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1. Introduction 

Many studies in the literature give evidence that term spreads of interest rates have 

information about three different future economic variables: output growth, inflation, and interest 

rates, for various sample periods and countries. But the literatures examining the predictability of 

these three variables have been quite distinctive. Studies of the predictability of interest rates 

have been mainly conducted by financial economists by testing a very popular and classic theory, 

the expectations hypothesis1. In this theory, the long rate is equal to an average of expected future 

short rates plus a time-invariant term premium. However, in spite of its popularity, this 

hypothesis typically has been rejected. Many economists argue that this expectations hypothesis 

failure is attributable to the failure of the assumption of time-invariant term premium2. The 

literature on the predictability of inflation also has a long history following Fama’s (1975) classic 

study3. On the other hand, the history of the literature studying the predictability of output growth 

is relatively recent. After Stock and Watson (1989) found that a term spread plays an important 

role in their index of economic leading indicators, many researchers investigated this 

predictability4. 

                                                        
1 For empirical results of testing the expectations hypothesis, see, for example, Campbell and Shiller (1991), 

Hardouvelis (1994), Rudebusch (1995), Campbell, Lo and MacKinlay (1997), Roberds and Whiteman (1999), 

Bekaert, Hodrick and Marshall (2001), and Cochrane (2001). 
2 The literature gives evidence that term premium is in fact time-varying. See, for example, Mankiw and Miron 

(1986), Engle, Lilien and Robins (1987), Engle and Ng (1993), Dotsey and Otrok (1995), and Balduzzi, Bertola 

and Foresi (1997). 
3 For empirical results of the predictability of inflation, see, for example, Mishkin (1988, 1990a, b, 1991), 

Fama (1990), Jorion and Mishkin (1991), Estrella and Mishkin (1997), and Kozicki (1997). 
4 For empirical results of the predictability of output growth or recession, see, for example, Estrella and 

Hardouvelis (1991), Plosser and Rouwenhost (1994), Haubrich and Dombrosky (1996), Bonser-Neal and 

Morley(1997), Dueker (1997), Estrella and Mishkin (1997), Kozicki (1997), Bernard and Gerlach (1998), 
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 Although a huge literature gives evidence and explanations for each of the 

predictabilities of output growth, inflation, and interest rates, no paper tries to analyze the 

relationship among all of these three predictabilities. The main purpose of this paper is to 

integrate these predictability results in an attempt to answer to an important question: why can the 

term structure predict future movements in economic variables? This study will help us 

understand the information contained in the term structure of interest rates, and the relationship 

between the term structure and business cycle. 

 We use an affine term structure model (ATSM) with observable economic factors as our 

main tool. After Ang and Piazzesi (2003) introduced this type of model to investigate the 

relationship between macroeconomic variables and the term structure, the idea has been followed 

by several studies, for example, Dewachter and Lyrio (2002), Hordahl, Tristani and Vestin (2002), 

and Wu (2002). These studies depend much on macroeconomic theories to restrict their models 

so that the results can be interpreted more easily. Furthermore, these models typically use latent 

variables other than observable variables, and interpret the latent factors as variables such as the 

monetary policy authority’s inflation target. 

 Conversely, Ang, Piazzesi and Wei (2003) use only observable variables, and they do not 

use macroeconomic theories other than the no-arbitrage assumption to restrict their model. This 

type of model can be interpreted as either a VAR with no-arbitrage restrictions or ATSM with 

observable factors obeying VAR. In this paper, we call this type of model VAR-ATSM for 

convenience. Ang, Piazzesi and Wei use their VAR-ATSM to examine the predictability of output 

growth using term spreads. We follow this basic idea, and extend to the predictabilities of not 

                                                                                                                                                                                    
Dotsey (1998), and Hamilton and Kim (2002). 
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only output growth but also inflation and short rates5. Although their basic idea is very useful for 

analyzing the predictabilities, some of their assumptions and estimation method are not suitable 

to our purpose. Ang, Piazzesi and Wei try to find good forecasting models by comparing 

predictive powers, especially rolling out-of-sample forecasting performances, of various 

combinations of regressors. For conducting this exercise, their parsimony VAR(1) model and 

computationally fast, but less efficient, estimation method may be appropriate. On the other hand, 

we try to reveal the source of the predictability by analyzing the relationship between impulse 

response functions and R2’s. Thus we adopt VAR with more lags and more efficient estimation 

method, which contribute to the reliability of impulse response functions. 

 We have three main findings. First, the time-varying market price of output growth risk, 

which is sensitive to the level of inflation, plays a key role in the predictability. When the 

inflation rate is higher, consumers are willing to pay a higher premium for output growth risk 

hedge, which may be explained by a simple model with a money in the utility function and a 

monetary policy rule. This causes term spreads to react to recent inflation shocks. Since the 

inflation shock has persistent effects on not only inflation but also output growth and interest 

rates, the response of term spread to the inflation shock helps predict these variables. Second, we 

also find that term spreads using the short end of the yield curve have less predictive power than 

many spreads between longer rates. This fact is attributable to the inertial character of monetary 

policy. Third, it is hard to predict output growth with term spreads at short horizons, because the 
                                                        
5 Before Ang, Piazzesi and Wei (2003), several papers use term structure models with only latent factors for 

analyzing predictability using term spreads. For example, Roberds and Whiteman (1999), Dai and Singleton 

(2002), and Duffee (2002) examine whether ATSM’s can fit to the empirical results on predictability of interest 

rates. Hamilton and Kim (2002) use the Longstaff and Schwarz’s (1992) term structure model to explain 

predictability of output growth. But since these models use only latent factors, the ability to analyze the 

relationship among term structure and macroeconomic variables is limited. 
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monetary policy shock affects output growth with a lag while the term structure responds to the 

shock immediately. 

 The rest of this paper is organized as follows. Section 2 displays stylized facts from 

simple OLS results. In Section 3, we consider simple ATSM’s to understand basic properties of 

ATSM’s. This section will help to prepare for the more complicated VAR-ATSM introduced in 

Section 4. Estimation methods and results are considered in Section 5. Here we discuss the 

relationship between time-varying market prices of risk and information included in term 

structure. In Section 6, we use impulse response functions and model-implied R2’s, which can be 

obtained from the estimated VAR-ATSM, to explain why term spreads predict well. Section 7 

concludes. 

 

 

2. Simple OLS Results 

The empirical studies in the literature examine predictabilities of term spreads for future 

output growth, inflation, and interest rates with a common econometric method, regressions on 

the term spreads. However, these regressions do not have exactly the same form. For example, 

Estrella and Mishkin (1991) examine output growth predictability by using regressions of 

cumulative output growth from t to t+h on a fixed term spread between ten-year and three-month 

interest rates: 

 

(10Y) (3M)( )t t h t t t hg r rα β ε→ + += + − + .    (1) 

 

On the other hand, Mishkin (1990a) examines inflation predictability by using regressions of 
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difference between h-period and 1-year cumulative inflation rates on maturity matching term 

spreads: 

 

  ( ) (1Y)
1Y ( )h

t t h t t t t t hr rπ π α β ε→ + → + +− = + − + .    (2) 

 

Campbell and Shiller (1991) give evidence for short rate predictability by using the most popular 

expectations hypothesis test, regressions of average future short rate changes on maturity 

matching term spreads: 

 

1
(1) (1) ( ) (1)

1
0

1 ( ) ( )
h

h
t i t t t t h

i
r r r r

h
α β ε

−

+ + −
=

− = + − +∑ .    (3) 

 

All three types of studies find that the slope coefficient β  is significantly different from zero in 

many cases, which means that term spreads have predictive power for movements in 

macroeconomic variables. Typically they report substantial t-stats and R2’s for these regressions. 

As one can easily see, these empirical regressions do not have the same form. For example, (1) 

and (2) do not use the same regressor. (1) uses a fixed regressor, while the regressor of (2) 

depends on the forecasting horizon h. So for analyzing the relationship among the predictabilities, 

we need to put the empirical results for predicting the different variables on a consistent basis. 

 For this purpose, we use the regressions below, 

  

( ) ( )( )n m
t h t t t hg r rα β ε+ += + − + ;     (4) 
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( ) ( )( )n m
t h t t t hr rπ α β ε+ += + − + ;     (5) 

 

(1) ( ) ( )( )n m
t h t t t hr r rα β ε+ += + − + ;     (6) 

 

for various combinations of h, n, and m (h = 1,2,…,12; n, m = 2, 4, 8, 12, 16, 20, and n > m), 

where tg  is the real GDP growth rate from t-1 to t, tπ  is the inflation rate of GDP deflator 

from t-1 to t, and )(n
tr  is the n-period discount rate of Treasury bills or bonds at end of t6. 

Quarterly data are used, so we interpret one period as one quarter. All of tg , tπ , and )(n
tr  are 

defined as rates per quarter. The sample period is 1964:1Q-2001:4Q, following Fama and Bliss 

(1987) who comment that long rate data before 1964 may be unreliable. There are two other 

properties of the set of regressions (4)-(6) worth commenting on. First, regressands are 

continuously compounded marginal rates or one-period short rate. Since cumulative rates are the 

averages of marginal rates, marginal rates are more convenient for specifying which part of future 

the term spreads can predict well. Second, we use various forecasting horizons h and term 

spreads )()( m
t

n
t rr − , so we can specify which components of the yield curve predict at which 

future horizons. 

 Figures 1 and 2 display the t-stats and R2’s of OLS regressions (4)-(6) for selected term 

spreads. 20Q-1Q spread has significant predictive power for all of output growth, inflation, and 
                                                        
6 We use discount rate data from CRSP (Center for Research in Security Prices, Graduate School of Business, 

the University of Chicago: www.crsp.uchicago.edu. All rights reserved.) Monthly US Treasury Database with 

permission. We can construct discount rates for 1, 2, 4, 8, 12, 16, 20 quarters from the CRSP data. The 1 quarter 

(3 month) rate is obtained from average rates in the CRSP risk free rates file. The 2 quarter (6 month) rate is 

constructed by multiplying average-YTM by 12 (there is no data on 9/30/1987, so we interpolate with 3 and 12 

month rates). The other rates are obtained from the Fama-Bliss discount bonds file. 
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short rates at least for shorter horizons. This result is consistent with the literature, which argues 

that term spread between 5-year (or 10-year) and 3-month rates predict well. But surprisingly we 

found that most term spreads without 1Q rate are better than the 20Q-1Q spread in many cases. 

For example, Figure 2 shows that 12Q-8Q spread is better except for predicting output growth 

rates at shorter horizons. In addition, 2Q-1Q spread, which also uses the 1Q rate, is almost 

useless. These facts seem to imply that term spreads using the short end of the yield curve reduce 

the predictabilities. This is surprising because the literature does not care about the spread 

without the short end of term structure so much, and several studies including Ang, Piazzesi and 

Wei (2003) argue that the maximal maturity difference is the best predictor. As another notable 

feature of the graphs, we can see that the R2’s of output growth regressions are hump-shaped. 

That is, it is difficult to predict output growth rate at short horizons.  

 Why can term spreads predict the future in such ways? Since OLS results do not answer 

this question, we need a more structured model. A useful method to interpret these OLS results is 

proposed by Ang, Piazzesi and Wei (2003). They use a VAR-ATSM to represent the 

model-implied R2’s for the regressions of output growth rates and compare predictive powers of 

various combinations of regressors. We follow their basic idea, and extend their methods to 

explain predictabilities of all of output growth, inflation, and short rates. Although their 

VAR-ATSM is very useful for examining the relationship among macroeconomic variables and 

the yield curve, some of their assumptions and estimation method are not suitable to our purpose. 

So we modify them in Section 4 and 5. Then, in Section 6, we try to reveal the source of the 

predictability by using impulse response functions and R2’s, which can be calculated from the 

estimates of the VAR-ATSM. 
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3. Simple Affine Term Structure Models with Observable Factors 

Before introducing our VAR-ATSM in the next section, let’s consider four simpler 

ATSM’s. Since the VAR-ATSM is too complicated to give simple interpretations, we should start 

from these simpler models. In particular, time-varying market prices of risk, which many classic 

term structure models assume constant, are the source of the complication. But since they affect 

the relationship between short and long rates, i.e. movements in term spreads, they are very 

important for examining the predictabilities of term spreads. 

 

3.1. An ATSM with One Factor of Short Rate 

 Suppose that quarterly data of short (3-month) rate )1(
tr  are characterized by an AR(1) 

process: 

 

(1) (1)
1 , 1t r r t r r tr c r uφ σ+ += + + ,      (7) 

 

where , 1 ~ (0,1)r tu N+  i.i.d., and 0rσ > . Table 1 reports the OLS estimates of (7), which show 

that the short rate is persistent ( 0.9037rφ = ). Suppose that the stochastic discount factor 1+tM  

obeys a conditional log-normal distribution: 

 

(1) 2
1 , , , 1

1exp
2t t r t r t r tM r uλ λ+ +

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

,    (8) 
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where 

 

)1(
, trrtr rδγλ += .       (9) 

 

So in this model, the market price of risk trλ ,  is time-varying, depending on the factor )1(
tr . That 

is, the stochastic discount factor 1+tM  is affected by not only the exogenous shock , 1r tu +  but 

also the level of the factor )1(
tr  through the time-varying market price of risk. Thus the effects of 

the factor on the yield curve are complicated. Note that if 0=rδ , i.e. trλ ,  is time-invariant, this 

is just the classic Vasicek (1977) model. 

 Let’s assume there is no arbitrage opportunity in the Treasury market. Since this market 

is one of the largest and most highly liquid markets in the world, the no-arbitrage assumption is 

extremely reasonable. Under the no-arbitrage assumption, we can use the fundamental asset 

pricing equation for bond prices, 

 

  ( ) ( 1)
1 1[ ]n n

t t t tq E M q −
+ += ,      (10) 

 

for n = 1, 2, …, and all t, where ( )n
tq  is the n-period bond price. Note that from (8) and (10),  

 

(1) (0)
1 1

1

[ ]
[ ]

t t t t

t t

q E M q
E M

+ +

+

=

=
 

)exp( )1(
tr−= .       (11) 
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This is exactly the definition of the relationship between the 1-period bond price and 

continuously compounded discount rate. In fact, 1+tM  is chosen so that (11) holds.  

By using the fundamental asset pricing equation (10), we can derive closed forms for 

discount rates ( )n
tr  as affine functions of the factor )1(

tr : 

 

( ) ( ) ( ) (1)ˆ n n n
t tr a b r= + , n = 1, 2, …    (12) 

 

where 

 

( ) ( ) ( ) ( )/n n n na A n, b B /n= − = − ,      (13) 

( 1) ( ) ( ) 2 ( )21
2

n n n n
r r r rA A B (c γ ) Bσ σ+ = + − + ,     (14) 

( 1) ( ) 1n n
r r rB B ( δ )φ σ+ = − − ,     (15) 

0)1( =A , (1) 1B = − 7.      (16) 

 

From (12), the factor loading on the short rate factor ( )nb  can be interpreted as the 

sensitivity of longer rates ( )n
tr  to the short rate )1(

tr . From (13), (15), and (16), we can obtain a 

closed form for ( )nb : 

 

                                                        
7 Since this is one of the simplest special cases of VAR-ATSM, it is enough to check the proof for the general 

model introduced in Section 4. For the proof, see Ang and Piazzesi (2003). 



12 

  
1

( )

0

1 )
n

n j
r r r

j

b ( δ
n

φ σ
−

=

= −∑ .      (17) 

 

Note that rγ  does not appear in (17). Since movement of short rates is less volatile than that of 

long rates, it is reasonable that the absolute value of ( )nb  decreases as n increases. For satisfying 

this, we need parameter values such that  

 

| | 1r r rδφ σ− < .        (18) 

 

From (18), 

 

  1 1r r
r

r r

δφ φ
σ σ
− +

− < < .      (19) 

 

Since point estimates in Table 1 imply (1 ) / 334r rφ σ+ ≈ , rδ  can be even hundreds. 

 From (17), we can say that the sensitivity of long rates to the short rate is weaker, when 

rδ  is higher. We can relate this claim with the expectations hypothesis. From (7),  

 

(1) (1)
1 ,

(1)
2 , 1 ,( )

t j r r t j r r t j

r r r r t j r r t j r r t j

r c r u

c c r u u

φ σ

φ φ σ σ
+ + − +

+ − + − +

= + +

= + + + +

M

 

1 1
(1)

,
0 0

j j
i j i

r r r t r r r t j i
i i

c r uφ φ σ φ
− −

+ −
= =

= + +∑ ∑ .    (20) 
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So by taking the expectation, 

 

1
(1) (1)

0
[ ]

j
i j

t t j r r r t
i

E r c rφ φ
−

+
=

= +∑ .     (21) 

 

Then, from (12), (17) and (21), we can obtain the term premium: 

 

11 1 1
( ) (1) ( ) (1)

0 0 0 0

1 1 1[ ] [( ) ]
jn n n

n n i j j
t t t j r r r r r r t

j j i j
r E r a c r

n n n
φ φ σ δ φ

−− − −

+
= = = =

− = − + − −∑ ∑∑ ∑ .  (22) 

 

So the term premium is constant, i.e. the expectation hypothesis holds only when 0=rδ . In this 

case, the movements of long rates ( )n
tr  depend only on those of average expected short rates 

11 (1)
0

[ ]n
t t jj

n E r−−
+=∑ . Since )1(

tr  obeys a persistent AR(1) process, an increase in )1(
tr  raises ( )n

tr . 

However, when 0rδ > , a rise in )1(
tr  also has a negative effect on ( )n

tr  through a decrease in 

the term premium. Therefore, positive rδ  weakens the relationship between short and long rates. 

Then the sensitivity of the term spread to the factor )1(
tr  is stronger when rδ  is larger. 

 

3.2. A one factor ATSM with a constant short rate 

Let’s consider a model with constant short rate )1(r and one factor tx  obeying AR(1): 

 

1 , 1t x x t x x tx c x uφ σ+ += + + ,      (23) 
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where , 1 ~ (0,1)x tu N+  i.i.d., and 0xσ > . Suppose that the stochastic discount factor obeys 

 

(1) 2
1 , , , 1

1exp
2t x t x t x tM r uλ λ+ +

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

    (24) 

 

where 

 

txxtx xδγλ +=, .       (25) 

 

By using the fundamental asset pricing equation (10), we can derive expressions for discount 

rates ( )n
tr : 

 

  ( ) (1)ˆ n
tr r= , n = 1, 2, …     (26) 

 

That is, when short rate is constant, yield curve is always perfectly flat. More importantly, the 

factor tx  can not affect the yield curve, even if the exogenous shock , 1x tu +  has a strong effect 

on the stochastic discount factor 1+tM . This implies that the stochastic factor tx  affects bond 

prices only through the movements in short rates. So we can not conclude whether the effect of 

the factor on the yield curve is strong or not only from the market price of risk. 

 

3.3. C-CAPM 

 Let’s consider a simple C-CAPM, in which the stochastic discount factor obeys 
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1
1 1

'( ) exp( )
'( )

t
t t

t

u CM
u C

δ π+
+ += − ,     (27) 

 

with CRRA utility function 

 

  
1

( )
1

t
t

Cu C
ρ

ρ

−

=
−

,       (28) 

 

where δ  is the subjective discount factor, tC  is consumption at t, and 0>ρ  is the coefficient 

of relative risk aversion. Suppose in equilibrium, the consumption tC  is equal to the output tY  

so that the consumption growth rate , 1 1C t tg g+ += 8. Then (27) can be rewritten as 

 

1 1
1

, 1 1

1 1

1 , 1 1 , 1

exp( )

exp( )
exp( )
exp( { [ ] } { [ ] })

t
t t

t

C t t

t t

t t g t t t t

CM
C

g
g
E g E

ρ

π

δ π

δ ρ π

δ ρ π
δ ρ ε π ε

+ +
+

+ +

+ +

+ + + +

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
= − −

= − −
= − + − +

 

1 1 , , 1 , , 1exp(log( ) [ ] [ ] )t t t t g g t tE g E u uε ε π πδ ρ π ρσ σ+ + + += − − − − . (29) 

 

                                                        
8 We assume this just for simplicity, and we can generalize this model to be consistent with the literature, 

which shows that dynamics of consumption growth rate is smoother than that of output growth rate, by 

assuming that consumption growth rate obeys an affine function of output growth rate with a positive and less 

than unity slope coefficient. Even with this generalized assumption, the main properties of the model do not 

change. 
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where , 1 , , 1 1 1[ ]g t g g t t t tu g E gεε σ+ + + += = − , , 1 , , 1 1 1[ ]t t t t tu Eπ ε π πε σ π π+ + + += = − , and ,gεσ  and ,ε πσ  

are standard deviations of , 1g tε +  and , 1tπε +  so that , 1 ~ (0,1)g tu N+  and , 1 ~ (0,1)tu Nπ + . 

Suppose , 1g tu +  and , 1tuπ +  are uncorrelated as we often observe empirically. Since 

0ρ > , a positive output growth shock has a negative effect on 1+tM . This is consistent with a 

role of bonds for consumption hedge. That is, when future output growth rate is higher, 

consumers feel that future cash flows are less important. Note that both of the market prices of 

risk corresponding to the output growth shock , 1g tu +  and inflation shock , 1tuπ +  are constant 

( ,gερσ  and ,ε πσ  respectively). 

From (10), (11), and (29),  

 

 
(1) (1)

1

exp( )
[ ]

t t

t t

r q
E M +

− =
=

 

2 2 2
1 1 , ,exp(log( ) [ ] [ ] { }/ 2)t t t t gE g E ε ε πδ ρ π ρ σ σ+ += − − + + .  (30) 

 

So we can obtain 

 

  
2 2

(1)
1 1

1log( ) [ ] [ ]
2

g
t t t t tr E g E πρσ σ

ρ π
δ + +

+
= + + − .   (31) 

 

That is, this C-CAPM implicitly assumes (31) holds. This suggests that the short rate is higher 

when expected output growth and inflation rates are higher. An interesting special case of (31) is  
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  1 1 0t tg π+ += = ,       (32) 

 

without uncertainty. In this case, (31) is 

 

  (1) 1log( )tr δ
= ,       (33) 

 

which means that the short rate is equal to the subjective discount rate. 

 

3.4. C-CAPM with money-in-the-utility function 

 Let’s consider another C-CAPM in which we replace (28) with a money-in-the-utility 

(MIU) function ( , )t tu C m  where tm  is the real money holding. Even with the MIU function, 

the stochastic discount factor obeys the same form as (27): 

 

1 1
1 1

'( , ) exp( )
'( , )

t t
t t

t t

u C mM
u C m

δ π+ +
+ += − ,     (34) 

 

where '( , ) ( , )u C m u C m C≡ ∂ ∂ . 

 Suppose that the form of the utility function is 

 

  
1

( , )
1

t
t t t

Cu C m m
ρ

θ

ρ

−

=
−

,      (35) 
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where 0ρ >  and 0 1θ< < . Then if t tC Y=  as before, (34) can be rewritten as 

 

1
1 1

1

1 1 1

1 1 1 , , 1 , 1 , , 1

exp( )

exp( )
exp(log( ) [ ] )

t t
t t

t t

t t t

t t t t g g t t t

Y mM
Y m

g
E g u u

ρ θ

ε µ ε π π

δ π

δ ρ θµ π
δ ρ θµ π ρσ θε σ

+
+ +

+

+ + +

+ + + + + +

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= − + −

= − − + − + − , (36) 

 

where 1tµ +  is the real money growth rate from t to t+1, and , 1 1 1[ ]t t t tEµε µ µ+ + += − . 

 Let’s consider a case in which , 1tµε +  can be represented as a linear combination of 

, 1g tu +  and , 1tuπ +  with time-varying weights: 

 

  , 1 , , 1 , , 1t g t g t t tw u w uµ π πε + + += + ,     (37) 

 

where the weights ,g tw  and ,twπ  are affine functions of tg  and tπ : 

 

  ,g t g gg t g tw g πω ω ω π= + + ,      (38) 

 

,t g t tw gπ π π ππω ω ω π= + + .      (39) 

 

The idea behind (37) is similar as Taylor’s rule. But (37) uses real money growth rate instead of 

target short rate, and has time-varying weights. The time-varying weights can be interpreted, for 

example, as follows. Suppose that the monetary policy authority (the Fed) can observe , 1g tu +  and 
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, 1tuπ +  before their decisions, by which they can perfectly control the real money growth rate 1tµ +  

(i.e. , 1tµε + ). When output growth rate surprisingly increases ( , 1 0g tu + > ), the Fed may 

accommodate the real money growth rate to an increase in money demand caused by the output 

growth shock. Conversely, the Fed may suppress the real money growth rate in responses to the 

shock, if they consider that this output growth shock may cause serious inflation in the future. 

These two plausible stories imply that the weight on the output growth shock ,g tw  can be either 

positive or negative. Equation (38) implies that the weight depends on tg  and tπ . We can also 

discuss the weight on the inflation shock ,twπ  in a similar way. 

With (37)-(39), (36) can be rewritten as  

 

1 1 1 1

, , 1

, , 1

exp(log( ) [ ]
[( ) ]

[( ) ] )

t t t t t

g g gg t g t g t

g t t t

M E g
g u

g u
ε π

ε π π π ππ π

δ ρ θµ π
ρσ θω θω θω π

σ θω θω θω π

+ + + +

+

+

= − − +

− − − −

− − − − .  (40) 

 

Now in contrast with the simple C-CAPM discussed in previous subsection, the market prices of 

risk corresponding to , 1g tu +  and , 1tuπ +  are time-varying, depending on tg  and tπ . Similarly to 

(31), we can obtain  

 

(1)
1 1 1

2 2
, ,

1log( ) [ ]

[( ) ] [( ) ]
2

t t t t t

g g gg t g t g t t

r E g

g gε π ε π π π ππ

ρ θµ π
δ
ρσ θω θω θω π σ θω θω θω π

+ + += + − +

− − − + − − −
− . (41)
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 Although this type of MIU functions is often used in the literature, the validity of this 

theoretical model is under criticisms. The utility function may not depend on money directly. The 

time-separable utility function may be unreasonable due to, for example, habit formation. In 

Section 4, we will introduce a more general and less restricted model, which nests all of four 

models discussed in Section 3. 

 

 

4. The VAR-ATSM 

Now let’s introduce the VAR-ATSM used for later analyses. This type of model is used by 

Ang, Piazzesi and Wei (2003) to examine the predictability of output growth rate using term 

spreads. We use the VAR-ATSM for examining the predictabilities of not only output growth, but 

also inflation and short rates. The VAR-ATSM can be interpreted as either a VAR model with 

no-arbitrage restrictions or ATSM with observable factors obeying VAR. Let’s start by 

considering the VAR of factors. 

We use four variables: output growth rate tg , inflation rate tπ , short rate )1(
tr , and a 

benchmark term spread ts  as factors. As ts , we use the term spread between ten-year Treasury 

bond YTM at end of quarter t and )1(
tr . These four macroeconomic variables are assumed to obey 

VAR(4), 

 

1 1 2 2 3 3 4 4t t t t t t− − − −= + + + + +x c Φ x Φ x Φ x Φ x ε ,   (42) 

 

where (1)( , , , ) 't t t t tg r sπ=x  and , , , ,( , , , ) 't g t t r t s tπε ε ε ε=ε . Following the VAR literature, let’s 
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interpret )1(
tr  as a proxy for the monetary policy instrument. Ang, Piazzesi and Wei (2003) use a 

simpler model than ours. They use a VAR with only one lag and three variables which do not 

include inflation rate. But the VAR literature usually uses at least four lags for quarterly data, and 

indicates that the inflation rate plays an important role. So we follow the VAR literature to 

generalize Ang, Piazzesi and Wei’s model. 

To give a structural interpretation to the VAR, we need identifying assumptions. We use 

a recursive structure with the variables ordered as (1)( , , , )t t t tg r sπ . That is,  

 

t t=ε Σu        (43) 

 

where exogenous shocks , , , ,( , , , ) ' ~ ( , )t g t t r t s tu u u u Nπ=u 0 I  i.i.d., and Σ  is lower-triangular 

with positive diagonal elements. Since it is not plausible that tg  and tπ  respond to 

contemporaneous interest rates, we order them before )1(
tr  and ts . The order between tg  and 

tπ  should not have serious effects on the empirical results, since the correlation between ,g tε  

and ,tπε  is small as shown later. But the correlation between ,r tε  and ,s tε  is too large to be 

ignored. For identifying the last two exogenous shocks ,r tu  and ,s tu , typically we need adopt 

one of two assumptions: the short rate (the monetary policy authority) does not respond to the 

term spread (bond market) contemporarily, or vice versa. Since we often observe that long rates 

move immediately after changes in monetary policy, the second assumption seems to be 

unreasonable. On the other hand, there is no clear evidence that the monetary policy authority 

responds to the bond market contemporaneously. Moreover the literature gives evidence for the 



22 

Fed’s inertial behavior, in which the Fed’s responses to new information tend to delay. Thus we 

adopt the first assumption9. As will be seen in Section 6, the impulse responses to estimated 

monetary policy shock ,r tu  and spread shock ,s tu seem to be reasonable, and support our 

recursive assumption. With this ordering, each component of tu  can be interpreted as the 

exogenous shock to each corresponding variable. We call them, output growth, inflation, 

monetary policy, and spread shocks. Now we may interpret the first three rows of the system (42) 

as IS curve, Phillips curve, and monetary policy rule. The last row can be interpreted as 

endogenous response function of bond market. 

 We can rewrite the VAR in (42) into companion form, 

 

11 2 3 4

1 2

2 3

3 4

t t t

t t

t t

t t

−

− −

− −

− −

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

x xc Φ Φ Φ Φ Σ 0 0 0 u
x x0 I 0 0 0 0 0 0 0 0
x x0 0 I 0 0 0 0 0 0 0
x x0 0 0 I 0 0 0 0 0 0

. (44) 

 

or 

 

 1t t t−= + +X c ΦX Σu% %% % ,      (45) 

 

where (1) (1)
3 3 3 3( , , , , , , , , ) 't t t t t t t t tg r s g r sπ π− − − −=X K  is the 16×1 state vector. 

The stochastic discount factor is defined as  
                                                        
9 Most studies in the VAR literature using both short and long rates choose the first assumption. For example, 

Leeper, Sims, and Zha (1996) discuss this issue in detail, and conclude that the first assumption is less harmful 

than the second one. 
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(1)
1 1

(1)
, , 1 , , 1 , , 1 , , 1

1exp ' '
2
1exp '
2

t t t t t t

t t t g t g t t t r t r t s t s t

M r

r u u u uπ πλ λ λ λ

+ +

+ + + +

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠
⎛ ⎞= − − − − − −⎜ ⎟
⎝ ⎠

λ λ λ u

λ λ , (46)
 

 

where , , , ,( , , , ) 't g t t r t s tπλ λ λ λ=λ  is the market prices of risk. The vector tλ  is an affine function 

of the current economic variables (1)( , , , ) 't t t t tg r sπ=x : 

 

t t= +λ γ δx ,       (47) 

 

for a 4×1 vector γ  and a 4×4 matrix δ . Equation (46) is a generalization of the examples of 

stochastic discount factors considered in Section 3. For example, if we restrict the last two 

elements in γ  and all elements in δ  to be equal to zero, we obtain the same stochastic discount 

factor as the simple C-CAPM introduced in the previous section. 

 By using the fundamental asset pricing equation (10), we can obtain closed forms for 

)(n
tr

10: 

 

t
nnn

t ar Xb 'ˆ )()()( += ,  n = 1, 2, …    (48) 

 
                                                        
10 We derive the closed forms for discount rates so that a restriction (1) (1)

t̂ tr r=  holds. Since we can derive 

YTM’s and ts  from the discount rates, we could also restrict the model-implied spread ˆ
ts  to be equal to ts . 

But since there may be measurement error of ts , we do not use this restriction. 



24 

where    

 

nnAa nn
n

n /,/ )()()( Bb −=−= ,     (49) 

( 1) ( ) ( ) ( ) ( )1'( ) ' '
2

n n n n nA A+ = + − +B c Σγ B ΣΣ B% % %% % ,    (50) 

')~~~('' 3
)()1( eδΣΦBB −−=+ nn ,     (51) 

(1) 0A = , '' 3
)1( eB −= ,       (52) 

⎥
⎦

⎤
⎢
⎣

⎡
=

0
γ

γ~  and 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

δ 0
δ

0 0
% ,     (53) 

je  is the j th column of the 16×16 identity matrix. 

 

From (49), (51) and (52), we can obtain 

 

∑
−

=

−=
1

0
3

)( )~~~('1'
n

j

jn

n
δΣΦeb  .     (54) 

 

This is a quite similar form to (17), and again the term premium is constant only when =δ 0 .  

 

 

5. Estimation 

5.1. Estimation Methods 

 The VAR-ATSM has 98 parameters consisting of 78 from the VAR ( c , 
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1 2 3 4[ ]≡Φ Φ Φ Φ Φ , and Σ ) and 20 in market prices of risk ( γ  and δ ). We use GMM to 

estimate all parameters simultaneously11. Moment conditions are constructed by assuming that 

three types of errors are orthogonal to instruments. The first type of the errors are the errors of the 

VAR, 

 

1 1 2 2 3 3 4 4( )t t t t t t− − − −= − + + + +ε x c Φ x Φ x Φ x Φ x ,   (55) 

 

with instruments a constant, 1t−x , 2t−x , 3t−x , and 4t−x . The second type is the error of the 

covariance matrix of the VAR, 

 

vech( ' ')t t t= −ξ ΣΣ ε ε .      (56) 

 

We assume that the sample mean of tξ  is exactly equal to zero. Note that the moment conditions 

corresponding to (55) and (56) are exactly same as OLS. The third type is the pricing errors of 

discount rates 

 

  ]'[ )20()16()12()8()4()2(
ttttttt νννννν=ν      (57) 

                                                        
11 Ang, Piazzesi and Wei (2003) use two-step estimation, in which the VAR parameters are estimated by OLS 

and then given these point estimates, γ  and δ  are estimated by minimizing the sum of squared pricing errors 

of discount rates. This estimation method has an advantage of less computational burden over our one-step 

estimation. On the other hand, since their estimation method does not use efficient weights on moment 

conditions, this is less efficient than ours. In particular, their estimates for VAR parameters can not have the 

efficiency gains from the no-arbitrage assumption at all. Since our later analyses are based on impulse response 

functions calculated from the estimates of VAR parameters, the efficiency gains are crucial. 
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where 

 

)'(

ˆ
)()()(

)()()(

t
nnn

t

n
t

n
t

n
t

ar

rr

Xb+−=

−=ν

.     
(58) 

 

We use as instruments a constant, 1t−x , and 2t−x  for this type of moment. Now we have 132 

moment conditions, which are sufficient for identifying 98 parameters. We use the sample period 

1964:1Q-2001:4Q, the same as was used for the OLS regressions in Section 2. 

 We restrict the parameter space by two types of restrictions. First, the modulus of 

eigenvalues of Φ~  are restricted to less than unity. Since the state vector tX  follows the 

VAR(1) of (45) with the autocorrelation coefficient matrix Φ~ , this restriction guarantees the 

stationarity of tX . In fact, estimation results show that this restriction does not bind. Second, the 

modulus of eigenvalues of −Φ Σδ%% %  are restricted to be less than or equal to unity. From (54), 

the factor loading ( )nb  can be considered as the average of 3 '( ) j−e Φ Σδ%% % ; j = 0, 1,…, n-1. So 

this second restriction guarantees the factor loading not to diverge with the maturity n. Note that 

this restriction is the generalization of (18). In our estimation results, only one of the restrictions 

binds12. 

 

                                                        
12 When a restriction binds, the spectral density matrix at frequency zero is not guaranteed to be the optimal 

weighting matrix in GMM. For solving this problem, we use the binding restriction to substitute out a 

parameter in advance. Then we use the obtained non-restricted GMM to estimate parameters with correct 

inference. The estimate and standard error of the substituted parameter are obtained by substituting out another 

parameter and re-estimating. 



27 

5.2. Estimation Results 

The VAR estimates have great efficiency gains from the no-arbitrage assumption, 

although point estimates are not so different from OLS results. 42 out of 68 estimates for c  and 

Φ  (not reported) are significantly different from zero at size of 5%, while OLS without the 

no-arbitrage assumption gives only 17 significant estimates. These efficiency gains contribute to 

the reliability of impulse response functions used later. 

 The estimate of Σ  is reported in Table 2. The diagonal elements of Σ  are much 

higher than the others in general, which implies that correlations among the reduced VAR errors 

are small, but the contemporaneous effect of short rate shock ,r tu  on the term spread ts  is too 

large to be ignored. The output growth shock has the largest volatility, and this is about three 

times as large as the second largest volatility, that for the inflation shock. 

 Table 3 reports the estimates for γ  and δ . Seven out of 16 estimates of δ  are 

significantly different from zero at size of 5%. This result supports the time-variation of the 

market prices of risk, depending on economic variables. Among these significant parameters, the 

(1,1) and (1,2) elements of δ , 11δ  and 12δ  are most influential on the movement of term 

structure. The reason for this is as follows. Given the factors tX , the movement of term structure 

depends only on the factor loadings ( )nb , which depend on −Φ Σδ%% %  from (54). So the influence 

of δ  on the movement of term structure depends on Σ%  (i.e. Σ ). As we can see in Table 2, the 

(1,1) element of Σ , the volatility of output growth shock, is much larger than the others. So the 

first row of δ  is most influential. Among the estimates in the first row, only 11δ  and 12δ  are 

significantly different from zero. In fact, as we will discuss in the next section, 12δ  plays a key 

role in the predictabilities, while 11δ  does not. 
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The positive sign of 12δ  implies that, when inflation rate tπ  is higher, tg ,λ  is higher 

and bond holders are willing to pay a higher premium for output growth risk hedge, which results 

in a lower term premium. Why do they pay the higher premium during the higher inflation 

regime? A possible explanation can be obtained in the framework of the Ｃ-CAPM with MIU 

function discussed in subsection 3.4. Although this C-CAPM has only output and inflation shocks, 

we can generalize this model to be consistent with the VAR-ATSM by adding monetary policy 

and spread shocks into (37) and letting the time-varying weights on shocks depend on all four 

VAR variables. From (40), 12 gπδ θω= − . So since 0θ > , 12 0δ >  implies 0gπω < . This means 

that, when the inflation tπ  is high, the weight on output growth shock ,g tw  is small and the Fed 

is less accommodating toward the output growth shock. This result makes sense if the Fed 

considers that the output growth shock during high inflation regime tends to cause serious future 

inflation. According to this consideration, when inflation is high, the Fed tends to suppress the 

real money growth rate in responses to the output growth shock. This less accommodating 

response of the Fed reduces the correlation between output growth shock , 1g tu +  and the real 

money shock , 1tµε + . This reduced correlation causes future marginal utility, 

 

 1 1 1 1( , )t t t tu C m C mρ θ−
+ + + += ,      (59) 

 

to be more sensitive to the output growth shock, that is, bonds are more valuable for consumption 

hedge. Therefore, consumers are willing to pay more premium for holding bonds during the 

higher inflation regime. We can also discuss the positive sign of 11δ  in a similar way. 
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Finally, the J-test supports our estimates with high p-value of 1.000013. For more 

evaluation of the estimation results, let’s compare the model-implied discount rates 

( ) ( ) ( )ˆ n n n
t tr a= +b X  and the sample rates ( )n

tr . Table 4 reports means and standard deviations of 

( )n
tr  and ( )ˆ n

tr , and correlations between them for n = 2, 4, 8, 16, 20. Since they have very similar 

values for means and standard deviations and the correlations are close to unity, we can conclude 

that ( )ˆ n
tr  approximates ( )n

tr  very well. 

 

 

6. Impulse Response Functions and the Predictabilities of Term Spreads 

In the previous section, we obtained estimates for our VAR-ATSM with great efficiency 

gains from the no-arbitrage assumption. Let’s use this model to examine the predictabilities of 

term spreads. 

From the VAR-ATSM, we can calculate the optimal forecasts conditional on 16 state 

variables in tX . However, our main interest is not the forecasts conditional on these large 

numbers of variables, but on a term spread alone as the regressions (4)-(6) use. For our purpose, 

in subsection 6.1, we first consider the relationship between impulse response functions of 

variables in regressions (4)-(6) and the R2’s. Since both regressands and regressors of the 

regressions can be represented as affine functions of tX , we can calculate the impulse response 

functions and the R2’s from parameters in the VAR-ATSM. The considerations for the 

relationship between the impulse response functions and the R2’s will be used for clarifying the 

                                                        
13 The p-value is calculated from the J-stat (3.2313) and the degree of freedom (23 = 122 - 98 - 1). Note that 

since the one of the restrictions on eigenvalues binds, 1 should be subtracted form the degree of freedom. 
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source of predictabilities in subsection 6.2. 

 

6.1. Impulse Response Functions and Model-Implied R2’s 

Since (1)( , , , ) 't t t t tg r sπ=x  obeys the VAR in (42), we can calculate their impulse 

response functions, and represent the system in MA(∞ ) form with identified exogenous shocks. 

For example, tg  can be represented as  

  

  , , , , , , , ,
0 0 0 0

t gg j g t j g j t j gr j r t j gs j s t j
j j j j

g g u u u uπ πψ ψ ψ ψ
∞ ∞ ∞ ∞

− − − −
= = = =

= + + + +∑ ∑ ∑ ∑ , (60) 

 

where g  is the unconditional mean of tg , and impulse response functions ,gg jψ , ,g jπψ , ,gr jψ , 

and ,gs jψ  are functions of Φ  and Σ . So the future output growth t hg +  can be represented as 

 

1 1 1 1

| , , , , , , , ,
0 0 0 0

ˆ
h h h h

t h t h t gg j g t h j g j t h j gr j r t h j gs j s t h j
j j j j

g g u u u uπ πψ ψ ψ ψ
− − − −

+ + + − + − + − + −
= = = =

= + + + +∑ ∑ ∑ ∑  (61) 

 

where  

 

 | , , , , , , , ,ˆ t h t gg j g t h j g j t h j gr j r t h j gs j s t h j
j h j h j h j h

g g u u u uπ πψ ψ ψ ψ
∞ ∞ ∞ ∞

+ + − + − + − + −
= = = =

= + + + +∑ ∑ ∑ ∑  (62) 

 

is the optimal forecast of t hg +  conditional on tX . 

 Since discount rates ( ) ( ) ( ) 'n n n
t tr a= +b X  and term spreads ( ) ( )n m

t tr r−  are affine 
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functions of 1 2 3( ', ', ', ') 't t t t t− − −=X x x x x , we can also calculate their impulse response functions, 

and represent them in MA(∞ ) form. For example, ( ) ( )n m
t tr r−  can be represented as  

 

( ) ( ) ( ) ( ) ( , ) ( , ) ( , ) ( , )
, , , , , , , ,

0 0 0 0

n m n m n m n m n m n m
t t g j g t j j t j r j r t j s j s t j

j j j j
r r r r u u u uπ πκ κ κ κ

∞ ∞ ∞ ∞

− − − −
= = = =

− = − + + + +∑ ∑ ∑ ∑ , 

         (63) 

 

where ( ) ( )n mr r−  is the unconditional mean of ( ) ( )n m
t tr r− , and impulse response functions ( , )

,
n m

g jκ , 

( , )
,
n m

jπκ , ( , )
,
n m

r jκ  and ( , )
,
n m

s jκ  are functions of Φ , Σ , and δ . 

 Since ~ ( , )t Nu 0 I  i.i.d., we can calculate the unconditional variances of VAR variables, 

the optimal forecasts of them, and term spreads. From (60), (62) and (63), 

 

  

2

2 2 2 2
, , , ,

0 0 0 0

var( )g t

gg j g j gr j gs j
j j j j

g

π

σ

ψ ψ ψ ψ
∞ ∞ ∞ ∞

= = = =

≡

= + + +∑ ∑ ∑ ∑ ,   (64)
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ˆ , |

2 2 2 2
, , , ,

ˆvar( )g h t h t

gg j g j gr j gs j
j h j h j h j h

g

π

σ

ψ ψ ψ ψ

+

∞ ∞ ∞ ∞
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32 

Similarly we can calculate the correlations among these variables. The correlation between 

future output growth t hg +  and the current term spread ( ) ( )n m
t tr r−  can be represented as 

 

( ) ( )
( ) ( )

( , )

( , ) ( , ) ( , ) ( , )
, , , , , , , ,

( , ) ( , ) ( , ) ( , )
0 0 0 0

cov( , )corr( , )
n m

n m t h t t
t h t t n m

g

n m n m n m n m
gg j h g j g j h j gr j h r j gs j h s j

n m n m n m n m
j j j jg g g g

g r rg r r

π π

σ σ

ψ κ ψ κ ψ κ ψ κ
σ σ σ σ σ σ σ σ

+
+

∞ ∞ ∞ ∞
+ + + +

= = = =

−
− =

= + + +∑ ∑ ∑ ∑ .
 

          (67) 

 

Since the forecasting error of the optimal forecast |ˆt h t h tg g+ +−  is unpredictable by any variable 

known at time t such as ( ) ( )n m
t tr r− ,  

 

  ( ) ( ) ( ) ( )
|ˆcorr( , ) corr( , )n m n m

t h t t t h t t tg r r g r r+ +− = − .   (68) 

 

By squaring the correlation, we can obtain the R2. For example, the R2 of the regression (4) can 

be represented as 

 

  2( , ) ( ) ( ) 2
, |ˆcorr( , )n m n m

g h t h t t tR g r r+= − .     (69) 

 

Since the R2’s are functions of parameters in our VAR-ATSM, we can calculate the R2’s with the 

estimates of the parameters. We call them the model-implied R2’s. Equation (69) implies that if 

( ) ( )n m
t tr r−  is a good predictor for future output growth t hg + , ( ) ( )n m

t tr r−  should have similar 
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responses to exogenous shocks as |ˆt h tg +  has. We investigate this by looking at the variance 

decomposition of |ˆt h tg +  in the next subsection. Finally, as we can see from (67)-(69), the R2’s 

depend on the sum of products of impulse response functions for regressands and regressors. 

Note that, in (67), indexes for ψ ’s start from t+h, not t, because future shocks 1, ,t t h+ +u uK  are 

unpredictable. This implies that since ψ ‘s typically decay with the horizon j, ( ) ( )n m
t tr r−  is a 

good predictor if this responds to recent shocks well, i.e. κ ’s are large for smaller j. 

 

6.2. Why do term spreads help predict? 

 Figure 3 displays the model-implied R2’s of the regressions (4)-(6) for three selected 

term spreads, and is the model-calculated analog of Figure 2. The results show that the 

model-implied R2’s replicate three properties of the sample R2’s in Figure 2 very well. First, the 

12Q-8Q spread is better than the 20Q-1Q spread except for output growth predictions at shorter 

horizons. Second, the 2Q-1Q spread is almost useless. Finally, it is difficult to predict output 

growth at 1Q ahead. Therefore it is reasonable to try to explain the sample R2’s in Figure 2 in 

terms of the factors that determine the model-implied R2’s in Figure 3. Since the model-implied 

R2’s are functions of parameters in our VAR-ATSM, we can analyze how these parameters affect 

the R2’s. 

 Figure 4 shows impulse response functions of VAR variables tg , tπ , (1)
tr , and ts  to 

one unit exogenous shocks. These are based on the estimates from the restricted GMM estimation 

of the VAR-ATSM. In general, these results are consistent with those in the VAR literature. For 

example, (4-a) and (4-b) show that the short rate, the instrument of the monetary policy authority, 

responds positively to output growth and inflation shocks. Panel (4-c) demonstrates that the 
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estimated monetary policy shock sharply reduces output growth. This shock also suppresses 

inflation rates in the long run. These reasonable results imply reasonable estimates of the 

monetary policy shock. Further support is provided by Panel (4-d). As we discussed in Section 3, 

the most questionable part of our identification strategy may come from the contamination 

between the monetary policy shock and the spread shock. Panel (4-d) indicates that the estimated 

spread shock raises output growth and suppresses inflation. Since the output growth and inflation 

should respond to a monetary policy shock in the same direction, the results in (4-d) suggest that 

the spread shock is not measuring a change in monetary policy. 

Figure 5 shows variance decompositions of the optimal forecasts, where the variances of 

the forecasts such as (65) are normalized to unity. As discussed in the previous subsection, this 

indicates which exogenous shocks should be useful for prediction. (5-a) shows that the output 

growth shock dominates output growth predictability at one quarter ahead. Then around 2-4 

quarter ahead, the monetary policy shock is the most important. The importance of the inflation 

shock increases with the forecasting horizon, and at last this shock is most influential at 12 

quarters ahead. These results are consistent with the impulse response functions in Figure 4. The 

output growth shock causes a sharp jump of output growth only in the short run. The monetary 

policy shock has negative effects on output growth with 2-4 quarter lags. But in the long run, the 

inflation shock raises the short rate persistently, which continues to suppress output growth. 

Panels (5-b) and (5-c) show that the inflation shock is most important for predicting inflation and 

short rates at most horizons. Accordingly, how the term spreads respond to the inflation shock is 

most important for specifying the sources of the predictabilities especially at longer horizons. 

Note that, as Figure 4 implies, the effects of exogenous shocks decay with the horizon. So we can 

also say that good predictors should respond to recent shocks rather than old shocks. 
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 Figure 6 shows impulse response functions of selected discount rates. There are three 

notable features. First, the inflation shock has very persistent effects on levels of discount rates. 

That is, the discount rates do not return to zero even after 40 quarters. Since good predictors 

should respond to recent shocks, this is an important reason why levels of yield curves do not 

have great predictive power. 

Second, discount rates with different maturities display different responses to recent 

shocks, while they respond to old shocks in similar ways. This implies that most movements in 

term spreads are due to recent shocks, because old shocks shift the yield curve almost in parallel. 

In fact, the upper graphs of Figure 7 display that both the 20Q-1Q and 12Q-8Q spreads depend 

much on recent shocks. This is a reason why the term spreads have predictive powers. 

Why do the discount rates respond in such ways? We find that the time-varying market 

price of risk plays important roles as follows. As discussed in Section 5, the parameters 

corresponding to the effects of the output growth and inflation rates on the market price of output 

growth risk 11δ  and 12δ  are most influential on the movement of long rates. In fact, only 12δ  

plays a supportive role in the predictability. As shown in Figure 5, the inflation shock is most 

important for the predictability, and the positive 12δ  causes the market price of output growth 

risk to respond positively to the shock well. On the other hand, the positive 11δ  makes the 

predictability even worse. As shown in (4-b), the positive inflation shock causes a decrease in the 

output growth rate, which has negative effects on the market price of output growth risk. Since 

the effect though 12δ  dominates the effect though 11δ , the market price of output growth risk 

responds positively and so term premium responses negatively to the inflation shock. 

For evaluating the influence of 12δ , we calculated the impulse response functions of 
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discount rates when 12 0δ =  and the other parameters are unchanged in Figure 8. The main 

change in the impulse response functions appears in (8-b), which is totally different from (6-b). In 

(6-b), the responses of longer rates are smaller than the short rate, and the difference between the 

long and short rates almost disappear around 20 quarters ahead. On the other hand, in (8-b), the 

responses of longer rates are stronger than the short rate, and the difference does not disappear 

even around 40 quarter ahead. Why are they so different? The expectations hypothesis says that 

the long rate is the average of expected short rates plus a constant term premium. From (4-b), the 

inflation shock continues to raise the short rate up to around 20 quarters ahead. So according to 

the hypothesis, the initial responses of long rates with maturities up to 20 quarters should be 

stronger than the response of the short rate, as displayed in (8-b). But since in fact 12δ  is positive, 

the inflation shock raises the market price of output growth risk, and so reduces the term 

premium. This is why long rates respond less strongly than the short rate in (6-b). The difference 

of responses in (6-b) and (8-b) has large effects on the predictabilities. Figure 9 shows 

model-implied R2’s corresponding to the case of 12 0δ = . Surprisingly, the R2’s almost disappear. 

So now we can conclude that the positive 12δ , which can be interpreted that consumers are 

willing to pay a higher premium for output growth risk hedge during the higher inflation regime, 

is a key explanation for the predictabilities. 

 The last notable feature of Figure 6 is the lagged responses of 1Q rate (the monetary 

policy authority) to output growth and inflation shocks. Panel (6-a) shows that the immediate 

response of 1Q rate to output growth shock is smallest among discount rates, although the 

response of 1Q rate is largest at several quarters ahead. Panel (6-b) shows that the immediate 

response of 1Q rate to inflation shock is smaller than 2Q rate, and almost coincides with 8Q rate. 
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These results are consistent with the monetary policy authority’s inertial behavior empirically 

shown in the literature such as Clarida, Gali, and Gertler (2000). The lower graphs in Figure 7 

show the impulse response functions of 20Q-1Q and 12Q-8Q spreads to output growth and 

inflation shocks. The near responses of 20Q-1Q spread are much weaker than 12Q-8Q spread 

because of the slow responses of 1Q rate. Since recent shocks are very important for predictions, 

we can conclude that this is the reason that 20Q-1Q spread is worse than 12Q-8Q spread. That is, 

the monetary authority’s inertial behavior disturbs the responses of term spreads using the short 

end of the yield curve to the output growth and inflation shocks.  

Further support for this view is provided by the correlations between future predicted 

variables and current term spreads. Since model-implied R2’s are squares of these model-implied 

correlations, we can use the correlations for analyzing why we found the R2’s shown in Figure 3 

or 2. Equation (67) has four summed terms, and each of them can be interpreted as the 

contribution of a given exogenous shock to the predictability. Figure 10 shows the contributions 

of exogenous shocks to the absolute values of correlations for 20Q-1Q and 12Q-8Q spreads. The 

inflation and output growth shocks contribute to the correlations with 12Q-8Q spread rather than 

20Q-1Q spread. These differences are the reason for the usefulness of the 12Q-8Q spread for 

prediction. This result is consistent with our discussion about the results in lower graphs in Figure 

7. 

Another notable property in Figure 10 is the hump-shapes of the contributions of 

monetary policy shocks to output growth predictability. So we can conclude that the hump-shape 

of R2’s for output growth predictions is attributable to the monetary policy shock. That is, the 

monetary policy shock affects output growth with a lag, while the term structure responds to the 

shock immediately. This difference in timing makes it harder for term spreads to help forecast 
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output growth at short horizons. 

Finally, Figure 11 shows the contributions in the case of 12 0δ = . Obviously the sharp 

drops of R2’s are attributable to the different sign of contribution of the inflation shock, which are 

caused by strong long rate responses to the shock. 

 

 

7. Conclusion 

 Why do term spreads predict output growth, inflation, and short rates? For answering 

this question, we used the VAR-ATSM model with four lags and four variables, which is less 

restricted than those in the literature of affine term structure models with observable factors. And 

we succeeded in estimating this model by using an efficient method. 

We have three main findings. First, the time-varying market price of output growth risk, 

which is sensitive to the level of inflation, plays a key role in explaining why the term spread 

helps forecast output growth, inflation, and interest rates. This finding can be interpreted as 

follows. When the inflation rate is higher, consumers are willing to pay a higher premium for 

output growth risk hedge, possibly because the marginal utility is more sensitive to the output 

growth shock due to less accommodating response of the Fed. This causes term spreads to react 

to recent inflation shocks, which also prove useful for forming longer-run forecasts. Second, we 

also found that term spreads using the short end of yield curve have less predictive power than 

many spreads between longer rates. This fact is attributable to the inertial character of monetary 

policy. Finally, it is hard to predict output growth with term spreads at short horizons, because 

monetary policy shock affects output growth with a lag while the term structure responses to the 

shock immediately. 
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Table 1: Estimated parameters of AR(1) model for the short rate factor 

rc  rφ  rσ  

0.1499 
(0.0621) 

0.9037 
(0.0362) 

0.0057 

 
The AR(1) model for the short rate (7) is estimated by OLS. Standard errors are in parentheses. The sample 
period is 1964:1Q-2001:4Q. 

 

 

 

Table 2: Estimated parameters of Σ  

  Shocks 

  
,g tu  ,tuπ  ,r tu  ,s tu  

tg   0.0076 0 0 0 

tπ   -0.0001 0.0025 0 0 
(1)

tr   0.0007 0.0004 0.0023 0 

ts   -0.0002 -0.0002 -0.0014 0.0012 

 
Σ  is estimated by GMM introduced in section 5. The sample period is 1964:1Q-2001:4Q. 
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Table 3: Estimated parameters of γ  and δ  
 

  γ  δ  
   

tg  tπ  (1)
tr  ts  

 
,g tλ  

  
-0.50 
(0.43) 

 
140* 
(22) 

 
78* 
(32) 

 
-26 
(26) 

 
-43 
(63) 

 
,tπλ  

  
-0.89 
(0.90) 

 
-99* 
(48) 

 
62 

(57) 

 
-60 
(51) 

 
-177 
(114) 

 
,r tλ  

  
0.25 

(0.25) 

 
-23* 
(10) 

 
-13 
(11) 

 
-30* 
(12) 

 
-45* 
(17) 

 
,s tλ  

  
0.67* 
(0.31) 

 

 
-46 
(29) 

 
28* 
(14) 

 
-30 
(16) 

 
-114* 
(26) 

 
mean of factor    

0.0080 
 

0.0102 
 

0.0159 
 

0.0026 
 

s.d. of factor    
0.0089 

 

 
0.0061 

 
0.0065 

 
0.0032 

 
γ  and δ  are estimated by GMM introduced in section 5. The estimates with * are significantly different from 
zero at 5%. Standard errors are in parentheses. Last two rows report means and standard deviations of tg , tπ , 

)1(
tr , and ts . The sample period is 1964:1Q-2001:4Q. 

 
 
 
 
 
 

Table 4: The comparison between model-implied rates and sample rates 
 

maturity (n)  2 4 8 12 16 20 
( )ˆ n

tr   0.0166 0.0172 0.0177 0.0181 0.0184 0.0186 mean 
( )n

tr   0.0166 0.0172 0.0177 0.0181 0.0184 0.0185 

( )ˆ n

tr   0.0064 0.0062 0.0060 0.0059 0.0059 0.0058 s.d. 
( )n

tr   0.0065 0.0063 0.0062 0.0060 0.0059 0.0058 

correlation  0.9927 0.9869 0.9885 0.9902 0.9926 0.9928 

 
Means and standard deviations of ( )ˆ n

tr  and ( )n

tr , and correlations between them are reported. The sample 
period is 1964:1Q-2001:4Q. 
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Figure 1: The t-stats of OLS regressions 
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(1-b) Inflation regression 
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(1-c) Short rate regression 
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The t-stats of OLS regressions (4)-(6) are reported. The horizontal axes correspond to forecasting horizons 
(quarters). Thick, broken, and thin lines correspond to 20Q-1Q, 2Q-1Q, and 12Q-8Q term spreads respectively. 
The sample period is 1964:1Q-2001:4Q. 
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Figure 2: The sample R2’s of OLS regressions 
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(2-b) Inflation regression 
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(2-c) Short rate regression 
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The sample R2’s of OLS regressions (4)-(6) are reported. The horizontal axes correspond to forecasting 
horizons (quarters). Thick, broken, and thin lines correspond to 20Q-1Q, 2Q-1Q, and 12Q-8Q term spreads 
respectively. The sample period is 1964:1Q-2001:4Q. 
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Figure 3: The model-implied R2’s 
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(3-b) Inflation regression 
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(3-c) Short rate regression 
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The model-implied R2’s of regressions (4)-(6) are reported. The horizontal axes correspond to forecasting 
horizons (quarters). Thick, broken, and thin lines correspond to 20Q-1Q, 2Q-1Q, and 12Q-8Q term spreads 
respectively. The sample period is 1964:1Q-2001:4Q. 
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Figure 4: The impulse response functions of VAR variables 
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(4-b) Inflation shock 
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(4-c) Monetary Policy shock 
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(4-d) Spread shock 
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The impulse responses of VAR variables to one-unit exogenous shocks are reported. Broken, thick, thin, and 
dotted lines correspond to responses of output growth, inflation, short rates, and term spread respectively. The 
horizontal axes correspond to horizons (quarters). The sample period is 1964:1Q-2001:4Q.
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Figure 5: The variance decompositions of the optimal forecasts for VAR variables 
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The variance decompositions of the optimal forecasts of VAR variables, in which the variances of the forecasts 
are normalized to unity, are reported. Broken, thick, thin, and dotted lines correspond to output growth, 
inflation, monetary policy, and spread shocks respectively. The horizontal axes correspond to forecasting 
horizons (quarters). The sample period is 1964:1Q-2001:4Q. 
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Figure 6: The impulse response functions of discount rates 
 

 
(6-a) Output growth shock 
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The impulse responses of discount rates to one-unit exogenous shocks are reported. Thin, dotted, broken, and 
thick lines correspond to 1Q, 2Q, 8Q, and 20Q rates respectively. The horizontal axes correspond to horizons 
(quarters). The sample period is 1964:1Q-2001:4Q. 
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Figure 7: The impulse response functions of term spreads 
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(7-b) The impulse response functions of  

the 12Q-8Q spread 
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The impulse responses of 20Q-1Q and 12Q-8Q spreads to one-unit exogenous shocks are shown in upper 
graphs. The scales are normalized so that variances of spreads equal unity. Lower graphs show magnified 
impulse responses to output growth and inflation shocks. Broken, thick, thin, and dotted lines correspond to 
output growth, inflation, monetary policy, and spread shocks respectively. The horizontal axes correspond to 
horizons (quarters). The sample period is 1964:1Q-2001:4Q. 

 



52 

Figure 8: The impulse response functions of discount rates in the case of 12 0δ =  
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The impulse responses of discount rates to one-unit exogenous shocks are reported. Thin, dotted, broken, and 
thick lines correspond to 1Q, 2Q, 8Q, and 20Q rates respectively. The horizontal axes correspond to horizons 
(quarters). The sample period is 1964:1Q-2001:4Q. 
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Figure 9: The model-implied R2’s in the case of 12 0δ =  
 

(9-a) Output growth regression 
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(9-b) Inflation regression 
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(9-c) Short rate regression 
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The model-implied R2’s of regressions (4)-(6) are reported. The horizontal axes correspond to forecasting 
horizons (quarters). Thick, broken, and thin lines correspond to 20Q-1Q, 2Q-1Q, and 12Q-8Q term spreads 
respectively. The sample period is 1964:1Q-2001:4Q. 

20Q-1Q

2Q-1Q

12Q-8Q

 



54 

Figure 10: Decompositions of correlations between future VAR variables and term spreads 
 

 
(10-a) Output growth and 20Q-1Q spread 
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(10-b) Inflation and 20Q-1Q spread 
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(10-c) Short rate and 20Q-1Q spread 
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(10-d) Output growth and 12Q-8Q spread 
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(10-e) Inflation and 12Q-8Q spread 
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(10-f) Short rate and 12Q-8Q spread 
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The contributions of shocks to the correlations between VAR variables and term spreads are shown. Since the 
correlations of term spreads with inflation and short rate are negative, the graphs are flipped for (10-b), (10-c), 
(10-e), and (10-f). Broken, thick, thin, and dotted lines correspond to output growth, inflation, monetary policy, 
and spread shocks respectively. The horizontal axes correspond to forecasting horizons (quarters). The sample 
period is 1964:1Q-2001:4Q. 
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Figure 11: Decompositions of correlations between future VAR variables and term spreads 
in the case of 12 0δ =  

 
(11-a) Output growth and 20Q-1Q spread 
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(11-b) Inflation and 20Q-1Q spread 
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(11-c) Short rate and 20Q-1Q spread 
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(11-d) Output growth and 12Q-8Q spread 
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(11-e) Inflation and 12Q-8Q spread 
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(11-f) Short rate and 12Q-8Q spread 
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The contributions of shocks to the correlations between VAR variables and term spreads are shown. Since the 
correlations of term spreads with inflation and short rate are negative, the graphs are flipped for (11-b), (11-c), 
(11-e), and (11-f). Broken, thick, thin, and dotted lines correspond to output growth, inflation, monetary policy, 
and spread shocks respectively. The horizontal axes correspond to forecasting horizons (quarters). The sample 
period is 1964:1Q-2001:4Q.



 

 


