
Testing Intertemporal Rational Expectations

Model with State Uncertainty: An Application

to the Permanent Income Hypothesis

Chao-Hsi Huang

Department of Economics

National Tsing Hua University

Yue-Lieh Huang

Department of Quantitative Finance

National Tsing Hua University

Chung-Ming Kuan

Institute of Economics

Academia Sinica

This version: March 20, 2004

Author for correspondence: Chao-Hsi Huang, Department of Economics, National Tsing Hua University,

Taipei 115, Taiwan; ckuan@econ.sinica.edu.tw.

† We would like to thank C.-F. Chung and C.-S. Mao for useful comments on early version of this

paper. C.-M. Kuan gratefully acknowledges the research support from the National Science Council of

the Republic of China (NSC89-2415-H-001-071). All remaining errors are ours.



Abstract

In this paper we take a different modeling approach based on the component driven

(CD) model developed in Kuan, Huang, and Tsay (2003) to test the permanent income

hypothesis (PIH), an example of intertemporal choice models. A key feature of this

approach is that it explicitly allows for state uncertainty. By assuming that the labor

income follows a CD process, we show that the agent’s perception on the likelihoods of

income innovations being permanent and transitory plays a crucial role in determining

the optimal forecasts on the change of consumption. In particular, the effect of a current

innovation is a weighted average of two distinct effects (resulted from permanent and

transitory innovations), with the weights being the perceived likelihoods of respective

states. Also, past innovations may affect consumption when there is a revision on the

perceived likelihoods of previous states. If there is no state uncertainty, our result reduces

to that of an existing model. Our empirical study shows that, while the CD model can

characterize the U.S. consumption data well, the estimation results do not agree with

the predictions of the PIH.

JEL classification: C22, C51, D91, E21

Keywords: component driven model, intertemporal choice model, permanent income

hypothesis, permanent innovation, state uncertainty, transitory innovation



1 Introduction

One important development in the macroeconomic and finance literature in the past

fifty years has been the gaining popularity in the use of intertemporal choice as the

basic framework for theoretical development. The models based on the intertemporal

choice framework cover numerous macro-finance topics. The prominent examples in-

clude theories on consumption (e.g., Modigliani and Brumberg, 1954; Friedman, 1957),

investment (e.g., Lucas, 1967; Abel and Blanchard, 1983), labor supply and demand (e.g.,

Lucas and Rapping, 1969; Heckman, 1974; Sargent, 1978), government fiscal policy (e.g.,

Barro, 1979; Frenkel and Razin, 1996), current account determination (e.g., Bruno, 1976;

Sachs, 1981; Razin, 1995), business cycles (e.g., Barro, 1981; Lucas, 1981), asset pric-

ing (e.g., Lucas, 1978; Breeden, 1979), and dividend policy (e.g., Lintner, 1956), to name

a few. One common feature of these models is that the reaction of the choice (or “endoge-

nous”) variable to permanent shocks is rather different from that to transitory ones. For

instance, according to the permanent income-consumption model of Friedman (1957), a

permanent innovation in income would exert a much larger effect on consumption than

does a transitory one. The equilibrium business cycles model of Barro (1981), on the

other hand, suggests that a transitory innovation in government purchase has a much

larger effect on the country’s real interest rate.

Many researchers have empirically explored the above mentioned feature of the in-

tertemporal choice models. Such studies include, among others, Hall and Mishkin (1982)

and Falk and Lee (1998) on the permanent income consumption model, Sahasakul (1986)

on the model of optimal tax policy, Glick and Rogoff (1992) on the intertemporal cur-

rent account model, Barro (1981) and Ahmed (1986) on the equilibrium business cycles

model, Cochrane (1994) and Lee (1995) on the asset pricing model, and Lee (1996) on the

dividend smoothing model. In these studies, it is typical to assume that a rational agent

is able to know with perfect certainty the state (that is, permanence vs. transitoriness)

as well as the magnitude of the innovations. This assumption, though quite convenient

for deriving the optimal forecast of the variable of interest, may not be so realistic as one

would like.

In the real world, it seems more reasonable to postulate that an agent does not have

full knowledge about the innovation state. When state uncertainty is present, the agent

must draw inferences on the state based on available information and may subsequently
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revise these inferences when new information suggests so. For example, a rational agent

may revise downward the perception on the permanence of a past pay raise once he/she

encounters an unexpected pay cut. Yet this perception may be revised upward when the

agent does not experience any pay cut for an extended period of time. The inferences on

the state as well as the subsequent revisions ought to have profound impacts on the agent’s

expectations and resulting behaviors. Failing to account for such state uncertainty may

result in misleading inference regarding the validity of the intertemporal model examined.

To address the problem of state uncertainty, we propose using the component driven

model (the CD model), recently developed in Kuan, Huang, and Tsay (2003, henceforth

KHT), and demonstrate how such a modeling strategy can be applied to testing intertem-

poral models. Specifically, the proposed CD model contains a unit-root component and

a stationary component; whether a particular component will be activated depends on

an unobservable state variable whose law of motion is governed by certain probability

laws. Contrary to existing models, the effects of innovations in the CD model are not

fixed at all times but may be permanent or transitory in different time periods. Since

this modeling approach allows the innovation states to alternate from time to time, it

is able to highlight the uncertainty the agent faces when judging the current and past

states of the variable’s innovations.

In this paper, we specialize on testing the permanent income hypothesis (PIH), a

typical example of intertemporal models. By assuming that the labor income follows a

CD process, we derive the optimal forecasts on the change of consumption. It is shown

that the agent’s perception on the likelihoods of income innovations being permanent and

transitory plays a crucial role in determining these forecasts. On one hand, the effect

of a current innovation is a weighted average of two distinct effects (one resulted from

a permanent innovation and the other due to a transitory innovation), with the weights

being the perceived likelihoods of respective states. On the other hand, past innovations

may also affect the change of consumption when there is a revision on the perceived

likelihoods of previous states. In particular, if there is no state uncertainty, there would

be no need to draw inferences on states, so that the optimal forecast on the change of

consumption reduces to that of an existing model, such as Deaton (1987) or Flavin (1981).

Our result shows that, without the unrealistic assumption of known innovation state, the

CD model provides a more general framework under which a rational agent can utilize

available information optimally in his/her expectations formation. This approach is thus
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more in line with the spirit of the rational expectations hypothesis.

The rest of the paper is organized as the following. In section 2, we introduce the CD

model under the permanent income framework. In section 3, we show how the expecta-

tions about future incomes are formed when the labor income follows a CD process. It

can be seen that the uncertainty about the state of income innovation as well as the revi-

sion on the perception of the past innovation states may affect the agent’s expectations

about future incomes and hence consumption. In section 4, we discuss model estimation

and hypothesis testing on the implications of the PIH. The empirical analysis of U.S.

consumption is presented in section 5. It is found that, while the proposed model can

characterize the U.S. consumption data well, the estimation results do not agree with

the predictions of the PIH. Section 6 concludes the paper.

2 The Component-Driven Model of Income

There are numerous intertemporal choice models. To show how state uncertainty may

affect the forecast of intertemporal models, we focus on the PIH in this paper. In the

empirical literature of the PIH (e.g., Campbell, 1987), the representative agent’s real

consumption ct is usually assumed to follow the permanent income yp
t , which is defined

as the annuity value of the sum of real net wealth wt and the expected present value of

current and future labor income yt+i (i = 0, 1, 2, . . .):

ct = yp
t = r

[
wt +

r

1 + r

∞∑
i=0

(1 + r)−i IEtyt+i

]
, (1)

where r is the real interest rate and IEt = IE
( · | Ωt

)
denotes the mathematical expec-

tation conditional on Ωt, the individual’s information set available at time t. Given the

permanent income-consumption relation stipulated in equation (1), it is straightforward

to show that the change in consumption (∆ct = ct − ct−1) is the annuity value of the

revisions in the expected labor income:1

∆ct =
r

1 + r

∞∑
i=0

(1 + r)−i
(
IEt − IEt−1

)
yt+i. (2)

Note that equations (1) and (2) are both related to the expected future labor income.
1Here, the law of motion of the real net wealth is postulated as wt+1 = (1 + r)wt + yt − ct.
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To test the PIH, it is typical to set up a model for labor income and derive its optimal

forecast accordingly. The commonly used models for labor income include the trend-

stationary model in which the innovations all have transitory effects (e.g., Flavin, 1981),

the difference-stationary model in which the innovations all have permanent effects (e.g.,

West, 1988), and the model that admits both permanent and transitory innovations

in each period (e.g., Hall and Mishkin, 1982; Quah, 1990; Falk and Lee, 1998; Elwood,

1998). In these models, the (transitory vis à vis permanent) state of income innovations is

assumed to be known a priori. This assumption facilitates the derivation of the optimal

forecast but may not be very realistic. For example, Beaudry and Koop (1993) and

Bradley and Jansen (1997) find that the effects of innovations are likely to change from

time to time. There is, however, no room for the agent to revise his/her forecast in

existing models even when the perceived state differs from that originally postulated

in the model. As such, the income forecasts generated from these models may contain

systematic errors and need not be optimal. This, in turn, may lead to false inference on

individual’s consumption behavior.

Alternatively, we can employ a more flexible model in which the innovation state is

unknown to the agent. To this end, we propose using a variant of KHT’s CD model for

the labor income process so that state uncertainty is explicitly allowed. Let st denote an

unobservable, random state variable taking the value of one or zero and {υt} be a white

noise with mean zero and variance σ2
υ. Our CD model of the labor income yt is the sum

of two components: yt = y∗1,t + y∗0,t, such that

Γ(B)∆y∗1,t = α0 + stυt,

Ψ(B)y∗0,t = (1 − st)υt,
(3)

where Γ(B) = 1− γ1B− · · · − γnB
n and Ψ(B) = 1−ψ1B− · · · −ψmB

m are polynomials

of the back-shift operator B, both with all the roots outside the unit circle. It is readily

seen that the first component y∗1,t essentially follows an ARIMA(n, 1, 0) model, while

the second compoent y∗0,t is a stationary AR(m) model. Comparing with the CD model

originally considered by KHT, the model (3) admits more general short-run dynamics in

both components. This model will be referred to as a CD(n, 1;m) model, signifying that

it is a mixture of an ARIMA(n, 1, 0) model and an AR(m) model.

In model (3), only one component is activated at each time, depending on the real-

ization of the state variable. When st = 1, the first component y∗1,t is excited by υt, while

4



y∗0,t evolves without this innovation. As long as st = 1, yt would behave like a unit-root

process with drift, and υt has a permanent effect on future labor income. When st = 0,

y∗0,t is excited by υt, but y∗1,t grows along a linear trend without the new innovation. In

this case, yt would behave like a trend-stationary process when st = 0, and υt exerts only

a transitory effect on future income. This model thus permits both difference-stationary

and trend-stationary dynamics in different periods, and its innovations may have perma-

nent or transitory effects. In particular, when st = 1 (st = 0) with probability one for all

t, (3) reduces to the conventional difference-stationary (trend-stationary) model.

It is straightforward to show that the CD(n, 1;m) model has an ARIMA representa-

tion with random MA coefficients:

Γ(B)Ψ(B)∆yt = α0Ψ(1) +
κ+1∑
i=1

ξi,st−i
υt−i + υt, (4)

where κ = max{m,n},

ξ1,st−1
=


 −ψ1, if st−1 = 1,

−1 − γ1, otherwise,
ξi,st−i

=


 −ψi, if st−i = 1,

γi−1 − γi, otherwise,

for i = 2, . . . , κ, and the last coefficient is

ξκ+1,st−κ−1
=


 0, if st−κ−1 = 1,

γκ, otherwise;

ψi = 0 for i > m and ϕi = 0 for i > n. From (4) we can see that the realization of the past

states st−i determines the effects of past income innovations υt−i on the current value of

∆yt. Yet the effects of past innovations are uncertain to the agent because st−i are not

observable. It can also be seen that the current state st plays no role in determining ∆yt

because stυt and (1 − st)υt are both present in (3), so that their joint effect does not

depend on st. Intuitively, whether an innovation has a permanent or transitory effect

should not be known to the agent at the time it occurs; the effect of an innovation can

only be revealed in subsequent periods. Indeed, (4) suggests that the information of the

state of υt−i is embedded in future labor incomes: yt−i+1, yt−i+2, . . ..

To illustrate the proposed model, we consider a special case of (3) that consists of

an ARIMA(1, 1, 0) component with α0 = 0 and a stationary AR(1) component. Table 1

gives the moving-average representation of this CD(1,1;1) model for t = 1, . . . , 7 and the

realization {s1, . . . , s6} = {0, 0, 0, 1, 1, 0}. We set yt = 0 for t = 0,−1, . . .. Here, yt is a
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Table 1: A moving-average representation of the CD(1,1;1) model.

yt = y∗1,t + y∗0,t

y1 = 0 + υ1

y2 = 0 + ψ1υ1 + υ2

y3 = 0 + ψ2
1υ1 + ψ1υ2 + υ3

y4 = υ4 + ψ3
1υ1 + ψ2

1υ2 + ψ1υ3

y5 =
(
1 + γ1

)
υ4 + υ5 + ψ4

1υ1 + ψ3
1υ2 + ψ2

1υ3

y6 =
(
1 +

∑2
i=1 γ

i
1

)
υ4 +

(
1 + γ1

)
υ5 + ψ5

1υ1 + ψ4
1υ2 + ψ3

1υ3 + υ6

y7 =
(
1 +

∑3
i=1 γ

i
1

)
υ4 +

(
1 +

∑2
i=1 γ

i
1

)
υ5 + s7υ7 + ψ6

1υ1 + ψ5
1υ2 + ψ4

1υ3 + ψ1υ6 + (1 − s7)υ7

...
...

y∞ = υ4/(1 − γ1) + υ5/(1 − γ1) + · · · + 0

stationary AR(1) process at the beginning and starts evolving like an ARIMA process

when st = 1. Given 0 < γ1 < 1 and 0 < ψ1 < 1, the impacts of υ1, υ2, υ3 and υ6 on

future incomes decay exponentially over time, but the impacts of υ4 and υ5 accumulate

and converge to υ4/(1− γ1) and υ5/(1− γ1), respectively. Note that the realization of s7
does not affect y7. When st are not observable, the representation in Table 1 is just one

possible sample path, and the true effect of an innovation on future incomes is unknown.

Nonetheless, the information available at time t (yt, yt−1, . . . , yt−i+1) would be helpful in

identifying the state of the past innovation υt−i.

3 Permanent Income-Consumption Relation

Given the CD income process in (3) and the permanent income-consumption relation

in (1), we are now ready to derive the resulting consumption formula. A key feature

of the CD process is that its sample path depends on the innovation states, but these

states are not observable. Given state uncertainty, a rational agent must draw inferences

on the state of current innovation and may revise his/her previous inferences when new

information becomes available. It is thus reasonable to expect that the inferences on the

state and subsequent revisions should affect the permanent income-consumption relation.

It is shown in Appendix I that, using the Wiener-Kolmogorov prediction formula
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discussed in Hansen and Sargent (1980, 1981), the consumption change ∆ct in (2) is

∆ct = Γ∗ IP
(
st = 1 | Ωt

)
υt +

r

1 + r
Ψ∗ IP

(
st = 0 | Ωt

)
υt

+ Γ∗
∞∑
i=1

γ∗i ζ1,t−iυt−i +
r

1 + r
Ψ∗

∞∑
i=1

ψ∗
i ζ0,t−iυt−i,

(5)

where Ωt = {∆yt,∆yt−1, . . . , υt, υt−1, . . .} is the information available up to time t, Γ∗

and Ψ∗ are the polynomials Γ−1(B) and Ψ−1(B) evaluated at the discount factor 1/(1+r),

γ∗i and ψ∗
i are the polynomial coefficients described in Appendix I. In this expression,

IP
(
st = j | Ωt

)
is the best forecast of st = j conditional on the information available at

time t and also known as the filtering probability of st = j;

ζj,t−i = IP
(
st−i = j | Ωt

) − IP
(
st−i = j | Ωt−1

)
is the revision of the perceived likelihoods (expectations) of the income innovation υt−i

being permanent (j = 1) or transitory (j = 0) when the information set is expanded from

Ωt−1 to Ωt. Note that ζ1,t−i = −ζ0,t−i, so that an upward revision on the perceived like-

lihood of state 1 must accompany with a downward revision on the perceived likelihood

of state 0, and vice versa.

Equation (5) shows how a rational agent may employ available information to form

the best forecast on the change in the permanent income (and hence the change in

consumption). The first two terms on the right-hand side (RHS) of (5) characterizes the

change of consumption due to the current innovation υt. As discussed in Deaton (1992),

if labor income is modeled as Γ(B)∆yt = α0+υt so that all innovations are (known to be)

permanent, such a change would be Γ∗υt. When labor income is Ψ(B)yt = υt with only

transitory innovations, such a change becomes
[
r/(1 + r)

]
Ψ∗υt. In the present context,

the agent faces uncertainty about the current innovation state and must draw the optimal

inference IP(st = j | Ωt) for j = 0, 1. The change of consumption due to υt is thus a

weighted average of the two distinct effects mentioned above, with the respective weights

IP(st = j | Ωt). As these probabilities change over time, the effect of υt is also time

varying.2 Moreover, the change of consumption may also be influenced by past income
2We may also interpret IP(st = 1 | Ωt)υt as a “permanent component” and IP(st = 0 | Ωt)υt a “tran-

sitory component” of υt. Given that the consumption multipliers for a permanent innovation in income

and a transitory one are, respectively, Γ∗ and [r/(1 + r)]Ψ∗, the first two terms on the RHS of equa-

tion (5) are the sum of the consumption changes resulted from these two components. Comparing with

Quah (1990) and Falk and Lee (1998), the decomposition here hinges upon the conditional probabilities

IP(st = j | Ωt) and hence may change over time.
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innovations. As shown in the last two terms on the RHS of equation (5), the effects of

past innovations depend on whether there is revision on the perceived likelihoods of their

respective states. This is, again, a consequence of state uncertainty.

From the discussion above we can see that equation (5) is in sharp contrast with

the results of Flavin (1981), Deaton (1987), Diebold and Rudebusch (1991) and others.

First, the reaction of consumption to current innovation is a weighted average of two

distinct effects and may vary with time. Second, consumption reacts not only to current

innovation but also to past innovations (when there is revision on the perceived likelihoods

of past states). In the existing models, the state of all innovations is known to the agent

and never changes. The perceived likelihood of the known state is thus always one, while

that of the other state is always zero. Because of this construction, a current innovations

can have only a specific, time-invariant effect on the change of consumption, but past

innovations can not have any effect since the perceived likelihoods can never be revised.

In other words, the agent’s consumption behavior would not be optimal if there is state

uncertainty.

To illustrate, we again consider the simple case that the labor income follows a

CD(1,1;1) process. It is readily verified that (5) now becomes

∆ct = Γ∗
1 IP

(
st = 1 | Ωt

)
υt +

r

1 + r
Ψ∗

1 IP
(
st = 0 | Ωt

)
υt

+ Γ∗
1

∞∑
i=1

(
1 +

r

1 + r

i∑
j=1

γj
1

)
ζ1,t−iυt−i +

r

1 + r
Ψ∗

1

∞∑
i=1

ψi
1ζ0,t−iυt−i,

(6)

where Γ∗
1 = (1 + r)/(1 + r − γ1) and Ψ∗

1 = (1 + r)/(1 + r − ψ1). When the agent knows

with certainty that the effects of innovations on future income are all permanent (i.e.,

st = 1 for all t), the perceived likelihoods of st are not affected by the information set

and always equal to one. Hence, ζ1,t−i = −ζ0,t−i = 0 for all i = 1, 2, . . ., so that ∆ct
reacts only to the current innovation. In fact, ∆ct = Γ∗

1υt for all t, which is exactly the

result obtained in Deaton (1987) for an ARIMA(1,1,0) income process. Similarly, when

the agent knows a priori that the effects of income innovations are all transitory (i.e.,

st = 0 for all t), ∆ct is still determined by the current innovation: ∆ct = [r/(1 + r)]Ψ∗
1υt

for all t. This is the result of Flavin (1981) based on an AR(1) income process. This

example shows that, when there is no state uncertainty, existing results are in fact special

cases of ours. The proposed CD model thus provides a much more general framework

for analyzing the consumption behavior.
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Moreover, the marginal propensity to consumption (MPC) due to an unanticipated

change in labor income is:

MPC ≡ ∆ct
υt

∣∣∣∣
{υt−i=0}

= Γ∗ IP
(
st = 1 | Ωt

)
+

r

1 + r
Ψ∗ IP

(
st = 0 | Ωt

)
.

This MPC depends on the perceived likelihood of the innovation state and hence may

also change over time. By contrast, the MPCs obtained in Flavin (1981), Deaton (1987)

and others are time invariant. Given the realization of an innovation state, the MPCs

for permanent and transitory income innovations are, respectively,

MPC1 ≡ MPCst=1 = Γ∗,

MPC0 ≡ MPCst=0 =
r

1 + r
Ψ∗.

We may empirically examine an important implication of the PIH based on these MPCs.

That is, we may test whether MPC1 is significantly greater than MPC0, cf. Hall and

Mishkin (1982).

4 Model Estimation and Hypothesis Testing

To estimate the income process (4) and consumption formula (5), we first postulate that

st follows a two-state Markov chain with the transition matrix
 IP

(
st = 0 | st−1 = 0) IP(st = 1 | st−1 = 0

)
IP

(
st = 0 | st−1 = 1) IP(st = 1 | st−1 = 1

)

 =


 p00 p01

p10 p11


 ,

where pi0 + pi1 = 1 for i = {0, 1}. It has been emphasized in the literature that the

individual’s own consumption behavior should provide a good instrument for revealing

his/her expectations about future labor income; see e.g., Campbell and Deaton (1989),

Campbell and Mankiw (1990) and Flavin (1993). This suggests us to estimate (4) and (5)

jointly. To render estimation tractable, we employ a finite number of terms to approx-

imate the infinite order of revisions on the expectations about {st−i} in (5) and use a

random term to summarize the errors arising from this approximation.

In our empirical study, the following system of equations is estimated:

Γ(B)Ψ(B)∆yt = α0Ψ(1) +
κ+1∑
i=1

ξi,st−i
υt−i + υt,

∆ct = ϕ1 IP
(
st = 1 | Ωt

)
υt + ϕ0 IP

(
st = 0 | Ωt

)
υt + φ1ζ1,t−1υt−1 + εt,

(7)
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where ϕ1, ϕ0, and φ1 are parameters, εt are random errors with mean zero and variance

σ2
ε . Note that following Hall and Mishkin (1982), the responses of consumption to the

unanticipated changes components are estimated as free parameters (i.e., ϕ1 and ϕ0).

Under weak assumptions, it can be shown that υt and εt are uncorrelated at all leads

and lags.

The system of equations (7) contains the parameters:

θ = (γ1, . . . , γn, ψ1, . . . , ψm, α0, ϕ0, ϕ1, φ1, σ
2
υ, σ

2
ε , p00, p11)

′,

which can be estimated by either the (approximate) quasi-maximum likelihood method

or Markov chain Monte Carlo method. We adopt the former in this paper and follow

the agent’s decision rule discussed in the previous section to construct the estimation

algorithm. In each period, an innovation υt to the labor income occurs, and the agent

obtains the labor earnings yt. With these information, the agent revises his/her expecta-

tions about the states of the past innovations via the Bayes’ rule. The agent then forms

his/her expectations about the state of the current income innovation and determines the

amount of money to spend. A detailed derivation of the estimation algorithm is given in

Appendix II.

Since many studies have established that the labor income process may contain a

unit root (e.g., Deaton, 1987, and West, 1988), it is imperative to test the labor income

as a CD process versus an ARIMA process. In the present context, this amounts to

testing whether p11 = 1. Under the null hypothesis, the transitory component does

not enter the model so that the parameters in Ψ(B) are not identified. In this case,

standard likelihood-based tests are not applicable, as discussed in Davies (1977, 1987)

and Hansen (1996). To circumvent this problem, we adopt the simulation-based test

proposed by KHT. Specifically, we first estimate an array of ARIMA(r, 1, q) models for

labor income and choose the best specification based on an information criterion (e.g.,

AIC or SIC). The selected model will be denoted as ARIMA(r̃∗, 1, q̃∗). We also estimate

an array of CD(n, 1;m) models in (4) for labor income and choose the best model based

on AIC or SIC. We denote the selected model as CD(ñ∗, 1; m̃∗) and the estimate of

the transition probability as p̃∗11. The selected ARIMA(r̃∗, 1, q̃∗) model will be taken as

the data generating process to generate simulated samples. For each simulated sample,

we re-estimate the CD(ñ∗, 1; m̃∗) model and obtain an estimate of p11, denoted as p̃11.

Replicating this procedure many times yields an empirical distribution of p̃11. We then
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compare p̃∗11 with the quantiles of this empirical distribution. The null hypothesis that

the labor income follows the ARIMA(r̃∗, 1, q̃∗) model would be rejected if the empirical

p-value of p̃∗11 is less than, say, 5%.

Once the test above suggests that the labor income follows a CD(n, 1;m) process, we

can proceed to test the implications of the PIH. There are two types of tests. One focuses

on the validity of the restrictions on the parameters implied by the PIH. This is done

by comparing the unconstrained parameter estimates of ϕ1, ϕ0, and φ1 in (7) with the

corresponding annuity values predicted by the PIH (see Section 5.2 for explicit expres-

sions). In addition, we also examine an important implication of the PIH: a permanent

income innovation exerts a much larger effect on consumption than does a transitory one.

This amounts to testing ϕ1 = ϕ0 against ϕ1 > ϕ0. This hypothesis is tested by checking

whether the difference between their estimates is significantly greater than zero.

5 Empirical Analysis

To assess the empirical relevance of the proposed model, we estimate (7) based on U.S.

consumption and income data. The data are real personal disposable labor income per

capita and real consumption (non-durable goods and services) per capita from 1959:III

through 1999:II, a total of 160 observations. These series are constructed using the

Blinder and Deaton (1985) procedures and taken as the variables yt and ct in model (7),

respectively.

5.1 Model Estimation Results

We first apply the simulation-based test discussed in the preceding section to check

whether the labor income is actually an ARIMA process. We estimate an array of

ARIMA(r, 1, q) models for yt with r and q no greater than 3; the best model based on

AIC and SIC select is the following ARIMA(1,1,0) model:

∆yt = 12.416 + 0.086∆yt−1 + et, (8)

with σe = 27.898. We also estimate an array of CD(n, 1;m) models for yt with m and n

no greater than 3; both AIC and SIC select the CD(1,1;1) model. For this CD model, the

estimated transition probabilities are p̃∗11 = 0.896 and p̃∗00 = 0.782.3 For each simulated

3The estimation results of these ARIMA and CD models are available from the authors upon request.

11



Table 2: Quasi-maximum likelihood estimates of the proposed model in (7).

Parameter Estimate Standard error t-statistic

γ1 0.307 0.084 16.271∗

ψ1 0.204 0.123 10.147∗

α0 0.227 3.534 0.064

ϕ0 0.049 0.138 0.357

ϕ1 0.511 0.076 6.675∗

φ1 0.433 0.217 1.994∗

συ 25.068 2.319 10.803∗

σε 14.867 0.950 15.649∗

p00 0.773 0.088

p11 0.876 0.046

Log-Likelihood=−1416.08 AIC=2852.169 SIC=2882.857

Note: t-statistics with an asterisk are significant at 5% level.

sample generated according to equation (8), we re-estimate the CD(1,1;1) model to get

an estimate of p11. With 1000 replications, we obtain an empirical distribution of p̃11; the

empirical p-value of p̃∗11 = 0.896 is 0.041. Therefore, we are able to reject the hypothesis

that the data are generated from (8) at 5% level.

With the testing result above, we proceed to estimate the system in (7) with m and n

no greater than 3. The parameters θ here are estimated using the algorithm described in

Appendix II. This algorithm is initialized by a broad range of random initial values. The

covariance matrix of θ is −H(θ̂T )−1, the Hessian matrix of the log-likelihood function

evaluated at the QMLE θ̂T . Among all the models estimated, both AIC and SIC select

the one with m = n = 1. The estimation results are summarized in Table 2; in particular,

the estimated transition probabilities (p̂11 = 0.876 and p̂00 = 0.773) are quite close to

those obtained from estimating the CD(1,1;1) model alone.

We also conduct some diagnostic checks on the estimated model, including the Ljung-

Box (1978) Q test and the LM test of Engle (1982) on the ARCH effect. The resulting

statistics for the income residuals υ̂t are Q(20) = 23.378 and ARCH(4) = 5.736, and

those for the consumption residuals ε̂t are Q(20) = 15.435 and ARCH(4) = 2.855. These

statistics are all insignificant even at 10% level under the χ2(20) and χ2(4) distributions.
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Hence, there appears no serial correlation and conditional heteroskedasticity in these

residuals. Following Engel and Hamilton (1990), we test whether the state variables are

independent over time, i.e., p00 + p11 = 1. The resulting Wald statistic is 42.797 and

rejects the null at 1% level under the χ2(1) distribution. This result is consistent with

the Markovian specification.

In Section 3 we emphasize that effect of a current innovation on the change of con-

sumption hinges on the filtering probabilities IP(st = j | Ωt;θ), j = 1, 0. In Figure 1, we

plot IP(st = 1 | Ωt; θ̂T ), the filtering probabilities of st = 1 evaluated at the parameter

estimate θ̂T . As these probabilities vary substantially over time, so do the effects of

current innovations on consumption. It can also be seen that there are 21 periods (about

14% of the sample) in which IP(st = 1 | Ωt; θ̂T ) < 0.5. That is, more than 80 percent of

income innovations are more likely to be treated as a permanent innovation at the time

they occur. However, the ergodic probability of st = 1 is

IP(st = 1) ≡ lim
T→∞

IE
[

1
T

T−1∑
t=0

1{st=1}

]
=

1 − p00

2 − p00 − p11

≈ 65%,

where 1 is the indicator function of st = 1. This suggests that approximately 65 percent

of the innovations may have a permanent effect in the long-run. Both results indicate that

not all labor income innovations have a permanent effect, contrary to the specification

of Deaton (1987) and West (1988). Similarly, not all income innovations are transitory,

cf. Flavin (1981).

In Section 3 we also stress the importance of the revision of the expectations on past

states. In the estimation result of (7), φ̂1 is significantly different from zero, suggesting

a significant effect of such revision on the change of consumption. In Figure 2, we plot

ζ̂1,t = IP(st = 1 | Ωt+1; θ̂T ) − IP(st = 1 | Ωt; θ̂T ),

and find that there are more positive (upward) revisions than negative (downward) ones,

where the former indicates reinforcement of the perceived likelihood when the informa-

tion set enlarges. Moreover, the range of these revisions is quite substantial. In partic-

ular, |ζ̂1,t| has the sample mean (sample standard deviation) of is 0.122 (0.131) and the

maximum 0.725. Consequently, neglecting these revisions may result in very misleading

consumption decisions.
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Figure 1: Estimated filtering probabilities of st = 1.

5.2 Testing the Implications of the PIH

We now proceed to test the cross-equations restrictions in (7) as implied by the PIH and

the CD labor income process. These restrictions include:

ϕ1 = Γ∗ =
1 + r

1 + r − γ1

,

ϕ0 =
r

1 + r
Ψ∗ =

r

1 + r − ψ1

,

φ1 = Γ∗
[
1 +

r

1 + r
γ1

]
− r

1 + r
Ψ∗ψ1,

where ϕ1, ϕ0 and φ1 are the parameters of (7), and the second equality on the RHS

of each equation above represents the prediction of the PIH. We assume that the real

interest rate is a constant 0.01 (i.e., 4% per annum).

For the first restriction ϕ1 = Γ∗, the unconstrained estimate of MPC1 is ϕ̂1 = 0.511,

and given our estimate of γ1 is 0.307, the PIH implied MPC1 is Γ̂∗ = 1.436. The Wald

test is , which is significant at 5% level. Thus, the actual consumption under-reacts to

permanent innovations in labor income when compared with the prediction of the PIH.

For the second restriction ϕ0 = Ψ∗r/(1 + r), the unconstrained estimate of MPC0 is

ϕ̂0 = 0.049, the PIH implied MPC0 is Ψ̂∗r/(1 + r) = 0.010, and the Wald statistic is

0.069, which is insignificant at 5% level. This shows that consumption does not appear

to over-react to a transitory innovation in labor income. For the last restriction, the

unconstrained estimate is φ̂1 = 0.433, and that implied by the PIH is 1.438. The Wald

statistic is 0.091, which is significant at the 5% level.
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Figure 2: The revision in the estimated filtered probability of the permanent state: ζ̂1,t.

Even though some of our estimation results conflict with the prediction of the PIH,

they are not entirely against the intertemporal consumption model. In particular, the

estimated response of consumption to a permanent innovation in income, (ϕ̂1) is much

greater than that to a transitory innovation (ϕ̂0). The Wald statistic of the null hypothe-

sis ϕ1 = ϕ0 is 6.688 which is significant even at the 1% level under the χ2(1) distribution.

This result reveals certain evidence for the agent to allocate his/her labor income in-

tertemporally in determining the current consumption, even though the consumption

decision here does not entirely follow the prediction of the PIH.

In Figure 3, we plot two MPC series constructed from our estimation results, where

the dashed line denotes the MPC implied by the PIH and the estimated CD model of

labor income:

Γ∗ IP
(
st = 1 | Ωt

)
+

r

1 + r
Ψ∗ IP

(
st = 0 | Ωt

)
,

and the solid line is the MPC derived from unconstrained estimation of (7):

ϕ1 IP
(
st = 1 | Ωt

)
+ ϕ0 IP

(
st = 0 | Ωt

)
.

The figure shows that the solid line is generally smaller and smoother than the dashed

line. This difference is mainly due to the fact that ϕ̂1 is significantly smaller than that

implied by the PIH.
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MPC predicted by the PIH Estimated MPC

Figure 3: The time-varying MPC for U.S. real consumption.

6 Conclusion

In this paper we take a different modeling approach based on the CD model of KHT

to testing the PIH, an example of intertemporal choice models. A key feature of this

approach is that it explicitly allows for state uncertainty. In the existing literature of

intertemporal models, the state of innovations is assumed to be fixed and known to the

agent a priori. This somewhat simplistic assumption may not hold in the real world.

When state uncertainty is present, the optimal decision of the agent ought to depend

on his/her forecasts on the innovation state. Unfortunately, existing models have no

room for drawing such forecasts, nor do they allow the agent to adjust his/her behavior

based on available information. The resulting behavior thus can not be truly optimal

under state uncertainty. By taking state uncertainty into account, our modeling approach

provides a more general framework to analyze a rational agent’s intertemporal decisions.

In this paper, it is shown that when the labor income follows a CD process with

unobservable innovation state, the consumption behavior predicted by the PIH is more

complicated than those obtained from traditional models, such as Flavin (1981) and

Deaton (1987). In particular, the reaction of consumption to the current innovation

in labor income depends on the agent’s forecast on the innovation state. Moreover,

consumption is affected by past innovations when there is revision in the expectations

about past innovation states. To our knowledge, the effect of past innovations has not

been documented in the literature. The resulting MPC due to an unanticipated change

16



in labor income also depends on how the agent forecasts the innovation state and hence

is time varying. Without state uncertainty, the consumption behavior derived in this

paper simply reduces to that obtained in the literature.

Our empirical study shows that the proposed model characterizes U.S. real consump-

tion and income data very well. Although the estimation results do not always agree with

the predictions of the PIH, they are not entirely against the intertemporal consumption

model. It should be emphasized that the PIH per se is not the major concern of this

paper. What we try to demonstrate is the importance of considering state uncertainty

in intertemporal choice models. Since the identification of the innovation state of some

variables is usually a crucial step for understanding the strength and weakness of the

intertemporal rational expectations model studied, the CD modeling approach proposed

in the paper should serve as a useful and powerful tool for future studies on the related

topics as such.

17



Appendix I

Let St = {st, st−1, . . .} denote the collection of all current and past state variables, and

Ω̃t = St ∪Ωt be the full information set about income innovations up to time t. We also

assume that {υt} is a sequence of random variables such that IE(υt | St,Ωt−1) = 0 and

var(υt | St,Ωt−1) = σ2
υ. By invoking the law of iterated expectations, it is easy to verify

that {υt} is a white noise and IE(stυt | Ωt−1) = 0. Also, IE(stυt) = 0,

var(stυt) = IE
[
s2t IE(υ2

t | St,Ωt−1)
]

= σ2
υ IP(st = 1),

and cov(stυt, st−iυt−i) = IE
[
stst−iυt−i IE(υt | St,Ωt−1)

]
= 0. Similarly, (1 − st)υt has

mean zero and variance
[
1 − IP(st = 1)

]
σ2

υ and are serially uncorrelated. Hence, these

two series are white noise when IP(st = 1) is a constant π0.

Under the assumptions above, the components ∆y1,t and y0,t in (3) can be viewed as

stationary ARMA processes with serially uncorrelated innovations stυt and (1 − st)υt,

respectively. Directly applying the Wiener-Kolmogorov prediction formula discussed in

Hansen and Sargent (1980, p. 16), we obtain explicit solutions to the prediction problems

for y1,t+i and y0,t+i, conditional on the full information set Ω̃t:

∞∑
i=0

(1 + r)−i ĨEty1,t+i =
1 + r

r
Γ∗


1 +

n∑
j=1

( n+1∑
k=j+1

( 1
1 + r

)k−j
γ̃k

)
Bj


 y1,t,

∞∑
i=0

(1 + r)−i ĨEty0,t+i = Ψ∗


1 +

m−1∑
j=1

( m∑
k=j+1

( 1
1 + r

)k−j
ψk

)
Bj


 y0,t,

(9)

where ĨEt = IE( · | Ω̃t) denotes the expectation conditional on Ω̃t, the values Γ∗ and Ψ∗

are the polynomials Γ−1(B) and Ψ−1(B) evaluated at the discount factor 1/(1 + r), and

γ̃k are the coefficients of (1−B)Γ(B) = 1− γ̃1B− · · · − γ̃n+1B
n+1. Substituting (3) into

(9) yields
∞∑
i=0

(1 + r)−i ĨEty1,t+i =
1 + r

r
Γ∗

∞∑
i=0

γ∗i st−iυt−i,

∞∑
i=0

(1 + r)−i ĨEty0,t+i = Ψ∗
∞∑
i=0

ψ∗
i (1 − st−i)υt−i,

(10)

where the terms γ∗i and ψ∗
i are the coefficients of

1 +
n∑

j=1

( n+1∑
k=j+1

( 1
1 + r

)k−j
γ̃k

)
Bj


 Γ(B)−1
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and 
1 +

m−1∑
j=1

( m∑
k=j+1

( 1
1 + r

)k−j
ψk

)
Bj


 Ψ(B)−1,

respectively. By the law of iterated expectations, we thus have

∞∑
i=0

(1 + r)−i IEtyj,t+i = IEt

( ∞∑
i=0

(1 + r)−i ĨEtyj,t+i

)
,

∞∑
i=0

(1 + r)−i IEt−1yj,t+i = IEt−1

( ∞∑
i=0

(1 + r)−i IEtyj,t+i

)
,

for j = 0, 1. Substituting these equations into the consumption formula in (2) and

rearranging, we obtain (5):

∆ct =
r

1 + r

∞∑
i=0

(1 + r)−i
(
IEt − IEt−1

)(
y0,t+i + y1,t+i

)

= Γ∗ IP
(
st = 1 | Ωt

)
υt +

r

1 + r
Ψ∗ IP

(
st = 0 | Ωt

)
υt

+ Γ∗
∞∑
i=1

γ∗i ζ1,t−iυt−i +
r

1 + r
Ψ∗

∞∑
i=1

ψ∗
i ζ0,t−iυt−i.

Appendix II

To simplify the exposition, we first define some notations needed in this Appendix. From

equation (7) we see that the past κ + 1 state variables affect ∆yt. Following Hamil-

ton (1994), we define the new state variable s∗t−1 = 1, 2, . . . , 2κ+1 such that each of these

values represents a particular combination of the realizations of (st−1, . . . , st−κ−1). It is

easy to show that s∗t also forms a first-order Markov chain with the transition matrix

P ∗. This transition matrix can be expressed as

P ∗ =




P 00 0

0 P 10

P 01 0

0 P 11


 ,
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with P ji (j, i = 0, 1) being a 2κ−1 × 2κ block diagonal matrix given by

P ji =




pji pji 0 0 · · · 0 0

0 0 pji pji · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · pji pji


 .

Also let υt−1 = (υt−1, . . . , υt−κ−1)′ and for s∗t−1 = �, � = 1, 2, . . . , 2κ+1, let

ξt−1,� = (ξ1,st−1
, ξ2,st−2

, . . . , ξκ+1,st−κ−1
)′,

where the realizations of st−1, . . . , st−κ−1 are such that s∗t−1 = �. Then,

ξ′t−1,�υt−1 =
κ+1∑
j=1

ξj,st−j
υt−j

in equation (7).

To derive the estimation algorithm, we first discuss the optimal forecasts of the state

variable st based on the information up to time t. Under the normality assumption, the

density of ∆yt conditional on s∗t−1 = � and Ωt−1 is

f
(
∆yt | s∗t−1 = �,Ωt−1;θ

)

=
1√

2πσ2
υ

exp

{
−[

Γ(B)Ψ(B)∆yt − α0Ψ(1) − ξ′t−1,�υt−1

]2

2σ2
υ

}
,

(11)

where � = 1, 2, · · · , 2κ+1 and

θ = (γ1, . . . , γn, ψ1, . . . , ψm, α0, ϕ0, ϕ1, φ1, σ
2
υ, σ

2
ε , p00, p11)

′.

Although the innovations υt depend on s∗t−1 (t = m + 1, . . . , T ), we follow Gray (1996)

and compute υt (t = m+ 1, . . . , T ) as

υt = ∆yt − IE(∆yt | Ωt−1)

= Γ(B)Ψ(B)∆yt − α0Ψ(1) −
2κ+1∑
�=1

IP
(
s∗t−1 = � | Ωt−1;θ

)
ξ′t−1,�υt−1,

(12)

with the initial values υm, . . . , υ1 being zero, where IP
(
s∗t−1 = � | Ωt−1;θ

)
is the proba-

bility of s∗t−1 = � based on the information up to time t− 1.
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Given the optimal forecasts of the previous state variables IP
(
s∗t−1 = � | Ωt−1;θ

)
, the

density of ∆yt conditional on Ωt−1 alone can be obtained via (11) as

f
(
∆yt | Ωt−1;θ

)
=

2κ+1∑
�=1

IP
(
s∗t−1 = � | Ωt−1;θ

)
f
(
∆yt | s∗t−1 = �,Ωt−1;θ

)
. (13)

Based on the new information at time t, the expectations about the states of past inno-

vations will be revised according to the Bayes’s theorem:

IP
(
s∗t−1 = � | Ωt;θ

)
=

IP
(
s∗t−1 = � | Ωt−1;θ

)
f
(
∆yt | s∗t−1 = �,Ωt−1;θ

)
f
(
∆yt | Ωt−1;θ

) . (14)

Then, to form optimal forecasts about the current state variables IP
(
s∗t = � | Ωt;θ

)
based

on the new information, we assume that the (j, i)th element of P ∗ is such that

p∗ji = IP
(
s∗t = i | s∗t−1 = j

)
= IP

(
s∗t = i | s∗t−1 = j,Ωt

)
;

the second equality would hold if {st} and {υt} are independent. These in turn yield

IP
(
s∗t = � | Ωt;θ

)
=

2κ+1∑
j=1

IP
(
s∗t−1 = j | Ωt;θ

)
IP

(
s∗t = � | s∗t−1 = j,Ωt;θ

)

=
2κ+1∑
j=1

p∗j� IP
(
s∗t−1 = j | Ωt;θ

)
.

(15)

Given the assumptions described in Appendix I, it is easy but tedious to show that υt

and εt are uncorrelated at all leads and lags. Hence, with the normality assumption, the

density of ∆ct conditional on Ωt is

f
(
∆ct | Ωt;θ

)
=

1√
2πσ2

ε

exp

{
−

[
∆ct − µt]2

2σ2
ε

}
, (16)

where µt = ϕ0 IP
(
st = 0 | Ωt;θ

)
υt + ϕ1 IP

(
st = 1 | Ωt;θ

)
υt + φ1ζ1,t−1υt−1. Given the

equations (12), (14), (15) and the initial probabilities IP
(
s∗t−1 = � | Ωt−1;θ

)
, we can

calculate the conditional density of ∆ct in (16). For example, the filtering probability

IP(st = 1 | Ωt) and the revision ζ1,t−1 can be obtained via
∑

IP
(
s∗t = � | Ωt;θ

)
and

∑
IP

(
s∗t−1 = � | Ωt;θ

) − ∑
IP

(
s∗t−1 = � | Ωt−1;θ

)
,

where the summation is taken over all � that associated with st−i = 1 for i = 0, 1.
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With the initial value IP
(
s∗m | Ωm;θ

)
, we can iterate the equations (11)–(16) to

obtain IP
(
s∗t = � | Ωt;θ

)
for t = m+ 1, . . . , T . From the recursions above we also obtain

the quasi-log-likelihood function

logL(θ) =
T∑

t=1

log f
(
∆yt | Ωt−1;θ

)
+ log f

(
∆ct | Ωt;θ

)
,

from which the quasi-maximum likelihood estimator θ̂T can be computed using a nu-

merical algorithm. The estimation program is written in GAUSS which employs the

BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm. Following Hamilton (1989, 1994),

we set the initial value IP
(
s∗m | Ωm;θ

)
to its limiting unconditional counterpart: the (2κ+1+

1)th column of the matrix (A′A)−1A′, where

A =


 I − P ∗

1′


 ,

I is the identity matrix and 1 is the 2κ+1-dimensional vector of ones; see Hamilton (1994,

p. 684) for details.
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