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Abstract. We consider semiparametric log periodogram regression estimation of

memory parameter for the latent process in long memory stochastic volatility models.

It is known that though widely used among researchers, the Geweke and Porter-Hudak

(1983; GPH) LP estimator violates the Gaussian or Martingale assumption, which results

in significant negative bias due to the existence of the spectrum of non-Gaussian noise.

Through wavelet transform of the squared process, we effectively remove the noise spec-

trum around zero frequency, and obtain Gaussian-approximate spectral representation at

zero frequency. We propose wavelet-based regression estimator, and derive the asymptotic

mean squared error and the consistency in line with the asymptotic theory in the long

memory literature. Simulation studies show that wavelet-based regression estimation is

an effective way in reducing the bias, compared with the GPH estimator.

Keywords. long memory stochastic volatility, wavelet transform, log periodogram

regression.
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1. INTRODUCTION

We consider log periodogram (LP) regression estimation of memory parameter of the

latent process in long memory stochastic volatility (LMSV) models. In LMSV models,

the spectral density of the nonlinear processes such as squared or log squared process

is the sum of the spectral density of Gaussian long memory process and that of non-

Gaussian noise. Though the LP estimator of Geweke and Porter-Hudak (1983; GPH) is

widely used in estimating memory parameter, it is well known that statistical inferences

for LP estimator developed in the long memory literature are not directly applicable to

LMSV model (Bollerslev and Wright (2000)). As clearly pointed out in Deo and Hurvich

(2001), given the spectral representation of the squared processes, GPH estimator violates

the Gaussian or Martingale assumption which the asymptotic theory is built upon in the

long memory literature. As a result, GPH estimator suffers from significant negative bias

mainly due to the existence of the spectrum of non-Gaussian noise. (Breidt et al (1998)

and Deo and Hurvich (2001)).

In this paper, we introduce wavelet transform of the squared process to effectively re-

move the noise spectrum around zero frequency, and obtain Gaussian-approximate spec-

tral representation. Thus, wavelet transformation can retrieve the Gaussianity, where

the statistical inferences in the long memory context can be applied to LMSV model in

straightforward manner. We derive the asymptotic mean squared error of the wavelet-

based regression estimator, in line with Robinson (1995), Hurvich, Deo and Brodsky

(1998) and Andrews and Guggenberger (2003). It is noted that the conditions for the

consistency and for the convergence rate of the mean squared error on the growth rate

of the fundamental frequency of GPH estimator depend on unknown memory parameter,

which pose a limitation for practical use. Under Gaussianity through wavelet transfor-

mation, our proposed estimator is free from such problem.

2. THE MODEL

We consider a long memory stochastic volatility model for discrete time series {Xt, t =
1, 2, · · ·, n}

Xt = σ exp(Zt/2)et (1)
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where {Zt} is a latent Gaussian long memory process with the memory parameter d ∈
(0, 0.5), which is independent of mean zero i.i.d. process {et}.We assume that the spectral
behavior of Zt at zero frequency, which is standard in the long memory context.

Assumption 1: fZ(λ) = λ−2dg(λ) as λ→ 0,

where g(λ) is an even function on [−π,π], and 0 < g(0) <∞.
The log squared process is written as a volatility measure

Yt = log(X
2
t ) = η + Zt + ut (2)

where η = log σ2 + E(log e2t ) and ut = log e2t − E(log e2t ). Here, {ut} is mean zero i.i.d.
with variance σ2u. Autocovariances R(j) of {Yt} is identical to that of {Zt} for j 6= 0.

Other nonlinear measures such as squared or absolute process can be similarly dealt with.

Given Assumption 1, the spectral density of Yt is the sum of the spectral density of

Gaussian long memory process and that of non-Gaussian noise,

fY (λ) = λ−2dg(λ) +
σ2u
2π
= λ−2d(g(λ) +

σ2u
2π

λ2d), as λ→ 0. (3)

It is clearly pointed out in Deo and Hurvich (2001) that given the spectral representa-

tion (3), the LP estimator of Geweke and Porter-Hudak (1983; GPH) violates the Gaussian

or Martingale assumption which the asymptotic theory is built upon in the long memory

context (See also Bollerslev and Wright (2000)). In particular, due to the existence of the

spectrum of non-Gaussian noise, the dominant term of the bias of GPH estimator behaves

at the order of λ2d. Then, GPH estimator suffers from significant negative bias.

In this paper, we make use of wavelet transform of the squared process and obtain

Gaussian-approximate spectral representation by effectively removing the noise spectrum

around zero frequency. Define the wavelet transform for Yt

wjq = 2
j/2P

t Ytψ(2
jt− q), (4)

where t is suitably re-indexed so that the support of the wavelet is fully covered. For

example, if the support of ψ is [0, 1], then we let t = i/n, for i = 1, 2, · · ·, n. The integer
valued j and q are scale and translation parameter, respectively, where j = 0, 1, · · ·, J,
q = 0, 1, · · ·, 2j − 1. The finest (maximum) scale is set to n = 2J . It can be seen that the
transformed series wjq is simply a linear combination of Yt over a local interval which is
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determined by j and q. The function ψ is a wavelet, which is a well localized function.

For reference, see Hernandez and Weiss (1996) and Daubechies (1992).

We explicitly introduce the properties of the wavelet functions.

ASSUMPTION 2

(a) ψ : R→ Rsuch that
R∞
−∞ ψ(x)dx = 0 ,

R∞
−∞ |ψ(x)|dx <∞,

and
R∞
−∞(1 + x

2)ψ(x)dx <∞.
(b) |ψ̂(λ)| = λvb(λ), with b(tλ)/b(λ) = 1 for all t, as λ→ 0,

with v integer, 0 < b(0) <∞,

where ψ̂(λ) is Fourier transform of ψ, ψ̂(λ) = (2π)−
1
2

R∞
−∞ ψ(x)e−iλxdx.

The assumption 2(a) describes the wavelet function. By Assumption 2(a), the spectral

density function of wjq is well defined (Kato and Masry(1999)). It is not necessary in our

analysis that ψ forms an orthonormal basis for L2, though it is often the case in the wavelet

literature. Next, assumption 2(b) models the spectral behavior of ψ̂(λ) around λ = 0.

Integer-valued v is the number of vanishing moment of ψ in the sense that
R∞
−∞ x

rψ(x)dx =

0 for r = 0, 1, · · ·, v − 1. The v vanishing moment is equivalent to saying that the first v
spectral derivatives are zero at zero frequency, dr

dλr
ψ̂(λ) = 0 at λ = 0 for r = 0, 1, · · ·, v−1,

from the relation, dr

dλr
ψ̂(λ)

¯̄̄
λ=0

= (−i)r RR xrψ(x)dx. This assumption is satisfied if ψ has
a compact support and belongs to Cv(R), where Cv(R) is the class of the functions f on
the real line R such that all the derivatives up to the order v exist, and the v-th derivative
f (v) is continuous on R. For example, Haar wavelet, defined as

ψ(x) =

(
1 0 ≤ x ≤ 0.5
−1 0.5 < x ≤ 1, (5)

satisfies assumption 2 with v = 1. Further, |ψ̂(λ)| = (λ/4)[sin2(λ/4)/(λ/4)2], where we

have b(0) = 1/4. Another example includes a class of spline wavelets. The first order

spline wavelet, often called Franklin wavelet, has v = 2, and the spline wavelet of order

2 has v = 3. In general, the spline wavelets of order n has n − 1 vanishing moment
(Hernandez and Weiss (1996)). Also, b(λ) is assumed to be a slowly varying function at

zero frequency. We consider Haar wavelet for the analysis and for the simulation in our

paper.

Write the wavelet transform of Yt under Haar wavelet system (5),

wjq = αjq + βjq (6)
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where αjq = 2
j/2
P1

t=1/n Ztψ(2
jt− q) and βjq = 2

j/2
P1

t=1/n Utψ(2
jt− q).

First, we show that the spectral density of βjq becomes zero at zero frequency. Let

Rβ(m) = Eβjqβjq+m be the autocovariances of the transformed series βjq at scale j, and

f
(j)
β be the spectral density at scale j. The wavelet transform βjq is a linear combination of

i.i.d. noise process Ut. Using Haar wavelet in (5), it is simply the difference of local sums

of Ut over t ∈ [2−jq, 2−j(q+0.5)] and over t ∈ (2−jq, 2−j(q+0.5)]. Moreover, βjq becomes
1-dependent process. Thus, it behaves as MA(p) process of i.i.d. series, where the order p

is determined by j. As j increases, the width of the interval decreases, and at j equals to

the finest scale J, βjq becomes MA(1) process, that is to say, βjq = 2
J/2(U2−Jq−U2−J (q+1)).

If we define the autocovariance Rβ(m) = Eβjqβjq+m, then it is clear that when j = J,

f
(J)
β (0) =

1

2π

P∞
m=−∞Rβ(m) = 0, (7)

where Rβ(0) = 2σ
2
U , Rβ(1) = −σ2U , and Rβ(m) = 0 for m > 1.

Next, we let f
(j)
α (λ) be the spectral density function of αjq at scale j.Given Assumption

1, we directly obtain f
(j)
α (λ) as follows. We write autocovariances of the wavelet transforms

at scale j

Eαjqαjτ = 2j
P

t

P
sEZtZsψ(2

jt− q)ψ(2js− τ)

= 2j
P

t

P
s

hR π

−π fZ(λ)e
i(t−s)λdλ

i
ψ(2jt− q)ψ(2js− τ)

= 2−j
R π

−π fZ(λ)|ψ̂(2−jλ)|2ei2
−j(q−τ)λdλ,

where the third line follows from discrete Fourier transform of ψ and the change of vari-

ables. It is then inferred that at j = J,

f (J)α (λ) = 2−JfZ(λ)|ψ̂(2−Jλ)|2, λ ∈ [−π,π] (8)

Since the scale parameter is restricted to j = J, we suppress J in the expression of spec-

tral density as f
(J)
w (λ) = fw(λ). Combining (7) and (8), we have Gaussian-approximate

spectral representation of the wavelet transform wjq around zero frequency

fw(λ) = CJλ
−2(d−v)g(λ)h(λ) as λ→ 0, for d ∈ (0, 0.5) (9)

where C = 2−J(1+2v) and h(λ) = b2(λ).

Spectral representation (9) provides a basis for semiparametric estimation of d. The

spectral density function fw(λ) behaves as λ
−2(d−v) around zero frequency, thus fw(λ) ∼
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λ−2(d−1) when Haar wavelet is used. The functions g(λ) and h(λ) arise from short-run

dependence in Zt and from wavelet transform, respectively. It is noted that both are even,

continuous on [−π,π], and bounded away from zero at zero frequency. The statistical

properties of g and h are useful to derive the asymptotic bias of LP estimator.

3. WAVELET-BASED LOG PERIODOGRAM ESTIMATOR

In this section, we construct wavelet-based LP estimator, and show the consistency.

We define a periodogram for wavelet transform at scale J,

I
(J)
k ≡ Ik = 1

2πn

P2J−1
q=0 |wjq exp(iλkq)|2, k = 1, 2, · · ·,m (10)

where λk = 2πk/n. The periodogram can be simply computed by using the relation, Ik =

A2k+B
2
k, whereAk = (2πn)

−1/2P2J−1
q=0 wjq cos(λkq) andBk = (2πn)

−1/2P2J−1
q=0 wjq sin(λkq).

As standard in the long memory literature, suitable conditions on the rate of growth

m are imposed for the frequencies λk = 2πk/n, where k = 1, 2, · · ·,m.

ASSUMPTION 3 : m = m(n)→∞, and m/n→ 0 as n→∞.

The positive integer m is restricted to increase at slower rate than n.

Under the spectral representation in (9) with s(λ) = g(λ)h(λ), we write the LP re-

gression as

log Ik = α+ βXk + log(s(λk)/s(0)) + εk, k = 1, 2, · · ·m (11)

where α = (logCJ + log(s(0)), β = (d− 1), Xk = −2 log(λk), and εk = log(Ik/fk).

The term log(s(λk)/s(0)) = log(g(λk)/g(0)) + log(h(λk)/h(0)) is dominant for the

asymptotic bias. To get the explicit form of the asymptotic bias, we have Taylor expansion

for log(s(λk)/s(0)) at λ = 0,

log
s(λk)

s(0)
=
1

2

s
00
(0)

s(0)
λ2k +O(λ

4
k).

We obtain the asymptotic bias, and variance.

THEOREM 1 : Suppose Assumptions 1- 3 hold. Then,

(a) E bd− d = −2π
2

9

s
00
(0)

s(0)

m2

n2
(1 + o(1)) +O(m4/n4) +O(

log3m

m
).

(b) V ar(bd) =
π2

24m
+ o(

1

m
).
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Theorem 1 shows that wavelet-based estimator bd is consistent for d ∈ (0, 0.5) in the
L2 sense. The variance takes the same form as in the stationary Gaussian case. The

proof is basically adapted from Hurvich, Deo and Brodsky (1998; HDB) and Andrews

and Guggenberger (2003;AG), as well as Robinson(1995). Further, we obtain the form of

MSE

MSE(bd) = ·2π2
9

s
00
(0)

s(0)

¸2
m4

n4
(1 + o(1)) +O

µ
m3 log3m

n4

¶
+

π2

24m
(1 + o(1)). (12)

Given the expression of MSE, we directly obtain the optimal m∗

m∗ =

"
0.4634 ·

µ
s(0)

s00(0)

¶2/5
n4/5

#
(13)

where [z] denotes the closest integer to z. Both s(0) and s00(0) are unknown, though the

function h depends the known wavelet function. Thus, only the rate of the optimal m∗

is available. It follows that we have MSE(bd) = O(n−4/5). This is the same convergence
rate as that of GPH estimator in the stationary case, which is developed by HDB.

Given the optimal rate of m above, the asymptotic normality can be applied to the

wavelet-based estimator.

COROLLARY 1 : Suppose Assumption 1-3 hold, and m = o(n4/5), then

m1/2(bd− d) → d N(0,
π2

24
) as n→∞.

The proof, briefly stated in the Appendix, follows from Robinson (1995), HDB, and AG.

4. SIMULATION STUDIES

We compare the finite sample performance of the wavelet-based regression estima-

tor and GPH estimator. In data generating process (1), we let σ = 1, and consider

ARFIMA(1, d, 0) process for {Zt},

(1− φ)(1− L)dZt = εt (14)

where φ is the autoregressive parameter, and εt is i.i.d. with variance σ
2
ε. The I(d) process

{Zt}nt=1 is generated through Zt =
Pt−1

k=0
(d)k
k!
ut−k, and (d)k = d(d + 1) · · · (d + k − 1),

where ut ∼ i.i.d.N(0, 1). Sample size is set to n = 1024. The value of σ2ε is set to 0.37
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as in Deo and Hurvich (2001) and Breidt et al (1998). We only consider the combination

of (d,φ) = (0.2, 0), (0.2, 0.3) and (0.3, 0.6). Other combinations show qualitatively similar

results. Regarding the number of frequencies m in the regression ( ), we include the values

of m from m = [n0.3] to m = [n0.8], where [x] denotes the integer part of x. Conventional

choice of m in practice is m = [n0.5], while the optimal rate of wavelet-based estimator

grows at the rate of n0.8. The range of m includes the neighboring values of these two

choices. Then, we can see the pattern of the bias and mean squared error (MSE) over the

different values of m. For each value of m, one thousand iterations are conducted.

For wavelet-based estimator, we use Haar wavelet. The integer-valued scale j is set

to the finest scale J for the transformed periodogram. For n = 1024 = 210, we set J = 10,

which generates the transformed series, {wj(q), q = 0, 1, · · ·, 210−1}. For GPH estimator,
we do not truncate the low frequency components, which is known to perform better than

the truncated version of GPH estimator.(Deo and Hurvich (2001)).

The Figures 1 to 3 plot the bias and MSE of regression estimators for different values

of d and φ. In Figure 1 with (d,φ) = (0.2, 0), GPH estimator shows significant negative

bias and the magnitude of the bias nearly remains unchanged for all values of m. On the

other hand, wavelet estimator initially shows large positive bias for very small values of

m, but beyond a certain level of m, the bias significantly decreases and reaches to nearly

half the bias of GPH estimator. It is expected that the wavelet estimator performs poorly

for very small values of m, as the optimal rate of wavelet estimator grows at the rate

of n0.8. Except for such small values of m, the bias of wavelet estimator is significantly

reduced as m gradually increases. In particular, we observe that wavelets works the best

for the bias over m ∈ [0.25n0.8, 0.5n0.8]. Owing to the reduced bias, wavelet estimator has
smaller MSE than GPH except for small values of m.

Next, Figure 2 and 3 plot the results in the case of (d,φ) = (0.2, 0.3) and (0.3, 0.6),

respectively. Basic pattern of the bias and MSE remains unaffected by allowing the short-

run dependence. Wavelet estimator has significantly smaller bias than GPH estimator for

most of the values m under consideration. Compared to the case of φ = 0 in Figure 1,

it seems that the positive short-run dependence rather helps reduce the negative bias of

both estimator.

In sum, GPH estimator shows significant negative bias, which is not improved by

different choice of fundamental frequencies. Thus, our proposed wavelet-based estimator

is an effective way to reduce the bias for memory parameter estimation in LMSV models.
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APPENDIX

PROOF OF THEOREM 1: Let I,X,R, and ε denote m×1 column vectors whose k-th
elements are log Ik, Xk, log(s(λk)/s(0)), and εk, respectively. As in AG, we write the

regression equation in matrix form as log I = (logCJ + log s(0))1m + Xβ + R + ε. Let

Z = X − 1mX with X = (X 01m)/m, we write

log I = (logCJ + log s(0) +Xd)1m + Zβ +R+ ε (A1)

The bias term can be written as E bd− d = (Z 0Z)−1Z 0(R+ ε).

The proof consists of the three parts: (a) Z 0Z, (b) Z 0R, and (c) Z 0E(ε). First, note

that Xk = −2 log λk, then from HDB (page22), we have Z 0Z = 4m(1 + o(1)). Next, we

write

Z 0R =
1

2

s
00
(0)

s(0)
Z 0λ2k +

Pm
k=1(Xk −X)O(λ4k). (A2)

The first term in (A2) is written as

1

2

s
00
(0)

s(0)
Z 0λ2k =

1

2

s
00
(0)

s(0)
Z 0(

k

m
)2(
2πm

n
)2

= −2
9

s
00
(0)

s(0)
(
2πm

n
)2m(1 + o(1))

= −8π
2

9

s
00
(0)

s(0)

m3

n2
(1 + o(1)),

where the first line follows from λk = 2πk/n, and the second line from Z 0(k/m)2 =

−[4/9]m(1 + o(1)) by Lemma 2(c) in AG.
The order of magnitude for the second term in (A2) follows from AG or HDB (page

38) that
Pm

k=1(Xk − X)O(λ4k) = O(m5/n4). Lastly, under the Gaussianity, we directly

apply the Lemma 8 in HDB or Lemma 2(f) in AG. Then, we have Z 0E(ε) = O(log3m).

The proof of the variance term comes directly from HDB (proof of Theorem 1), then we

omit it. This completes the proof.

PROOF OF COROLLARY 1: The proof of asymptotic normality directly follows from

that of Theorem 2 in HDB or of Theorem 2 in AG, which are based on Robinson (1995).

Below we only verify the Theorem 2 in Robinson (1995), which is essential to show the

asymptotic normality.
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Write discrete Fourier transform of transformed series {wJq} for fixed J, and its nor-
malized version as

u(λk) = (2πn)
−1/2P2J

q=0wjq exp(iλkq), and v(λk) = u(λk)/f
1/2. (A3)

where the normalization is made by using f1/2 rather than Cjλ
−2d|ψ̂(λ)|2. It follows that

E{u(λk)u(λk)}
= (2πn)−1

P2J−1
q=0

P2J−1
r=0 E(wJqwJr) exp{i(q − r)λk}

=
R π

−π f(λ)(2πn)
−1P2J−1

q=0

P2J−1
r=0 exp{−i(q − r)λ} exp{i(q − r)λk}dλ

=
R π

−π f(λ)K(λk − λ)dλ.

where K(λ) = (2πn)−1
P2J−1

q=0

P2J−1
r=0 exp{i(q−r)λ}. Then, we obtain the same expression

as that of (4.1) in Robinson (1995). Thus, the proof of Theorem 2 in Robinson (1995) is

applied to have

E{v(λk)v(λk)} = 1 +O(log k
k
).

By similar reasoning, we also obtain

E{u(λk)u(λk)} =
R π

−π f(λ)D(λk − λ)(λ+ λk)dλ,

E{u(λk)u(λs)} =
R π

−π f(λ)D(λk − λ)D(λ− λs)dλ,

E{u(λk)u(λs)} =
R π

−π f(λ)D(λk − λ)D(λ+ λs)dλ,

where D(λ) = (2πn)−1
P2J−1

q=0 exp(iqλ). Then, again by the proof of Robinson (1995), we

verify thatE{u(λk)u(λk)} = O(k/ log k), E{u(λk)u(λs)} = O(k/ log s), andE{u(λk)u(λs)} =
O(k/ log s).

Given the above results, the proof of Theorem 2 in HDB or of Theorem 2 in AG

follows. This completes the proof.
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Figure 1:

Bias and MSE of Wavelet and GPH estimators:

(d,φ) = (0.2, 0), n = 1024.
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Figure 2:

Bias and MSE of Wavelet and GPH estimators:

(d,φ) = (0.2, 0.3), n = 1024,
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Figure 3:

Bias and MSE of Wavelet and GPH estimators:

(d,φ) = (0.3, 0.6), n = 1024
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