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Abstract

Markov switching GARCH models have been developed in order to
address the statistical regularity observed in financial time series such
as strong persistence of conditional variance. However, Maximum
Likelihood Estimation faces a implementation problem since the con-
ditional variance depends on all the past history of state. This paper
shows that this problem can be handled easily in Bayesian inference.
A new Markov Chain Monte Carlo algorithm is introduced and proves
to work well in a numerical example.

1 Introduction

Since the Autoregressive Conditional Heteroskedastic (ARCH) model was
suggested by Engle(1982), a large amount of theoretical and empirical re-
search has been done during the last two decades and they have provided
an improved description of financial markets’ volatility. The reason for the
renewed vigor in understanding the nature of the variance of the time se-
ries process is that in most cases the variance portrays the risk associated
with a financial time series. The recent surge of literature in the field of fi-
nancial instruments emphasizes the variance process for engineering the risk
and return associated with any financial asset. To a great extent the early
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wave of papers on analyzing financial instruments took a considerably sim-
pler view of the variance structure without recognizing the extent to which
the subtleties of the non-linear structures (like GARCH, state dependence,
threshold models) might affect the actual outcome of the pricing process of
a risky asset.

A usual result of ARCH models is the highly persistent behavior of shocks
to conditional variance. This persistence, however, is not consistent with the
result of recent papers that analyze the volatility after the stock crash of
1987, as Schwert (1990) and Engle and Mustaffa (1992) argue. On the other
hand, some suggest a case for an integrated process. Lamoreux and Lastrapes
(1990) argue that the near integrated behavior of the conditional variance
might be due to the presence of structural breaks, which are not accounted for
by standard ARCH models. In the same article, the authors point out that
models with switching parameter values, like the Markov switching model
of Hamilton (1989), may provide more appropriate modeling of volatility.
Hamilton’s Markov Switching model can be viewed as an extension of Gold-
feld and Quandt’s (1973) model of the important case of structural changes
in the parameters of an autoregressive process. In his simple two state pro-
cesses, Hamilton assumes the existence of an unobserved variable, St, which
describes the state the process is in. He postulates a Markov Chain for the
evolution of the unobserved variable given by a pair of transition probabili-
ties.

Apart from Hamilton’s original work on business cycles, many papers use
Hamilton’s model on stock market returns and other financial time series.
Schwert (1989) considers a model in which returns may have either a high
or a low variance, switches between these return distributions determined
by a two state Markov process. Turner, Startz, and Nelson (1989) consider
a Markov switching model in which either the mean, the variance, or both
may differ between two regimes. Hamilton and Susmel (1993) propose a
model with sudden discrete changes in the process which governs volatility.
They found that a Markov switching process provides a better statistical fit
to the data than GARCH models without switching. Many economic series
show evidences of changes in regime. Even if they are rare, during these
events the volatility of the series changes substantially. ARCH models focus
on the dynamics of the process itself and fails to account for the switching
in the dynamics. It underestimates the conditional variance at the time
of the change from a normal volatility state to a high volatility state and
overestimates the conditional variance when the economy goes back to normal
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state.
The switching process is introduced in various ways by various authors.

The simplest way to introduce a switching process to the constant term in
the conditional variance equation (Cai(1994)). Hamilton and Susmel(1994)
consider introducing the Switching parameter to the coefficients of the con-
ditional variance term while Hansen(1994) considers switching the Student
t degrees of freedom parameter where the degree of freedom parameter is
allowed to vary over time as a probit type function. Authors like Hamilton
and Susmel (1994), Bollen, Gray and Whaley (1996), Susmel (1999), Dueker
(1997), and others have found encouraging results in equity price and interest
rate data.

When we estimate Markov switching GARCH models by Maximum Like-
lihood Estimation, we confront an implementation problem. Because of the
structure of GARCH, the conditional variance depends on all the past his-
tory of the state variable. This means that if we have K-state and T-sample
size, we need to consider KT cases to get likelihood function. It is practi-
cally impossible to implement. Hamilton and Susmel(1994) and Cai(1994)
use Markov switching ARCH models to avoid this problem. Gray(1996) and
Dueker (1997) estimate Markov switching GARCH models by approximating
likelihood function which depends on only a few of the state variables.

In this paper, we show that the problem can be easily dealt with in
Bayesian context. In Bayesian inference, we treat the state variables as
random variables and construct the likelihood function assuming we know
the states. This structure makes construction of the likelihood function easy.
We construct posterior distribution using priors and the likelihood function
and integrate the posterior density function with respect to parameters and
state variables. For the integration, we devise a new Markov Chain Monte
Carlo (MCMC) algorithm and show the result of a numerical example of the
algorithm.

In Section 2, we addresse Markov switching GARCH models. In Section
3, we show the general idea about Bayesian inference. In Section 4, our
MCMC algorithm is explained in detail. A numerical example is presented
in Section 5. Section 6 concludes.
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2 The Model

Markov switching GARCH(r,s) model is

yt = x′
tγ + εt, εt = σtωt, ωt ∼ N(0, 1)

σ2
t = µ0 + µ1St +

r∑
j=1

αjε
2
t−j +

s∑
j=1

βjσ
2
t−j

where yt is dependent variable; xt is vector of independent variables; γ is
regression coefficient; α and β are coefficients of the GARCH process; St is
state variable taking 0 or 1. The state variable, St, evolves according to a
two state, first order Markov Switching process with the following hidden
transition probabilities:

Pr[St = 0|St−1 = 0] = p00, P r[St = 1|St−1 = 1] = p11.

3 Bayesian Inference

The goal of Bayesian inference is to derive the distributions of the parameters
and the state variables conditional on the data. First, we construct posterior
distribution via the Bayes’ rule.

The posterior density of our model is

p(Θ, S|Y ) ∝ p(Θ, S) p(Y |Θ, S)

∝ p(Θ) p(S|Θ) p(Y |Θ, S) (1)

where Θ = (γ, α, β, µ0, µ1, p00, p11), S = (S1, ..., ST ), and Y = (y1, ..., yT ).
The Bayes’ rule is applied in the first line. The second line comes from the
definition of conditional probability.

p(Θ) is the prior for the parameters. Under the assumption of indepen-
dence, the prior density is chosen as

p(Θ) = p(γ)p(µ0)p(µ1)p(α)p(β)p(p00)p(p11)

= N(µγ, Σγ)× N(µµ0 , Σµ0)× N(µµ1 , Σµ1)

×N(µα, Σα)× N(µβ, Σβ)

×Beta(u00, u01)×Beta(u11, u10)

where N(·) is the normal density function, and Beta(·) is the beta density
function.
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The second term in Equation 1 is p(S|Θ) 1. Note that p(S|Θ) = p(S|p00, p11)
since the dynamics of S is dependent of p00, p11.

p(S|Θ) = p(S|p00, p11)

=
T∏

t=1

p(St+1|St, p00, p11)

= p00
η00(1− p00)

η01p11
η11(1− p11)

η10

where ηij refers to the number of the transitions from state i to j. The second
line is due to the Markov property of S.

The last term, p(Y |Θ, S), is the likelihood function 2 given Θ and S.

p(Y |Θ, S) =
T∏

t=1

p(yt|Yt−1, St, ..., S1, Θ)

=
T∏

t=1

1√
2πσ2

t

exp

[
− ε2

t

2σ2
t

]
.

We can construct this likelihood function easily because we hypothetically
consider S known as well as Θ. This is one of Bayesian features which is
different from Classical inference. The classical likelihood is contructed with
only parameters, Θ, being treated known.

Once we have posterior density function, we get marginal posterior den-
sity functions of parameters and state variables by integrating the posterior
density function. Markov Chain Monte Carlo(MCMC) is one way of numer-
ical intergration. MCMC algorithms are based on the Clifford-Hammersley
theorem. The theorem says that a joint distribution can be characterized by
its complete conditional distributions. In our context, the posterior distribu-
tion, p(Θ, S|Y ), is characterized by the complete conditional distributions,
p(Θ|S, Y ) and p(S|Θ, Y ).

Given the initial values, Θ(0) and S(0), we draw Θ(1) from p(Θ|S(0), Y ) and
then S(1) from p(S|Θ(1), Y ). Iterating this steps, we finally get {S(g), Θ(g)}G

g=1.
Under some mild conditions, it is shown that the distribution of the sequence
converges to the joint posterior distribution, p(Θ, S|Y ).

1It is sometimes called likelihood function of S. One can consider it the prior for S.
2Some call it full information likelihood.
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When a complete conditional distribution is known, such as Normal dis-
tribution or Beta distribution, we use Gibbs sampler to draw the random
variable. When it is not, we may use the Metropolis-Hasting(MH) algorithm.

In the MH algorithm we generate a value Θ̂ from its proposal distribution
g(.) and accept the proposal value, i.e Θ(g+1) = Θ̂, with probability:

λ(Θ(g), Θ̂) = min

{
p(Θ̂|Y, S)

p(Θ(g)|Y, S)

/
g(Θ̂)

g(Θ(g))
, 1

}
.

Theoretically, we can use almost any distribution for the proposal distri-
bution. In practice, however, we need to choose proposal distribution very
carefully to ensure fast convergence of MCMC samples.

One version of MH algorithm is random walk MH algorithm. We generate
Θ̂ from the random walk model of Θ̂ = Θ(g) + ηt where ηt has zero mean.
The variance of ηt should be tuned carefully. The acceptance probability of
random walk MH algorithm is

λ(Θ(g), Θ̂) = min

{
p(Θ̂|Y, S)

p(Θ(g)|Y, S)
, 1

}
.

In this paper, we use random walk MH algorithm whenever we need to use
MH algorithm.

4 MCMC Implementation

For MCMC implementation, we divide the parameters, Θ, into three cate-
gories:

Θ1 = (p00, p11)

Θ2 = (γ)

Θ3 = (µ0, µ1, α, β)

The MCMC algorithm is summarized as followed:

• Draw St, (t = 1, ..., T ) from p(St|S 6=t, Y, Θ) by the Single Move proce-
dure

• Draw Θ1 from p(Θ1|S) ∼ Beta
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• Draw Θ2 from p(Θ2|S, Y, Θ3) by MH

• Draw Θ3 from p(Θ3|S, Y, Θ2) by MH

For the MH algorithm for Θ3, I use the following model, as in Nakat-
suma(2000),

ε2
t = µ0 + µ1St +

l∑
j=1

(αj + βj)ε
2
t−j + wt −

s∑
j=1

βjwt−j, wt ∼ N(0, 2σ4
t ), (2)

where wt = ε2
t − σ2

t , l = max{r, s}, αj = 0 for j > r,βj = 0 for j > s and
ε2
t = 0 and wt = 0 for t ≤ 0. Then, the corresponding likelihood function is

p(ε2|Y, S, Θ2, Θ3) =
T∏

t=1

1√
2π(2σ4

t )
exp

[
− w2

t

2(2σ4
t )

]
, (3)

where ε2 = [ε2
1, · · · , ε2

T ]′.
The details will be explained in the following sections

4.1 Generating S

Following the single move scheme suggested by Carlin, Polson, and Stoffer
(1992) and Yoo(2004), the conditional posterior of St is derived from Equa-
tion 1 as follows:

p(St|Y, S 6=t, Θ) ∝ p(S|Θ)p(Y |S, Θ)

∝ p(St+1|St, Θ1)p(St|St−1, Θ1)

p(yt|Yt−1, St, ..., S1, Θ)...p(yT |YT−1, ST , ..., S1, Θ)

∝ p(St+1|St, Θ1)p(St|St−1, Θ1)
T∏

s=t

(σ2
s)

−1/2 exp

[
−1

2

T∑
s=t

ε2
s

σ2
s

]
. (t = 1, ..., T ) (4)

We calculate Pr(St = 0|Y, S 6=t, Θ) and generate a random number from
uniform distribution between 0 and 1. If the random number is less than the
probability we set St = 0, otherwise 1.

The third factor shows how to handle the problem that σ2
t depends on

not only St but also St−1, ..., S1 in Bayesian context.
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4.2 Generating p00 and p11

The conditional distribution of p00 is given by

p(p00|Y, S, Θ−p00) ∝ p(p00)p(S|p00, p11)

∝ p00
u00−1(1− p00)

u01−1p00
η00(1− p00)

η01

∝ p00
η00+u00−1(1− p00)

η01+u01−1

This is the Beta density function. Therefore, we generate p00 by Gibbs
sampler from the following Beta distributions:

p00|S ∼ Beta(u00 + η00, u01 + η01)

We generate p11 in a similar way.

p11|S ∼ Beta(u11 + η11, u10 + η10).

4.3 Generating γ: Regression Coefficients

The conditional distribution of γ is given by

p(γ|Y, S, Θ−γ) ∝ p(γ)p(Y |S, Θ)

∝ N(µγ, Σγ)×
T∏

t=1

1√
2πσ2

t

exp

[
−(yt − x′

tγ)2

2σ2
t

]

This is not any standard or known distribution because σ2
t is also a function

of γ. Therefore, we use MH algorithm in this case.
Let Yγ = [y∗1, · · · , y∗T ]′ and Xγ = [x∗′

1 , · · · , x∗′
T ]′. Then we have the following

proposal distribution for γ:

γ|Y, S, Θ−γ ∼ N(µ̂γ, Σ̂γ),

where µ̂γ = Σ̂γ(X
′
γΣ

−1Yγ + Σ−1
γ µγ), Σ̂γ = (X ′

γΣ
−1Xγ + Σ−1

γ )−1, and Σ =
diag{σ2

1, ..., σ
2
T}.
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4.4 Generating (µ0, α)

The conditional distribution of (µ0, α) is

p(µ0, α|Y, S, Θ−(µ0, α)) ∝ p(µ0, α)p(Y |S, Θ)

∝ N(µα, Σα)× N(µµ0 , Σµ0)
T∏

t=1

1√
2πσ2

t

exp

[
− ε2

t

2σ2
t

]

The likelihood function is a very complicated function of (µ0, α). To use MH
algorithm and get a good proposal density, we use Equation 2 and choose
the equations in which St = 0.

ε2
t = µ0 +

l∑
j=1

(αj + βj)ε
2
t−j + wt −

s∑
j=1

βjwt−j, wt ∼ N(0, 2σ4
t ), (5)

where t ∈ I0 and I0 is an index set of t such that St = 0.
Calculate ι̃t, ε̃2

t , and ζt by the following transformation:

ι̃t = 1 + [ι̃t−1, · · · , ι̃t−s]
′β

ε̃2
t = ε2

t + [ε̃2
t−1, · · · , ε̃2

t−s]
′β

ζt = [ι̃t, ε̃
2
t−1, · · · , ε̃2

t−r]

where ι̃t = 0 and ε̃2
t = 0 for t ≤ 0. It turns out that wt = ε2

t − ζ ′tα. The
likelihood function (Eq 3) can be rewritten as

f(ε2|Y, S, Θ2, Θ3) =
T∏

t=1

1√
2π(2σ4

t )
exp

[
−(ε2

t − ζ ′tα)2

2(2σ4
t )

]
.

Let Yα = [ε2
1, · · · , ε2

T ]′ and Xα = [ζ ′1, · · · , ζ ′T ]′. Then we have the following
proposal distribution for (µ0, α):

µ0, α|Y, S, Θ−(µ0,α) ∼ N(µ̂α, Σ̂α)

where µ̂α = Σ̂α(X ′
αΛ−1Yα + Σ−1

α µα), Σ̂α = (X ′
αΛ−1Xα + Σ−1

α )−1, and Λ =
diag{2σ4

1, · · · , 2σ4
n}.
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4.5 Generating µ1

Generating µ1 is similar to generating (µ0, α). In this case, however, we
consider the case of St = 1. We use the following model:

ε2
t = µ0 + µ1 +

l∑
j=1

(αj + βj)ε
2
t−j + wt −

s∑
j=1

βjwt−j, wt ∼ N(0, 2σ4
t ), (6)

where t ∈ I1 and I1 is an index set of t such that St = 1. We draw (µ0+µ1, α)
as in previous procesure and get µ1 by subtracting µ0 from µ0 + µ1.

4.6 Generating β

Following Nakatsuma(2000), we linearize wt by the first-order Taylor expan-
sion.

wt(β) ≈ wt(β
∗) + ξt(β − β∗)

where wt(β
∗) = ε2

t − µ0 − µ1St −
∑l

j=1(αj + β∗
j )ε

2
t−j +

∑s
j=1 β∗

j wt−j, ξt =
[ξ1t, · · · , ξqt] is the first-order derivative of wt(β) evaluated at β∗ given by the
following recursion:

ξit = −ε2
t−i + wt−i(β

∗) +
s∑

j=1

β∗
j ξi,t−j, (i = 1, · · · , s),

where ξit = 0 for t ≤ 0. β∗ is the non-linear least squares estimate of β,

β∗ = arg min
β

T∑
t=1

{wt(β)}2/(2σ4
t ).

Then the likelihood function (Eq 3) can be rewritten as

f(ε2|Y, S, Θ2, Θ3) =
n∏

t=1

1√
2π(2σ4

t )
exp

[
−{wt(β

∗)− ξt(β − β∗)}2

2(2σ4
t )

]
.

Let Yβ = [w1(β
∗)+ξ1β

∗, · · · , wT (β∗)+ξT β∗]′ and Xβ = [ξ′1, · · · , ξ′T ]′. Then,
we have the following proposal distribution of β:

β|Y, S, Θ−β ∼ N(µ̂β, Σ̂β)

where µ̂β = Σ̂β(X ′
βΛ−1Yβ + Σ−1

β µβ), Σ̂β = (X ′
βΛ−1Xβ + Σ−1

β )−1 and Λ =
diag{2σ4

1, · · · , 2σ4
n}.
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Table 1: Case: Markov switching GARCH(1,1)

true posterior statistics acceptance
value mean s.d. ρ̂a rate

γ 0 -0.002 0.010 0.86 0.17
µ0 0.01 0.009 0.002 0.96 0.13
µ1 0.05 0.150 0.099 0.88 0.14
α 0.2 0.195 0.060 0.93 0.13
β 0.5 0.553 0.079 0.98 0.19
p00 0.98 0.990 0.006 0.38
p11 0.95 0.881 0.077 0.32

Notes: (a) the first-order autocorrelation in a sample path.

5 Numerical Example

In this section, we simulate a Markov switching GARCH model and estimate
the model by our MCMC algorithm.

The model is Markov switching GARCH(1,1).

yt = γ + εt, εt = σtωt, ωt ∼ N(0, 1)

σ2
t = µ0 + µ1St + αε2

t + βσ2
t

The sample size is T = 500. We generate 6,000 iterations for MCMC and
discard the first 1,000. Every third draw is selected to construct posterior
densities. Table 1 shows that our algorithm works reasonably.

Conclusion

When we estimate Markov switching GARCH models by MLE, it is not easy
to construct likelihood function because the conditional variance depends on
all the history of state variable. We showed that one can handle this problem
easily in Bayesian inference. A numerical illustration shows that our MCMC
algorithm works well.

Our model can be extended to include ARMA structure and state de-
pendent mean. our MCMC algorithm need to be improved especially in

11



drawing the state varible. Kaufman and Fruhwirth-Schnatter (2002) esti-
mates Markov switching ARCH models in Bayesian context because, as they
say, the mulimove procesure of state variable does not work in GARCH. On
the other hand, we show that we can use the single move procesure in Markov
switching GARCH.

Literature starts to incoporate conditional variance dynamics in deriva-
tive pricing.Previously the variances were plugged into the Black Scholes
option pricing formula (Engle, Hong, Kane and Noh(1993)). Recently Duan
(89) developed a GARCH option-pricing model, where he introduced the con-
cept of local risk neutral valuation with respect to an underlying GARCH
asset pricing process. Using local risk neutral valuation, the Markov Switch-
ing GARCH can also be applied in derivative pricing.
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