
 
 

“Convergence” Hypotheses are Ill-Posed: 
Non-stationarity of Cross-Country Income Distribution Dynamics 

 
 
 
 
 

Mahmoud A. El-Gamal and Deockhyun Ryu* 
 

 
January 2004 

 
 

 
Abstract 

 
The recent literature on “convergence” of cross-country per capita incomes has been 

dominated by two competing hypotheses: “global convergence” and “club-convergence”. 
This debate has recently relied on the study of limiting distributions of estimated income 
distribution dynamics. Utilizing new measures of “stochastic stability”, we establish two 
stylized facts that question the fruitfulness of the literature’s focus on asymptotic income 
distributions. The first stylized fact is non-stationarity of transition dynamics, in the sense 
of changing transition kernels, which renders all “convergence” hypotheses that make 
long-term predictions on income distribution, based on relatively short time series, less 
meaningful. The second stylized fact is the periodic emergence, disappearance, and re-
emergence of a “stochastically stable” middle-income group. We show that the 
probability of escaping a low-income poverty-trap depends on the existence of such a 
stable middle income group. While this does not answer the perennial questions about 
long-term effects of globalization on the cross-country income distribution, it does shed 
some light on the types of environments that are conducive to narrowing/widening the 
gap between rich and poor countries. 
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1. Introduction 
 

In the age of globalization, no issue is more hotly debated than the issue of the 
income gap between rich and poor countries. The neoclassical growth model (with well- 
behaved aggregate production functions) suggests that the gap between rich and poor 
countries should be collapsing over time. This was rephrased in the early empirical 
literature in terms of two types of “convergence hypotheses”, named absolute and 
conditional convergence.  Early empirical results supported those convergence 
hypotheses, by estimating negative coefficients for “initial income” variables in income 
growth regressions, c.f. Mankiw et al (1992), Barro and Sala-i-Martin (1992, 1995). 

  
The simple convergence story was soon challenged both on the theoretical and 

empirical levels. At the theoretical level, endogenous growth models challenged the 
credibility of – and robustness to – neoclassical assumptions of well-behaved aggregate 
production functions. With minor modifications of the Solow aggregate production 
function, non-convexities and poverty traps become possible, as shown in threshold 
models of Azariadis and Drazen (1990), Durlauf (1993), and others.  Meanwhile, at the 
empirical level, the results of simple cross-country growth regressions that lent support to 
convergence hypotheses were challenged by the results of panel data, time series (unit 
root and co-integration tests) and distributional dynamics analyses.1 

 
Most recently, the distributional dynamics approach has become increasingly 

popular, e.g. see Quah (1993a, 1993b, 1995, 1996a, 1996b, 1997, 2001) as well as 
Bianchi (1997), Desdoigts (1999), Johnson (2001), Bulli (2001). Unlike the simple linear 
regression approach, the distributional dynamics literature focuses on richer (non-linear) 
dynamics as captured by a transition probability matrix for world income distribution 
groups. The findings of this literature reject the simple convergence hypothesis, and point 
to multi-modality in the limiting distribution of per capita incomes. Durlauf (1993) also 
found evidence of this so-called “club convergence” by introducing non-linearity through 
a regression-tree method, which allowed for the possibility of different countries 
following different growth dynamics.  

 
Despite utilizing different methodologies, and reaching very different conclusions, 

the linear regression convergence literature and the distribution dynamics club 
convergence literature share a common weakness. Both approaches purport to make 
conclusions regarding long-term dynamics, while utilizing relatively short time series. 
This asymptotic approach is particularly problematic in the linear regression literature, 
which assumes that all countries share the same linear growth dynamic, in essence 
forcing the estimated parameters to support the convergence hypothesis2 (since explosive 
                                                 
1 For a survey of early developments in the empirical growth literature, see Durlauf and Quah (1999). 
2 In this regard, Phillips and Sul (2003) show that obtaining β -convergence and/or α -convergence is not 
possible if economies have different speeds of convergence, different growth rates due to technological 
progress, and heterogeneous initial income. 
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divergence and cyclicality – the only other dynamics allowed by linear models – are very 
far fetched). The club convergence literature is also problematic, since it focuses on the 
existence of multi-modal unique invariant measures to which income distributions must 
converge. However, this invariant measure is consistent with the U.S. always being 
significantly richer than Bangladesh, as well as the scenario wherein the two countries 
trade places every period. Moreover, as we shall see in this paper, there is evidence of 
fundamental non-stationarity of transition dynamics, which make any asymptotic 
predictions based on short time-series difficult to support. 

 
In this paper, we focus on the estimated income dynamics themselves, rather than 

their supposed limiting distributions. This approach allows us to capture rich 
nonlinearities in income dynamics, while avoiding the anonymity and assumed 
stationarity of stochastic dynamics that are imposed by focusing on ergodic distributions 
of estimated transition kernels. Our approach is based on the following notion of 
stochastic stability: the relative likelihood for any given country at its particular relative 
income of getting relatively richer, relatively poorer, or staying the same relative income. 
A stochastically stable point on the income distribution scale is a ranking with a 
“stochastic basin of attraction”, whereby countries that are slightly richer are likely 
(probability > 0.5) to get poorer, and those slightly poorer are likely to get richer. Our 
analysis of “clubs” is therefore reduced to a statistical analysis of the number of such 
stochastically stable points, one for which we derive a formal statistical test.  

 
 In the distributional dynamics literature, the initial dominant result, studying 

ergodic distributions (unique invariant measures) of estimated income distribution 
transition matrices, has been bi-modality in the limiting income distribution.3  If a middle 
group was in fact observed in any historical time period, this asymptotic result was 
explained in terms of a “vanishing middle” in the income distribution, in the sense that 
middle income countries will have eventually to fall to either extreme (joining the rich 
club or the poor club, or – theoretically – oscillating between the two!). More recent 
studies of distributional dynamics, e.g. Kremer, Onatski, and Stock (2001, hereafter: 
KOS), found evidence of uni-modality of the limiting distribution.4 Sala-i-Martin (2002a, 
2002b) also found evidence for asymptotic uni-modality (a variant on the classical 
convergence hypothesis) by utilizing a controversial data transformation.5  

 

                                                 
3 Quah (1997) describes this result as evidence for a polarization of the world income distribution and 
vanishing of middle-income group. Bianchi (1997), Paap and van Dijk (1998) also support the conclusion 
of twin-peaks and vanishing middle-income group. 
4 Quah (2001) provided the counter-argument that KOS (2001)’s single-peaked limit distribution would be 
reached only after centuries of polarization. However, that critique merely points to the general weakness 
of any analysis that focuses primarily on limiting distributions (including Quah’s own studies), rather than 
studying the actual estimated short to medium-term dynamics. 
5 Bianchi (1997) correctly points out that Sala-i-Martin’s logarithmic transformation simplifies the structure 
of income distribution data by removing skewness and outliers, thus making it more difficult to distinguish 
between a bimodal density and a unimodal one.   
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Quah (2001) pointed out that the literature on distributional dynamics had to-date 
relied mainly on ocular inspection of estimated ergodic measures, and lacked a formal 
test of the club convergence hypothesis. The best attempts to-date at providing a formal 
test of multi-modality are those of Bianchi (1997), and KOS (2001). However, Bianchi 
(1997) merely tested for multi-modality of the static income distribution density. In other 
words, this test only applies to the case where income distribution is already drawn from 
the unique invariant (ergodic) measure. In Appendix B, we provide a dynamic version of 
this test, inspired by the methodology used by KOS (2001). The latter test, by the 
admission of its own authors, suffers from two fundamental weaknesses: non-robustness 
to the supposed locations of the “clubs”, and ability only to test for one club versus more. 
The stylized facts uncovered in Section 2 question the validity of focusing on limiting 
distributions, in light of the fundamental non-stationarity of income distribution dynamics. 

 
This apparent non-stationarity of income distribution dynamics (in the stochastic 

processes sense of changing transition probabilities/kernels) prompted us to abandon the 
focus on limiting distributions of estimated transition kernels (although we perform some 
limiting distribution analyses, for comparison purposes). Instead, we focus on the 
transition dynamics in different sub-periods, to investigate our notion of stochastic 
stability of various income groups. Utilizing the seminal works on time-series 
nonparametric density estimation by Roussas (1969a, 1969b, 1991), we develop a formal 
test of multiple stochastically stable income groups in different sub-periods  

 
The rest of this paper will proceed as follows. In Section 2, we establish empirical 

stylized facts regarding the periodic appearance, disappearance and re-appearance of a 
middle-income group, as well as non-stationarity of income distribution dynamics. In 
section 3, we propose a notion of stochastic stability for studying the properties of 
transition dynamics during those sub-periods within which a middle group disappeared or 
re-emerged. We also derive the asymptotic distribution theory for our measure of 
stochastic stability, thus paving the road for a formal statistical test of the stability of 
multiple income-distribution clubs, which is presented in Section 4. We conclude the 
paper in Section 5 with discussions of the economic implications of our stylized facts and 
empirical results. 

 
2. Empirical Stylized Facts 
 
 We would like to provide graphical evidence of two main stylized facts in income 
distribution dynamics. The first is periodic appearance, disappearance and re-appearance 
of middle-income groups, and the second is the periodic change (non-stationarity) in the 
transition kernel itself. The latter stylized fact puts into question the study of 
“convergence”, “club convergence”, or any hypothesis based on the assumption of 
constant transition dynamics. In other words, the central question of the convergence 
literature may be ill-posed in light of this apparent, and fundamental, non-stationarity.  
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The data we utilize in this paper is taken from the Summers and Heston Penn 
World Table Mark 6.1. 6  Our measure of a country’s position in the global income 
distribution is the standard relative income, calculated using PPP-based per capita 
incomes of the various countries.7  
  

We must mention at this juncture that a number of recent studies have suggested 
replacing national per capita GDPs, as the object of investigation of income distribution 
dynamics, with global individual incomes (cf. Bourguignon and Morrison (2002), Fischer 
(2002), and Sala-i-Martin (2002a, 2002b)). With the exception of Bourguignon and 
Morrison (2002)’s results, this alternative object of investigation provides support for the 
classical convergence hypothesis, mainly by giving China and India (accounting for one-
third of the world-population, and experiencing some of the fastest rates of per capita 
income growth in the world) more weight. Proponents of this alternative object of 
investigation criticized per capita GDP as an oversimplified measure that ignores within-
country inequality effect, c.f. Bourguignon and Morrison (2002). Thus, Fischer (2002) 
finds evidence for classical β -convergence (negative estimated coefficient for initial per 
capita income in a growth regression) by using population-weighted real per capita GDP 
as the variable of interest. Sala-i-Martin (2002a and 2002b) used direct kernel estimates 
of global income distribution to account for within–country reductions of income 
distribution inequality. He concluded that world income inequality was on the decline, 
thus supporting the hypotheses of “vanishing twin peaks” and “emergence of a world 
middle-class”, c.f. Sala-i-Martin (2002b), p.14. 

 
This new empirical literature notwithstanding, we have decided, for a number of 

reasons, to limit our analysis to the dynamics of cross-country per capita GDP 
distributions: First, the “convergence” literature was originally motivated by the 
predictions of the neo-Classical Solow growth model, based on its well-behaved 
aggregate production function. Second, the bulk of the literature on income distribution 
dynamics to-date focused on distributions of cross country per capita GDP. This paper 
primarily criticizes that literature by establishing stylized facts regarding the fundamental 
non-stationarity of the transition dynamics of those distributions. This fundamental non-
stationarity makes claims regarding all “convergence” hypotheses of doubtful relevance. 
Third, we would argue that future research on within- as well as between-country income 
distributions should consider the possible fundamental non-stationarity of within-country 
income distribution dynamics as well. Finally, the recent literature, e.g. Bourguignon and 
Morrison (2002, the Table 2) and Sala-i-Martin (2002a. p.39), suggests that between-
country income inequality effects dominate within-country effects. Thus, we do not 
distort the results significantly by focusing on the former. 

                                                 
6 Available at http://pwt.econ.upenn.edu. 
7 As commonly done in this literature, we define relative income as a percentage share of total world 
income.  Relative income ix is thus calculated as follows: ( / ) 100i i ix X X= ×∑ , where iX is per capita 
GDP of a country. 
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To establish our first stylized fact, we employ two different graphical 

representations of the data. First, we plot time series of cross-country per capita GDP 
Gini coefficients.8 Classical convergence hypotheses predict that Gini coefficient would 
be decreasing over the time, while divergence hypotheses predict that they would be 
trending upwards. The first graph in Figure 1 shows that the Gini coefficients for our 
entire dataset (including developed and developing countries) trend upwards.  On the 
other hand, the third graph in the left panel in Figure 1 shows that the Gini coefficient 
within the group of OECD countries is declining over the time. Those two graphs support 
the two-clubs convergence hypothesis.  Further dividing the non-OECD group into three 
geographical sub-groups (graphs on the right panel in Figure 1): African, Latin American, 
and East and South-east Asian, we find evidence of non-monotonicity. Those sub-groups 
include Latin American and Asian countries that occupied a middle-income position for 
various sub-samples. The non-monotonicity of their Gini coefficients presents a first hint 
at the emergence, disappearance, and re-appearance of middle income groups.9 

 
To investigate the emergence and stability of this middle income group, we 

propose a measure of “stochastic stability” for a country at some relative income level. 
Our measure is constructed as the median of the given country’s relative income at time 
t+1 conditional on its relative income at time t, less that country’s relative income at time 
t. In other words, denoting the period t relative income of a given country by tx , we 
consider the measure: 

 1( ) median( | ) .t tf a x x a a+= = −  
A zero of this function occurs at any value a such that a country with that relative income 
is equally likely to move up in the income distribution as it is to move down. Plots of this 
measure are qualitatively similar to those used by Quah (1997) and Johnson (2000) to 
investigate income distribution dynamics graphically. However, as we shall see shortly, a 
distribution theory is relatively easy to derive for our proposed measure.   

 
We now proceed to define the “stochastic stability” of a zero of our function 

( )f a .  Towards that end, it is clear that whenever ( )f b is positive, a country with 
relative income b is likely (probability > 0.5) to move up in the income distribution, and 
vice versa.  Consequently, a stochastically stable zero of (.)f  is defined as a point at 
which the function crosses the x-axis from above. For instance, Figure 2 illustrates a 
hypothetical function (.)f  with five zeros. Three of the function’s crossings are from 
                                                 

8  Computed, as usual as: 1 1
22

n n
i ji j

x x
G

n µ
= =

−
=
∑ ∑

  , 

whereµ  is mean size, c.f. http://mathworld.wolfram.com/GiniCoefficient.html. 
9 Further sub-dividing African countries into four regional sub-groups (western, central, eastern, southern), 
we detect more within-group heterogeneity of Gini coefficients. Sala-i-Martin (2002a) has clearly made the 
case for the importance of understanding the various income dynamics within Africa, as a tool for better 
understanding global income dynamics. 



 6

above (C1, C3, and C5), i.e. “stochastically stable”, in the sense that countries slightly to 
the left of those points are likely to move to the right, and vice versa. In contrast, C2 and 
C4, wherein the function crosses the x-axis from below, are “stochastically unstable”. 
Focusing on short-term stochastic stability, rather than asymptotic distributions, we may 
define an analogue of Quah’s “twin peaks” hypothesis in terms of a function (.)f  with 
two stochastically stable zeros and a “vanishing middle”. In contrast, a function with 
three stochastically stable zeros would indicate that there are three clubs, the middle one 
being Sal-i-Martin’s “emerging middle class”. Notice in this regard that the function (.)f  
is derived directly from the transition kernel, and not merely from its hypothesized 
asymptotic limit.  

 
Utilizing plots of our proposed function, we can establish both stylized facts 

mentioned at the beginning of this section. In Figure 3, we show plots of nonparametric 
estimates of the function (.)f  for the two sub-periods: 1961-66 and 1991-96. We shall 
describe our nonparametric method for estimating (.)f , and the asymptotic statistical 
properties of the resulting estimate, in Section 3. Without constructing confidence 
intervals around our estimates, however, it seems compelling to conclude that there were 
two stable zeros in the early 1960s, but three stable zeros in the early 1990s. Not 
surprisingly, the so-called “Asian Tigers” occupy the middle income group in the early 
1990s. Indeed, as we shall see in the graphs accompanying the formal tests in Tables 4-10, 
a middle income group (a middle stable zero of the function) seems to have emerged in 
the mid-1970s (in that case, it was mainly comprised of Latin American countries), only 
to vanish in the early 1980s. A middle group emerged again in the late 1980s (the Asian 
Tigers), and it may be too early to tell whether or not the dynamics have changed yet 
again to only allow for the rich and poor clubs, with no middle-income group.10 Those 
graphs heuristically support the two stylized facts: (i) a stable middle income group 
seems to emerge every now and then, and (ii) distribution dynamics change every so 
often, to destabilize that middle group. We now turn to formalizing those conclusions 
through a nonparametric estimation and hypothesis testing framework. 
 
3. Stochastic Stability and the Convergence Club Hypothesis 

 
We consider a Markov process on relative incomes, defined by an estimated 

transition function ( , )nP x A  from any point x to any set A , with density ( , )nt x y .11 We 
shall define our stochastic stability conditions in terms of the properties of this transition 

                                                 
10 To illustrate cases wherein our non-parametric estimate of (.)f  may give rise to a single stable zero, we 
show in Figure 4 the estimates for OECD countries’ income distribution, as well as those for cross-state 
income distributions in the U.S. However, even in those cases, we can see the emergence of more stable 
zeros in both cases. However, applying our tests to those cases is beyond the scope of this paper. 
11 Formally, for any x∈R , ( , )nP x ⋅ is a probability measure on the Borel sigma-algebra ),B( and for a 

given Borel set ), ( , )nA P A∈ ⋅B(  is a Borel measurable function. 
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density. We shall estimate the transition density over a compact set X via the kernel 
density estimator: 

 
( , ') ( , ') / ( ),n n nt x x q x x p x=            where  

1

1( ) ( )
n

i
n

i

x xp x K
nh h=

−
= ∑      and       

1
1

1/ 2 1/ 2
1

'1( , ') ( ) ( )
n

i i
n

i

x x x xq x x K K
nh h h

−
+

=

− −
= ∑  

 
are the corresponding non-parametric estimates of the marginal and joint densities, 
respectively. We then obtain our estimate of the conditional CDF of this transition as 
follows: 

( | ) ( ' | )
z

n nG z x t dx x
−∞

= ∫  
 

Let the α-quantile of this CDF be denoted ( , )n xξ α . We assume that the median (0.5, )n xξ , 
defined as the smallest root of the equation ( | ) 0.5nG z x = , is unique. We then investigate 
stochastic stability in terms of the function ( ) (0.5, ) .n nf x x xξ= −  
 
Definition (Stochastic Stability)  

A point x  is said to be a stochastically stable zero of the function (.)nf  if:  
  i) ( ) (0.5, ) 0,n nf x x xξ= − =  

   ii) ( ') ( )  for  ' ( , ) and some 0,  andn nf x f x x x xε ε> ∈ − >  
iii) ( ') ( )  for  ' ( , ) and some 0.n nf x f x x x x δ δ< ∈ + >  

 
As noted in Section 2, our analogue of the two-clubs or “twin-peaks” hypothesis 

of Quah (1997) is thus represented as a function (.)f  with two stable zeros. The classical 
convergence hypothesis (e.g. as found for within-U.S. income distribution across states, 
or within the OECD block c.f. Johnson (2000)) is represented with a single stable zero. 
The existence of three stable zeros would question both the classical convergence 
hypothesis, as well as Quah’s “vanishing middle-income group” hypothesis. In the 
remainder of this section, we shall derive the statistical properties of the estimated (.)nf , 
and thus obtain a formal test for the number of stable zeros.  

 
Under the appropriate assumptions summarized in Appendix A, Roussas (1991) 

proved strong consistency of the estimated CDF ( | )nG z x  (Theorem 2.1 in Roussas 
(1991), p.446) as well as the estimated quantile ( , )n xξ α  (Theorem 2.2, ibid.). In addition, 
we can show under suitable assumptions that the estimated α-quantile ( , )n xξ α  has an 
asymptotic normal distribution as stated in the proposition 1.12 

                                                 
12 The expression we derive for the asymptotic variance of the estimated quantile is derived using the 
techniques in Roussas (1991), and it is a correction for the variance term stipulated in Roussas (1969b). 
Assumptions A.1 through A.5 in Appendix A are relatively standard. The crucial assumption is that of 
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Proposition 1. Under suitable assumptions (see Appendix A for assumptions and proof) 
1/ 2 2( ) [ ( , ) ( , )] (0, ( , )),d

nnh x x N xξ α ξ α τ ξ− ⎯⎯→  where 

( ) ( )2 2 1 2( , ) ( | ) | (1 | ) ( ) ( )x t x G x G x p x K z dzτ ξ ξ ξ ξ− −= − ∫  

 
Replacing the unknown quantities ( ){ ( | ), | , ( )}t x G x p xξ ξ with their consistent 

estimates, we can easily perform individual tests for the null hypothesis 0 : (0.5, ) 0H yξ = . 
In addition, once we show that the estimates at different points are asymptotically 
uncorrelated, we can easily construct uniform confidence bands around the function (.)f  
based on the point-wise confidence bands. We can also perform simultaneous tests of 
multiple stable zeros, as shown in Section 4. For now, we conclude this section with two 
crucial results: uncorrelatedness of conditional median estimates for the same time period 
across relative incomes, and across time periods for the same relative income. Those two 
results will be crucial for performing tests regarding the number of zeros of the estimated 
stochastic (.)f . Proposition 2 establishes uncorrelatedness of the conditional median 
estimate at different points for the same period, thus allowing us to construct a simple 
Chi-squared test of multiple-zeros of the function by utilizing only estimated variances at 
the stipulated zeros. Since our cross-sectional sample is too small to yield sufficiently 
small estimated variances at the various points, we shall average estimated (.)f  across 
five time periods. The calculation of the estimated variance of the average is made simple 
due to Proposition 3, which shows that the estimated conditional median at the same 
point over different time periods is uncorrelated. 

 
 

Proposition 2. Under suitable assumptions (see Appendix A for assumptions and proof) 
 

cov[( ( , ) ( , )), ( ( , ) ( , ))] 0p
n nx x y yξ α ξ α ξ α ξ α− − ⎯⎯→

  
for ,   ,x y x y≠ ∈R  

 
 
Proposition 3. Under suitable assumptions (see Appendix A for assumptions and proof) 
 

1 1cov[( ( , ) ( , )), ( ( , ) ( , ))] 0pt t t t
n nx x x xξ α ξ α ξ α ξ α+ +− − ⎯⎯→

  
for x∈R  

  

                                                                                                                                                 
stationary-ergodicity/mixing of the true underlying transition kernel. While we question the stationarity of 
the transition kernel over the entire sample, asserting that different sub-periods were characterized by 
different transition kernels, we may still maintain that the transition kernel for each sub-period (were it to 
continue indefinitely) would indeed converge to a unique invariant (ergodic) distribution. When we 
estimate a transition kernel over a long period, we may think of the object of estimation as a mixture of the 
various ergodic transition kernels, which would itself be ergodic under appropriate technical assumptions 
(e.g. Markovian regime switching according to an ergodic probability transition matrix). 
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4. Hypothesis Testing Support for Stylized Facts  
  

Before using our measure of stochastic stability to test the hypothesis of existence 
of a stable middle-income group of countries in various sub-periods of the sample, we 
present two test results to support the hypothesis of non-stationarity of income dynamics. 
Results of the first test are shown in Figure 5. This figure reports the results of 
Kolmogorov-Smirnov tests of equality of the conditional transition CDFs for each initial 
relative income level for the first and last years of our sample: 1961-2 and 1995-6, 
respectively.13 As we can see, the p-values for this test are extremely small for almost all 
initial relative incomes, with the exception of a small and relatively unpopulated band of 
high-incomes. Consequently, we can conclude that for almost all initial relative incomes, 
the transition dynamics of countries with such relative incomes were significantly 
different in the different parts of our sample. 

 
For comparison with KOS (2001) and other results in the literature, which 

focused on limiting distributions, we perform a second Kolmogorov-Smirnov test of 
equality of the estimated limiting income distributions of the estimated five year 
transitions for the first and last five-year periods in our sample: 1961-66 and 1991-96, 
respectively. The pdfs and CDFs of those limiting distributions are shown in Figure 6. 
The difference between those two limiting distributions is obvious, and it results in an 
extremely low p-value of 1.3799889e-009 for the Kolmogorov-Smirnov test of the 
equality of the two CDFs. Thus, Figures 5 and 6 further suggest that income distribution 
dynamics in our sample must be studied separately for the different sub-periods. In 
particular, we shall focus on the existence of a stochastically stable middle income group 
in various sub-periods. The existence of such a stochastically stable middle income group, 
together with a basin of attraction that is close to that of the poor countries, increases the 
probability of escape from a low-income poverty trap, as we shall see in Section 5. First, 
we turn in the remainder of this section to the formal tests of existence of a stochastically 
stable middle group in various sub-periods. 

 
Utilizing the consistency and asymptotic normality results of Section 3, we can 

test formally for the existence of multiple stochastically stable income groups over 
various time-periods/epochs. Formally, our test will be constructed as follows: 
 

                                                 
13 The classical Kolmogorov-Smirnov test with two empirical CDFs utilizes the central limit theorem for 
two i.i.d. samples, thus generating the K-S statistic as the supremum of a Brownian Bridge, and deriving 
the distribution of said maximum. In our case, the central limit theorems for the two estimated conditional 
transition CDFs (. | )nG x from the two cross-sectional samples (one in the early 60s and one in the early 
90s) are based on the asymptotic normality result of Roussas (1991, Theorem 2.3, p.447). Covariances 
between the two estimated CDFs for the early 1960s and 1990s are assumed negligible under the 
maintained hypothesis of an overall mixing DGP. 
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where (0.5, )n xξ is an estimated conditional median of income at t+1, and sc , s=1,2,…,l, 
is the list of points at which our function is equal to zero under the null hypothesis.14 For 
instance, to have three stable zeros of our function ( ) (0.5, )n nf x x xξ= − , we would need 
five zeros of the function, as shown in Figure 2. If we have only two stable zeros (our 
dynamic version of the twin-peaks hypothesis), then we should reject the null hypothesis 
of five zeros, in favor of only three zeros (two of which would be stable: representing the 
rich and poor clubs) or less. Given our interest in testing the three clubs hypothesis 
(including a middle-income group), we conducted the test at 5 candidate zeros of our 
function. If we were interested only in the two-clubs vs. global convergence hypotheses, 
we would have tested the null of three zeros vs. the alternative of only one. The stylized 
facts explored in Section 2 prompted us to conduct the formal test for 5 zeros, three of 
which would be stable. 
 

Since the quantile estimator ( , )n xξ α is asymptotically normally distributed, with 
the covariance matrix derived in Section 3, we can construct our test statistic as a 
quadratic form with an asymptotic 2χ distribution under the null hypothesis. Formally, 
our test statistic is: 
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(0.5, )

(0.5, ) ( ).

0

0

n

n
n n n l l

l
n l l

l
dn s s

H
s s

c c
c c

c c c c c c

c c

c c l

ξ
τ

ξ
ξ ξ ξ

τ ξ

ξ χ
τ

−

=

−⎛ ⎞⎛ ⎞ ⎜ ⎟−⎜ ⎟ ⎜ ⎟− − − ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ −⎝ ⎠

⎧ ⎫−
= ⎯⎯⎯⎯→⎨ ⎬

⎩ ⎭
∑

 

 
In application, the standard errors sτ for annual transition estimates were too large. 
Consequently, we utilized the result in Proposition 3, to average estimates over five year 
periods, thus obtaining reasonably small confidence intervals on (0.5, )n c cξ − .  

 
 Tables 4-10 show the test results for seven five-year periods, starting with 1961-
66, and ending with 1991-96. For instance, Table 4 shows that the test statistic for the 
period 1961-66 exceeded its 5% critical value. Hence, we reject the null hypothesis of 
three stable zeros, in favor of the fewer-clubs (two: rich and poor) hypothesis. The same 
result is also obtained for the period 1966-71. However, for the next two five year 
                                                 
14 The five points at which the tests were conducted were chosen for each five-year period were selected 
based on the zeros of the function based on one-year transitions (see Figure 6). 
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periods: 1971-76 and 1976-81, we fail to reject the null hypothesis of three stochastically 
stable zeros. In other words, the test results in Tables 6 and 7 confirm the ocular reading 
of the graphed function to the right of Table 7, that we have a stochastically stable 
middle-income group in the mid-to-late 1970s.  The test in Table 8 rejects the null 
hypothesis of three groups at the 5% significance level for the period 1981-86. Then, a 
stable middle-income group re-emerges in the late 1980s and early 1990s, resulting in 
failure to reject the null hypothesis for those two periods. In other words, stochastically 
stable middle income groups seem to have appeared in the mid 1970s (mostly Latin 
American countries), and then to have disappeared in the early 1980s as most of those 
countries drifted downward in relative per capita incomes. Then, another stable middle-
income group seemed to have arisen in the late 1980s and early 1990s (mostly Asian 
Tigers). It may be too early to determine whether or not this group has been destabilized 
by the financial difficulties most emerging markets suffered during the late 1990s.  
 
  Those formal test results support the stylized facts of Section 2, which were 
based on graphical inspection of our measure of stability of various income groups. They 
also suggest that framing the problem in terms of “convergence”-type hypotheses of any 
kind may obscure some of the most interesting dynamics. In particular, it would be very 
useful to model the changes in stochastic transitions themselves, which give rise to the 
periodic appearance and disappearance of a stable middle-income group. For example, 
casual ocular inspection of Figure 7, which shows all the zeros of the function 

(.)nf estimated for each 1-year transitions, suggests that a middle-income group tends to 
emerge as the gap between the rich and poor clubs gets wider, and to disappear as this 
gap shrinks in later periods. However, modeling this higher-level dynamic would require 
a different methodology, and thus remains beyond the scope of this paper. 
 
5. Economic Implications and Concluding Remarks 

 
Quah (2001) noted that the major weakness in the distributional dynamics 

approach to income distributions literature pertains to the areas of formal statistical 
testing and inference. Bianchi (1997) and KOS (2001) provided valuable early attempts 
to fill this gap in the literature. However, the first approach remained primarily static (test 
of multi-modality of estimated cross-country income distribution density at a given point 
in time), while the second focused only on the asymptotic (ergodic) distribution, to the 
exclusion of short-term dynamics. As also noted by Quah (2001), this emphasis on the 
limiting distributions of estimated probability transition matrices is not particularly 
insightful, since classical convergence may only be attainable in this framework after 
centuries or millennia of increased inequality between the rich and poor. 

 
The two stylized facts we established heuristically in Section 2, and supported 

with hypothesis tests in Section 4, suggest strongly that distributional dynamics are non-
stationary over our sample of 35 years. Examining transition dynamics over 5-year 
periods, we detect strong evidence for periodic appearance and disappearance of a 
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stochastically stable middle-income group. The significance of this middle income group 
is the fact that it has a “stochastic basin of attraction” that should make it easier for poor 
countries to escape the poverty trap. For instance, consider the schematic diagram in 
Figure 2. In this diagram with three stable zeros, the “stochastic basin of attraction” for 
the poor club extends only up to C2, the basin of attraction for the middle club extends 
from C2 to C4, and the basin of attraction for the rich group extends from C4 upwards. In 
periods with no middle group (the curve stays below the x-axis, and only crosses at C4), 
there would be a large basin of attraction for the poor club extending up to C4, and a 
basin of attraction for the rich club above that point. For a poor country to escape the 
poverty trap (interpreted here as the stochastic basin of attraction for the poor club), it has 
to sustain a “big push” that transfers it to another basin of attraction. The existence of a 
stable middle group brings such an alternative basin of attraction closer, and thus makes 
it more likely for any given country to escape the poverty trap. This is illustrated in 
Figure 8, where we plot the probability of a country escaping from the poor club (a 
relative income close to the first stable zero) to the middle income range (a relative 
income in the middle of the range of our observations), for different years. Using the 
estimated one-year transition kernels, we can see that the probability of escape 
asymptotes to a low invariant probability very quickly for the years 1961-62, 1971-72, 
and 1981-82, during which we are finding no stable middle group. In contrast, we find 
that the probability of escape from the poverty trap continues to grow for the years 1975-
76 and 1991-92, during which such a stable middle group was present.  

 
The sample of 35 years is too short to fully understand the nature of higher-order 

dynamics. In Figure 7, where we traced the locus of zeros of the conditional median 
relative income less initial relative income, we can see that the appearance of a stable 
middle group coincides with a widening of the gap between the rich and the poor, and its 
disappearance coincides with a narrowing of this gap. Indeed, Paap and Dijk (1998) have 
also documented this stylized fact. However, understanding the causal underpinnings of 
this constant conjunction, and the economic conditions that are conducive for the 
appearance of a stable middle-income group, requires deeper economic modeling of the 
higher level dynamics. Understanding those higher level dynamics appears to be a more 
fruitful than defending globalization on the basis of “convergence” or condemning it on 
the basis of “divergence”, when both hypotheses in fact appear to be ill-posed.   
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Appendix A 
 
We use the nonparametric estimates of the marginal and joint pdfs following Roussas (1969a, 
1969b, 1991): 
 

1 1
1

11 1/ 2 1/ 2
11

( ) ( ) (( ) )

( , ') ( ) (( ) ) (( ' ) )

n
n jj

n
n j jj

p x nh K x X h

q x x nh K x X h K x X h

− −
=

−− − −
+=

= −

= − −

∑
∑ .

 

The natural nonparametric estimate of the transition pdf is therefore: 
 

( ' | ) ( , ') / ( )n n nt x x q x x p x= . 

This in turn gives rise to a reasonable estimate of the transition CDF: 

( | ) ( ' | )
z

n nG z x t dx x
−∞

= ∫ .
 

Roussas (1969a, 1969b, 1991) makes the following regularity assumptions for proving 
consistency and asymptotic normality of our statistics of interest: 
 
A.1.  

(i) The real-valued random variables nX , 1n ≥ , are defined on a probability space 
( , , )PΩ A and constitute a strictly stationary Markov process with a single ergodic set 
and no cyclically moving subsets. 

(ii) The marginal and joint distributions of 1X  and 1 2( , )X X have continuous pdfs with 
respect to appropriate Lebesgue measures: p(.) and q(.,.), respectively. 

(iii) The process { }nX  is ρ -mixing with maximal correlation ( ) ( ), 1n O n υρ υ−= > . 
 
A.2. K is a pdf defined onR such that: 

(i) K is bounded. 
(ii) ( ) 0x K x →  as  x →∞ . 
(iii) ( ) 0xK x dx =∫  and 2 ( )x K x dx < ∞∫ . 
 

A.3. ( )h h n= stands for a sequence of real numbers such that as n ↑ ∞ : 
 (i) 0 0h< → . 

 (ii) For some arbitrarily large 1/ 2

1
2, ( ) l

n
l n h

∞
−

=

≥ < ∞∑ . 

 (iii) 5 0nh → . 
 
A.4. For (0,1)α ∈  and x∈R , the one-step transition CDF (. | )G x , has a unique α-quantile 

( , )xξ α . 
 
A.5. (i)  p(.) has a continuous and bounded second order derivative. 

(ii) The pdf (.,.)q  has continuous second order partial derivatives, denoted '' (.,.)ijq , 

i,j=1,2, such that '' ( , )ijq x y dy C≤∫  (independent of x∈R ). 

 (iii) 1,( ) , , and ( , ) ( ) ( ) , 2,   ,ip x C x q x y p x p y C i x y≤ ∈ − ≤ ≥ ∈R R . 
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We now list the major consistency and asymptotic normality results for the estimators of the 
transition CDF and α-quantile, as provided by Roussas (1969a,b, 1991): 
 
THEOREM 1. (Roussas 1991, Theorem 2.1)  
Under A.1; A.2 (i), (ii); and A.3 (i), (ii):  
 

sup{ ( | ) ( | ) ; } 0 a.s., nG z x G z x z x− ∈ → ∈R R  
 
THEOREM 2. (Roussas 1991, Theorem 2.2) 
Under A.1; A.2 (i), (ii); A.3 (i), (ii): and A.4, let ( , )n xξ α  denote the α-quantile of ( | )nG z x ,  
0 < α <1, then: 

( , ) ( , ),  a.s., n x x xξ α ξ α→ ∈R  
 
 
We now list the three propositions in Section 3 of this paper. Proposition 1 is a slight 
modification of the asymptotic normality result in Roussas (1969b). The expression for the 
variance term 2τ in that paper is not correct. For completeness, we use the results and methods of 
Roussas (1991) to derive the correct expression for that variance term. In addition, those 
terminology and methods of Roussas (1991) will be used in proving Propositions 2 and 3, which 
assure us that covariance terms vanish asymptotically, thus allowing us to compute our quadratic 
form test statistic with great ease. 
 
PROPOSITION 1. Under A.1-A.5: 
 

1/ 2 2( ) [ ( , ) ( , )] (0, ( , )),d
nnh x x N xξ α ξ α τ ξ− ⎯⎯→  

where ( ) ( )2 2 1 2( , ) ( | ) | (1 | ) ( ) ( )x t x G x G x p x K z dzτ ξ ξ ξ ξ− −= − ∫  

 
PROPOSITION 2. Under A.1-A.5: 
 

cov( ( , ) ( , ), ( , ) ( , )) 0p
n nx x y yξ α ξ α ξ α ξ α− − ⎯⎯→  

for ,   ,x y x y≠ ∈R  
 
PROPOSITION 3. Under A.1-A.5: 
 

1 1cov( ( , ) ( , ), ( , ) ( , )) 0pt t t t
n nx x x xξ α ξ α ξ α ξ α+ +− − ⎯⎯→  

for x∈R  
 
 
PROOF of PROPOSITION 1 
 
We first sketch the proof methodology of Roussas (1969a, 1969b, 1991) to derive the general 
variance term. The proof utilizes a Taylor expansion: 
 

*( | ) ( | ) ( ) ( | ),n n n n n nG x G x t xξ ξ ξ ξ ξ= + −  
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Where nξ is the α-quantile of nG , and ξ  is the α-quantile of G . Consequently, by construction, 
( | ) ( | )n nG x G xξ α ξ= = . Combining the two expressions, we get: 

 
1/ 2 1/ 2 1 *( ) ( ) ( ) [ ( | ) ( | )] ( | )n n n nnh nh G x G x t xξ ξ ξ ξ ξ−− = − −  

where *
nξ  is a random variable whose values lie between nξ  and ξ . Roussas (1969b, Lemma 

5.1) showed that the last term converges in probability: *( | ) ( | ),p
n nt x t x xξ ξ⎯⎯→ ∈R , and then 

proceeded to prove that 1/ 2( ) [ ( | ) ( | )]nnh G x G xξ ξ−  has an asymptotically normal distribution. 
This is accomplished by writing: 
 

 
1 *
1 1

( | ) ( ) / ( ),n n
n n j n jj j

G x L Y L Xξ −

= =
=∑ ∑  

where  
1( ) (( ) ),n j jL X K x X h−= −  

* 1/ 2 1/ 2 1/ 2 1/ 2
1 1( ) (( ) ) (( ) ) (( ) ) (( ( ) ) ),n j j j j jL Y K x X h K x X h dx K x X h K x X h

ξ
ξ− − − −

+ +−∞
′ ′= − − ≡ − −∫

 1( , ),j j jY X X +=  j=1,2….,.n-1 
 
Adding and subtracting * * 1

1 1[ ( )][ ( )]n n nv EL Y EL X −= −  
1/ 2 1/ 2( ) [ ( | ) ( | )] ( ) [( ( | ) ) ( ( | ) )]n n n nnh G x G x nh G x v G x vξ ξ ξ ξ− = + − +  

 
The second term converges in probability to zero (Roussas 1969b, Lemma 5.3), and the first term 
can be rewritten as: 

11/ 2 1 1 1/ 2
1 1

( ) [ ( | ) ] [( ) ( )] ( ) [ ( ) ( )],n n
n n n n j n j n jj j

nh G x v nh L X nh Y E Yξ ϕ ϕ−− − −
= =

+ = −∑ ∑   

where    *( ) ( ) ( )n j n j n n jY L Y v L Xϕ = +  
 
Roussas (1991, Lemma 3.1) further proves that 1

1
( ) ( ) ( ),  a.s. n p

n jj
nh L X p x x−

=
⎯⎯→ ∈∑ R  

and proceeds to prove asymptotic normality for the remaining term: 
11/ 2

01
( ) [ ( ) ( )] (0, ( , ))n d

n j n jj
nh Y E Y N xϕ ϕ σ ξ−−

=
− ⎯⎯→∑  

where      
2

0

( , )[ ( ) ( , )] ( )
( , )

( )

q x p x q x K z dz
x

p x

ξ ξ
σ ξ

−
= ∫  

 
Returning to the α-quantile expansion: 

1/ 2 1/ 2 1/ 2 1 *( ) ( ) {( ) [ ( | ) ] ( ) [ ( | )]} ( | ),n n n n n nnh nh G x v nh v G x t xξ ξ ξ ξ ξ−− = − + − +  
it is clear that the asymptotic variance term is: 
 

2
2 2 2 2 2

0

2 2 1

( , )[ ( ) ( , )] ( )
( , ) ( | ) ( , ) ( ) ( | ) ( )

( )

            ( | ) ( | )[1 ( | )] ( ) ( )

q x p x q x K z dz
x t x x p x t x p x

p x

t x G x G x K z dzp x

ξ ξ
τ ξ ξ σ ξ ξ

ξ ξ ξ

− − − −

− −

−
= =

= −

∫

∫
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PROOF of PROPOSITION 2: 
 
We begin with the familiar Taylor expansion (thereafter, we suppress dependence on α ): 
 

1/ 2 1/ 2

1/ 2 1/ 2 1 * 1 *

( ) ( ( , ) ( , )) ( ) ( ( , ) ( , ))

{( ) [ ( ( ) | ) ( ( ) | )]} {( ) [ ( ( ) | ) ( ( ) | )]} ( | ) ( | )
n n

n n n n n n

nh x x nh y y

nh G x x G x x nh G y y G y y t x t y

ξ α ξ α ξ α ξ α

ξ ξ ξ ξ ξ ξ− −

− ⋅ −

= − ⋅ − ⋅
The last two terms converge in probability to 1 1( | ),  and ( | )t x t yξ ξ− − , respectively. Therefore, 
it only remains to show that the expectation of the term inside the brackets converges in 
probability to zero. 
 
Using Roussas’s result that 1/ 2( ) [ ( | ) ] 0,p

nnh G xξ ν+ ⎯⎯→ and augmenting earlier notation to 

denote the previously used *( , , )L L φ  by *( , , )x x xL L φ , and the corresponding terms with Kernels 
centered around y by *( , , )y y yL L φ , we get: 
 

n

n
11 1 1/ 2

1 1
n

                       

plim {( )[ ( ( ) | ) ( ( ) | )] [ ( ( ) | ) ( ( ) | )]}

plim {( )[ ( ( ) | ) ( )] [ ( ( ) | ) ( )]}

plim {[( ) ( )] ( ) [ ( ) ( )]

n n

n n n n

n nx x x
n j n j n jj j

nh G x x G x x G y y G y y

nh G x x v x G y y v y

nh L X nh Y E Y

ξ ξ ξ ξ

ξ ξ

ϕ ϕ

↑∞

↑∞

−− − −
= =

↑∞

− ⋅ −

= + ⋅ +

= − ×∑ ∑
11 1 1/ 2

 
1 1

1 11 1 1/ 2 1/ 2
1 1

[( ) ( )] ( ) [ ( ) ( )]}

( ) ( ){( ) [ ( ) ( )] ( ) [ ( ) ( )]}.

n ny y y
n j n j n jj j

n nx x y y
n j n j n j n jj j

nh L X nh Y E Y

p x p y nh Y E Y nh Y E Y

ϕ ϕ

ϕ ϕ ϕ ϕ

−− − −
= =

− −− − − −
= =

−

= − ⋅ −

∑ ∑
∑ ∑  

 
We now need to show that the expectation of the term in brackets converges in probability to zero. 
Let 
 

1 11/ 2 1/ 2
1 1

11 * *
1

( , ) ( ) [ ( ) ( )] ( ) [ ( ) ( )]

( ) [ ( ) ( ) ( ) ( ( ) ( ) ( ))]

                                                              

n nx x y y
n n j n j n j n jj j

n x x x x
n j n n j n j n n jj

x y nh Y E Y nh Y E Y

nh L Y v x L X E L Y v x L X

ϕ ϕ ϕ ϕ− −− −
= =

−−
=

Φ ≡ − ⋅ −

= + − + ×

∑ ∑
∑

1 * *
1

11 * *
1

* *

[ ( ) ( ) ( ) ( ( ) ( ) ( ))]

( ) [( ( ) ( )) ( )( ( ) ( ))]

                                                            [( ( ) ( ))

n y y y y
n j n n j n j n n jj

n x x x x
n j n j n n j n jj

y y
n j n j n

L Y v y L X E L Y v y L X

nh L Y EL Y v x L X EL X

L Y EL Y v

−

=

−−
=

+ − +

= − + − ×

− +

∑
∑

1

1
( )( ( ) ( ))] .n y y

n j n jj
y L X EL X−

=
−∑

 
Now taking the expectation of ( , )n x yΦ : 
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1 1

1 2 1 2

1 1 2

1

( ) ( )[ ( , )] cov ,

( ) ( )1 cov ,

( ) ( )cov ,

( ) cov

n n
n

n

n

v x v y x X y XE x y K K
h h h

x X x X y X y XK K K K
h h h h h

v x x X y X y XK K K
h h h h

v y y XK
h h

ξ ξ

ξ

⋅ ⎡ − − ⎤⎛ ⎞ ⎛ ⎞Φ = +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ − − − − ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ − − − ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
−⎛ ⎞

⎜
⎝

1 2

11

1 1

1 1

1 1

( ),

( )( )1 cov ,

( ) ( )1 cov ,

j ji i

i j n

j j i i

i j n

x X x XK K
h h

y X y Xx X x XK K K K
nh h h h h

x X x X y X y XK K K K
nh h h h h

ξ

ξξ

ξ ξ

++

≤ ≤ ≤ −

+ +

≤ ≤ ≤ −

⎡ − − ⎤⎛ ⎞ ⎛ ⎞ +⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ − − ⎤⎛ ⎞ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞ +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ − − ⎤⎛ ⎞ ⎛ ⎞ − −⎛ ⎞ ⎛ ⎞ +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

1

1 1

1

1 1

1

1

( )( ) cov ,

( ) ( )cov ,

( ) ( )cov ,

j jn i

i j n

jn i i

i j n

jn i i

i

y X y Xv x x XK K K
nh h h h

x Xv x y X y XK K K
nh h h h

y Xv y x X x XK K K
nh h h h

ξ

ξ

ξ

+

≤ ≤ ≤ −

+

≤ ≤ ≤ −

+

≤

⎡ − − ⎤⎛ ⎞ ⎛ ⎞−⎛ ⎞ +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ − ⎤⎛ ⎞ − −⎛ ⎞ ⎛ ⎞ +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

⎡ − ⎤⎛ ⎞− −⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

∑

∑

1

1

1 1

1 1

1 1

( )( ) cov ,

( ) ( ) cov ,

( ) ( ) cov ,

j n

j jn i

i j n

jn n i

i j n

jn n i

i j n

x X x Xv y y XK K K
nh h h h

y Xv x v y x XK K
nh h h

x Xv x v y y XK K
nh h h

ξ

≤ ≤ −

+

≤ ≤ ≤ −

≤ ≤ ≤ −

≤ ≤ ≤ −

+

⎡ − − ⎤⎛ ⎞ ⎛ ⎞ −⎛ ⎞ +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ − ⎤⎛ ⎞⋅ −⎛ ⎞ +⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ − ⎤⎛ ⎞⋅ −⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎣ ⎦

∑

∑

∑

∑

 

 
In fact, under our assumptions on the kernel K (the tails of which converge to zero), and for any 
x y≠ , as ,  0n h↑ ∞ ↓ , and the first covariance term will vanish: 
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1 1

1 1 1 1

1

1 cov ,

1

1 1( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( )

x X y XK K
h h h

x X y X x X y XE K K E K E K
h h h h h

y XK u K p x hu hdu K u p x hu hdu K v p y hv hdv
h h h

y xK u K

⎡ − − ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎧ ⎫⎡ − − ⎤ ⎡ − ⎤ ⎡ − ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − ⋅⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭
−⎛ ⎞ ⎡ ⎤= − − − ⋅ −⎜ ⎟ ⎣ ⎦⎝ ⎠

− +
=

∫ ∫ ∫

( ) ( ) ( ) ( ) ( )

0.                                 

hu p x hu du h K u p x hu du K v p y hv dv
h

⎛ ⎞ ⎡ ⎤− − − −⎜ ⎟ ⎣ ⎦⎝ ⎠
⎯⎯→

∫ ∫ ∫

 

 
Similarly, the third and fourth terms can be shown to vanish asymptotically. The third covariance 
term contains two parts. The first component: 
 

1 2 1

1 1

( )1

1

( ) ( ) ( ) ( ) 0.

y X y X x XE K K E K
h h h h

y X x XE K E K
h h h

h K u p y hu du K v p x hv dv

ξ⎧ ⎫⎡ − − ⎤ ⎡ − ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⋅⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭
⎧ ⎫⎡ − ⎤ ⎡ − ⎤⎛ ⎞ ⎛ ⎞≤ ⋅⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭
⎡ ⎤= − ⋅ − →⎣ ⎦∫ ∫

 

 
The second component of the second covariance term also vanishes: 
 

1 2 1

1

( )1

( )( ) ( , )

0

y X y X x XE K K K
h h h h

x X y tK u K K q y hu t dt du
h h

ξ

ξ

⎡ − − − ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

− ⎡ − ⎤⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦
→

∫ ∫  

 
The fourth covariance term can similarly be decomposed into two parts, each of which vanishes 
in the same manner. 
 
Finally, all remaining covariance terms vanish asymptotically by Lemmas 5.4 through 5.6 in 
Roussas (1991). 
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PROOF of PROPOSITION 3: 
 
The proof of this proposition is very similar to that of Proposition 2. We begin with the Taylor 
expansion:  
 

1/ 2 1 1 1/ 2

1/ 2 1 1 1/ 2

1 * 1 1 *

( ) ( ( , ) ( , )) ( ) ( ( , ) ( , ))

{( ) [ ( ( ) | ) ( ( ) | )]} {( ) [ ( ( ) | ) ( ( ) | )]}

    ( | ) ( | )

t t t t
n n

t t t t
n n

t t
n n n n t

nh x x nh x x

nh G x x G x x nh G x x G x x

t x t x

ξ α ξ α ξ α ξ α

ξ ξ ξ ξ

ξ ξ

+ +

+ +

− + −

− ⋅ −

= − ⋅ −

⋅ ⋅

 

 
Following the same procedure utilized in Proposition 2, we get: 
 

1 1

n
1 1

n
11 1 1/ 2

1 1
n

       

plim  {( )[ ( ( ) | ) ( ( ) | )] [ ( ( ) | ) ( ( ) | )]}

plim  {( )[ ( ( ) | ) ( )] [ ( ( ) | ) ( )]}
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t t t t
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t t t t
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nh L X nh Y E Y
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ϕ ϕ
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+ +
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where 
* 1 * 1 1 1( ) ( ) ( ) ( ) ,  ( ) ( ) ( ) ( )t t t t t t t t

n j n j n n j n j n j n n jY L Y v x L X Y L Y v x L Xϕ ϕ + + + += + = +  
1 * 1/ 2 1/ 2

1

1 1 * 1 1/ 2 1/ 2
1 1 1 2
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t t
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L X K x X h L Y K x X h K x X h

ξ

ξ

− − −
+

+ − + − −
+ + + +

= − = − −

= − = − −  

 
 

 
Thus, it suffices to get the expectation term expression above.  Again, for convenience, define 
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t
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1 1 * 1 1 1 1
1

( ) ( )) ( )( ( ) ( ))]n t t t t
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− + −∑
 
Taking expectations, we get 

* * 1 1 * 1 * 1 1
1 1 1 1( ) [ ( )][ ( )] , ( ) [ ( )][ ( )]t t t t t t

n n n n n nv x EL Y EL X v x EL Y EL X− + + + −= − = −
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 Utilizing the same logic used in Proposition 2, and using Lemmas 5.4 through 5.6 of Roussas 
(1991), we can see that all covariance terms vanish asymptotically.     
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Appendix B 
 

A limiting-distribution version of Bianchi (1997)’s test: more support for non-
stationarity 
 
 The previous literature focused primarily on tests of bi-modality vs. uni-modality 
of a unique invariant distribution. Two formal tests were developed in that earlier 
literature: Bianchi (1997) utilized a formal test of multi-modality of kernel-estimated 
cross-country income distribution densities at different points in time. KOS (2001) 
performed a more dynamic likelihood ratio test of multi-modality of the ergodic 
(limiting) distribution of the estimated 5-year transition probability matrix.15 
 

Bianchi (1997) employed Silverman’s “critical bandwidth” as a test statistics for 
the hypothesis of multi-modality. The critical bandwidth for k modes is the smallest 
bandwidth producing a density with at most k modes, c.f. Silverman (1981). He thus used 
the Silverman critical bandwidth to test the club convergence hypothesis (2 modes) 
against the null hypothesis of global convergence (1 mode). p-values for the test were 
calculated through bootstrapping, resulting in support for Quah’s twin peaks and 
vanishing middle-income group hypotheses (Bianchi (1997) Table I, p.402).  

 
In Table 1, we replicated Bianchi (1997)’s results using our longer time series, 

thus finding support for the cross-sectional twin peaks hypothesis at the 5 % level of 
significance in 1980, 1990, and 1996. On the other hand, we cannot reject the null 
hypothesis of single-peakedness in 1961 and 1970, even at the 10% significance level. 
This suggests that the distributions in those different years were not drawn from the same 
(unique invariant) measure. This is not surprising in light of the stylized facts we 
highlighted in Section 2. However, it puts in question any testing methodology that 
focuses on multi-modality of cross-section distributions.  

 
 KOS (2001) formulated a more direct test of the convergence hypothesis by 
dividing the income distribution support into various income groups, and testing the null 
hypothesis of a single mode of the limiting distribution at one of those groups against the 
alternative of more than one. They failed to reject the null hypothesis of global 
convergence. However, the authors themselves pointed out that their test results are not 
robust to the (arbitrary) choice of income-groups. Moreover, their test is formulated for 
single vs. twin peaks, and would be difficult to extend to multiple peaks (e.g. a resilient 
middle-income group). 
 

                                                 
15 In a third study, Paap and Dijk (1998) followed a different approach: They assumed the existence of two 
clubs, and focused on the selection of parametric densities for the rich and poor groups. Their choice of 
number of clubs to model is based on visual exploration of income distribution histograms with arbitrary 
bin-width selections. Consequently, there is very little overlap between their approach and ours. 



 22

A dynamic version of Bianchi’s test of multi-modality can be developed along the 
lines of KOS (2001) to test for multi-modality of the limiting distribution of the estimated 
transition kernel. Using kernel-estimated transition densities, as described in Section 3, 
we can easily estimate limiting (invariant) densities for the transition kernel and test the 
null hypothesis of multiple modes based on these estimated invariance measure. 
 

We first approximate our kernel-density estimated transition kernel by finite 
transition matrix nP , and then approximate the fixed point of the former with the latter's 
fixed point * *

n n ng P g= .16 We compute the latter simply by iterating on s
nP g for any initial 

transition density g , and 1, 2,...s = , until convergence (in the sup-norm) over the fixed 
grid of 1( ,..., )nx x=x . We can then use Bianchi’s bootstrapping approach by varying the 
bandwidth used in the original transition density estimation, defining critical bandwidth 
as the smallest possible value producing an invariant density with at most k modes. 
  
 The results using estimated 5-year and 10-year transitions are shown in Tables 2 
and 3, respectively.  For the 5-year transitions, we reject the null hypothesis of uni-
modality (classical convergence) for the periods of 1966-71 and 1986-91 at the 5% 
significance level, but fail to reject the null in other periods. Consequently, the 5-year 
transition density results largely agree with the KOS results of global convergence. In 
contrast, conducting the test on 10-year transition densities, we reject global convergence 
for the period 1961-71, in favor of the convergence club hypothesis. Similarly, we seem 
to find four modes in the limiting distribution of the 10-year transition for the period 
1971-81, and three modes for the period 1981-91. Consequently, we cannot draw any 
firm conclusions regarding the various convergence hypotheses based on this test. Taking 
into account Quah’s (2001) critique of any statements about the limiting dynamics 
(convergence may take place after centuries of polarization), and taking into account the 
possibility of non-stationarity of the transition dynamics, we now turn to the issue of 
stochastic stability introduced in Sections 1-3. 

                                                 
16 T. Li (1976) has shown in the case of the probability space ( , , ) ([0,1], )X µ λ=F F, , where λ is Lebesgue 

measure, that each finite approximation nP  has a non-negative fixed point *
ng , and ** n

ng g↑∞⎯⎯→  weakly.  
Bose (1994) expanded this result to strong convergence. 
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< Table 1. Static multi-modality test > 

 

    critical bandwidth     p-value     

  k=1 k =2 k =3  k =4    k=1 k =2 k =3  k =4 
1961 0.3715 0.3560 0.2119 0.1784  0.380 0.053 0.287 0.154 
1970 0.4020 0.3111 0.1827 0.1450  0.163 0.167 0.351 0.354 
1980 0.4259 0.1637 0.1566 0.1283  0.041 0.867 0.541 0.461 
1990 0.5572 0.2836 0.1468 0.0784  0.002 0.075 0.718 0.983 
1996 0.5629 0.2864 0.2173 0.1482   0.000 0.090 0.077 0.208 

Note: The p-value is based on bootstrapping with 1000 replications. 
 
 
 
 

< Table 2. Dynamic multi-modality test, 5-year transition > 
    critical bandwidth      p-value     

  k=1 k =2 k =3  k =4    k=1 k =2 k =3  k =4 
1961-66 0.2803 0.1468 0.1326 0.1225  0.440 0.660 0.290 0.080 
1966-71 0.4924 0.1386 0.1205 0.0978  0.040 0.750 0.400 0.290 
1971-76 0.4338 0.1649 0.1249 0.0834  0.080 0.410 0.420 0.630 
1976-81 0.4018 0.1948 0.1149 0.0895  0.180 0.270 0.420 0.480 
1981-86 0.3837 0.0873 0.0720 0.0683  0.290 0.890 0.720 0.500 
1986-91 0.5350 0.2040 0.1315 0.0747  0.040 0.390 0.330 0.750 
1991-96 0.2355 0.0824 0.0804 0.0784   0.830 0.980 0.880 0.720 

 
 
 
 
 
 

< Table 3. Dynamic multi-modality test, 10-year transition > 
    critical bandwidth      p-value     

  k=1 k =2 k =3  k =4    k=1 k =2 k =3  k =4 
1961-71 0.4652 0.2123 0.1874 0.1128  0.050 0.160 0.020 0.200 
1971-81 0.4744 0.2796 0.2438 0.1365  0.040 0.050 0.000 0.020 
1981-91 0.4440 0.2650 0.1149 0.0857   0.180 0.040 0.590 0.350 
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< Table 4.  Test of three stable modes in 1961-66 >

median fixed value s.e
C1 0.4500 0.4201 0.0890
C2 1.0185 1.4175 0.1357
C3 1.3078 1.6669 0.1768
C4 1.8115 1.8165 0.8501
C5 2.1357 2.0908 0.2334
Chi-squared Stat. 12.9207
note: 1) s.e denotes standard error of median points.
        2) Critical values of the Chi-square distribution with 5 degree of freedom: 10%=9.24, 5%=11.07, 1%=15.09

< Table 5.  Test of three stable modes in 1966-71 >
median fixed value s.e

C1 0.4001 0.3702 0.0756
C2 0.8290 1.0435 0.1097
C3 1.2130 1.6170 0.1393
C4 1.7916 1.7916 0.2676
C5 2.1706 2.1656 0.1806
Chi-squared Stat. 12.3918

< Table 6.  Test of three stable modes in 1971-76 >
median fixed value s.e

C1 0.3951 0.3702 0.0872
C2 0.9737 1.1183 0.1450
C3 1.2779 1.4175 0.1669
C4 1.9262 1.9162 0.2999
C5 2.2404 2.2404 0.1633
Chi-squared Stat. 1.7768

< Table 7.  Test of three stable modes in 1976-81 >
median fixed value s.e

C1 0.2405 0.2206 0.0417
C2 1.4175 1.2928 0.1329
C3 1.5422 1.4923 0.1026
C4 2.0010 1.9910 0.2708
C5 2.2404 2.2653 0.0972
Chi-squared Stat. 1.4117
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< Table 8.  Test of three stable modes in 1981-86 >
median fixed value s.e

C1 0.2206 0.2206 0.0378
C2 0.9786 1.2928 0.0904
C3 1.7866 1.6170 0.1361
C4 2.0409 1.9412 0.1848
C5 2.3900 2.3401 0.0843
Chi-squared Stat. 14.2746

< Table 9.  Test of three stable modes in 1986-91 >
median fixed value s.e

C1 0.2106 0.1957 0.0302
C2 1.3028 1.2928 0.1303
C3 1.5921 1.5921 0.0901
C4 1.9960 2.0908 0.1297
C5 2.4349 2.4150 0.0731
Chi-squared Stat. 0.8577

< Table 10.  Test of three stable modes in 1991-96 >
median fixed value s.e

C1 0.2306 0.2206 0.0437
C2 1.4175 1.4175 0.1746
C3 1.6669 1.6918 0.1146
C4 2.1556 2.0908 0.2437
C5 2.3900 2.3651 0.1085
Chi-squared Stat. 0.2229
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<Figure 1. Gini Coefficients: 1961-96 > 
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< Figure 2. Stochastic Stability 1> 

 
  
 

< Figure 3. Stochastic Stability2 > 
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< Figure 4. A Single Stochastically Stable Zero > 
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<Figure 5.  p-values for Kolmogorv-Smirnov Tests of Equality of Transition CDF conditional on 
each relative income level: 1961-62 vs. 1995-96 > 

 

 
< Figure 6. Invariant (limiting) distributions for the transitions during 1961-66 and 1991-96> 

 
p-value of Kolmogorov-Smirnov test of equality of limiting CDFs=1.3799889E-09 

 
(a) Invariant (limit) pdfs         (b) Invariant (limit) CDFs    
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< Figure 7. Zeros of conditional median less previous period’s relative income > 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

< Figure 8. Probability of transition from Poor to Middle group in n-periods > 
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