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Abstract

We analyze an entry game with multiple periods, in each period of which
privately informed agents who have not joined yet decide whether to
subscribe to a network, and subscribers derive benefits in future periods
depending on the network size. We study the case that the agents are
sufficiently patient and show that there exists a unique symmetric equi-
librium if the number of existing subscribers is common knowledge in
each period, thereby resolving the coordination problem which is preva-
lent in markets with network externalities. Asymmetric equilibria may
exist, but we show that they, if exist, converge to the unique symmetric
equilibrium as the number of agents increases without bound.

∗ TO FILL IN.
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1. Introduction

Adoption/network externalities arise when complementarities exist across agents in
the consumption of certain goods or services. Examples include commodities designed
for joint consumption or sharing (telephony and data networks), those with indirect scale
economies for complementary goods (hardware-software and durable-good servicing), and
adoption of innovations and standards where compatibility is valuable.

Due to complementarity, there typically exist multiple, Pareto ranked equilibria in
such markets. The worst is a null equilibrium in which no one adopts because no one
is ever anticipated to adopt, while at the other end is a “maximum” equilibrium that
refers to a “maximal set of agents” who would indeed adopt when that is what everyone
expects to occur. There may be other equilibria intermediate between these two. With
no outside force present, the particular equilibrium to be realized is indeterminate, a
well-known problem often referred to as the coordination failure. One strand of research
has studied inducement schemes as a device to overcome the likelihood of coordination
failure in the static, simultaneous move entry game. These schemes provide insurance
against low adoption or entry rates. The insurance then changes the expected payoff
from entering and induces a sufficient rate of adoption by those who have a low cost of
entry to induce others with higher entry costs to also enter. Dybvig and Spatt (1983)
and Park (2003) devise insurance schemes that will induce certain target equilibria as the
unique (symmetric) equilibrium at the minimal expected cost of insurance subsidy. Bagnoli
and Lipman (1989) study a refund mechanism to induce private contribution to a public
project where a sufficient number of people must contribute before the project produces
any benefit.

When agents’ types are randomly determined and privately known, but there is com-
mon knowledge that the types are correlated, and common knowledge of the nature of
the correlation then the theory of global games developed by Carlsson and van Damme
(1993) applies. Morris and Shin (2003) show that even when there is only a small amount
of heterogeneity in types in such games there will often be a unique equilibrium. The
common knowledge of the way in which beliefs are correlated allows individuals through
a process of backward induction to condition their beliefs as to how others will act on the
knowledge of their own individual types.

In this paper we analyze the effect of a dynamic adoption process on resolving the
coordination problem in the market entry game when agent types are privately and inde-
pendently drawn from a commonly known distribution. The independent nature of types
renders the logic of global games inapplicable. A dynamic adoption process, however, in-
troduces a strategic consideration that is absent from the static game. Individuals who
chose to enter early may influence the entry decisions of others who have not yet entered.
This creates the possibility that early entrants may launch a domino chain reaction of
widespread adoption. However, agents considering early entry will be so motivated only if
they expect such a domino chain. Such a domino chain itself relies on a nested sequence
of optimistic beliefs of future adopters. At first sight, therefore, it appears that the basic
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intuition of coordination failure due to multiplicity of self-confirming expectation would
continue to prevail in dynamic adoption process. Rather surprisingly, we establish that
this intuition is overturned if privately informed agents decide when as well as whether to
adopt. Specifically, we show that there exists a unique symmetric, perfect Bayesian equi-
librium and that in this equilibrium entry occurs with positive probability. In a nutshell,
the anticipation of remaining agent’s action when almost everyone adopted generates a
backward induction process that pins down the action in earlier stages of the adoption
process, all the way back to the beginning.

In our model, there are a finite number of agents whose types are drawn from a
common distribution. The benefit to each agent who enters is increasing in the number
of agents who enter, and is decreasing in his type which reflects how unenthusiastic he
is about the network (so an agent of a higher type needs a larger network to benefit by
joining). There is a sequence of periods at which each agent who has not yet entered may
decide whether to adopt, and an adopter in any period enjoys benefit in every future period
that depends on the evolving network size. At the beginning of each period, the number
of agents who have adopted already is publicly known. We show that an equilibrium is
characterized by a cutoff type/level for each possible history of adoption in which the order
of entry goes from lowest (most enthusiastic) type to highest type adopters so that the less
enthusiastic is an agent the larger must be the number of agents who have already entered
before an agent of this type enters.

Our main result is that there exists a unique set of cutoff levels, one for each possible
history, that constitutes an equilibrium when followed by every agent. We prove this by
an induction argument. First, if all but one agent adopted by some period, then the cutoff
level (of the last agent) in the next period is clearly the type who would be indifferent
between being a member of the network that includes everyone and being a non-member:
this marginal type is clearly unique. Then, under the induction hypothesis that the cutoff
levels are unique when less than a certain number, say s, of agents have not yet adopted
by some period, we uniquely determine the cutoff level for the contingency that exactly s
agents remain in some period. To see the basic intuition, note that the less enthusiastic
is the cutoff type in this case, the worse is the distribution of remaining agents in future
periods (in the sense of first-order stochastic dominance), hence so are the prospects of
future adoption by remaining agents. This means that the attractiveness of adoption
in the current period is monotonic in the cutoff type of the current period, hence the
equilibrium cutoff type who must be indifferent between adopting and not when exactly s
agents remain is determined uniquely. This induction argument uniquely determines the
equilibrium cutoff levels all the way back to when all agents remain, i.e., in the first period.

The argument in the preceding paragraph is made as if the equilibrium cutoff level in
any period depends only on how many agents have adopted already, but not on how that
number evolved from period to period. As will be shown, this is indeed the case if the
agents are infinitely patient (i.e., there is no discounting), hence the minimum amount of
common information needed in dynamic adoption to resolve the coordination problem, in
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this setup at least, is the number of existing adopters in each period, i.e., history is not
needed. When the agents are sufficiently patient, the same basic logic establishes that there
exists a unique symmetric equilibrium in cutoff strategies, but the cutoff levels depend on
the details of history beyond the number of total adopters by then. This dependence on
the details, however, disappears as the agent become increasingly patient without bound
because then the equilibrium converges to the one when they are fully patient.1

Since the agents are ex ante identical we find it natural that they follow symmetric
strategies in equilibrium. Hence, we primarily focus on symmetric equilibrium in this
paper. Asymmetric equilibria, however, may exist in some environments. Nevertheless,
such asymmetric equilibria converge to the unique symmetric equilibrium as the number of
agents increases without bound, because “the behavior of all other agents” that each agent
best-respond to differs only by the behavior of one agent from the perspectives of any two
agents, hence becomes arbitrarily close to each other as the number of agents increases. In
this sense, asymmetric equilibrium does not undermine our main message that dynamic
adoption process resolves the coordination failure.

The coordination failure has often been discussed in static settings. An early paper
in a dynamic setting is by Rohlfs (1974) who considers introductory pricing in his classic
paper on telecommunication markets. The earlier mentioned paper by Bagnoli and Lipman
(1989) studies a refund mechanism in a dynamic setting. Andreoni (1998) examines large
“leadership gifts” in charitable fund-raising. These papers analyze environments with
(almost) complete information, i.e., either the agents’ preferences or their distribution
are/is known. Dixit (2003) also obtains unique equilibrium in a dynamic game similar to
ours, but his model is one of complete information. Our paper differs from these studies
in that we examine an incomplete information environment.

The remainder of the paper has the following structure. The next section describes
the model. Section 3 contains the main analysis that characterizes the unique symmet-
ric equilibrium. Section 4 discusses asymmetric equilibria and shows that they, if exist,
converge to the unique symmetric equilibrium as the population grows.

2. Model

1 Organizers of charitable fund drives typically announce at various stages of the drive how much
money has been pledged, and possibly the number of individuals who have made donations. According
to the logic of our analysis, the fact that these announcement will be made should have an effect on how
much will be given in the early stages of a campaign because those who go early have reason to believe
that their gifts may encourage others to give at later stages. This is because those who choose not to give
early, upon seeing how much has been given, will have a greater degree of confidence that the benefits that
they will derive from the completion of the campaign will more than cover the cost to them of their own
donation. Of course, fundraisers often select a group of ‘leaders’ whom they solicit first, prior to announcing
a general campaign. This phenomenon may be more closely related to costly transmission of information
regarding the ‘quality’ of the charitable endeavor and informational cascades, a logic quite separate from
that underlying our own model. Vesterlund (2003) and Andreoni (2004) discuss how leadership grants
may transmit information and how the possibility of this transmittal may affect both the amount raised in
the ‘leadership’ or ‘quiet’ phase of a fundraising drive and the total amount raised. Marx and Matthews
(2000) argue that dynamic contribution tends to enhance efficiency when the cumulative total contribution
is publicly known, in a setting of voluntary contribution to a public project.
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There are N +1 ex ante identical agents, indexed by i ∈ I = {1, · · · , N +1}, who are
privately informed of their own types t ≥ 0 which are independent draws from a common
distribution function F : <+ → [0, 1]. Let f : <+ → <+ denote the corresponding density
function. We assume that F is continuous and F (0) = 0 (i.e., t is atomless) and f is
bounded. For expositional convenience only, we assume F (t) < 1 and f(t) > 0 for all
t ≥ 0.

There are infinite periods indexed by k = 1, · · ·. At the beginning of each period k the
number nk−1 of agents who adopted/subscribed up until period k−1 is common knowledge;
Based on the public history hk = (n1, · · · , nk−1) the agents who have not adopted already
simultaneously choose either to adopt the network product or not.2

An agent who adopts in period k′ derives a stage utility from the network product in
every period k ≥ k′, determined by his type t and the network size in period k measured by
the number νk ≡ nk−1 of other adopters (i.e., not counting himself): A t-type agent derives
a utility of ut(νk) ∈ < in period k.3 The stage utility to a non-adopter is normalized to
u∅ = 0. Each agent’s objective is to maximize the expected δ-discounted average of utility
stream with a discount factor δ ≤ 1: That is, to maximize the expected value of

(1− δ)
∞
∑

k=1

δk−1uk (1)

if δ < 1, where uk is the utility in period k, which is 0 if the agent has not adopted yet
and is ut(νk) if the agent of type t has adopted; and to maximize the limit of the expected
value of (1) as δ → 1 if the discount factor is δ = 1.

An agent’s type, t, measures how reluctant he is to join the network, so a higher
type means a more conservative agent who needs a larger network to benefit by joining.
Hence, we assume that ut(ν) is strictly increasing in ν = 0, · · · , N , strictly decreasing and
continuous in t, and that

u0(0) = 0 and ∃ t̄ s.t. ut̄(N) = 0. (2)

The first equality says that the “best” type is indifferent between being a sole member of
the network and being a non-member.4 Clearly, t̄ > 0 defined above is unique because
ut(N) strictly decreases in t and u0(N) > u0(0) = 0. We denote this game by Γ.

An agent i’s period-k strategy when he has not adopted yet, given a history hk =
(n1, · · · , nk−1), is an integrable function that maps types to adoption probabilities, i.e.,

ai(·|hk) : <+ → [0, 1]

2 It is implicit, therefore, that the choice to adopt is not reversible whereas the choice not to is.
3 After development of this paper, we became aware of Xue (2003). Xue studies a dynamic version

of the stag hunt game. His model has special features that are not present in our own model, namely, the
benefit from network does not realize unless everybody adopts and the type enters in the utility function
linearly. His result and analysis for no discounting case are similar to ours, however there are some steps
(e.g., Lemmas 3 and 4) that we found necessary to prove our result but are not used in his proof. This
may reflect nontrivial differences between the two models.

4 All the main results of this paper hold when u0(0) is negative and sufficiently small and u0(1) > 0.
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where ai(t|hk) is the probability that the agent i adopts (the network product) when his
type is t, if he has not adopted up to the previous period. A function ai(·|hk) is a cutoff
strategy at (a cutoff level) t̂ ≥ 0, if ai(t|hk) = 1 for all t < t̂ and ai(t|hk) = 0 for all t > t̂.
An agent i’s strategy is a collection {ai(·|hk)} for all possible hk, which we denote by ai

as shorthand. A strategy ai is a cutoff strategy if ai(·|hk) is a cutoff strategy for every
possible hk.

A strategy profile (ai)i∈I is a (perfect Bayesian) equilibrium of Γ if each agent i’s
period-k strategy after each possible hk is a best response to (aj)j 6=i conditional on hk.

3. Unique Symmetric Equilibrium

In this section we focus our attention to symmetric equilibrium and show that there
exists a unique symmetric equilibrium when δ is sufficiently large. First, we construct
it for δ = 1 and show that it is a cutoff equilibrium and the cutoff level in each period
depends only on the total number of agents who already adopted. Then, we show (details
in the Appendix) that there exists a threshold δ∗ < 1 such that the same argument can be
extended to all δ > δ∗ to establish that there is a unique symmetric equilibrium and it is
a cutoff equilibrium, however, the cutoff level in each period depends on the full adoption
history up to then.

From now until Theorem 1, we analyze the case that δ = 1. Since there are finite
agents the adoption process stops within finite periods, so that any utility stream {uk} that
an agent might expect has a constant utility level after a finite number of periods. Hence,
the limit of (1) as δ → 1 for any utility stream is this constant utility level. Consequently,
the agent’s objective amounts to maximizing the “terminal” stage utility level that will
prevail after the adoption process has stopped.

The observation that agents only care about the final network size of any adoption
process simplifies the analysis for the case δ = 1 because the details of the adoption process
leading to the final network can be ignored. However, it allows an inessential indifference of
an agent between adopting now and adopting later so long as the final network will be the
same. For example, if all but one agent already adopted the remaining agent is indifferent
between adopting now and adopting in any later period. To circumvent this problem in
this paper we adopt a stopping rule that if no one adopted the network in some period
k, then no further adoption is allowed and only those agents who adopted by then benefit
from the network in future periods.5 Below we characterize the symmetric equilibrium for
the case δ = 1. Note that ai = aj in symmetric equilibrium.

Lemma 1: If δ = 1, in any symmetric equilibrium every agent adopts with a positive
probability in period 1.

5 The effect of this stopping rule is to shorten the completion time of the network to be formed by
speeding up the adoption process. This is entirely immaterial when δ = 1. For δ < 1, there may be other
equilibria without the stopping rule but the final network to emerge in these equilibria converge as δ → 1
to the one in the unique equilibrium that conforms to this stopping rule. Again, this is because in the
former equilibria the agents may postpone their (basically the same) decisions. Hence, the main results of
this paper are robust to this stopping rule.
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Proof: Consider a symmetric strategy profile (ai)i∈I such that
∫

ai(·|h1)dF = 0. Let
t1 be the unique type such that ut1(1) = 0. Consider an ε-type agent in period 1 where
ε < t1 so that uε(1) > 0. If this agent deviates by adopting in period 1, then in the next
period other agents would adopt with a positive probability, say p > 0, because adopting is
beneficial when their types are lower than t1. The expected utility from such a deviation,
therefore, exceeds puε(1) + (1− p)uε(0) which tends to pu0(1) > 0 as ε → 0, so that such
deviation is beneficial for sufficiently small ε. Hence, the considered strategy profile cannot
be an equilibrium.

By Lemma 1 in every symmetric equilibrium there is a positive probability that
the game reaches a period with any number of existing adopters, i.e., with a history
hk = (n1, · · · , nk−1) for any nk−1 = 0, · · · , N . As will become clear in the analysis, what
matters in the strategic decisions in the remaining part of the game is the total number
nk−1 of adopters by then (equivalently, the number of agents who have not adopted),
not how it evolved. So, we define the state (variable) s for a period k with a history
hk = (n1, · · · , nk−1) as s = N + 1 − nk−1, i.e., the number of non-adopters after hk, who
we refer to as the “remaining” agents. With a slight abuse of notation, we write ai(·|s) if
a strategy ai has the property that ai(·|hk) = ai(·|h′k′) whenever both hk and h′k′ have the
same state s. We now proceed with an induction argument that characterizes symmetric
equilibrium (ai)i∈I when δ = 1.

STEP 1: As shown above, the game reaches any possible state s = 0, · · · , N + 1, with a
strictly positive probability. The game ends if it reaches s = 0. Suppose that the game
reached a state s = 1, i.e., only one agent remains in some period k. It is trivial that this
last agent will adopt precisely when his type does not exceed t̄ defined in (2). That is, the
equilibrium strategy of the remaining agent when he is the only remaining agent (i.e., in
state s = 1) is a cutoff strategy at τ1 ≡ t̄ :

ai(t|1) =
{

1 if t < τ1

0 if t > τ1
(3)

STEP 2: Suppose that the game reached a state s = 2 in period k with a history hk.
Consider one remaining agent, say i, of type ti ≤ τ1. If the other remaining agent, say
j, were to adopt in this period, agent i would get a utility of uti(N) by adopting in this
period; if agent i waited in this period he would adopt in the next period (because ti ≤ τ1),
hence again get a utility of uti(N) eventually. Therefore, agent i’s optimal decision in this
period depends on what would happen in the contingency that agent j were to not adopt
in this period. In this contingency, agent i would get a utility uφ = 0 by not adopting
in this period because no further adoption would ensue due to the postulated stopping
rule; if agent i adopted in this period, he would get uti(N) eventually in case agent j
joins next period and uti(N − 1) otherwise. Since agent j’s response in the next period is
independent of ti, the expected utility of agent i from adopting decreases in ti, whereas
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that from waiting is 0. Consequently, agent i (and j by symmetry) should employ a cutoff
strategy at a level, say t̂. Note that agent i strictly prefers waiting in this period if his
type is sufficiently close to τ1, hence t̂ < τ1.

Let g(·|hk) denote the posterior density function updated from f by hk on the type of
the remaining agent. Then, the condition that characterizes t̂ is the following: agent i of
t̂-type is indifferent between adopting and waiting in this period given that agent j follows
a cutoff strategy at t̂ in this period and a cutoff strategy at τ1 in state s = 1, i.e.,

ut̂(N)
∫ τ1

t̂
g(t|hk)dt + ut̂(N − 1)

∫ ∞

τ1

g(t|hk)dt = 0. (4)

The LHS of (4) is the expected utility of a t̂-type agent when he adopts in the current
period conditional on the other remaining agent waits, while the RHS is that when he waits
in the current period. Note that the LHS of (4) is strictly decreasing in t̂, clearly from a
positive value when t̂ = 0 to a negative value when t̂ = τ1. Hence, there exists a unique
value of t̂ that solves (4), which is the equilibrium cutoff level in the period following the
history hk, denoted by τ2(hk). Summarizing,

Lemma 2: If δ = 1, the equilibrium strategy in state s = 2 with a history hk is a
cutoff strategy at τ2(hk), the unique level of t̂ that solves (4).

STEP 3: Fix a state s̃ and any possible history h̃ whose state is s̃. (A history h′k′ is an
extension of a history hk if k′ ≥ k and the first k components of h′k′ coincide with hk.)
Consider the following property in an equilibrium:

[A] The strategy after any extension h of h̃ whose state is s < s̃, is a cutoff strategy at a
level that only depends on the state, denoted by τs(h̃), and decreases in s (conditional
of h̃).

Note that this property holds along an equilibrium when s̃ = 3 by Lemma 2, and trivially
if s̃ < 3. (For s̃ = 3, note that, given the equilibrium strategy after h̃, the posterior
g(·|h′) is uniquely determined for h′ that extends h̃ and has a state 2.) We now make an
induction hypothesis that the property [A] holds for all s̃ ≤ r where r = 3, · · · , N , along
an equilibrium. Below we establish that under this hypothesis the property [A] holds for
s̃ = r +1 as well. In short, we try to show that any extension of h̃ entails a cutoff strategy
that only depends on the state, with the cutoff level strictly decreasing in the state.

Lemma 3: Suppose δ = 1. Pick an arbitrary remaining agent i after the game reached
a state s̃ in period k with a history h̃, such that [A] holds. Consider the contingency that
m > 0 of the other s̃ − 1 remaining agents were to adopt in period k according to the
equilibrium strategy ai(·|h̃). Then, the final network size that would realize when the
agent i adopts in this period is the same as that that would realize when he adopts in the
next period.

Proof: Consider the case that the agent i adopted in period k, so that the state in
period k + 1 is s1 = s̃ − m − 1 < s̃, hence all remaining agents of types lower than the
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equilibrium cutoff level τs1 would adopt in period k + 1 by [A]. (We use τs as shorthand
for τs(h̃) for s < s̃ in this proof.) Let s2 be the state of period k +2 that arises as a result.
If s2 = s1 then no further adoption comes forth by [A], in which case s2 is called the
terminal state; otherwise, i.e., if s2 < s1 then all remaining agents of types lower than the
equilibrium cutoff level τs2 would adopt in period k + 2, resulting in a state s3 of period
k + 3. If s3 = s2 then s3 is the terminal state; otherwise, the state keeps being updated
analogously for subsequent periods. The updating should stop because there are finite
states. Denoting the terminal state by sx, we have a sequence of states s1 > s2 > · · · > sx

and associated cutoff levels τs1 < τs2 < · · · < τsx for periods k + 1, · · · , k + x, respectively.
Note sx−1 = sx by construction.

Consider the alternative case that the agent i did not adopt in period k, so that the
state in period k + 1 is s′1 = r − m = s1 + 1, hence all remaining agents of types lower
than the equilibrium cutoff level τs′1 would adopt in period k + 1. Let s′2 be the state of
period k + 2 that arises as a result. If s′2 = s′1 then no further adoption comes forth by
[A], hence s′2 is the terminal state; otherwise, i.e., if s′2 < s′1 then all remaining agents of
types lower than the equilibrium cutoff level τs′2 would adopt in period k + 2, resulting in
a state s′3 of period k + 3. If s′3 = s′2 then s′3 is the terminal state; otherwise, the state
keeps being updated analogously. Denoting the terminal state by s′y, we have a sequence
of states s′1 > s′2 > · · · > s′y and associated cutoff levels τs′1 < τs′2 < · · · < τs′y for periods
k + 1, · · · , k + y, respectively. Again, s′y−1 = s′y by construction.

The claim of the Lemma is proved if sx = s′y. In fact, it is easy to see that

[B] sx = s′y ensues if sj = s′` for some 1 ≤ j ≤ x and 1 ≤ ` ≤ y, because then sj+1 = s′`+1
and the subsequent updating of the state is the same between the two sequences.

Note s′1 > s′2 because the agent i adopts in period k + 1. Since s1 = s′1 − 1 by
construction as noted earlier, s1 ≥ s′2. If s1 = s′2 then the claim is proved by [B].

Suppose otherwise, i.e., s1 > s′2. By construction, s′2 = s′1−1−#(0, τs′1 ] = s1−#(0, τs′1 ]
where #(0, τ ] is the number of agents other than i who remain after period k +1 and have
types in (0, τ ]. Similarly, s2 = s1 − #(0, τs1 ] by construction. Since s′1 > s1 implies
τs′1 < τs1 , it follows that #(0, τs′1 ] ≤ #(0, τs1 ], hence s′2 ≥ s2.

The claim follows by [B] if s′2 = s2, hence suppose s′2 > s2 in the sequel. By construc-
tion, s′3 = s′1 − 1−#(0, τs′2 ] = s1 −#(0, τs′2 ]. Since s1 > s′2 it follows that s2 ≥ s′3. Since
the claim follows if s2 = s′3, suppose s2 > s′3 in the sequel.

Proceeding analogously, we deduce that sx = s′y unless s′j > sj > s′j+1 > sj+1 for all
j = 1, 2, · · ·. However, these inequalities contradict sx−1 = sx, an equality that must hold
by construction, hence we conclude that sx = s′y, i.e., the final network sizes are the same.

Lemma 4: Suppose δ = 1 and that along the equilibrium path a state s̃ is reached
in period k with a history h̃ such that [A] holds. The equilibrium strategy in period k is a
cutoff strategy whose cutoff level is uniquely determined by h̃ and is lower than the cutoff
level for the state s̃− 1.
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Proof: Let g(·|h̃) and G(·|h̃) denote the posterior density and cdf functions, respec-
tively, updated by h̃ on the type of each remaining agent. In light of [A], let τs(h̃) denote
the equilibrium cutoff level after the history h̃s = (h̃, s) for s < s̃.

Consider an arbitrary remaining agent i in period k. Suppose his type is ti ≤ τs̃−1(h̃).
If he waited while m > 0 other agents adopted in this period, by adopting in the next period
he can induce the same final network size as when he adopted in this period, according
to Lemma 3—In fact, he will indeed adopt in the next period because ti ≤ τs̃−1(h̃) <
τs̃−m(h̃). Hence, adopting and waiting is equivalent in this contingency and, therefore, the
optimal decision of remaining agent in this period is determined by what would happen
in the contingency that no agent other than i would adopt in this period. In this latter
contingency, if the agent i adopted, then his expected utility is

s̃
∑

j=1

uti(N − s̃ + j)Prob(j|h̃)

where Prob(j|h̃) is the probability conditional on h̃ that no other agent adopts in period k
and j more other agents adopt eventually. If the agent i did not adopt, the adoption process
would end and he would get uφ = 0. Again, since other remaining agents’ behavior does
not depend on ti, the sum above strictly decreases in ti. Hence, the equilibrium strategy
in this period is a cutoff strategy at, say t̂. The equilibrium level of t̂ is characterized by

s̃
∑

j=1

ut̂(N − s̃ + j)Prob(j|h̃) = 0 (5)

where Prob(j|h̃) is calculated using the fact that the posterior density on the type of
remaining agent after this period is g(·|h̃)|t≥t̂, the truncated density of g(·|h̃) above t̂. As t̂
increases, g(·|h̃)|t≥t̂ deteriorates in the sense of first-order stochastic dominance, hence so
does the prospect of future adopters. Together with the fact that utility decreases in type,
we deduce that the LHS of (5) is strictly decreasing in t̂, hence there is a unique value of
t̂ that solves (5), denoted by τs̃(h̃). Clearly, τs̃(h̃) > 0 because the LHS of (5) is positive
when t̂ = 0. Consider a τs̃−1(h̃)-type agent: his expected utility would be 0 if he already
adopted and s̃ − 2 agents remain whose type is distributed according to g(·|h̃) truncated
at τs̃−1(h̃). So, his expected utility would be negative if s̃ − 1 agents remain with the
same type distribution. This means that the LHS of (5) is negative at t̂ = τs̃−1(h̃) and,
therefore, 0 < τs̃(h̃) < τs̃−1(h̃).

Recall the induction hypothesis that the property [A] holds for all s̃ ≤ r where r =
3, · · · , N , along an equilibrium. We now establish that the property [A] holds for s̃ = r +1
as well. Suppose a state s̃ = r + 1 is reached in some period k after a history h̃. By
induction hypothesis and Lemma 4, the equilibrium strategy after h̃r = (h̃, r) is a cutoff
strategy at a level τr(h̃r) and τr(h̃r) < τr−1(h̃r) < · · · < τ1(h̃r) = t̄.
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We now show that the history (h̃r, s) and any other extension h̃s of h̃ with state s
entail the same cutoff strategy for s < r. By induction hypothesis we only need to show
this for h̃s that is not an extension of h̃r, which we assume below. Let g(·|h̃), g(·|h̃s) and
g(·|h̃r, s) be the posterior densities after h̃, h̃s and (h̃r, s), respectively. If s = 1, the cutoff
levels are clearly τs(h̃s) = τs(h̃r) = t̄. Now suppose τs(h̃s) = τs(h̃r) for all s = 1, · · · , z− 1,
and consider s = z(< r). For the cutoff level τz = τz(h̃r), the expected utility of a τz-agent
when he finds himself to be the sole adopter in the current period, say kz, is 0:

z
∑

j=0

uτz (N − z + j)Prob(j|h̃r, z − 1) = 0 (6)

where Prob(j|h̃r, z − 1) is the probability that j more agents adopt eventually when z − 1
agents who remain after period kz follow cutoff levels τs(h̃r), s = 1, · · · , z − 1, in future
periods. The posterior density of the z − 1 remaining agents is g(·|h̃r)|t>τz because cutoff
strategies would have been followed in period k + 1 and afterwards.

Next, consider τ ′z = τz(h̃z). Similarly as above, the expected utility of a τ ′z-agent
when he finds himself to be the sole adopter in the current period, say k′z, is 0:

z
∑

j=0

uτ ′z (N − z + j)Prob(j|h̃, z − 1) = 0 (7)

where Prob(j|h̃, z − 1) is the probability that j more agents adopt eventually when z − 1
agents who remain after period k′z follow cutoff levels τs(h̃z), s = 1, · · · , z − 1, in future
periods. Note τs(h̃z) = τs(h̃r) for s = 1, · · · , z − 1 by supposition and that the posterior
density of the z − 1 remaining agents in this case is g(·|h̃s)|t>τ ′z because, again, cutoff
strategies would have been followed in period k + 1 and afterwards. Assume τz ≥ τ ′z so
that g(·|h̃s)|t>τ ′z = c · g(·|h̃s)|t>τz for some constant c > 0 for all t > τz and, therefore,
Prob(j|h̃, z−1) = cz−1 ·Prob(j|h̃r, z−1) for all t > τz. From (6), therefore, it follows that
(7) holds precisely when τ ′z = τz. A symmetric argument works when τz < τ ′z. Hence, we
have proved that τs(h̃s) = τs(h̃r) for all s < r, as desired. This completes the induction
argument that [A] holds for s̃ = r + 1 as well.

Finally, applying Lemma 4 to histories with state s̃ = r+1, we prove that the equilib-
rium strategy in state r + 1 and onwards is a cutoff strategy that is uniquely determined
by the posterior on the remaining agents’ type shaped by the history up to then. Applying
the same logic inductively all the way back to the the state N + 1, i.e., to the null history,
we find a unique symmetric equilibrium as follows.

Theorem 1: If δ = 1, there exists a unique symmetric equilibrium. In this equilib-
rium, the remaining agent’s strategy after any history is a cutoff strategy at a level that
depends only on the state s (i.e., the number of remaining agents), denoted by τs, and
0 < τN+1 < τN < · · · < τ1 = t̄.
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Part of the analysis up to now relies on the fact δ = 1, hence is not readily applicable to
the case δ < 1. Firstly, if δ < 1, an agent would prefer adopting early than later if adopting
later delays the adoption process although it leads to the same network eventually. In
evaluating the benefit of adopting now as opposed to waiting, therefore, the contingency
that some other agents adopt comes into the equation even if the final network will be
the same regardless of whether the agent in question adopts now or in the next period.
Furthermore, the differences along the two paths leading to the same final network also
need to be considered. Secondly, due to such additional considerations the future cutoff
levels depends not only on how many adopted by then but also on when they (including the
agent in question) adopted. This implies that the final network can be different depending
on when the agent in question adopts, failing the Lemma 3. Nonetheless, the effects of these
complications become negligible as δ tends to 1 because then the discrepancy in argument
from the case δ = 0 either happens with negligible probability or has a negligible effect
because it applies only to a finite number of periods before the terminal network is reached.
Therefore, the basic intuition of Theorem 1 extends to δ close to 1 and we establish that
there is a unique symmetric equilibrium and that it is a cutoff equilibrium and converges to
the one described in Theorem 1 as δ → 1. This result is formally stated in the next theorem
and is proved in the Appendix. Note that it is no longer the case that the equilibrium
cutoff level depends only on the number of total adopters by then, but it depends on the
full adoption history up to then.

Theorem 2: Suppose i) u̇t(ν), the derivative of ut(ν) with respect to t, exists for all
t ∈ (0, t̄) and ν = 0, · · · , N , and ii) there is θ > 0 such that |u̇t(ν)| > θ for all t ∈ (0, t̄)
and ν = 0, · · · , N . Then, there is δ∗ < 1 such that if δ > δ∗ there is a unique symmetric
equilibrium. Furthermore, this equilibrium is a cutoff equilibrium and converges to the
equilibrium described in Theorem 1 as δ → 1.

4. Asymmetric Equilibrium

In the previous section we assumed symmetry so that all remaining agents in each
period behave the same way, i.e., employ the same cutoff strategy. It is possible, however,
that different agents behave differently and this can be reflected in different equilibrium
cutoff levels across agents, as the following two-agent example illustrates. Let ut(ν) = ν−t
be the utility functions for ν = 0, 1, and consider a cdf function F such that F (0.2) =
1/6, F (0.4) = 3/8 and F (1) = 1/2. Clearly, t̄ = 1 is the cutoff level when only one agent
remains. Let t1 and t2 be the cutoff levels of agents 1 and 2, respectively, when δ = 1 and
neither of them adopted, i.e., in state s = 2. The condition for the agent 1 of t1 type to
be indifferent between adopting and not, is F (1)ut1(1) + (1 − F (1))ut1(0) = F (t2)ut1(1),
or equivalently, ( 1

2 − F (t2))(1 − t1) = (1 − 1
2 )t1. An analogous condition for agent 2 of

t2 type is ( 1
2 − F (t1))(1 − t2) = (1 − 1

2 )t2. One can easily verify from F (0.2) = 1/6 and
F (0.4) = 3/8 that these two conditions are satisfied when t1 = 0.2 and t2 = 0.4 and when
t1 = 0.4 and t2 = 0.2, hence asymmetric cutoff equilibria exist.
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As this example illustrates, the asymmetric cutoff levels result because the behavior of
all “other” agents differs across different agents’ viewpoints. This difference in “all other
agents’ behavior” is significant when there are a small number of agents. As the number of
agents increases, however, this difference disappears because the sets of “all other agents”
from two distinct agents’ viewpoints differ only by one agent, hence becomes insignificant
for very large N . This is so even if the adoption process went a long way and only a small
number of agents remain, because “all other remaining agents” can be any subset of the
initial set of agents with the right cardinality.6 As a result, asymmetric equilibria becomes
arbitrarily symmetric as N increases without bound. We formalize this observation with a
technical assumption that there are sufficiently unenthusiastic types who would not adopt
however large the network is.

Theorem 3: Suppose i) t̄N → t̄∞ < ∞ as N → ∞, where t̄N is the unique t such
that ut(N) = 0, ii) u̇t(ν) exists and |u̇t(ν)| > θ for some θ > 0, for all t ∈ (0, t̄∞) and
all ν = 0, · · ·. If δ is larger than δ∗ described in Theorem2, asymmetric equilibria may
exist, however they converge, if exist, to the unique symmetric equilibrium as the number
of agents tends to infinity.

Proof: First consider the case δ = 1. The arguments that prove Lemmas 3 and 4
do not rely on the equilibrium being symmetric. Therefore, it is straightforward (hence,
details omitted) to extend these arguments to show that all equilibria are cutoff equilibria
and that the claim of Lemma 3 holds for asymmetric equilibrium, too.

Consider any sequence of equilibria, (aiN )N+1
i=1 , N = 1, 2, · · ·, where the superscript

N denotes the number of agents minus 1. (If asymmetric equilibrium does not exist for
some N , take the symmetric equilibrium.) Represent each equilibrium by the cutoff levels
τ iN (hk) for each N , each i = 1, · · · , N + 1, and each possible history hk. For each hk, let
τN (hk) = mini{τ iN (hk)} and τ̄N (hk) = maxi{τ iN (hk)}. It suffices to show that for each
hk, the two sequences τN (hk) and τ̄N (hk) converge to the same point as N →∞.

To reach a contradiction, suppose to the contrary that they do not for some hk.
By taking subsequences if necessary, this amounts to supposing that τN (hk) → a and
τ̄N (hk) → b and a < b, owing to supposition iii). Let ` be the last element of hk, i.e., `
agents adopted at the end of hk. Clearly, t̄` ≤ a because a t̄`-type agent would certainly
join if ` other agents already adopted. Consider the agent with the cutoff level τ̄N (hk).
Recall that if this agent is the sole adopter in period k and he is of τ̄N (hk)-type, his
expected payoff is 0. In this contingency (i.e., when he is the sole adopter in period
k), if the probability of additional adoption converges to 0 as N tends to infinity, then
τ̄N (hk) would have to converge to t̄`. Since this would contradict a < b, the probability
of additional adoption converges to a positive number. Then, the expected payoff of this
agent, say agent i, in this contingency is strictly decreasing in his type, and the rate at
which it does so is bounded away from 0 due to supposition ii). Consider the expected

6 We implicitly assume anonymity in the sense that each agent cannot tell other agents apart except
by their past adoption decisions.
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payoff of any other agent, say j, in the contingency that agent j is the sole adopter in period
k. For sufficiently large N , the effect of agent i in agent j’s expected payoff is negligible,
and so is that of agent j in the corresponding expected payoff of agent i. Therefore, the
expected payoff schedule of agent j (as a function of t) is arbitrarily close to that of agent
i. Since the slope of the latter is bounded away from 0 as discussed above, it follows that
τ jN (hk), the type for which agent j’s expected payoff is 0, converges to τ̄N (hk). Since
agent j was chosen arbitrarily and τ̄N (hk) → b as N →∞, we end up with a contradiction
to τN (hk) → a < b.

[TO FILL IN: proof for the case δ ∈ (δ∗, 1).]

Appendix: Proof of Theorem 2

It is straightforward (hence, omitted) to extend the logic of Lemma 1 to δ sufficiently
close to 1 and verify that there is a threshold δ < 1 such that in any symmetric equilibrium
of Γ with δ > δ, every agent adopts with a positive probability in period 1. Throughout
this Appendix we consider δ ∈ (δ, 1). We now characterize symmetric equilibrium (ai)i∈I
by an induction argument.

STEP A1: As argued above, the game reaches any possible state s = 0, · · · , N + 1, with
a strictly positive probability. It is trivial that if the game reached a state s = 1, i.e., only
one agent remains in some period k, then this last agent will adopt precisely when his type
does not exceed t̄ defined in (2). That is, the equilibrium strategy of the remaining agent
when he is the only remaining agent (i.e., in state s = 1) is a cutoff strategy at τ1 ≡ t̄.

STEP A2: Suppose that the game reached a state s = 2 in period k with a history hk.
Consider one remaining agent, say i, of type ti ≤ τ1. If the other remaining agent, say j,
were to adopt in this period (which happens with probability p1, say), agent i would get a
stage utility of uti(N) forever by adopting in this period; if agent i waited in this period
he would adopt in the next period (because ti ≤ τ1), hence again get a stage utility of
uti(N) forever but from next period onwards.

Next consider the contingency that agent j were to not adopt in this period, which
happens with probability p0 (= 1 − p1). In this contingency, agent i would get a utility
uφ = 0 by not adopting in this period; if agent i adopted in this period, he would get
uti(N − 1) this period, and from next period on he would get uti(N) in case agent j joins
next period (which happens with probability q, say, conditional on j does not join this
period) and uti(N − 1) otherwise. Note that the agent j’s response in the next period is
independent of ti.

Combining the two contingencies, the benefit of adopting this period as opposed to
waiting is

p1(1− δ)uti(N) + p0[uti(N − 1) + qδ(uti(N)− uti(N − 1))]
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which is strictly decreasing in ti regardless of p1 and q, with a negative value at ti = τ1.
Therefore, agent i (and j by symmetry) should employ a cutoff strategy at a level, say
t̂ < τ1.

Let g(·) denote the posterior density function updated from f by hk on the type of

the remaining agent. Since p1 =
∫ t̂
0 g(t)dt and q =

∫ τ1

t̂ g(t)dt/
∫∞

t̂ g(t)dt, the cutoff level t̂
satisfies

(1− δ)ut̂(N)
∫ t̂

0
g(t)dt

+
(

1−
∫ t̂

0
g(t)dt

)

[

ut̂(N − 1) +
δ
∫ τ1

t̂ g(t)dt
∫∞

t̂ g(t)dt
(ut̂(N)− ut̂(N − 1))

]

= 0

⇐⇒ (1−δ)ut̂(N)
∫ t̂

0
g(t)dt

∫ ∞

t̂
g(t)dt +

(

1−
∫ t̂

0
g(t)dt

)

×
[

ut̂(N − 1)
(

∫ ∞

t̂
g(t)dt− δ

∫ τ1

t̂
g(t)dt

)

+ δut̂(N)
∫ τ1

t̂
g(t)dt

]

= 0.

(8)

Note that as δ → 1, i) the first term of the LHS of (8) becomes negligible, and ii) the second
term is strictly decreasing in t̂ (with the derivative bounded away from 0), clearly from a
positive value when t̂ = 0 to a negative value when t̂ = τ1. Hence, for δ sufficiently close
to 1 there exists a unique value of t̂ that solves (8), which is the equilibrium cutoff level in
the period following the history hk, or equivalently, in the period with s = 2 and density g,
denoted by τ2(g|δ). Furthermore, since the first derivative of the LHS w.r.t. t̂ when δ = 1
is bounded away from 0 by a number independent of g (because this derivative is bounded
above by maxt u̇t(N − 1) ≤ −θ < 0), for any ε > 0 there exists δε < 1 (independent of g)
such that if δ > δε then τ2(g|δ) uniquely exists and |τ2(g|δ)− τ2(g|1)| < ε. Summarizing,

Lemma A2: For any ε > 0, there is δε(2) < 1 such that if δ > δε(2) then the
equilibrium strategy in state s = 2 with any density g is a cutoff strategy at τ2(g|δ), the
unique level of t̂ that solves (8), and |τ2(g|δ)− τ2(g|1)| < ε.

STEP A3: Fix a state s̃ and consider the following property in a symmetric equilibrium:

[A’] For any ε > 0, there is δε(s̃) < 1 such that if δ > δε(s̃) then the equilibrium strategy
in any state s < s̃ with any density g is a unique cutoff strategy at τs(g|δ) and
|τs(g|δ)− τs(g|1)| < ε.

Note that this property holds along an equilibrium when s̃ = 3 by Lemma A2, and trivially
if s̃ < 3. We now make an induction hypothesis that the property [A’] holds for all s̃ ≤ r
where r = 3, · · · , N , along an equilibrium. Then, we establish that under this hypothesis
the property [A’] holds for s̃ = r + 1 as well. For this it suffices to show Lemma A3 below.

Lemma A3: Suppose [A’] holds for some s̃. Then, for any ε > 0, there is δ′ε(s̃) < 1
such that if δ > δ′ε(s̃) then the equilibrium strategy in state s̃ with any density g is a
unique cutoff strategy at τs̃(g|δ) and |τs̃(g|δ)− τs̃(g|1)| < ε.
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Proof: Fix ε > 0. Consider an equilibrium of the subgame, Γ(s̃, g), starting with a
state s̃ and a density g. Let g′ denote the equilibrium density after the first period of this
subgame. Note from Section 3 that when δ = 1 the equilibrium cutoff levels after the first
period of this subgame only depends on the state, which we denote by τs(g′|1) for s < s̃.
Also note that τs(g′|1) < τr(g′|1) if r < s < s̃ and therefore, by supposition of Lemma A3,
the cutoff level decreases in the state for δ sufficiently close to 1.

Consider a remaining agent i of type ti < τs̃−1(g′|δ) in the first period of this subgame.
First, consider the contingency that at least one other agent adopts in this period. If δ = 1
and the agent i did not adopt in this period, by adopting in the next period he can ensure
the same final network size as the one that would have resulted if he adopted in the first
period, by the same argument as the proof of Lemma 3. For δ sufficiently close to 1 so that
τs(g′′|δ) is arbitrarily close to τs(g′′|1) = τs(g′|1)7 for all s < s̃ and g′′ that may arise in
future periods, the following holds: If the agent i did not adopt in this period, by adopting
in the next period he can ensure with arbitrarily large probability the same final network
size as the one that would have resulted if he adopted in the first period; and in this case
agent i’s utility differential when adopt now and when adopt in the next period (which he
will surely do because ti < τs̃−1(g′|δ)) vanishes as δ → 1. The utility differential for the
case that the final network is not the same also vanishes as δ → 1 because the probability
vanishes that such a case gets realized.

Next consider the contingency that no other agent adopts in the first period. In
this contingency, agent i would get a utility uφ = 0 by not adopting in this period. If
agent i adopted in this period, other agents would adopt in future periods according to the
equilibrium cutoff levels. As δ → 1, agent i’s utility in this case is arbitrarily approximated
by the expected utility level of uti(ν) calculated using the probabilities that ν is the number
of other agents who eventually adopt. (Note these probabilities is independent of ti.) This
expected utility level is strictly decreasing in ti to a negative value at τi = τs̃−1(g′|δ), and
the rate at which it decreases is bounded away from 0 independently of g′ (because the
rate each uti(ν) decreases is bounded away from 0). Therefore, there is δ′′ < 1 such that
the expected benefit of agent i of adopting in this period as opposed to waiting is strictly
decreasing in ti if δ > δ′′ in any equilibrium of the subgame Γ(s̃, g) for any g, hence the
equilibrium strategy in this period is a cutoff strategy at a level τs̃(g|δ) < τs̃−1(g′|δ).

Finally, let Eut̂(g|δ) denote the expected benefit of agent i of type t̂ < τs̃−1(g′|δ) of
adopting in this period as opposed to waiting when g is the density and t̂ is the cutoff level
in this period and τs(g′′|δ) is the cutoff level of relevant future periods when the state is
s < s̃ and g′′ is the density. (τs(g′′|δ) is well-defined by [A’].) As shown in Section 3 (in the
proof of Lemma 4), Eut̂(g|1) is strictly decreasing in t̂ due to 2 factors: i) ut̂(ν) strictly
decreases in t̂ for each ν, and ii) the distribution of the final number of future adopters in
case only agent i adopts in this period, deteriorates as t̂ increases in the sense of first-order
stochastic dominance. Since the factor ii) only reinforces the decrease, the rate at which

7 This equality follows because from next period on the cutoff level depends only on the state when
δ = 1, as shown in Section 3.
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Eut̂(g|1) decreases is bounded above by −θ, hence bounded away from 0 independently of
g. Since Eut̂(g|δ) is arbitrarily closely approximated by Eut̂(g|1) as δ → 1, there is δ′′′ < 1
such that if δ < δ′′′ then the solution value of t̂ to Eut̂(g|δ) = 0 is arbitrarily close to the
solution value of t̂ to Eut̂(g|1) = 0. Setting δε(s̃) = min{δ′′, δ′′′} proves Lemma A3.

Recall that Lemma A3 establishes the induction argument that if the property [A’]
holds for all s̃ ≤ r where r = 3, · · · , N , then [A’] holds for s̃ = r + 1 as well. Applying this
result repeatedly, we conclude that [A’] holds for s̃ = N +1, i.e., at the beginning of period
1, thereby establishing that there is a threshold δ∗ < 1 such that if δ > δ∗ then there is
a unique symmetric equilibrium and this equilibrium converges to the unique equilibrium
characterized in Theorem 1 as δ → 1.
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