for simulation is as

follows. Assuming that (X, W, ε)′ ∼ N(0, Σ), samples {(Yi, Xi,Wi)}n
i=1 of size n = 200 are generated

from a bivariate model,

Yi =
√

2 cos(Xi) + εi, (32)

where

Σ =




1 1/
√

2 1/
√

8

1/
√

2 1 0

1/
√

8 0 1/2


 .
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Our interest is in applying the kernel IV estimates (m̂α,n) in (29) to estimate the regression function

(m0(x) ≡ √
2 cos(x)) of the model (32). To see how different regularization methods perform in finite

samples, we will consider the kernel estimates regularized by OTR/ITR(2)/GTR(2) and SW. The

specific forms of the preliminary estimates in (27) and (28) are fixed by the gaussian kernel function,

together with the common bandwidth parameters;

(g1, g2) = (g, g), with g ∈ G = {0.3, 0.4, 0.5, 0.6}.

For practical reasons, various regularization parameters are used in calculating m̂α,n such that

α ∈ A = {0.001, 0.005, 0.01, 0.015, 0.02}.

As argued in Remark 5.1, no numerical integration is necessary for computing MW or QX,W , in this

(gaussian kernel) case. For each simulated data, we compute m̂α,n(x) at the 19 quantiles (from 5%

through 95%) of x, obtaining a sample pointwise MSE (mean squared errors) of m̂α,n. The same

procedure is repeated 1000 times for the whole experiment, which allows us to approximate the true

MSE by averaging the sample MSE’s over all repetitions. The simulation results are summarized in

Table 1, showing the estimated MSE of the various regularized estimates, as well as its decomposition

into the squared-bias and variance terms (the two numbers in the parenthesis). The bias term is

computed by comparing the true function (m0(·)) and an average (over repetitions) of the estimates

(m̂α,n) at each fixed quantile of x. The variance term is defined by the rest of MSE from the squared-

bias. Figure 1(a) through (d) display the averaged estimates of the four regularization methods over

various α’s, with g set to be a representative value of 0.4. Figure 2 collects some of those averaged

estimates that correspond to the optimal choice of α (with g = 0.4), where the optimality criterion

is to minimize MSE. Our interpretation of the results is as follows.

(i) Both Table 1 and Figure 1 show that the regularized IV estimates perform reasonably well

under the given sample size, as long as α is not too small (i.e., for α ≥ 0.005). To one’s expectation,

the naive kernel estimates (corresponding to α = 0, not shown) turn out to suffer from drastically

large MSE’s, indicative of the instability problem due to ill-posedness of the IV estimation.

(ii) When α = 0.005 is chosen, four different regularization methods show similar values of MSE.

We achieve slight improvements in the bias term from using ITR(2) or SW rather than OTR. However,

the gains are blurred by increases in the variance term, implying that the overall performances of

the four methods are similar to each other.

(iii) For other values of α (≥ 0.01), the MSE of OTR is much larger than that of other regulariza-

tion methods. As α increases, the OTR estimates are getting worse, while the estimates from ITR(2),
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GTR(2) and SW are still performing well or even better. The bias-variance decompositions in Table

1 reveal that such deterioration in the statistical errors of OTR is attributable to a larger increase in

the (regularization) bias term. This also can be corroborated from looking at Fig. 1 which depicts

different bias-characteristics of OTR and ITR(2)/GTR(2)/SW by varying a regularization parameter

α. Roughly speaking, our simulation results partly support the asymptotic results in section 4 that

the refined regularization methods of ITR, GTR and SW have an advantage in bias reduction over

OTR.

(iv) To summarize, given the simulation design in (32), we get similar minimum MSE’s from

the regularization methods of OTR/ITR(2)/GTR(2) and SW, applied to the kernel IV estimates in

(29); see the numbers with ∗ in Table 1. That is, the four methods show no significant differences in

statistical accuracies, when the smoothing parameters are chosen optimally.16 Fig. 2 highlights the

similarities in the bias terms of different methods for that case. As argued in (iii), the finite sample

properties of OTR, however, are quite different from the other methods in that the bias term of the

former is highly sensitive to a small change from the optimal regularization parameter.

A Appendices

A.1 Section 2

Proof of Theorem 2.2 (i) Suppose that T is not one-to-one, i.e., there exists a nonzero function

m∗ ∈ L2(X ) such that (Tm∗)(w) = 0, for all w ∈ W . From

(Tm∗)(ωl) =

∫

X
m∗(x)fX,W (x, ωl)dx = < m∗(·), fX,W (·, ωl) >L2(X )= 0, for any ωl ∈ W ,

it follows that m∗ is orthogonal to any linear combination of {fX,W (·, ωl)}∞l=1, i.e.,

m∗ ∈ [lin{fX,W (·, ωl)}∞l=1]
⊥.

Since the orthogonal complement of lin{fX,W (·, ωl)}∞l=1 includes a nonzero function, lin{fX,W (·, ωl)}∞l=1

is a proper subset of L2(X ), contradicting to denseness of lin{fX,W (·, ωl) in L2(X ).

(ii) Noting that R(T ) = N⊥(T ∗), it suffices to show that T ∗ is one-to-one from L2(W) to L2(X ),

under C.2.2. The proof is direct from symmetry of the argument used in (i). ¥
16This occurs when the degree of the abstract smoothness of m0 does not exceed one. See the arguments in Theorem

3.3, for example.
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Proof of Theorem 2.3 (i) Suppose that C.2.1 is violated for some dense subset W of W , i.e.,

[lin{fX,W (·, ωl)}∞l=1]
⊥ is not empty. Then, there exists nonzero m∗in L2(X ), which is orthogonal to

any linear combination of {fX,W (·, ωl)}∞l=1. Letting h∗(w) ≡ (Tm∗)(w), this implies that

h∗(w) =

∫

X
m∗(x)fX,W (x,w)dx = < m∗(·), fX,W (·, w) >L2(X )= 0, for all w ∈ W .

Note that h∗(·) is continuous in w, due to continuity of fX,W (·, ·) on X ×W . Since h∗(·) = 0, on a

dense subset of W , it follows from continuity of h(·) that h∗(w) = (Tm∗)(w) = 0, for all w ∈ W ,

which contradicts to the assumption that T is one-to-one.

(ii) From R(T ) = N⊥(T ∗), the proof is direct from symmetry of the argument for showing part

(i). ¥

Proof of Theorem 2.4 We only show the first assertion, since the second is clear by symmetry.

Suppose that there exists nonzero m0(·) ∈ L2(X ) with Tm0 = 0. This means that there exists a subset

W1 ofW1 (withW1 not measure zero) such that m0(z, ω1) is a nonzero function of z, for all ω1 ∈ W1,

but (Tω1m0)(w2) = 0, for all ω1 ∈ W1, where Tω1 : L2(Z) → L2(W2) is given by (Tω1m)(w2) =∫
Z m(z, ω1)fZ,W1,W2(z, ω1, w2)dz. Since for all ω1 ∈ W1, lin{fZ,W1,W2(·, ω1, ω2l)}∞l=1 is dense in L2(Z),

it follows that ||Pfω
L
m(·, ω1)−m(·, ω1)||L2(Z) → 0, as L →∞, for any m(·, ω1) ∈ L2(Z). Consequently,

there exists L∗(depending on m0) such that ||Pfω
L
m0(·, ω1)||L2(Z) ≥ ||m0(·, ω1)||L2(Z)/2 > 0. This is a

contradiction, since, from Tω1m0 = 0,

(Pfω
L
m0(·, ω1))(z, ω1) = fω

L (z)′Q∗†
ωω[{Tωm0(·, ω1)}(ω1, ω2l)]

L
l=1 = 0, for any L(≥ 1).

¥

A.2 Section 3

The following lemmas are useful for showing the main results of Section 3 and 4.

Definition A sequence of linear random operators T̂n : M→H is asymptotically one-to-one, if

and only if PN (T̂n) converges pointwise to zero, in probability; i.e., for any m ∈M, ||PN (T̂n)m||M
p→ 0.

Lemma 3.1 Assume that a sequence of random operators T̂n : M→H converges pointwise, in

probability, to a bounded operator T : M→H which is one-to-one, where M and H are a Hilbert

space. Then, T̂n : M→H is asymptotically one-to-one.
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Proof. From N (T ) = N (T ∗T ) = R⊥(T ∗T ), injectivity of T : M→H is equivalent to that

T ∗T has a dense range in M. That is, for any arbitrary element m0 in M, there exists a sequence

{ml}∞l=1 such that T ∗Tml → m0, as l →∞. By the triangle inequality, for any l,

||(T̂ ∗
n T̂n − T ∗T )ml||M ≤ ||T̂ ∗

n(T̂n − T )ml||M + ||(T̂ ∗
n − T ∗)Tml||M, a.s. (33)

From (T̂ ∗
n − T ∗) = (T̂n − T )∗, pointwise convergence of T̂n to T implies that, for any h ∈ H,

||(T̂ ∗
n − T ∗)h||2M = < (T̂ ∗

n − T ∗)h, (T̂ ∗
n − T ∗)h >M

= < h, (T̂n − T )m̃ >H
p→ 0, as n →∞,

by continuity of the inner product, where m̃ = (T̂ ∗
n − T ∗)h. This shows negligibility of the second

term in the righthand-side of (33). In addition, for any fixed h ∈ H, ||T̂ ∗
nh||M ≤ ||(T̂ ∗

n − T ∗)h||M +

||T ∗h||M ≤ C||T ∗h||M, for n sufficiently large, which, by boundedness of T , gives

sup
n
||T̂ ∗

nh||M = Op(1), for each h ∈ H.

By the Principle of Uniform Boundedness-see Taylor and Lay (1980, p.190), the above implies that

the sequence {T̂ ∗
n} is bounded uniformly in n, i.e., supn ||T̂ ∗

n ||H→M = Op(1).17 Negligibility of the

first term in the righthand-side of (33) follows from pointwise convergence of T̂n to T , since ||T̂ ∗
n(T̂n−

T )ml||M ≤ ||T̂ ∗
n ||H→M||(T̂n − T )ml||M = Op(1)||(T̂n − T )ml||M p→ 0, as n →∞, for any ml ∈M. In

consequence, T̂ ∗
n T̂n converges pointwise to T ∗T in M, which, together with the definition of {ml}∞l=1,

leads to

||(T̂ ∗
n T̂n)ml −m0||M ≤ ||(T̂ ∗

n T̂n − T ∗T )ml||M + ||(T ∗T )ml −m0||M p→ 0, as max(n, l) →∞.

Using M = R⊥(T̂ ∗
n T̂n) ⊕ R(T̂ ∗

n T̂n), we have, by the orthogonal projection in Hilbert space, that

m0 = PR⊥(T̂ ∗n T̂n)m0 + PR(T̂ ∗n T̂n)m0, yielding

||PN (T̂ ∗n T̂n)m0||M = ||PR⊥(T̂ ∗n T̂n)m0||M = ||PR(T̂ ∗n T̂n)m0 −m0||M
= inf

m∈R(T̂ ∗n T̂n)
||m−m0||M ≤ ||(T̂ ∗

n T̂n)ml −m0||M p→ 0, as n →∞,

17Suppose that M and H are normed linear spaces, and M is complete. Let {Tn}∞n=1 be a sequence of linear

bounded operators, Tn : M→H, such that

sup
n≥1

||Tnm||H < ∞, for each m ∈M.

Then, supn≥1 ||Tn|| < ∞.
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where the last inequality holds from (T̂ ∗
n T̂n)ml ∈ R(T̂ ∗

n T̂n). Since this result holds for any m0 ∈ M,

and N (T̂ ∗
n T̂n) = N (T̂n), the assertion is proved. ¥

Lemma 3.2 Suppose that Uα(·) satisfies C.3.1, and T̂n : L2(X ) → L2(W) has a finite rank. If

α = α(n) → 0 as n →∞, then,

(i) ||Uα(T̂ ∗
n T̂n)||L2(X )→L2(X ) = Oa.s(α

−1),

(ii) ||R̂α,n||L2(W)→L2(X ) = Oa.s(
√

α
−1

),

Assume additionally that T̂n : L2(X ) → L2(W) converges pointwise, in probability, to T :

L2(X ) → L2(W) which is bounded and one-to-one. Then,

(iii) ||[Uα(T̂ ∗
n T̂n)T̂ ∗

n T̂n − I]m||L2(X ) = op(1), for all m ∈ L2(X ).

Proof From finite rank of T̂n, the self-adjoint operator T̂ ∗
n T̂n is compact and thereby has a

spectral representation, such as T̂ ∗
n T̂n(·) =

∑Jn

j=1 λjPvj
, where λj’s and Pvj

’s denote the eigenvalues

of T̂ ∗
n T̂n and the orthogonal projection onto the eigenspace generated by the eigenfunction, vj, that

corresponds to λj, respectively. With λ = supn≥n0
{ ||T̂ ∗

n T̂n||L2(X )→L2(X )}, we get, by spectral calculus,

that

||Uα(T̂ ∗
n T̂n)m||2L2(X ) =

Jn∑
j=1

U2
α(λj)||Pvj

m||2L2(X ) ≤ sup
λ∈(0,λ]

|Uα(λ)|2
Jn∑
j=1

||Pvj
m||2L2(X )

≤ α−2||
Jn∑
j=1

Pvj
m||2L2(X ), a.s, for α → 0+,

where the last inequality comes from C.3.1(iii) and orthogonality of vj and vj′ , for j 6= j′. Since∑Jn

j=1 Pvj
is itself a projection operator, it holds that ||∑Jn

j=1 Pvj
||L2(X )→L2(X ) ≤ 1, implying

||Uα(T̂ ∗
n T̂n)||2L2(X )→L2(X ) = sup

m∈L2(X )

||Uα(T̂ ∗
n T̂n)m||2L2(X )/||m||2L2(X ) ≤ α−2||

Jn∑
j=1

Pvj
||2L2(X ) = α−2, a.s.

This completes the proof for (i). In a similar way, letting Qj be the projection onto the space

generated by T̂nvj ∈ L2(W), the singular values decomposition of T̂ ∗
n T̂n yields

||Uα(T̂ ∗
n T̂n)T̂ ∗

nh||2L2(X ) =
Jn∑
j=1

U2
α(λj)λj||Qjh||2L2(W) ≤ sup

λ
|Uα(λ)λ| sup

λ
|Uα(λ)|

Jn∑
j

||Qjh||2L2(W)

≤ sup
λ
|Uα(λ)λ| sup

λ
|Uα(λ)|||h||2L2(W), a.s.
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From C.3.1(i) and (iii), we get

sup
h∈L2(W)

||Uα(T̂ ∗
n T̂n)T̂ ∗

nh||2L2(X )

||h||2L2(W)

≤ C sup
λ
|Uα(λ)| ≤ Cα−1, a.s,

proving (ii). For a proof of (iii), we let Jn,1 = {j ∈ I+ : j ≤ Jn, λj > 0}, and PN (T̂ ∗n T̂n) the

orthogonal projection onto the null space of T̂ ∗
n T̂n. From Uα(T̂ ∗

n T̂n)T̂ ∗
n T̂n =

∑
j∈Jn,1

Uα(λj)λjPvj
, and

I =
∑

j∈Jn,1
Pvj

+ PN (T̂ ∗n T̂n), it follows that

||[Uα(T̂ ∗
n T̂n)T̂ ∗

n T̂n − I]m||2L2(X )

=
∑

j∈Jn,1

[Uα(λj)λj − 1]2||Pvj
m||2L2(X ) + ||PN (T̂ ∗n T̂n)m||2L2(X ).

By the Dominated Convergence Theorem, the first term converges to zero, a.s, as n → 0, since, by

C.3.1(ii),

lim
α→0

∑
j∈Jn,1

[Uα(λj)λj − 1]2||Pvj
m||2L2(X ) =

Jn∑
j

lim
α→0

[Uα(λj)λj − 1]2||Pvj
m||2L2(X ) = 0, a.s.

Negligibility of the second term, i.e., ||PN (T̂ ∗n T̂n)m||2L2(X ) = op(1), is immediate from Lemma 3.1, since

N (T̂ ∗
n T̂n) = N (T̂n). ¥

The following lemma is well known in mathematical theory of inverse problems, see ,for example.

We introduce the proof, just for completeness of arguments.

Lemma 3.3 Let G : L2(X ) → L2(W) be a linear bounded operator and G∗ : L2(W) → L2(X )

be adjoint to G. If Uα satisfies C.3.2, then, for all m ∈ L2(X ),

(i) ||[Uα(G∗G)G∗G− I](G∗G)µ||L2(X )→L2(X ) ≤ Cαmin(µ,µ), for µ > 0.

(ii) ||[Uα(G∗G)G∗G− I]G∗||L2(X )→L2(X ) ≤ Cα1/2, for µ > 0.

Proof (i) Let {Eλ} be a spectral family for G∗G such that

[Uα(G∗G)G∗G− I](G∗G)µ =

∫ ∞

0

(Uα(λ)λ− 1)λµdEλ.

By spectral theory, for m ∈ L2(X ),

||[Uα(G∗G)G∗G− I](G∗G)µm||2L2(X ) =

∫ ∞

0

[(Uα(λ)λ− 1)λµ]2d||Eλm||2L2(X ).
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From
∫∞
0

d||Eλm||2L2(X ) = ||m||2 < ∞, we have, by C.3.2, that

||[Uα(G∗G)G∗G− I](G∗G)µm||L2(X ) ≤ C sup
λ∈(0,λ]

λµ|Uα(λ)λ− 1| ≤ C ′αµ.

The proof for (ii) is immediate from (i), since R(G∗) = R((G∗G)1/2), for any linear bounded operator

G. ¥

Proof of Proposition 3.1 Suppose that supn ||T̂ †
n||L2(W)→L2(X ) = Op(1). Then, from uniform

convergence of T̂n to T on MX , it follows that

||T̂ †
n(T̂n − T )||MX→L2(X ) ≤ ||T̂ †

n||L2(W)→L2(X )||T̂n − T ||MX→L2(W) = Op(1)||T̂n − T ||MX→L2(W)
p→ 0,

i.e., T̂ †
nT̂n converges T̂ †

nT uniformly on MX , in probability. From the identity, I − T̂ †
nT = PN (T̂n)-see

Groetsch (1977), we get, by Lemma 3.1, that ||T̂ †
nT̂n − I||MX→L2(X )

p→ 0. Consequently, by the

triangle inequality,

||T̂ †
nT − I||MX→L2(X ) ≤ ||T̂ †

n(T̂n − T )||MX→L2(X ) + ||T̂ †
nT̂n − I||MX→L2(X )

p→ 0.

That is, for any h ∈ T (MX), T̂ †
nh converges to T−1h, in probability, which, by the Principle of

Uniform Boundedness, implies that supn ||T̂ †
n − T−1||L2(W)→L2(X ) = Op(1). From

||T−1||L2(W)→L2(X ) ≤ ||T̂ †
n − T−1||L2(W)→L2(X ) + ||T̂ †

n||L2(W)→L2(X ) = Op(1),

follows boundedness of the mapping, T−1 : T (MX) → MX . Since {T̂n} is a sequence of compact

operators (from dim[R(T̂n)] < ∞), the limit of {T̂n}, i.e., T , is also compact onMX . By injectiveness

of T , dim[T (MX)] = dim[MX ] = ∞, which contradicts to the fact that a compact operator cannot

have a bounded inverse, when its range space is infinite-dimensional; see Kress (1989, p20). ¥

Proof of Theorem 3.2 The result is direct from the triangle inequality and application of

Lemma 3.2 (ii) and (iii) to (13).

Proof of Theorem 3.3 (i) Since R(T ∗) = R((T ∗T )1/2), it follows from (13) that the error

decomposition for m0 ∈M1/2 is given by

R̂α,n(ĥ0,n − T̂nm0) + [(Γ̂α − I)T̂ ∗
n ]h1 − (Γ̂α − I)(T̂ ∗

n − T ∗)h1,

where h1 = T ∗−1(m0). By Lemma 3.2(ii), L2-norm of the first term is bounded by C1√
α
||ĥ0,n −

T̂nm0||L2(W), almost surely. By Lemma 3.3(i) and (ii), (Γ̂α − I) and (Γ̂α − I)T̂ ∗
n are uniformly

bounded by C3 and C2α
1/2, almost surely, respectively, which proves the first assertion.
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(ii) For the case with m0 ∈M1, the error decomposition takes form of

R̂α,n(ĥn − T̂nm0) + [(Γ̂α − I)(T̂ ∗
n T̂n)]m1 − [(Γ̂α − I)T̂ ∗

n ](T̂n − T )m1 − (Γ̂α − I)(T̂ ∗
n − T ∗)Tm1,

where m1 = (T ∗T )−1m0. The proof for the second assertion follows immediately, if we additionally

apply the same uniform-boundedness argument to (Γ̂α − I)(T̂ ∗
n T̂n), again based on Lemma 3.3(i).

¥

Proof of Corollary 3.4 From m0 ∈M1/2,ρ, ||h1||L2(W) ≤ ρ, which, by the definition of operator

norm, implies that ||(T̂ ∗
n − T ∗)h1||L2(W) ≤ ρ||T̂ ∗

n − T ∗||L2(W)→L2(X ). This proves the first assertion. In

a similar way, for m0 ∈M1,ρ, we have, by definition, that ||m1||L2(X ) ≤ ρ, and ||(T̂n−T )m1||L2(W) ≤
ρ||T̂n−T ||L2(X )→L2(W). From ||T ||L2(X )→L2(W) ≤ C∗, it follows that ||h1||L2(W) = ||Tm1||L2(W) ≤ C∗ρ.

This, together with h1 ∈ T (L2(X )), gives ||(T̂ ∗
n − T ∗)h1||L2(X ) ≤ C∗ρ||T̂ ∗

n − T ∗||T (M0,ρ)→L2(X ). ¥

Proof of Theorem 3.5 Let Ω({δk},M) be the modulus of stochastic equicontinuity for T̂ †
n on

M, i.e.,

Ω({δk},M) = sup
m∈M, ||T̂km||L2(W)=Op(δk)

||m||L2(X ).

From the definition of the worst-case convergence rate, it holds for any R ∈ R that

Ξ({δk} ,M, R) = sup
m∈M, ||ĥk−T̂km||L2(W)=Op(δk)

E(||R(ĥn)−m||L2(X ))

≥ sup
m∈M, ||T̂km||L2(W)=Op(δk)

E(||R(0)−m||2L2(X ))

= sup
m∈M, ||T̂km||L2(W)=Op(δk)

||m||2L2(X ),

where the inequality trivially holds for ĥn = 0, and the last equality is due to the assumption,

R(0) = 0. Hence, the modulus of stochastic equicontinuity imposes a bound on the best-possible

convergence rate (among the class, R ) in the sense that

inf
R∈R

Ξ({δk} ,M, R) ≥ CΩ({δk},M),

for some C > 0. It suffices to show the explicit form of the bound, for M = Mµ,ρ;

Ω({δn},Mµ,ρ) = O(δ
2µ

2µ+1
n ).
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For m = (T ∗T )µmµ ∈ Mµ,ρ, we have, by the Hölder inequality, that ||m||L2(X ) = ||(T ∗T )µmµ||L2(X )

≤ ||(T ∗T )µ+1/2mµ||
2µ

2µ+1

L2(X )||mµ||
1

2µ+1

L2(X ). By definition, (T ∗T )µ+1/2mµ = (T ∗T )1/2m, and, from T ∗ being

the adjoint of T , it follows that

||(T ∗T )1/2m||2L2(X ) = < (T ∗T )1/2m, (T ∗T )1/2m >L2(X )= < m, (T ∗T )m >L2(X )

= < Tm, Tm >L2(X )= ||Tm||2L2(X ),

That is,

||m||L2(X ) ≤ ||(T ∗T )1/2m||
2µ

2µ+1

L2(X )||mµ||
1

2µ+1

L2(X ) ≤ ||Tm||
2µ

2µ+1

L2(W)ρ
1

2µ+1 . (34)

By the triangle inequality and pointwise convergence of T̂n to T in L2(X ), it holds for any m ∈ L2(X )

that

||Tm||L2(W) ≤ ||T̂nm||L2(W) + ||T̂nm− Tm||L2(W) = ||T̂nm||L2(W)(1 +
||T̂nm− Tm||L2(W)

||T̂nm||L2(W)

)

≤ ||T̂nm||L2(W)(2 +
||Tm||L2(W)

||T̂nm||L2(W)

) ≤ C||T̂nm||, w.p.a.1,

where C (> 3) does not depend on m. This, together with (34), implies that, for any m ∈Mµ,ρ,

||m||L2(X ) ≤ C||T̂nm||
2µ

2µ+1

L2(W), w.p.a.1,

leading to

Ω({δk},M) = sup
m∈M, ||T̂nm||L2(W)=Op(δn)

||m||L2(X ) ≤ Op(δ
2µ

2µ+1
n ). (35)

It only remains to show that the bound in (35) is sharp, i.e., there are some cases that

Ω({δn},Mµ,ρ) = Op(δ
2µ

2µ+1
n ).

Let δ2
k/ρ

2 be given by an eigenvalue of the operator (T ∗T )1+2µ and vk be the corresponding eigenfunc-

tion with ||vk|| = ρ. For mk ≡ (T ∗T )µvk ∈ Mµ,ρ, it holds that ||Tmk||2L2(W) = ||T (T ∗T )µvk||2L2(W) =

< (T ∗T )1+2µvk, vk >L2(X ) = δ2
k, since (T ∗T )1+2µvk = (δ2

k/ρ
2)vk, from the definition of an eigenvalue.

By double use of the triangle inequality, we obtain

||T̂nmk||2L2(W) ≤ ||Tmk||2L2(W) + ||(T̂n − T )mk||2L2(W) ≤ ||Tmk||2L2(W)(1 +
||(T̂n − T )mk||2L2(W)

||Tmk||2L2(W)

)

≤ ||Tmk||2L2(W)(2 +
||T̂nmk||2L2(W)

||Tmk||2L2(W)

) = Op(δ
2
k),
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where the last equality comes from pointwise convergence of T̂n to T (in L2(X )) in probability.

From mk ∈ Mµ,ρ and ||T̂nmk||L2(W) = Op(δk), it follows that Ω({δn},Mµ,ρ) ≥ ||mk||L2(X ) = {<
(T ∗T )2µvk, vk >L2(X )}1/2 = {(δ2

k/ρ
2)

2µ
2µ+1 < vk, vk >L2(X )}1/2 = (δk/ρ)

2µ
2µ+1 ρ ≥ Cδ

2µ
2µ+1 . If δ2

k/ρ
2 ∈

σ((T ∗T )1+2µ) is not an eigenvalue, then δ2
k/ρ

2 belongs to the continuous spectrum of (T ∗T )1+2µ and

there exists a sequence {vk,j}∞j=1 satisfying ||(T ∗T )1+2µvk,j− (δ2
k/ρ

2)vk,j||L2(X ) → 0, and ||vk,j||L2(X ) =

ρ. In this case, too, we can show Ω({δn},Mµ,ρ) ≥ Cδ
2µ

2µ+1

k , with a slight modification of the above

argument. ¥

A.3 Section 4

In the proofs below, we use the following error decomposition for each regularization

m̂α,n −m0 = R̂α,n(ĥn − T̂nm0) + (Γα − I)(T ∗T )µmµ + (Γ̂α − Γα)(T ∗T )µmµ, (36)

where R̂α,n, Γ̂α, and Γα have the same definition as in section 3, which, of course, vary over regular-

ization methods.

Proof of Theorem 4.1 (a) Letting Γ1,α = U1,α(T ∗T )T ∗T and Γ̂1,α = U1,α(T̂ ∗
n T̂n)T̂ ∗

n T̂n, the

error decomposition of OTR is given by (36), under (15). Since both C.3.1 and C.3.2 hold for U1,α(·),
the uniform bound for R̂α,n and (Γα− I)(T ∗T )µ follows from Lemma 3.2 and 3.3, respectively. From

the qualification of OTR equal to one, the second term is bounded by Cαmin(µ.1), see Lemma 3.3(i).

For the last term in (36), we use A−1 −B−1 = −A−1(A−B)B−1 to obtain

(Γ̂1,α − Γ1,α) = −α[(αI + T̂ ∗
n T̂n)−1 − (αI + T ∗T )−1]

= {α(αI + T̂ ∗
n T̂n)−1T̂ ∗

n}(T̂n − T )(αI + T ∗T )−1

+α(αI + T̂ ∗
n T̂n)−1(T̂ ∗

n − T ∗)T (αI + T ∗T )−1.

By Lemma 3.2(ii), α1/2(αI + T̂ ∗
n T̂n)−1T̂ ∗

n is bounded (uniform in n), and thus

N1,1 = ||{α(αI + T̂ ∗
n T̂n)−1T̂ ∗

n}(T̂n − T )
{
(αI + T ∗T )−1(T ∗T )µmµ

} ||L2(X )

≤ Cαmin(µ−1/2,1/2)||(T̂n − T )
{
αmin(1−µ,0)(αI + T ∗T )−1(T ∗T )µmµ

} ||L2(W),

= Cαmin(µ−1/2,1/2)||(T̂n − T )mα,µ||L2(W),

where mα,µ = αmin(1−µ,0)(αI + T ∗T )−1(T ∗T )µmµ, with mµ ∈ L2(X ). Note that mα,µ ∈ Mmax(µ−1,0).
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In a similar way, by uniform boundedness of α(αI + T̂ ∗
n T̂n)−1 (from Lemma 3.2(i)),

N1,2 = ||α(αI + T̂ ∗
n T̂n)−1(T̂ ∗

n − T ∗)T (αI + T ∗T )−1(T ∗T )µmµ||L2(X )

≤ Cαmin(µ−1/2,0)||(T̂ ∗
n − T ∗){αmin(1/2−µ,0)T (αI + T ∗T )−1(T ∗T )µmµ}||L2(X )

= Cαmin(µ−1/2,0)||(T̂ ∗
n − T ∗)hα,µ||L2(X ),

where hα,µ = αmin(1/2−µ,0)T (αI + T ∗T )−1(T ∗T )µmµ, and so hα,µ ∈ T ∗−1(Mmax(µ,1/2)).

(b) For m0 ∈Mµ,ρ, both mα,µ and hα,µ are bounded by Cρ, for some C > 0, implying

N1,1 ≤ Cραmin(µ−1/2,1/2)||T̂n − T ||Mmax(µ−1,0)→L2(W), and

N1,2 ≤ Cραmin(µ−1/2,0)||T̂ ∗
n − T ∗||T ∗−1(Mmax(µ,1/2))→L2(X ),

which completes the proof. ¥

Proof of Theorem 4.2 Let Γq,α = Uq,α(T ∗T )T ∗T and Γ̂q,α = Uq,α(T̂ ∗
n T̂n)T̂ ∗

n T̂n. We use the

error decomposition in (36) whose first and second terms are analyzed in the same as before, since

Uq,α(·) satisfies C.3.1 and C.3.2. The uniform bound of (Γα− I)(T ∗T )µ, which is equal to Cαmin(µ,q),

follows again from Lemma 3.3, since the qualification of Uq,α(·) is equal to q. Using

λUq,α(λ) =
(α + λ)q − αq

(α + λ)q
= 1− [α(α + λ)−1]q,

we have, by spectral calculus, that

Γ̂q,α − Γq,α = −(Êq
α − Eq

α),

where Êα = α(α+ T̂ ∗
n T̂n)−1 and Eα = α(α+T ∗T )−1. By adding and subtracting ÊαEq−1

α (T ∗T )µ, the

last term of (36) is equivalent to

∆q ≡ (Γ̂q,α − Γq,α)(T ∗T )µ = −(Êq
α − Eq

α)(T ∗T )µ

= −[Êα(Êq−1
α − Eq−1

α )(T ∗T )µ + (Êα − Eα)Eq−1
α (T ∗T )µ]

= Êα∆q−1 + ∆1E
q−1
α ,

where the last equality comes from [α(αI +T ∗T )]q(T ∗T )µ = (T ∗T )µ[α(αI +T ∗T )]q. Using backward

induction, we rewrite ∆q as a weighted sum of ∆1

∆qmµ =

q−1∑
j=0

Êj
α∆1E

q−1−j
α mµ,
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which, by the triangle inequality and uniform boundedness of Êα and Eα, yields

||∆qmµ||L2(X ) ≤ C||∆1mµ||L2(X ), for q finite.

By the results on ∆1mµ ≡ (Γ̂1,α − Γ1,α)(T ∗T )µmµ given in the proof of Theorem 4.1, the proof is

completed. ¥

Proof of Theorem 4.3 Since U g
q,α(·) satisfies C.3.1 and C.3.2, with µGTRq

= q, we get the

same conclusion as in the proof of ITR(q), for the first two terms in the relevant error decomposition

for GTR(q) according to (36). It suffices to show the order of (Γ̂g
q,α − Γg

q,α)(T ∗T )µmµ, where Γg
q,α =

U g
q,α(T ∗T )T ∗T and Γ̂g

q,α = U g
q,α(T̂ ∗

n T̂n)T̂ ∗
n T̂n. From

λU g
q,α(λ) = 1− αq(αq + λq)−1,

a straightforward calculation gives

Γ̂g
q,α − Γg

q,α = −αq[V̂q,α − Vq,α] = αqV̂q,α[(T̂ ∗
n T̂n)q − (T ∗T )q]Vq,α

= αqV̂q,αT̂ ∗
n T̂n[(T̂ ∗

n T̂n)q−1 − (T ∗T )q−1]Vq,α + αqV̂q,α(T̂ ∗
n T̂n − T ∗T )(T ∗T )q−1Vq,α,

where V̂q,α = [αqI +(T̂ ∗
n T̂n)q]−1 and Vq,α = [αqI +(T ∗T )q]−1. If we multiply and divide simultaneously

the first term of Γ̂g
q,α − Γg

q,α by both V̂q−1,α and Vq−1,α, and the second term, both by V̂1,α and V1,α,

we get

(Γ̂g
q,α − Γg

q,α)(T ∗T )µ = V̂q,αT̂ ∗
n T̂nV̂

−1
q−1,α

{
αq−1V̂q−1,α[(T̂ ∗

n T̂n)q−1 − (T ∗T )q−1]Vq−1,α(T ∗T )µ
}

αV −1
q−1,αVq,α

+αq−1V̂q,αV̂ −1
1,α

{
αV̂1,α(T̂ ∗

n T̂n − T ∗T )V1,α(T ∗T )µ
}

V −1
1,α (T ∗T )q−1Vq,α

= D1,q[(Γ̂
g
q−1,α − Γg

q−1,α)(T ∗T )µ]D2,q + D3,q[(Γ̂
g
1,α − Γg

1,α)(T ∗T )µ]D4,q,

where

D1,q = [αqI + (T̂ ∗
n T̂n)q]−1[αq−1T̂ ∗

n T̂n + (T̂ ∗
n T̂n)q],

D2,q = [αqI + (T ∗T )q]−1[αqI + α(T ∗T )q−1],

D3,q = [αqI + (T̂ ∗
n T̂n)q]−1[αqI + αq−1T̂ ∗

n T̂n],

D4,q = [αqI + (T ∗T )q]−1[α(T ∗T )q−1 + (T ∗T )q].

We claim that, D∗
(p,q) ≡ [αqI +(T ∗T )q]−1αp(T ∗T )q−p is bounded, for any p and q such that q ≥ p ≥ 0.

To see this, we only need to observe that

D∗
(p,q) = α−(q−p){αq[αqI + (T ∗T )q]−1}(T ∗T )q−p

= α−(q−p){[I − U g
q,α(T ∗T )T ∗T ](T ∗T )q−p}

≤ C,
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where the last inequality follows by Lemma 3.3(i). For the same reason, D̂∗
(p,q) ≡ [αqI+(T̂ ∗

n T̂n)q]−1αp(T̂ ∗
n T̂n)q−p

is bounded uniformly in n. Consequently, each Di,q (for i = 1, .., 4), which is a linear combination of

D∗
(p,q)’s or D̂∗

(p,q)’s, is also bounded, implying

||∆g
qmµ|| ≡ ||(Γ̂g

q,α − Γg
q,α)(T ∗T )µmµ||L2(X ) ≤ C1||∆g

q−1mµ||L2(X ) + C2||∆g
1mµ||L2(X ),

which, by backward induction, leads to

||(Γ̂g
q,α − Γg

q,α)(T ∗T )µmµ||L2(X ) ≤ C||(Γ̂g
1,α − Γg

1,α)(T ∗T )µmµ||L2(X ), for q finite.

This completes the proof, since GTR of order one is equivalent to OTR, i.e., Γ̂g
1,α−Γg

1,α = Γ̂1,α−Γ1,α.

¥

Proof of Theorem 4.4 With C.3.1 satisfied by U s
α(·), the first term of (36) is analyzed in

the same as above. Due to the infinite qualification of Showalter’s method, the pure regularization

bias is of order O(αµ), for any µ > 0. Let Γs
α = U s

α(·)(T ∗T )T ∗T and Γ̂s
α = U s

α(·)(T̂ ∗
n T̂n)T̂ ∗

n T̂n. Using

λU s
α(·)(λ) = 1− exp(−λ/α), and exp(x) =

∑∞
j=0

xj

j!
, we obtain, by spectral calculus,

Γ̂s
α − Γs

α = −[exp(−T̂ ∗
n T̂n/α)− exp(−T ∗T/α)]

= exp(−T̂ ∗
n T̂n/α)[exp(T̂ ∗

n T̂n/α)− exp(T ∗T/α)] exp(−T ∗T/α)

= exp(−T̂ ∗
n T̂n/α)

∞∑
j=0

1

j!
(1/α)j[(T̂ ∗

n T̂n)j − (T ∗T )j] exp(−T ∗T/α)

= exp(−T̂ ∗
n T̂n/α)

∞∑
j=1

1

j!
(1/α)j[(T̂ ∗

n T̂n)j − (T ∗T )j] exp(−T ∗T/α),

since (T̂ ∗
n T̂n)0 = (T ∗T )0 = I. From the identity

(T̂ ∗
n T̂n)j − (T ∗T )j =

j−1∑

k=0

(T̂ ∗
n T̂n)k(T̂ ∗

n T̂n − T ∗T )(T ∗T )j−1−k,

follows

(Γ̂s
α − Γs

α)(T ∗T )µ

= exp(−T̂ ∗
n T̂n/α)

∞∑
j=1

1

j!
(1/α)j

j−1∑

k=0

(T̂ ∗
n T̂n)k(T̂ ∗

n T̂n − T ∗T )(T ∗T )j−1−k exp(−T ∗T/α)(T ∗T )µ

=
∞∑

j=1

1

j!
(1/α)j

j−1∑

k=0

exp(−T̂ ∗
n T̂n/α)(T̂ ∗

n T̂n)kT̂ ∗
n(T̂n − T )(T ∗T )j−1−k exp(−T ∗T/α)(T ∗T )µ

+
∞∑

j=1

1

j!
(1/α)j

j−1∑

k=0

exp(−T̂ ∗
n T̂n/α)(T̂ ∗

n T̂n)k(T̂ ∗
n − T ∗)T (T ∗T )j−1−k exp(−T ∗T/α)(T ∗T )µ.
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Applying a similar argument used in Lemma 3.3, we can calculate the bound of each term in the

above infinite sum. For example,

||T (T ∗T )j−1−k exp(−T ∗T/α)(T ∗T )µ||L2(X )→L2(W)

≤ sup
0<λ≤λ

| exp(−λ/α)λj−1/2−k+µ| ≤ Cαj−1/2−k+µ,

and likewise,

|| exp(−T̂ ∗
n T̂n/α)(T̂ ∗

n T̂n)kT̂ ∗
n ||L2(X )→L2(X ) ≤ Cαk+1/2.

Hence, by the triangle inequality, the asymptotic order of the last term in (36) is given by

||(Γ̂s
α − Γs

α)(T ∗T )µ||L2(X )→L2(W)

≤ C

∞∑
j=1

1

j!
(1/α)j

j−1∑

k=0

[αk+1/2αj−1−k+µ||T̂n − T ||L2(X )→L2(W) + αkαj−1/2−k+µ||T̂ ∗
n − T ∗||L2(W)→L2(X )]

= C

( ∞∑
j=1

1

j!
j

)
αµ−1/2[||T̂n − T ||L2(X )→L2(W) + ||T̂ ∗

n − T ∗||L2(W)→L2(X )]

= C ′αµ−1/2[||T̂n − T ||L2(X )→L2(W) + ||T̂ ∗
n − T ∗||L2(W)→L2(X )],

where we used
∑∞

j=0
1
j!
j ≤ ∑∞

j=0
1
j!
2j = e2 < ∞. ¥

A.4 Section 5

Proof of Theorem 5.1

Step I (a matrix form of T̂ ∗
n T̂n): Let ĝXX(·, ·) be the kernel of the self-adjoint operator T̂ ∗

n T̂n :

L2(X ) → L2(X ), i.e.,

ĝXX(x, u) =

∫

W
f̂X,W (x,w)f̂X,W (u,w)dw.

By a straightforward calculation, ĝXX(·, ·) is written, in a matrix form, as

ĝXX(x, u) = n−2KX
n (x)′MW KX

n (u).

Plugging in ĝXX(·, ·) into the operator T̂ ∗
n T̂n yields

(T̂ ∗
n T̂nm)(x) =

∫
ĝXX(x, u)m(u)du = n−2KX

n (x)′MW

∫

X
KX

n (u)m(u)du

= n−2KX
n (x)′MW < KX

n (·), m(·) >L2(X ) . (37)
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Step II (the spectral representation of T̂ ∗
n T̂n): Let {(λs, es)}n′

s=1 denote all the nonzero eigenvalues

and the corresponding eigenvectors of QX,W = n−2M
1/2
W MXM

1/2
W , where n′ = rank(QX,W ) ≤ n.

Define

vs(x) = KX
n (x)′M1/2

W es. (38)

We claim that the spectral representation of the compact self-adjoint operator T̂ ∗
n T̂n is given by

T̂ ∗
n T̂n =

n′∑
s=1

λsPvs ,

where Pvs denotes the orthogonal projection on the subspace generated by the function vs. To prove

the claim, it suffices to show that all the nonzero eigenvalues and the corresponding eigenfunctions

of T̂ ∗
n T̂n are given by {(λs, vs)}n′

s=1. From the definition of (λs, es), it follows that

(T̂ ∗
n T̂nvs)(x) = n−2KX

n (x)′MW < KX
n , vs >L2(X )

= n−2KX
n (x)′MW < KX

n , KX′
n >L2(X ) M

1/2
W es

= KX
n (x)′M1/2

W (n−2M
1/2
W MXM

1/2
W )es

= KX
n (x)′M1/2

W (λses) = λsvs,

implying that {(λs, vs)}n′
s=1 is a subset of the eigensystem of T̂ ∗

n T̂n corresponding to the nonzero

eigenvalues. From dim(R(T̂ ∗
n T̂n)) = min[dim(lin{KX

n (·)}), dim(lin{KW
n (·)})] = rank(QX,W ), the

number of nonzero eigenvalues of T̂ ∗
n T̂n is equal to n′, completing the proof for the claim.

Step III (the spectral representation of r(T̂ ∗
n T̂n)): From the theorem on spectral calculus-see,

Taylor and Lay (1980, p.368, for example), we obtain the spectral representation of r(T̂ ∗
n T̂n)

r(T̂ ∗
n T̂n)(·) =

n∑
s=1

r(λs)Pvs(·) =
n∑

s=1

r(λs)vs(< vs, vs >L2(X ))
−1 < vs, · >L2(X ) .

By plugging in (38) into the above equation,

[r(T̂ ∗
n T̂n)m](x)

=
n∑

s=1

r(λs)K
X
n (x)′M1/2

W es(e
′
sM

1/2
W MXM

1/2
W es)

−1e′sM
1/2
W < KX

n , m >L2(X ) ,

which, by definition of es, reduces to

n−2KX
n (x)′M1/2

W

[
n∑

s=1

r(λs)λ
−1
s Pes

]
M

1/2
W < KX

n , m >L2(X )
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= n−2KX
n (x)′M1/2

W r(QX,W )Q−1
X,W M

1/2
W < KX

n , m >L2(X ) .

Step IV (Closed form of Rα
n(ĥn)): From ĥn(w) = n−1KW

n (w)y,

(T̂ ∗
n ĥn)(x) =

∫

W
ĥn(w)f̂X,W (x,w)dw = n−2KX

n (x)′[
∫

W
KW

n (w)KW
n (w)′dw]y

= n−2KX
n (x)′MWy.

Therefore,

Rα
n(ĥn)(x) = [Uα(T̂ ∗

n T̂n)T̂ ∗
n ĥn](x)

= n−2KX
n (x)′M1/2

W Uα(QX,W )Q−1
X,W M

1/2
W < KX

n (·), n−2KX
n (·)′MW >L2(X ) y

= n−2KX
n (x)′M1/2

W Uα(QX,W )M
1/2
W y.

¥

Proof of Theorem 5.2

Given the common element fixed to be w1 ∈ W1, we define T̂w1,n : L2
w1

(Z) → L2
w1

(W2) by

T̂w1,n(m)(w2) =

∫

Z
m(u, w1)f̂Z,W1,W2(u,w1, w2)du,

and likewise, T̂ ∗
w1,n : L2

w1
(W2) → L2

w1
(Z) by T̂ ∗

w1,n(h)(z) =
∫
W2

h(w1, w2)f̂Z,W1,W2(z, w1, w2)dw2, where

L2
w1

(Z) = {m(·, w1) ∈ L2(Z)} and L2
w1

(W2) = {h(w1, ·) ∈ L2(W1)}. Note that the kernel of the

self-adjoint operator T̂ ∗
w1,nT̂w1,n : L2

w1
(Z) → L2

w1
(Z) is given by

ĝZZ(u, z; w1) =

∫

W2

f̂Z,W1,W2(u,w1, w2)f̂Z,W1,W2(z, w1, w2)dw2

= n−2KX
n (u,w1)

′MW2K
X
n (z, w1),

yielding

(T̂ ∗
w1,nT̂w1,nm)(z) =

∫

Z
ĝZZ(u, z; w1)m(u,w1)du

= n−2KX
n (z, w1)

′MW2 < KX
n (·, w1), m(·, w1) >L2(Z) .

Let {(λw1,s, ew1,s)}n
s=1 be the nonzero eigenvalues and the corresponding eigenvectors of QZ,W (w1).

From a similar argument to Step II in the proof of Theorem 5.1, we obtain the spectral representation

of T̂ ∗
w1,nT̂w1,n, which is given by

T̂ ∗
w1,nT̂w1,n =

n′∑
s=1

λw1,sPvw1,s ,
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where Pvw1,s is the orthogonal projection on the eiegenspace generated by the eigenfunction vw1,s(z)

= n−1KX
n (z, w1)

′M1/2
W2

ew1,s. Applying spectral calculus, we have that, for m(·, w1) ∈ L2
w1

(Z),

[r(T̂ ∗
w1,n

T̂w1,n)m](z)

=
n∑

s=1

r(λw1,s)Pvw1,s(m)(z)

= n−2KX
n (z, w1)

′M1/2
W2

r(QZ,W (w1))Q
−1
Z,W (w1)M

1/2
W2

< KX
n (·, w1), m(·, w1) >L2(Z) .

Observing that

(T̂ ∗
w1,n

ĥn)(z) =

∫

W2

f̂Z,W1,W2(z, w1, w2)ĥn(w1, w2)dw2

= n−2
∑

1≤i≤n

∑
1≤j≤n

Kh(Zi − z)Kh(W1i − w1)M
W2
ij Kh(W1j − w1)yj

= n−2KX
n (z, w1)

′MW2 [K
W1
n (w1)¯ y],

we now get

m̂α,n(z, w1)

= [Uα(T̂ ∗
n T̂n)(T̂ ∗

n ĥn)](z, w1)

= Uα(T̂ ∗
w1,n

T̂w1,n)(T̂ ∗
w1,n

ĥn)(z)

= n−2KX
n (z, w1)

′M1/2
W2

Uα(QZ,W (w1))Q
−1
Z,W (w1)M

1/2
W2

< KX
n (·, w1), (T̂ ∗

w1,n
ĥn)(·) >L2(Z)

= n−2KX
n (z, w1)

′M1/2
W2

Uα(QZ,W (w1))M
1/2
W2

[KW1
n (w1)¯ y].

¥

Proof of Proposition 5.3 With a ∗ b denoting convolution of a and b, we define

mc(g1)(z, w1) ≡ (Kg1 ∗m)(z, w1) =

∫
Kg1(z − s)m(s, w1)ds, (39)

and

f
c(g)
Z,W (z, w) ≡ (K(g1,g2) ∗ fZ,W )(z, w) =

∫

W

∫

Z
Kg1(s1 − z)Kg2(s2 − w)fZ,W (s1, s2)ds1ds2

= E[Kg1(Zi − z)Kg2(Wi − w)].
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By adding and subtracting
∫

f
c(g)
Z,W (z, w)m(z, w1)dz, the estimation errors of T̂n are decomposed into

(T̂nm− Tm)(w)

= n−1

n∑
i=1

∫
[Kg1(Zi − z)Kg2(Wi − w)− f

c(g)
Z,W (z, w)]m(z, w1)dz

+

∫
[f

c(g)
Z,W (z, w)− fZ,W (z, w)]m(z, w1)dz

≡ sn(w) + Bn(w),

from which we obtain the MISE of T̂nm, given by

E

∫

W

[
(T̂n − T )m

]2

(w)dw =

∫

W

{
Var [sn(w)] + E2 [Bn(w)]

}
dw.

Noting that

sn(w) = n−1

n∑
i=1

{Kg2(Wi − w)mc(g1)(Zi, w1)− E[Kg2(Wi − w)mc(g1)(Zi, w1)]},

the standard calculation of the variance term (under the i.i.d. assumption in C.5.1) yields

Var [sn(w)] = n−1Var
[
Kg2(Wi − w)mc(g1)(Zi, w1)

]

= n−1g−d2
2

∫

Z
m2

c(g1)(z, w1)

[∫

W
K2(u)fZ,W (z, w + g2u)du

]
dz + O(n−1),

implying that ∫

W
Var [sn(w)] dw ≤ C

ngd2
2

||K||22||m||2L2(X ),

where the last inequality is due to the dominated convergence theorem and boundedness of fZ,W (·)
in C.5.3. To calculate the bias term, we observe that, by Cauchy-Schwartz inequality,

∫

W
B2

n(w)dw =

∫

W
[

∫

Z
{f c

Z,W (z, w)− fZ,W (z, w)}m(z, w1)dz]2dw

≤ ||f c
Z,W − fZ,W ||2L2(Z×W)||m||2L2(X ),

leading to

E

∫

W
[(T̂nm− Tm)(w)]2dw ≤ ||m||2L2(X )(||f c

Z,W − fZ,W ||2L2(Z×W) +
C

ngd2
2

||K||22),

i.e.,

E||T̂n−T ||2L2(X )→L2(W) = sup
m( 6=0)∈L2(X )

E
∫
W

[
(T̂n − T )m

]2

(w)dw

||m||2L2(X )

≤ ||f c
Z,W−fZ,W ||2L2(Z×W)+

C

ngd2
2

||K||22.
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Under C.5.2 (i.e.,
∫ |K(s)|ds < ∞ and sup |K(s)| < ∞), the convolution error (||f c

Z,W−fZ,W ||2L2(Z×W))

converges to zero, as g1 and g2 go to zero, for any square integrable fZ,W (·, ·). This, together with

the bandwidth condition, ngd2
2 → 0, gives rise to uniform consistency of T̂n, proving part (i). When

there exist p0-th partial derivatives of fZ,W (·, ·) that are continuous and square integrable-i.e., C.5.4

holds, we have, by application of the standard Taylor expansion, that

E||(T̂n − T )m||2L2(X )→L2(W) = O(g2p0

1 + g2p0

2 ) + O(
1

ngd2
2

).

By symmetry of the above arguments, we also get the convergence rate of T̂ ∗
n .

It remains to prove part (iii). Let r(Zi,W1i) = m(Zi,W1i) − mc(g1)(Zi, w1), where mc(g1)(·, ·) is

defined by (39). From (T̂nm0)(w) = n−1
∑n

i=1 Kg2(Wi − w)mc(g1)(Zi, w1), we get

(ĥ0,n − T̂nm0)(w)

= n−1

n∑
i=1

Kg2(Wi − w)εi + n−1

n∑
i=1

Kg2(Wi − w)r(Zi,W1i)

= n−1

n∑
i=1

Kg2(Wi − w)εi + n−1

n∑
i=1

Kg2(Wi − w)(νi − νc
i) + n−1

n∑
i=1

Kg2(Wi − w)E(r(Zi,W1i)|Wi)

≡ s1,n(w) + s2,n(w) + Bn(w),

where νi = m(Zi,W1i) − E(m(Zi,W1i)|Wi), and νc
i = mc(g1)(Zi, w1) − E(mc(g1)(Zi, w1)|Wi). As a

consequence,

E

∫

W
(ĥ0,n − T̂nm0)

2(w)dw =

∫

W

{
Var [s1,n(w) + s2,n(w)] + E2[Bn(w)]

}
dw.

By the standard argument in kernel regression, the variance of the main stochastic term is calculated

in a straightforward way;

Var [s1,n(w)] =
1

ngd2
2

||K||22E(ε2
i |Wi = w)fW (w)(1 + o(1)),

leading to
∫

W
Var [s1,n(w)] dw =

1

ngd2
2

||K||22
[∫

W
E(ε2

i |Wi = w)fW (w)dw

]
(1 + o(1))

=
1

ngd2
2

||K||22σ2
ε(1 + o(1)) = O(

1

ngd2
2

),

where σ2
ε = E(ε2

i ). From E[νi|Wi] = E[νc
i |Wi] = 0, it follows that

E[(νi − νc
i)

2|Wi] = Var[r(Zi,W1i)|Wi] ≤ E[r2(Zi,W1i)|Wi],
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implying, by the iid assumption and the law of iterated expectation, that

Var [s2,n(w)] = n−1E{[Kg2(Wi − w)(νi − νc
i)]

2} ≤ n−1E{[Kg2(Wi − w)]2E[r2(Zi, W1i)|Wi]}
= n−1E{[Kg2(Wi − w)r(Zi,W1i)]

2}
=

1

ngd2
2

||K||22
∫

Z
r2(z, w1)fZ,W (z, w)dz(1 + o(1)).

From boundedness of fZ,W (·, ·),
∫

W
Var [s2,n(w)] dw ≤ C

ngd2
2

||K||22||m(·, ·)−mc(g1)(·, ·)||2L2(X ) = o(
1

ngd2
2

),

since the convolution error, ||m(·, ·) − mc(g1)(·, ·)||L2(X ), converges to zero, as g1 → 0. To calculate

the bias term, we note, by the dominated convergence theorem, that

E[Bn(w)] = E[Kg2(Wi − w)r(Zi, W1i)]

=

∫

Z
[m(z, w1)−mc(g1)(z, w1)]fZ,W (z, w)dz(1 + o(1)). (40)

Letting f
c(g1)
Z,W (u,w) =

∫
Z Kg1(z−u)fZ,W (z, w)dz, we obtain an alternative form of the bias such that

E[Bn(w)] = {
∫

Z

[
fZ,W (u,w)− f

c(g1)
Z,W (u,w)

]
m(u,w1)du}(1 + o(1)), (41)

since
∫
Z mc(g1)(z, w1)fZ,W (z, w)dz =

∫
Z f

c(g1)
Z,W (u,w)m(u,w1)du, , by Fubini’s Theorem. By Cauchy-

Schwartz inequality, it follows from (40) and (41), together with square-integrability of fZ,W (·, ·) and

m(·, ·), that

∫

W
E2 [Bn(w)] dw ≤ C min{||m(·, ·)−mc(g1)(·, ·)||2L2(X ), ||fZ,W (·, ·)− f

c(g1)
Z,W (·, ·)||2L2(Z×W)},

which, by the standard method of Taylor expansion (under C.5.4 ) gives

∫

W
E2 [Bn(w)] dw = O(g

max{2p0,2p1}
1 ).

Letting p = max(p0, p1), we finally get

E

∫

W
(ĥ0,n − T̂nm0)

2(w)dw =

∫

W

{
Var [s1,n(w) + s2,n(w)] + E2 [Bn(w)]

}
dw

= O(
1

ngd2
2

) + O(g2p
1 ),
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i.e.,

||ĥ0,n − T̂nm0||L2(W) = Op(
1√
ngd2

2

+ gp
1).

¥

Proof of Theorem 5.4 Under C.5.1 through C.5.4, all the conditions of Theorem 3.2 follow

from Proposition 5.3.(i) and (iii), proving the consistency result for m̂α,n. Also, Proposition 5.3.(ii)

and (iii) applied to Corollary 3.4.(i), leads to, for m0 ∈M1/2,ρ,

||m̂α,n −m0||L2(X ) ≤ Op(
1√
α

[
1√
ngd2

2

+ gp
1]) + Op(

√
α) + Op(

1√
ngd1

1

+ gp0

1 + gp0

2 )

= Op(
1√
α

[
1√
ngd2

2

+ gp0

1 ]) + Op(
√

α) + Op(
1√
ngd1

1

+ gp0

2 ),

since gp0

1 = o(gp
1/
√

α), from αn = o(1) and p = p0 = p1, by assumption. In a similar way, Proposition

5.3 and Corollary 3.4.(ii) yield, for m0 ∈M1,ρ,

||m̂α,n −m0||L2(X ) ≤ Op(
1√
α

[
1√
ngd2

2

+ gp
1]) + Op(α) + Op(

√
α[

1√
ngd2

2

+ gp0

1 + gp0

2 ])

+Op(
1√
ngd1

1

+ gp0

1 + gp0

2 )

= Op(
1√
α

[
1√
ngd2

2

+ gp0

1 ]) + Op(α) + Op(
1√
ngd1

1

+ gp0

2 ),

since
√

α[1/
√

ngd2
2 + gp0

1 + gp0

2 ] = o(1/
√

nαgd2
2 ) + o(gp0

1 + gp0

2 ). ¥

Proof of Theorem 5.5 We only give a proof for part(ii), since part (i) is shown in the same

way. We first show that, under the given side condition, the profile of quasi-optimal smoothing

parameters are given by {(g1, g2, α
∗)} with α∗ = [max(1/

√
ngd2

2 , gp0

1 )]2/3. When the regularization

parameter is fixed by α∗ = [max(1/
√

ngd2
2 , gp0

1 )]2/3, it follows from the given side condition that

(1/
√

ngd1
1 + gp0

2 ) ≤ O(max{g2p0/3
1 , [ngd2

2 ]−1/3) = O(α∗). Consequently, the lower bounds in Theorem

5.4.(ii), corresponding to m0 ∈M1,ρ, reduces to

||m̂α,n −m0||L2(X ) ≤ Op(
1√
α∗

[1/

√
ngd2

2 + gp0

1 ]) + Op(α
∗) = Op([max(1/

√
ngd2

2 , gp0

1 )]2/3).
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Since ||ĥ0,n − T̂nm0||L2(W) ≡ Op(δn) = Op(max{1/
√

ngd2
2 , gp0

1 }), from Proposition 5.3, it also holds

by Theorem 3.5 that

Op([max(1/

√
ngd2

2 , gp0

1 )]2/3) = Op(δ
2/3
n ) ≤ ||m̂α,n −m0||L2(X ),

implying that the actual convergence rate of m̂α,n, given by Op([max(1/
√

ngd2
2 , gp0

1 )]2/3), is quasi-

optimal for m0 ∈ M1,ρ. This confirms the quasi-optimality of {(g1, g2, α
∗)}. It is not difficult

to show suboptimality of regularization parameters other than α∗ = [max(1/
√

ngd2
2 , gp0

1 )]2/3. For

example, when the regularization parameter is of greater order than α∗, the convergence rate of

m̂α,n is determined, under the side condition, by the dominant term Op(α) which is greater than

Op(δ
2/3
n ). We next decide on the fastest possible rate of convergence, out of the quasi-optimal profile

{(g1, g2, α
∗)}. From ||m̂α,n − m0||L2(X ) = Op([max(1/

√
ngd2

2 , gp0

1 )]2/3), it is possible to improve the

convergence rate of m̂α,n by making g2 larger and g1 smaller, as long as they satisfy the side condition.

Obviously, the most favorable choice of (g1, g2) is the one under which the side condition hold as an

equality. That is, the optimal choice of (g1, g2) is given by (g∗1n, g
∗
2n) such that (ng∗d1

1n )−1/2 ' g
∗2p0/3
1n

and g
∗3p0/2
2n ' (ng∗d2

2n )−1/2, leading to g∗1n = C0n
− 1

(4/3)p0+d1 , g∗2n = C1n
− 1

3p0+d2 , and α∗n = C2n
− p0

3p0+d2 .

Note that all the basic conditions in C.5.5 are satisfied by (g∗1n, g∗2n, α
∗
n). Since g∗p0

1n = C0n
− 3p0

4p0+3d1 is

of smaller order than 1/
√

ng∗d2
2n = O(n

− 3p0
6p0+2d2 ), by the assumptions of d1/2 ≤ p0 and d1 ≤ d2, we

now obtain the optimal convergence rate of m̂α,n, given by ||m̂α,n −m0||L2(X ) = Op(n
− p0

3p0+d2 ). ¥

Proof of Theorem 5.6 (i) After plugging in the results of Proposition 5.3 into Theorem 4.4,

we get

||m̂s
α,n −m0||L2(X ) ≤ Op(

1√
α

[
1√
ngd2

2

+ gp0

1 ]) + Op(α
µ) + Op(α

µ−1/2[
1√
ngd1

1

+ gp0

2 ]),

from p0 = p1 and αµ−1/2(1/
√

ngd2
2 + gp0

1 ) = o(αµ), since nαgd2
2 → ∞ and α → 0, as n → ∞; see

the assumption in C.5.5(b). Following the same arguments in the proof of Theorem 5.5, we can

show that the profile of quasi-optimal smoothing parameters are given by {(g1, g2, α
∗)} with α∗ =

[max(1/
√

ngd2
2n, gp0

1n)]2/(2µ+1), under which the actual convergence rate of m̂s
α,n reduces to

||m̂s
α,n −m0||L2(X ) = [max(1/

√
ngd2

2n, g
p0

1n)]2µ/(2µ+1).

The fastest possible rate of convergence, among the quasi-optimal ones, is achieved by choosing

(g1, g2) = (g∗1n, g
∗
2n) such that (ng∗d1

1n )−1/2 ' g
∗p0/(2µ+1)
1n , and g

∗p0(2µ+1)
2n ' (ng∗d2

2n )−1/2. By letting
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g∗1n = C0n
− (2µ+1)

2p0+(2µ+1)d1 , g∗2n = C1n
− 1

2(2µ+1)p0+d2 , and α∗n = C2n
− 2p0

2(2µ+1)p0+d2 , we obtain the optimal

convergence rate of m̂s
α,n, given as

||m̂s
α,n −m0||L2(X ) = Op(n

− 2µp0
2(2µ+1)p0+d2 ),

since g∗p0

1n = C0n
− (2µ+1)p0

2p0+(2µ+1)d1 is of smaller order than 1/
√

ng∗d2
2n = O(n

− (2µ+1)p0
2(2µ+1)p0+d2 ), by the assumption

that d1/2 ≤ p0 and d1 ≤ d2. All the basic conditions in C.5.5 hold for (g∗1n, g∗2n, α
∗
n).

(ii) Application of Proposition 5.3 to Theorem 4.1 through Theorem 4.3 gives

||m̂q
α,n −m0||L2(X ) ≤ Op(

1√
α

[
1√
ngd2

2

+ gp0

1 ]) + Op(α
min(µ,q)) + Op(α

min(µ−1/2,0)[
1√
ngd1

1

+ gp0

2 ]),

since αmin(µ−1/2,1/2)(1/
√

ngd1
2 +gp0

1 ) = o(1/
√

nαgd2
2 )+o(gp0

1 /
√

α), and αmin(µ−1/2,0)(gp0

1 ) = o(gp0

1 /
√

α).

Following the same arguments in the proof of Theorem 5.5, we can show that the profile of quasi-

optimal smoothing parameters are given by {(g1, g2, α
∗)} with α∗ = [max(1/

√
ngd2

2n, g
p0

1n)]2/(2µq+1),

under which the actual convergence rate of m̂q
α,n is

||m̂q
α,n −m0||L2(X ) = [max(1/

√
ngd2

2n, gp0

1n)]2µq/(2µq+1).

The fastest possible rate of convergence, among the quasi-optimal ones, is achieved by choosing

(g1, g2) = (g∗1n, g
∗
2n) such that (ng∗d1

1n )−1/2 ' g
2µ†qp0/(2µq+1)

1n , and g
p0(2µq+1)/2µ†q
2n ' (ng∗d2

2n )−1/2. By letting

g∗1n = C0n
− (2µq+1)

4µ
†
qp0+(2µq+1)d1 , g∗2n = C1n

− 2µ
†
q

2(2µq+1)p0+2µ
†
qd2 , and α∗n = C2n

− 2p0

2(2µq+1)p0+2µ
†
qd2 , we obtain the

optimal convergence rate of m̂q
α,n, given as

||m̂q
α,n −m0||L2(X ) = Op(n

− 2µqp0

2(2µq+1)p0+2µ
†
qd2 ),

since g∗p0

1n = C0n
− (2µq+1)p0

4µ
†
qp0+(2µq+1)d1 is of smaller order than 1/

√
ng∗d2

2n = O(n
− (2µq+1)p0

2(2µq+1)p0+2µ
†
qd2 ), by the

assumption that d1/2 ≤ p0 and d1 ≤ d2. ¥
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Table 1. MSE (Squared Bias + Variance) of Various Regularized-Kernel Estimates

α g OTR ITR(2) GTR(2) SW

.001 .3 .063 (.012 + .051) .117 (.020 + .097) .075 (.024 + .051) .091 (.023 + .069)

.4 .049 (.014 + .035) .096 (.035 + .060) .058 (.020 + .039) .075 (.027 + .047)

.5 .039 (.012 + .027) .086 (.040 + .046) .042 (.012 + .030) .058 (.022 + .036)

.6 .034 (.012 + .022) .072 (.035 + .037) .042 (.017 + .025) .047 (.017 + .030)

.005 .3 .033 (.013 + .020) .042 (.009 + .033) .033 (.013 + .021) .035 (.009 + .026)

.4 .029∗ (.014 + .015) .033 (.009 + .024) .034 (.018 + .016) .030 (.010 + .020)

.5 .030 (.018 + .012) .030 (.010 + .020) .039 (.026 + .013) .031 (.015 + .016)

.6 .037 (.027 + .010) .034 (.017 + .017) .047 (.037 + .011) .038 (.025 + .013)

.01 .3 .042 (.027 + .014) .032 (.009 + .023) .033∗ (.017 + .016) .030 (.011 + .019)

.4 .041 (.030 + .011) .028∗ (.010 + .017) .034 (.022 + .012) .028∗ (.014 + .014)

.5 .045 (.036 + .009) .029 (.015 + .014) .039 (.029 + .009) .032 (.021 + .011)

.6 .053 (.046 + .007) .036 (.024 + .012) .047 (.039 + .008) .041 (.031 + .009)

.015 .3 .056 (.044 + .012) .030 (.011 + .019) .034 (.020 + .014) .029 (.013 + .016)

.4 .057 (.048 + .009) .028 (.014 + .014) .035 (.025 + .011) .029 (.017 + .012)

.5 .063 (.056 + .007) .031 (.019 + .011) .041 (.032 + .009) .034 (.024 + .010)

.6 .073 (.067 + .006) .038 (.029 + .010) .049 (.041 + .008) .042 (.033 + .008)

.02 .3 .073 (.062 + .011) .031 (.014 + .017) .038 (.024 + .013) .030 (.015 + .015)

.4 .076 (.068 + .008) .029 (.017 + .013) .039 (.029 + .010) .030 (.019 + .011)

.5 .084 (.078 + .006) .033 (.023 + .010) .045 (.037 + .008) .035 (.026 + .009)

.6 .097 (.091 + .005) .041 (.032 + .009) .054 (.046 + .007) .044 (.036 + .008)
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Figure 1: Averaged IV estimates over different regularization parameters: with g = 0.4
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Figure 2: Averaged IV estimates for the optimal choice of regularization parameter (with g = 0.4 )
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