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Abstract

In order to forecast one-step ahead volatility, we calculated jump intensity by
using estimated parameters of a duration model of price change. In this pro-
cedure, we do not assume any distribution on log-return. Although we do not
make any distributional assumption, we may practically choose a suitable distri-
bution e.g. Normal, student, etc, including empirical density, when we calculate
a VaR (Value at Risk) with an instantaneous volatility to check the prediction
performance. Furthermore, we compare the goodness of fit among assumed dis-
tributions of log-return. We find that fat tail distributions such as NIG, Laplace,
are well fitted to the actual high frequency data listed on the Tokyo stock ex-
change 1st section from 4 Jan. 2001 to 28 June 2001.

JEL classification: C13, C14, C15
Keywords: High frequency data, Duration model, Instanteneous volatility,
VaR.

1 Introduction

In the recent decade, the rapid development of computer technologies render the
new type data known as high frequency data easily available. This kind of data
contains many information in intraday trades which may perform an important
role in the market microstructure analysis, and has some characteristics which
are not found in a daily or weekly data. They are as follows. First, a trade
interval (hereafter duration) is not constant or occurs non-equidistantly. Second,
a periodicity called intraday seasonality exists within a day. Thus we cannot
analyze such a data with usual time series modeling.
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And a study of pricing derivatives and a study of risk management are two
underpinning in investment science. Although GARCH and SV models are
standard model to analyze volatility in usual time series framework in this field,
we cannot directly use those models to analyze high frequency data because of
its peculiar characteristics.

Engle and Russell (1998) proposed a new model to deal with such a time se-
ries. We apply their framework to model a stochastic time interval as a duration,
and derive a instantaneous volatility using a jump intensity. In order to give a
verification of forecasting performance of the model, we use the (stochastically
occurred) one-step ahead VaR calculated from the percentile of an arbitrary
distribution fitted to actual log-return as in Giot (2000, 2002). Furthermore we
compare the goodness of fit of among assumed distributions to actual log-return
using the previous result.

This paper consists of three sections. In Section 1, we introduce the theo-
retical background for price duration, duration model, instantaneous volatility,
seasonal adjustment, (stochastically occurred) one-step ahead VaR. In Section
2, using the high frequency data listed on the Tokyo stock exchange 1st sec-
tion, we estimate the parameter of a duration model by MLE, and calculate an
instantaneous volatility and (stochastically occurred) one-step ahead VaR. In
order to verify the forecasting performance, likelihood test is executed. In the
final Section, according to the result of examining the forecasting performance
of (stochastically occurred) one-step ahead VaR, we compare the goodness of
fit among assumed distributions of log-return.

2 Theoretical background

2.1 Price duration

Let Si be a logarithmic stock price, and ri = Si − Si−1 be its rate of return,
where subscript i denotes a i th trade, i = 1, 2, . . . . If a cumulative sum of
absolute value of ri , i.e., |ri| , overshoots a predefined constant threshold cp ,
we regard that a jump has occurred. The time of a jump point is denoted by
Tj , where j = 1, 2, . . . . The figure 1 shows this procedure. We redefine price
duration dj = Tj − Tj−1 by Tj .

T 0 T T T T T1 2 3 j-1 j
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Figure 1: Price duration
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2.2 Duration models

We define Tj , j = 0, 1, 2, . . . by a time when a jump occurs. Tj is a stochastic
process occurring at an irregular time span. The time duration between j and
j − 1 is defined by

dj = Tj − Tj−1.

Sometimes it is assumed that

dj = ψjεj εj ∼ i.i.d. Non-negative R.V.,

where ψj = E[dj |Fj−1] and Fj−1 is information sets until j − 1 . Furthermore,
analogous to GARCH, Engle and Russell (1998) advocates the ACD (p, q) (Au-
toregressive Conditional Duration) model as

ψj = ω +

p
∑

k=1

αkdj−k +

q
∑

k=1

βkψj−k,

where ωk , αk , and βk are constants satisfying ω > 0 , α, β ≥ 0 . For guarantee-
ing the stationarity of the model, we impose the following constraint condition
on parameters,

p
∑

k=1

αk +

q
∑

k=1

βk < 1.

Alternatively, it is assumed that

dj = exp(Ψj)ǫj or ǫj =
dj

exp(Ψj)
,

then we have the Logarithmic-ACD (p, q) model,

Ψj = ω +

p
∑

k=1

αk log(dj−k) +

q
∑

k=1

βkΨj−k. (1)

See Bauwens and Giot (1999).
Although there are many candidates of distributions of εj such as Exponen-

tial, Gamma, and other non-negative distributions, among others we assume
εj ∼ i.i.d. Weibull which is in the wider class than the exponential. We use the
logarithmic-ACD model, because there are no restrictions on the sign of the pa-
rameters for positivity of exp(Ψj)ǫj . This model is called the Log-Weibull-ACD
model. By definiton the density function of Weibull is

f(dj) =
γ

dj

(

djΓ(1 + 1/γ)

eΨj

)γ

e
−

„

djΓ(1+1/γ)

e
Ψj

«γ

,

where γ denotes shape parameter and Γ denotes gamma function. Thus the log
likelihood function of this model is given by
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N
∑

j=1

(

log(γ) − log(dj) + γ log[djΓ(1 + 1/γ)] − γΨj −
(

djΓ(1 + 1/γ)

eΨj

)γ)

.

2.3 Instantaneous volatility

First we define a conditional intensity process as

λ(T |N(T ), T1, . . . , TN(T )) = lim
∆T→0

Pr(N(T + ∆T ) > N(T )|N(T ), T1, . . . , TN(T ))

∆T
,

where Pr(A|B) is a usual conditional probability, and N(T ) is the number of
events that have occurred by time T . Let the instantaneous volatility be defined
as

σ̂2(T ) = lim
∆T→0

E

{

1

∆T

[

S(T + ∆T ) − S(T )

S(T )

]2
}

,

where S(T ) is a stock price associated with arriving time T , and taking limits,
we obtain the conditional instantaneous volatility as

σ̂2(T |TN(T ), . . . , T1) =

(

cp
STN(T )

)2

λ(T |TN(T ), . . . , T1),

where cp is an arbitrary prescribed constant.
We estimate the intensity through using Logarithmic-ACD model,

Ψj = ω +

p
∑

k=1

αk log(dj−k) +

q
∑

k=1

βkΨj−k, (2)

with

dj = exp(Ψj)ǫj ǫj ∼ i.i.d. Non-negative R.V.,

where ψj = E[dj |Fj−1] . This is called the Logarithmic-ACD (p, q) model (see
Bauwens and Giot (1999)).

As conditional intensity λ of Log-ACD model reduces to

1

eΨ
,

(see Giot (2000)), we obtain the instantaneous volatility of Log-ACD version is

σ2(T |Fj−1) =

(

cp
S(Tj−1)

)2
1

eΨj
. (3)
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2.4 Adjusting intraday seasonality

In general, the duration of high frequency data has so-called intra-day seasonal-
ity, especially in Japanese stock market, there is a lunch time break, so the plot
of its duration shows M-shaped. Using such data without any pretreatment we
may not obtain precise estimation. Therefore we adjust the seasonality in the
following way.

Let φ(ti) be a deterministic term and di be non-adjusted duration series di

, and we define a new series d⋆
j as

d⋆
j =

dj

φ(tj)
. (4)

where d⋆
j is called seasonal adjusted duration and φ(tj) is called a time of day

function. The φ(tj) can be estimated by kernel or spline smoothing. Finally we
obtain the seasonal adjusted volatility,

(σ̂⋆)2(T |Fj−1) =

(

cp
S(Tj−1)

)2
1

eΨ
⋆
jφ(tj − 1)

. (5)

2.5 (stochastically occurred) one-step ahead VaR

We can forecast (stochastically occurred) one-step ahead VaR using seasonal
adjusted instantaneous volatility calculated above. The limit of percentile 1−α
is given by

VaR(j) = z1−α

√

(σ̂⋆)2(j|Fj−1) ∗
√
M ∗ 60, (6)

where M denotes a time interval,
√
M ∗ 60 have the unit of time interval change

a minute into a second.
For obtaining percentile z1−α , we fit some suitable distribution to actual

log-return data and estimate the parameters of those distributions. Four distri-
butions that we use are as follows.

Normal distribution: It is the most fundamental distribution for investment
science, but it is well known that Normal distribution may not describe
the fat tail of financial time series. The density function is given by

fNormal(x) =
1√
2πσ

exp

{

− (x− µ)2

2σ2

}

, −∞ < x <∞.

Student distribution: Student distribution has fatter tail than Normal dis-
tribution. The density function with degree of freedom m is given by

fStudent(x) =
Γ
(

m+1
2

)

√
mπΓ

(

m
2

) (

1 + x2

m

)

m+1
2

, −∞ < x <∞.

If degree of freedom is larger than 30, then the distribution is almost the
same as the normal distribution.
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Laplace (double exponential) distribution: The density function of Laplace
(double exponential) distribution with scale parameter β and location pa-
rameter µ is given by

fLaplace(x) =
1

2β
exp

{

−|x− µ|
β

}

, −∞ < x <∞.

This one is obtained by the difference of two independent identical expo-
nential distribution. See Abramowitz and Stegun 1972, p. 930.

Normal Inverse Gaussian (NIG) distribution: Following Barndorff-Nielsen
(1997), Normal Inverse Gaussian (NIG) distribution is given by

fNIG(x) = a(α, β, µ, δ)q

(

x− µ

δ

)−1

K1

{

δαq

(

x− µ

δ

)}

exp(βx),

where

a(α, β, µ, δ) = π−1α exp(δ
√

(α2 − β2) − βµ),

q(x) =
√

1 + x2,

and K1 is the modified Bessel function of the third kind with coefficient
1. The parameter α , β , µ and δ are satisfied the condition 0 ≤ |β| ≤ α ,
µ ∈ R and 0 < δ .

3 Verification of forecasting performance

In this section, we verify forecasting performance of (stochastically occurred)
one-step ahead VaR with the framework introduced in previous section. The
data set which we use is the high frequency data of the following companies listed
on the Tokyo stock exchange 1st section from 4 Jan. 2001 to 28 Sep. 2001. They
are Nippon Steel(5401), HITACHI(6501), SONY(6578) and TOYOTA(7203).
For later use, the original data is split into an estimation period (Jan. to Mar.
2001) and forecast period (Apr. to sep. 2001).

3.1 Estimation

First we estimate the parameter of LWACD model from actual data, and calcu-
late the instantaneous volatility. We choose ten suitable threshold cp for each
data and distributions, and simulate price duration processes by using each cp
. For the seasonal adjustment, intraday time function φ̂ is estimated by Fried-
man’s super smoother (see Friedman (1984a, 1984b)). After the adjustment
LWACD (1, 1) model on the estimation period is given by
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d⋆
j = exp(Ψ̂⋆

j )ǫj , ǫj ∼ i.i.d. Weibull(1, γ̂),

Ψ̂⋆
j = ω̂ + α̂ log(d⋆

j−1) + β̂Ψ̂j−1, (7)

We estimate parameters, ω̂(cp) , α̂(cp) , β̂(cp) and γ̂(cp) by MLE, where the
argument cp in parenthesis indicates that these estimates depend on cp . And we

substitute Ψ̂⋆
j (cp) into (6), then we can obtain seasonal adjusted instantaneous

volatility (σ̂⋆(cp))
2 . Hereafter for notational convenience the argument cp is

omitted.

3.2 Forecasting

One-step ahead VaR is calculated by substituting (σ̂⋆)2 for each cp into

VaR(j) = z1−α

√

(σ̂⋆)2(t|Fj−1) ∗
√
M ∗ 60, (8)

and we verify the forecasting performance.
Since the VaR calculated by (8) is derived from stochastic duration d⋆

j in (7),
it occurred basically at a time different from actual data. Thus it is meaningless
to discuss the forecasting performance by comparing values at different time.
Therefore following Giot, we divide time interval into M = 10, 15 or 30 , regard
the closing price in each time interval as a observed value for actual data, while
regard the arithmetic average in each time interval as a observed value for
estimated VaR. The reason why we take M = 10, 15 or 30 is that if we choose
longer time interval like as 1 hour, then the sample size is too small because of
opening time of TSE is only 4.5 hour within a day and that if we choose shorter
time interval like as 5 minutes, then the possibility of no-trade in certain time
interval becomes larger.

A percentile z1−α in (8) is calculated by numerical integrations which are
executed recursively for each parameters of Normal, Student, NIG, Laplace and
Empirical. These parameters are estimated by MLE. Figure 4 shows an example.
The solid line is actual data, and the dotted line is the VaR calculated by (8),
on the forecasting period.

3.3 Likelihood Ratio Test

The failure rate of risk is defined as a ratio of the number of times that actual
data exceeds VaR. Thus if the failure rate of risk is the nearer to the predefined
percentile 1 − α , the forecasting performance of VaR is the better. Table 1
shows an example. We can say that if the entry of the table is the closer to
nominal ratios in the head of each column, the VaR has the better forecasting
performance. The outcome is classified into two cases depending on whether
the VaR exceeds the actual data or not. Thus we can regard the outcome as
Bernoulli trial. Then following Kupiec (1995), we can verify the forecasting
performance of the VaR.
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Figure 2: SONY (6758) sampled every 15min. (Apr. 2 - Sep. 28, 2001)

First, N denotes the number of total trade, and Nex denotes the number
that actual data exceeds to a limit of VaR within a forecasting period. Let p be
the probability of the failure rate of risk, then Nex follows

Pr{ν} =

(

N

ν

)

pν(1 − p)N−ν , ν = 0, 1, ..., N.

Let define the likelihood of Nex as

L(Nex) =
pNex
0 (1 − p0)

N−Nex

p̂Nex(1 − p̂)N−Nex
.

By setting p0 = 1−α and p̂ = Nex/N you can calculate the likelihood, and it is
well-known that 2 logL(Nex) follows χ2(1) . Hence we can execute hypothesis
test with null hypothesis H0 : p = p0 . Table 2 shows an example of log-
likelihood ratio statistics 2 logL(Nex) for each percentile 1 − α of a VaR. If
the statistic is not rejected, or accepted, then it is favorable to the assumed
distribution. Asterisk ”*” denotes the score defined by the following way: log-
likelihood ratio statistic is not rejected at 90% then 10 points are assigned.
Similarly at 75% 9 points, ..., 0.1% 1 point are assigned. Note that the score
denotes only an order, the value itself is meaningless. Thus we can say that an
entry of the table has more *, the density is more suitable for a return.

4 Comparing goodness of fit to distribution

Finally we compare a goodness of fit for each series by following steps.
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Table 1: Failure Rate of Risk : SONY (6758) sampled every 15min.

0.050 0.025 0.010 0.005 0.001

Normal 0.039778 0.020352 0.010638 0.006938 0.003700
Student 0.047032 0.021005 0.010502 0.006393 0.002740
NIG 0.056699 0.025606 0.010059 0.005944 0.000914
Laplace 0.059627 0.025489 0.010014 0.005007 0.000910
Empirical 0.049060 0.020174 0.011004 0.006419 0.002751

Table 2: Likelihood Ratio Test : SONY (6758) sampled every 15min.

0.050 0.025 0.010 0.005 0.001

Normal 5.0989 *3 2.0445 *6 0.0872 *9 1.4555 *6 9.2743 *1
Student 0.4140 *8 1.5153 *6 0.0549 *9 0.7844 *7 4.4809 *4
NIG 1.9840 *6 0.0327 *9 0.0008 *10 0.3695 *8 0.0165 *9
Laplace 4.0484 *4 0.0214 *9 0.0000 *10 0.0000 *10 0.0182 *9
Empirical 0.0408 *9 2.2287 *6 0.2151 *8 0.8098 *7 4.5124 *4

1. Check the normality for actual data.

2. Choose 10 thresholds cp ’s for each time interval M = 10, 15 or 30 .

3. Execute the likelihood ratio test for VaR processes, 5 kinds of percentile
1 − α : 0.050, 0.025, 0.010, 0.005 and 0.001, 10 kinds of thresholds and 3
kinds of time intervals.

4. Score the results above by regarding the ”goodness of forecasting perfor-
mance of VaR” as the ”goodness of fit to a distribution”.

5. Execute step 1 to 4 for each actual data and distribution.

6. Rank the goodness of fit.

4.1 Testing normality

Before the study of a goodness of fit, we check the normality for actual data by
Anderson-Darling test. This test may catch a fat tail better than Kolmogolv-
Smirnov test. The Anderson-Darling test statistics A2 is defined by

A2 = −N − S,

S =
1

N
·

N
∑

i=1

(2i− 1) [log Φi + log(1 − ΦN+1−i)] ,

where Φ is cumulative density function of standard normal distribution and N
is a sample size. The null hypothesis H0 : “data follows Normal distribution”
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is rejected at significance level 10%, if A2 > 0.753 , at significance level 5%
A2 > 1.159 . Table 3 shows the test result. This table reads the null hypothesis
is rejected for all data sets, i.e. all data does not follow Normal distribution.
Furthermore it is turned out that when the time interval becomes larger, the
normality becomes greater for all data sets.

Table 3: The Anderson-Darling test statistics
Nippon Steel HITACHI SONY TOYOTA

10 min. 146.7047 20.2217 24.0964 97.7665
15 min. 84.2962 14.5411 20.7676 55.1298
30 min. 29.8662 6.2688 9.577 21.1466

4.2 Comparing goodness of fit

Finally we verify a goodness of fit to distribution. Table 4, 5 and 6 show
the summary of the results of likelihood test for each 3 kinds of time interval
M = 10, 15 or 30 , each 10 kinds of thresholds and 5 kinds of percentile of VaR.
And table 7 shows the sums of result for each 3 kinds of time interval. In this
table the top grade is

(the points) × (the number of time intervals

× the number of percentile of VaR

× the number of thresholds).

i.e. 10 × (3 × 5 × 10) = 1500 is the highest score. Thus in this table we can
read that NIG distribution is the fittest except for TOYOTA. Note that we are
not taking into consideration the empirical density in this summary because it
is not a probability distribution.

5 Concluding remarks

In this study, we estimate the instantaneous volatility through a duration model.
And using it we calculate (stochastically occurred) one-step ahead VaR. And
we investigate which density is the fittest to log-return by using the VaR as a
measure of fitness. It seems that normal density is not suitable for financial
time series such as log-return with fat tail and asymmetry. Finally, we obtain
interesting result of the high frequency data of Tokyo stock exchange, which is
natural and acceptable. There’s a possibility that the method can be used for
risk management of downside risk because it is only focusing on tail behavior.
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Table 4: The score summary of likelihood ratio test results [10 min.]

Normal Student NIG Laplace Empirical The fittest

Nippon Steel 187 185 205 165 186 NIG

HITACHI 283 364 384 370 350 NIG

SONY 249 260 287 255 226 NIG

TOYOTA 194 206 230 210 191 NIG

Table 5: The score summary of likelihood ratio test results [15 min.]

Normal Student NIG Laplace Empirical The fittest

Nippon Steel 185 179 189 194 185 Laplace

HITACHI 368 341 346 306 393 Normal

SONY 233 270 288 257 284 NIG

TOYOTA 237 238 256 277 232 Laplace

Table 6: The score summary of likelihood ratio test results [30 min.]

Normal Student NIG Laplace Empirical The fittest

Nippon Steel 228 241 244 201 245 NIG

HITACHI 406 366 384 292 381 Normal

SONY 317 322 324 288 269 NIG

TOYOTA 276 240 258 271 234 Normal

Table 7: The score summary of likelihood ratio test results [10, 15, 30 min.]

Normal Student NIG Laplace Empirical The fittest

Nippon Steel 600 605 638 560 616 NIG

HITACHI 1057 1071 1114 968 1124 NIG

SONY 799 852 899 800 779 NIG

TOYOTA 707 684 744 758 657 Laplace
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