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Abstract 
 

This paper looks at the linkages between growth and business cycles by bringing together 

two strands of literature.  We incorporate a quality ladders engine of growth into an otherwise 

standard real business cycle model.    Our fundamental question is, can Schumpeter’s creative 

destruction process which leads to lumpy technological improvement over time also generate 

realistic business cycles?  We use a standard real business cycle approach to solve for rules of motion 

in our state variables and proceed to generate artificial time series.  We compare the statistical 

properties of these series with their historical counterparts to determine if the model mimics the real 

world closely. 

One advantage our approach has over the standard approach is that the trend component is 

included in our artificial series just as it is in the data.  Hence, we are not tied to any particular 

filtering method when we compare simulations with the real world data. 

We find that Schumpeterian fluctuations alone cannot generate realistic business cycles.  We 

also find, however, that a model with both Schumpeterian and standard RBC shocks performs better 

in many dimensions than a model relying on standard RBC shocks alone. 
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1. Introduction 

Dynamic general equilibrium models have proved to be valuable tools for examining both 

economic growth and fluctuations.  One class of these models – the Schumpeterian or “quality 

ladders” models – focuses on explaining observed smooth growth trends.  Segerstrom, Anant & 

Dinopoulos (1990), Grossman & Helpman (1991), and Aghion & Howitt (1992) first introduced this 

literature in their seminal papers.  In addition, there have been numerous extensions of the basic 

quality ladders model, focusing on innovation versus imitation, North-South trade patterns, and 

other related topics.1 

Schumpeterian models have the advantages that they are rigorously based in microeconomic 

theory and have a great deal of intuitive appeal.  In this literature, growth is driven endogenously by 

attempts to innovate and climb up the quality ladder to capture a stream of monopoly profits.  

Attention is normally focused on the steady state, where growth is smooth over time due to a large 

number of independent, but identical innovators each targeting a unique good. Growth for any given 

good, proceeds in a lumpy fashion with discrete jumps in quality occurring randomly over time, but 

the law of large numbers leads to smooth aggregate growth. 

A second class of models focuses on explaining the behavior of economic aggregates over the 

course of the business cycle.  Usually referred to as real business cycle (RBC) models, early work 

began with seminal papers by Kydland & Prescott (1982) and Long & Plosser (1983).  Again, 

numerous papers have extended this literature to the examination of aggregate labor behavior, 

monopolistic competition, monetary aggregates, and various other topics.2 

The RBC methodology generally involves building a general equilibrium model, with changes 

in productivity (and, more recently, other economic fundamentals) driving aggregate behavior.  

These models are capable of generating artificial data that mimic observed business cycles.  Unlike 

                                                      

1 For an extensive overview of this literature see Grossman and Helpman (1991) and Aghion 

and Howitt (1998). 

2 For an excellent overview of the RBC literature see Cooley (1995). 
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the Schumpeterian literature, attention is focused on the off-steady-state high-frequency behavior of 

aggregate economic variables.   

In practice, RBC models are typically transformed into a stationary variant and solved 

numerically to yield stationary laws of motion for endogenous variables as functions of endogenous 

states and exogenous driving processes.  A stationary model economy is then simulated and 

evaluated by comparing properties of data drawn from the model with data drawn from actual 

economies.  Since the focus of RBC models is on high-frequency fluctuations and not on economic 

growth, the growth component is usually ignored.  However, in order to compare the artificial 

economy with real world data it is necessary to remove the growth component from the real world 

data; i.e. to detrend it.  While many business cycle stylized facts are invariant to the filter used, 

there are some important facts that are not3.   

Generally in RBC models, the source of shocks is an exogenously imposed sequence of large 

and volatile productivity shocks.  A common specification of such shocks is a simple AR(1), and there 

is little or no economic theory involved in the specification of the driving process.  Moreover, there is 

increasing skepticism that technology shocks, measured by Solow residuals, are a major source of 

business cycle fluctuations.  As King and Rebelo (1998) point out “A key difficulty is that typical 

estimates of Solow residuals imply a probability of technical regress on the order of 40%, which 

seems implausible to most economists.”   

This paper integrates the two branches of literature identified above: the RBC literature, 

which focuses on detrended, high frequency fluctuations; and the Schumpeterian literature, which 

focuses on low-frequency growth trends.  The objective is to construct a dynamic general equilibrium 

model with an endogenous driving process for business cycles derived from microeconomic 

primitives, and with high- and low-frequency movements in economic aggregates that mimic those 

observed in the U.S. economy. 

                                                      

3 See Canova (1998). 
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The endogenous growth component of the model is included in simulations, which create 

artificial data.  Properties of the artificial data are then compared to like properties of their real data 

counterparts to evaluate the model’s performance.4 

An important feature of the model is that growth and cyclical properties of data stem from a 

common source – endogenous innovations to technology.  Technical regress is not necessary for 

business cycle fluctuations in the model.  Rather, the endogenous movements of resources between 

goods production and technological advancement gives rise to cyclical fluctuations, as well as lower 

frequency movements in key macroeconomic variables.  In principle, the model does not require large 

and variable technology shocks that imply high likelihoods of technical regress to explain business 

cycles.   Rather, endogenous improvements in technology and the diffusion of the improvements into 

production of final goods can help explain both growth and cycles.   

Methodology 

Our methodology is as follows.  We incorporate features of the Schumpeterian growth 

literature into a real business cycle model of the macroeconomy.  We interpret what are usually 

called increases in quality in the Schumpeterian literature as increases in productivity, and we keep 

the quality of goods constant over time.  If a small number of industries are assumed, this gives rise 

to aggregate growth in technology that is "lumpy" and can therefore serve as a driving process for 

business cycles. 

The model is evaluated by: linearizing agents’ Euler equations, with market clearing 

conditions imposed; numerically solving the model for endogenous variables as functions of 

endogenous states and exogenous shocks; simulating the model to generate sequences of 

macroeconomic aggregates; comparing properties of data generated by the model with properties of 

data drawn from the U.S. economy at both high- and low- frequencies.  

                                                      

4 Note that since growth is endogenous in the model, the choice of which particular 

detrending method to use is less critical than in a protoypical RBC model.   
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There are two sources of shocks in the model.  One (denoted A) is a sequence of random 

draws to determine success or failure of potential innovators who invest resources in basic research 

and development (R&D) to influence their success probabilities.  In aggregate the size of this shock 

goes to zero as the number of independent industries assumed is increased.  A second source of 

shocks (denoted z) is innovations to labor productivity governed by a process typically used in RBC 

models.  This set-up has the advantage of nesting both the pure RBC model and the Schumpeterian 

model as special cases.  To examine the dynamics of the RBC model we can set the number of 

intermediate goods to a very large number (like 1,000,000) and virtually all fluctuations will come 

from the exogenous shocks.  Similarly, we can set the variance of the exogenous shocks to zero and 

the number of industries to a small number to examine the dynamics of the pure Schumpeterian 

case. 

A Comparison with Other Dynamic Schumpeterian Models 

Our approach is related to recent papers by Andolfatto & MacDonald (1998), Collard (1999), 

Freeman, Hong & Peled (1999), and Ozlu (1996) which also focus on dynamic implications of 

endogenous growth models.  There is also an expanding literature on “Schumpeterian waves”, which 

looks at the behavior of the economy in response to large but infrequent movements in basic 

technology.  Early work by Cheng & Dinopoulos (1992 & 1996) looked at these longer-run 

fluctuations.  Aghion & Howitt (1998) devote a portion of their book to this phenomenon as well5.  

Wälde (2002) examines the implications of Schumpeterian growth in a continuous time framework, 

but does not calibrate or compare model generated data with real world data. 

Collard and Ozlu each consider extensions of a standard RBC model to include endogenous 

growth through human capital accumulation effects of learning-by-doing.  Ozlu considers labor 

market implications of allowing learning-by-doing effects on human capital, while Collard considers 

implications for the autocorrelation of output growth and impulse response functions in the trend-

reverting component in output.  These authors find improvements in quantitative implications of 

                                                      

5   Chapter 8, especially section 8.4. 
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RBC models augmented to include learning-by-doing effects over standard RBC models without 

human capital features.  Our analysis is similar to those performed by Collard and Ozlu in two 

respects.  First, we also consider business cycle implications of an RBC model augmented to include 

an endogenous growth mechanism.  Second, as in Collard’s analysis, we consider implications of our 

model for fluctuations in key variables at various frequencies including, but not limited to, business 

cycle frequencies.  Our model differs from theirs, however, in an important way.  While Collard and 

Ozlu essentially provide a model of an endogenous mechanism for the propagation of exogenous 

technology shocks, we model both propagation of shocks and the shocks themselves.  That is, we 

present a model that accounts for how shocks to technology arise, as well as how they may be 

propagated and diffused through time. 

Closer to the spirit of our analysis is the work by Andolfatto & MacDonald, and by Freeman, 

Hong & Peled.  The latter set of authors construct a model of large and costly technological changes 

which give rise to deterministic cycles and long run growth.  Their economy requires a sufficiently 

large amount of capital, diverted from consumption and physical investment, for birth of a 

technological innovation.  Then, when an innovation occurs, capital is more highly valued in physical 

investment than in R&D investment.  Consequently, resources flow away from R&D and toward 

final goods production.  As the marginal product of capital using existing technology fades through 

time, resources subsequently flow back toward consumption and the production of R&D innovations.  

These flows of capital give rise to endogenous movements in consumption and investment patterns 

within each fixed-length innovation cycle. Our analysis similarly accounts for endogenous 

movements in key macroeconomic variables within innovation cycles, but also explicitly models 

innovation cycles of random durations.6  In addition, when exploring quantitative predictions of our 

model relative to quantitative properties of actual data, we explicitly consider movements in key 

                                                      

6 Another difference between our model and the one constructed by Freeman, Hong, and 

Peled is that our model considers labor, rather than capital, as the input to the R&D process.  We 

include only labor to simplify the analysis but are free to enter capital into the R&D process as well. 
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macroeconomic variables at well-defined frequencies. In contrast, Freeman, Hong, and Peled are 

agnostic about the frequency one should look at in actual data for the innovation-driven cyclical 

patterns of movements that their model predicts.     

The analysis of Andolfatto & MacDonald is close to that in this paper in that they consider 

fluctuations and growth in key macroeconomic aggregates arising from the discovery and diffusion of 

technological innovations.  As in our model, Andolfatto & MacDonald have growth arising from 

technological discovery and use, and fluctuations arising from diffusion of applied, or frontier, 

research.  Some type of diffusion mechanism is required in each model to smooth out what would 

otherwise be unrealistic spikes in economic aggregates from infrequent, possibly large, technological 

innovations springing up from applied research.  

Andolfatto & MacDonald consider a diffusion mechanism involving imitation and learning 

how to use new technology, which diverts resources from production.  Agents choose the amount of 

resources to devote to various imitation and learning possibilities available to them, the outcomes of 

which are random.  With such a mechanism, the authors compare Hodrick-Prescott filtered series (in 

levels, not deviations from filtered series) from actual data with like series drawn from their model.  

The model in this paper has no such mechanism for innovation and diffusion, though 

previous work has focused on a similar diffusion process.  Our analysis differs from Andolfatto & 

MacDonald’s in the frequencies of movements in macroeconomic variables considered.  Our model is 

an attempt at simultaneously accounting for growth and business cycle fluctuations.  Consequently, 

we consider movements in macroeconomic variables at various frequencies, including those that 

arise at business cycle frequencies.  We do not restrict attention to data movements at frequencies at 

or below those at which major innovations diffuse, as do Andolfatto & MacDonald.  

2. A Dynamic General Equilibrium Schumpeterian Model 

In this section, insights of the Schumpeterian or “quality ladders“ growth models are 

incorporated into a discrete-time stochastic general equilibrium model of the real business cycle 

tradition.  Since it is well known that the equilibrium from Schumpeterian growth models is socially 

suboptimal, we proceed to examine the competitive equilibrium.  First, we examine the behavior of 
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households, then that of production firms, and finally the behavior of research firms.  Imposing 

aggregate resource constraints and market clearing conditions closes the model.7   

The model contains households, production firms, and research firms.  Each infinitely lived 

household is endowed with one unit of labor each period supplied to firms at wage wt.  Households 

also accumulate physical capital, K, over time, which they rent to firms each period at rental rate rt.  

In addition to physical capital, households buy and sell equity shares in two types of existing firms-

production and research firms-in I different intermediate industries.  These shares influence the 

household’s budget by generating dividends and capital gains or losses.  There is also a final goods 

sector, which we assume is perfectly competitive and generates no profits.  For simplicity, we 

abstract from buying and selling of these firms' equities8. 

In each period there is a single production firm in each intermediate industry with an 

exclusive right to a particular level of production technology, Ai, that is some factor θ >1 better than 

the closest competitor.  This production firm enjoys monopoly power and earns monopoly rents 

during the current period, and possibly many future periods, until a firm with even better technology 

replaces it.  The production firms hire labor and rent capital to produce intermediate goods, and pay 

out profits as dividends to shareholders each period.  Final goods are produced by combining 

intermediate goods. 

There also exists a single new research firm for each intermediate industry, which 

incorporates with the intent of displacing the current production firm in its role of monopolist.  The 

research firm issues equity shares and uses the proceeds to hire units of labor to attempt an 

innovation.  If successful, the research firm discovers a technology that is a factor θ better than the 

current production firm and begins production as the monopolist next period. If unsuccessful, the 

firm ceases to exist and its equity shares become worthless.  We account for successes and failures 

                                                      

7 A listing of notation and variables used in the model is contained in Table 1. 

 

8 The assumption is innocuous because these equities would have zero prices. 
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across the i industries with an I-dimensional vector S', with element iS ′ = 1 if a research firm 

succeeds in the current period and iS ′ = 0 if not.  If iS ′ = 1, then today’s research firm in industry i 

becomes the production firm tomorrow with technology iA′ that is a factor θ  better than its 

predecessor.9   

There is also an aggregate random shock to productivity in the model, unrelated to any of the 

Ai's which we denoted z.  This exogenous shock is to the productivity of labor in the intermediate 

goods producing firms’ production functions.  We include such shocks to allow for shocks to 

productivity unrelated to actual movements in technology, such as oil price shocks, changes in 

marginal tax rates, changes in government regulation of production processes, or similar non-

technology shocks.  This shock to productivity, assumed to be common to all I intermediate good 

producers, is of the form used in standard RBC models.  One of our interests will be the extent to 

which, by allowing for random innovations in R&D, the model does not require productivity shocks 

that are as persistent and volatile as those typically employed in RBC models to explain business 

cycle fluctuations.   

The timing of information, shocks, and activities in the economy is as follows.  Agents begin a 

period with capital stock K knowing research and shock realizations A10, and z.  At the beginning of 

the period, factor and equity markets open and clear.  Firms rent capital from households, and real 

rental rate r is determined.  Firms also hire labor from households, and a real wage w is determined. 

Research firms issue shares, and prices of those shares, qR (also a vector), are determined, and 

production firms issue shares, and their prices, qP, are determined.  Following input and funding 

acquisitions, production of goods and research occurs and the research results and random shocks A', 

                                                      

9 We adopt the notation convention that variables without a prime denote current period 

values and variables with a prime denote next-period values.  Additionally, bold letters are used to 

denote i-dimensional vectors of variables. 

10  This is a vector containing all the Ai shocks 
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and z′ are revealed.  Subsequently, at the end of the period, factor payments w and rK are made, 

production-firm profits π are distributed to shareholders, next period’s capital stock K' is chosen, and 

consumption occurs. We now turn to decisions made by the household, production firms, and 

research firms.  

The Household's Problem 

A representative household enters a period with capital K carried over from the previous 

period and a normalized unit labor endowment.11    The household also owns stocks of equity shares 

in last period's production and research firms, denoted by share vectors P and R.  The household 

knows the following: the current levels of technology, A, to be employed by this period's production 

firms, the current random productivity shock, z, and whether last period's research firms succeeded 

or failed, the vector S.  Taking prices r, w, qP , qR, and the probabilities of success by the current 

research firms, ρ, as given, the household chooses new stocks of equities P' and R' to carry over to 

next period.   

After production is completed and next period's values for technology, A', and z', are revealed, 

the household chooses a level of capital, K', to carry into next period.  Consumption then occurs 

according to the household’s choices and budget constraint. 

The value function for the household is thus: 

)}';',','()( {);,,(
'','

ΩRPΩRP KVCuMaxEMaxKV
KRP

β+=  

where: { }∑
=

−−+−++−+−+=
I
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i

R
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P
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P
ii RqPqRSPSqKKrwC

1
''])1][([')1( πδ , u(C) is the 

momentary utility function, β is the discount factor, },A,,,,,{ zrw PR SqqΩ ρ,= is an information 

set, and E is the expectation operator given information available at the beginning of the period.  ρ 

in the information set represents the vector of industry R&D success probabilities. S represents the 

                                                      

11 The household supplies its endowment inelastically and therefore receives wages w*1.  The 

labor endowment is divided between research and production firms’ activities. 
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vector of industry R&D success indicator variables, taking values of 1 if a success occurs, and 0 if 

failure occurs. 

 For industry i, iρ  is the probability of an applied research firm successfully 

innovating in the current period to become next period’s intermediate goods producer with an 

improved technology.  We explicitly model the innovation probabilities below in the discussion of the 

research firms’ problems.  What is relevant for the household’s decision is that with probability iρ  a 

share in today’s industry i research firm will pay off next period.  If today’s research firm pays off 

next period, then a share in that industry’s current intermediate goods producing firm will not pay 

off next period because it is replaced by the current period’s successful innovator.  Correspondingly, 

with probability iρ−1 , industry i’s current research firm is unsuccessful and won’t pay off next 

period.  In that case, the current intermediate goods producer remains as next period’s producer 

providing payoffs on its shares. 

The envelope conditions from the household’s problem consist of I conditions each for the 

shares iP  and iR , and a condition for capital stock K given, respectively, by: 

)1)()}(({);,,( i
P
iiC

i
P SqCuEKV −+= πΩRP  i= 1,2,…,I 

i
P
iiC

i
R SqCuEKV ))}(({);,,( += πΩRP  i= 1,2,…,I 

)1)}(({);,,( rCuEKV CK +−= δΩRP  

The Euler equations corresponding to the household’s choices consist of I conditions each for next 

period shares ′
iP and ′

iR , and a condition for next period’s capital stock K ′  given by: 

0)}';',','({))}(({ =+− ΩRPKVEqCuE i
P

P
iC β  for i= 1,2,…,I 

0)}';',','({))}(({ =+− ΩRPKVEqCuE i
R

R
iC β  for i= 1,2,…,I 

0)';',','()1)(( =+− ΩRPKVCu i
KC β  

Combining envelope and Euler equations gives the following 2I+1 system of equations: 

}|)'')('({)1()}({ θπρβ =+−= i
P
iiCi

P
iC AqCuEqCuE  i= 1,2,…,I (2.1)  
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}1|)'')('({)}({ =+= i
P
iiCi

R
iC AqCuEqCuE πβρ  i= 1,2,…,I (2.2)  

}','|)'1)('({)( zrCuECu CC A+−= δβ   (2.3)  

where expectation operator }y  |x{E  denotes the expectation of x given all the information available 

at the beginning of the period, plus additional information revealed after the beginning of the period 

that is contained in y. 

The laws of motion governing each industry’s applied technology level Ai, applied research 

success index Si, exogenous technology shock z, and basic technology level Bi, known to the 

household, are: 

ii

ii
ii A

A
SA





−
=

ρ
ρθ
1 y probabilitwith 0,
 y probabilitwith 1,

','
  (2.4) 

'' ηψ += zz ; where η' is distributed Normal (0,σ2) (2.5) 

The endogenous choices and random shocks governing the applied R&D success probabilities iρ  are 

discussed in detail below when the R&D firms’ choice problems are discussed.  The z shocks are the 

productivity shocks discussed earlier.   

Production of Final Goods 

Final goods production is an Armington aggregator of all intermediate goods, and uses no 

capital or labor.12   

∏
=

=
I

i

I
iYIY

1

/1    (2.6) 

Firms view the prices of intermediate goods as fixed, and a typical firm maximizes profits: 

                                                      

12 We could take the usual approach and use this aggregator as a utility function expressing 

a preference for variety across the I intermediate goods.  Interpreting it as a final good, however, has 

the advantage of yielding a natural numeraire good for the calculation of real values. 
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First-order conditions for the firm’s problem yield: 

I
YYp ii = ,    (2.8) 

This shows that all intermediate firms earn the same amount of real revenue.  Alternatively stated, 

regardless of the amount produced, expenditures on each intermediate good are equal. 

Production of Intermediate Goods 

The production firm produces output using a Cobb-Douglas production function with two 

sources of productivity variation, both of which are assumed to be labor augmenting: 

αα −= 1][ ii
z

ii NAeKY   (2.9) 

Productivity variations come from productivity shocks, z, along with the endogenous growth shocks 

iA .  

The monopolistic production firm faces a downward sloping demand curve defined by (2.8).  

However, there is a potential competitor that places limits on the price the monopolist will charge.  

The previous producer of the good has access to a technology that is 1/θ   as productive as the current 

firm's.  The current firm will never charge a price that exceeds its marginal cost by more than a 

factor of αθ −1 .  To do so would be to surrender production to the previous producer.  It can easily be 

shown that the marginal cost for the current firm is: 
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Similarly, the marginal cost for its closest competitor is: 
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Hence, the optimal price for the firm is to charge a multiplicative markup of αθ −1 over marginal cost.   
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 Standard optimality conditions for the firm reveal that it divides revenues between 

payments to labor, capital, and dividends according to: 

Y
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These distribution equations show that capital, labor, and profits are identical for all intermediate 

firms regardless of the level of technology they use.  The aggregate values are, then, iIKK = , 

iINN =  and iIππ = .  Substituting these values into (2.9) and (2.6), the production of final goods 

can be written as an aggregate production function of the form: 

αααα −
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− == ∏ 1
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i
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=

≡
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1

/1   (2.11) 

This shows how we can collapse the production of intermediate and final goods into a single 

aggregate production function. 

Given the manner in which the iA  evolve in (2.4), and the aggregation in (2.11), aggregate 

technology, A , evolves according to the following Binomial law of motion: 

IJAA /' θ=  ; with J distributed as Binomial (I,ρ) (2.12) 

The Research Firm’s Problem 
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Each period, a single research firm springs into existence in each industry.13  It sells equity 

shares, normalized to a quantity of one, to the household at price R
iq and uses the proceeds to hire 

labor.  Taking prices w and R
iq  as fixed, the firm chooses the amount of labor to hire by solving: 

R
ii

i
iR

i

qwLtsS
r

VE
L
Max ≤



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

 =
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=Π ..1'

1
'ρ  (2.13) 

where ''' P
iii qV += π  is the reward for a successful innovation, and ρι is the probability of success. 

The reward for success consists of the expected present value of the stream of profits given 

that a success occurs, which happens with probability iρ .  Appendix 1 shows that this reward can be 

written as: 
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  (2.14) 

where isd is a discount factor defined in the appendix.  The right side of equation (2.14) is simply the 

discounted sum of all future profits in the industry, with discounting inclusive of time and 

probabilities of loss of the profit stream in future periods. 

We model the research firm as hiring labor inputs that are used to produce research tries.  In 

the limit, with a continuous measure for the tries, the probability of success comes from a Poisson 

distribution.   As shown in Lambson and Phillips (1999), this gives the following functional form for 

an industry’s applied R&D success probability: 

}exp{1 ii Lκρ −−=   (2.15) 

where κ is the "ease" of doing research.  For the sake of tractability we are assuming that all 

industries have the same level of ease of R&D, i.e. that there is no advantage or disadvantage to 

doing R&D in an industry that is higher or lower on the quality ladder than the average. 

                                                      

13 For s discussion of the issues involved with assuming more that one R&D firm in such a 

discrete time framework see Lambson & Phillips (2003). 
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In a symmetric equilibrium, arising when all firms have the same probability function for iρ , 

the reward for success in (2.14) will be the same for all firms.  All firms then face an identical 

problem.  The solution to the problem is for the firm to hire the amount of labor it can afford, given 

the constraint from equity sales.  Consequently, i
R
i wLq =  for each industry and aggregate 

employment by all research firms is iILL = .  In addition, since the expected revenue streams for all 

intermediate goods producers are the same, the prices of equities for all research and production 

firms are equal.   

Market-Clearing Conditions 

In addition to the Euler equations from the household and firms' problems, market clearing 

conditions must be satisfied.  Clearing of the labor and capital markets requires: 

1][
1

=+=+∑
=

NLNL
I

i
ii   (2.16) 

KK
I

i
i∑

=

=
1

   (2.17) 

and clearing of equity markets requires: 

1'== PP    (2.18) 

1' == RR    (2.19) 

With these conditions, Walras' law ensures goods market clearing. 

3. The Transformed Model 

The model economy experiences growth in consumption and output per household due to the 

increases in A  over time.  It will be convenient to work with a transformed model where the 

endogenous variables are all stationary.  Since transformations to induce stationarity are commonly 

used, we delegate details to Appendix 2 and hereafter consider a transformed version of the model.  

Variables growing at the same rate as A  are transformed with division by A , and the transformed 

variables will be denoted with a caret so that, for example, AKK /ˆ ≡ . 

The transformed law of motion for A is: 
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'1)1(/'' εθρ ++−=≡ AAgA   (3.1) 

where )1]()/[(' −−= θρε IJ , J is distributed Binomial (I,ρ), 0}'{ =εE , and  

2)1()1(}'{ −
−

= θρρε
I

Var . 

 The law of motion for z remains: 

'' ηψ += zz    (3.2) 

with η' distributed N(0,σ2). 

 We use a standard CES momentary utility function of the form, 
γ

γ

−
−

=
−

1
1)(

1CCu .  

Substituting for marginal utility and transforming household optimality conditions (2.1) - (2.3) gives: 

)}'ˆ'ˆ('ˆ]')1)((1{[)1(ˆ}ˆ{ 1111 P
I
I

II
IP qCEqCE ++−++−= −−−−− πεθρρβ γγγ   (3.3) 

)}'ˆ'ˆ('ˆ]')1(1{[ˆ}ˆ{ 111 P
I
I

I
IR qCEqCE ++−+= −−−−− πεθρβρ γγγ  (3.4) 

)}'1('ˆ]')1(1{[ˆ rCEC +−+−+= −−− δεθρβ γγγ  (3.5) 

Substituting (2.16), (2.18) and (2.19) into the household's budget constraint and taking expectations 

gives: 

R
A qgKKrwC ˆ''ˆˆˆ)1(ˆˆ −−++−+= πδ   (3.6) 

The additional transformed equations from firms’ decisions are: 

αα −−= 1)]1([ˆˆ LeKY z   (3.7) 

YLw ˆ1)1(ˆ 1 αθ
α

−

−
=−   (3.8) 

YKr ˆˆ
1 αθ
α

−=
   (3.9)

 

Ŷ1ˆ 1

1

α

α

θ
θπ −

− −
=   (3.10) 

}exp{1 Lκρ −−=   (3.11) 
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LwqR ˆˆ =    (3.12) 

Equations (3.1) – (3.12) define the dynamic model that we solve, parameterize, and simulate.  

Because the highly nonlinear nature of the system makes closed form solutions intractable, we 

consider a linear approximation of the system about its steady state.  

4. Calibration and Simulation 

    We solve the system using the method of undetermined coefficients developed in Christiano 

(1990).  Because we approximate about the model’s steady state, we first need to solve for the steady 

state.  The parameters and their values are listed in table 2.  There are six parameters which define 

the steady state: α, β, γ, δ, κ, and θ.  For consistency with existing RBC-model parameterizations, we 

set capital’s share in output, α, to .3, the quarterly discount factor, β, to.995, and the quarterly 

depreciation rate, δ, to .02.  We also set the autocorrelation coefficient on the z shocks, ψ , to .95.  

 θ, the jump up the technology ladder, is set to 1.04877, a value which sets the 

variance of A innovations to the variance of z innovations needed to drive a pure RBC version of our 

model.  κ and γ are chosen to exactly fix two steady state values, the average quarterly growth rate of 

real output, and the user cost of capital, r-δ.  We set average quarterly real growth equal to .00834, 

and r-δ to .0062, or 2.5% per annum, by setting κ and γ  equal the appropriate values.14   Given the 

parameter values we have assigned, the steady state probability of success in applied R&D is 

ρ =.056, which we take to be an empirically plausible and conservative value.  

 The standard deviation of technology shocks is set at .0184, similar to the value used 

in most RBC analyses.  For example, using data from the U.S. economy in the post Bretton Woods 

era, Schlagenhauf and Wrase (1995) use a value of .014.  Our objective is to see how the model, with 

substantially less reliance on auto-correlated productivity shocks than standard RBC models, 

                                                      

14 To see how γ is chosen, consider the steady state version of equation (3.6): 

)1()'(1 rg A +−= − δβ γ .  Note that it is necessary to pick a value of β sufficiently large if we are to 

generate positive values for γ. 
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performs in accounting for business cycle fluctuations observed in key macroeconomic variables.  

Given the parameter values we use the standard deviation of the innovations to R&D in (3.1) is 

.0184 when I=1.  We are not, however, simply assuming the variability of the R&D innovations.  The 

variability of innovations to the evolution of A in (3.1) depends on the probability of success in R&D.  

In turn, the success probability depends endogenously on labor choices made by R&D firms and 

households in the model.  We cannot simply choose the standard deviation of innovations in applied 

R&D without restriction.  One restriction is that the probability of success in the model must be an 

empirically plausible value. 

Note that the model generates a series of growth rates.  We can use these to construct a 

series for the level of technology, the A’s, and then convert all the stationary, caret-bearing, variables 

to their non-stationary counterparts.  Hence, simulation of the model generates data with both 

cyclical and growth components. 

The model was simulated 1000 times using a sample of 200 observations, corresponding to 50 

years of data.  We filter both actual data drawn from the U.S. economy and model-generated data 

using two filters: the Hodrick-Prescott (HP) filter; and, to consider movements of variables at other 

than simply business cycle frequencies, a band-pass filter. We then compute statistical properties of 

the data, and compare properties of model-generated data with like properties of actual data.  We 

focus on standard RBC measures of variability, cyclicality, and persistence, but consider more than 

the business cycle frequencies that are the sole focus of RBC analyses. 

5. Quantitative Results 

Table 3 presents business cycle moments summarizing behaviors of key macroeconomic 

aggregates for the U.S. economy over a sample period 1947:I to 2002:IV.15  We define output as real 

GDP, consumption as real consumption of services and non-durables, and investment as real 

investment in non-residential structures and equipment.  As is well known, and as revealed in the 

                                                      

15 The data are real GDP, real consumption of services and nondurables, and real gross fixed 

investment in nonresidential structures and equipment. 
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table, investment is close much more variable than output, with variability measured by standard 

deviations.  Consumption has only three-quarters the variability of output.  In addition, output is 

highly serially correlated, consumption is highly correlated with output contemporaneously and at 

one to two period leads and lags, and investment is not strongly correlated with output 

contemporaneously or at leads and lags. 

The purpose of this paper is not necessarily to match all of these business cycle facts.  While 

it would certainly be desirable to do so, our primary question is how well a model with endogenized 

shocks from a Schumpeterian framework performs relative to standard exogenous shock models.  It 

is well-known that simple versions of such models cannot replicate all business cycle facts and 

require additional modeling details.  With the exception of the endogenous R&D process, our model 

is quite basic and lacks many features needed to conform to measured movements.  To answer our 

fundamental question, therefore, we proceed to solve and simulate several different versions of our 

model and compare them. 

The first model we simulate is a simple RBC model with no R&D process and a fixed supply 

of labor.  Here there is only one source of shocks.  In all other respects we treat the model exactly as 

the one outlined above.  We assume a fixed rate of growth for A, rather than a stochastic one, for 

example, and add this trend into the simulated model when creating artificial data series.  These 

series are then detrended using the same filters as table 3.  The results of 1000 simulations of this 

model with 224 observations are reported in table 4.  The table shows the usual sorts of problems 

with such simple models.  The volatility of consumption is too high, and the volatility of investment 

is too low.  The auto-correlations of output over time are not too different from the US data, but the 

correlations of consumption and investment with leads and lags of output are very poor matches 

regardless of the filtering method used.  We also report measures of business cycle asymmetry, since 

the shocks from the A process have the potential of being highly skewed, especially in our 

parameterization of the model.  We use Sichel’s (1993) measures of deepness and steepness, which 

are the skewness of the series and the skewness of its first-difference, respectively.  In this case, of 

course, the shocks are not skewed, since the innovations to z are normally distributed, and with a 
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few exceptions, the deepness and steepness measures are not significantly different from the US 

measures. 

There are two sources of aggregate fluctuations in our model:  an aggregate effect working 

through technology in each sector that will be non-zero if there are a small number of sectors, A, and 

other shocks to productivity which could proxy for a variety of things, z.  Our next attempt is to see 

how well a model driven only by the Schumpeterian source of shocks does in fitting the US moments.  

The results of this model, where we set I to the extreme value of one, and σ equal to zero, are 

presented in table 5.  As that table shows, the fit is considerably worse than the simple exogenous 

shock model.  The volatility of consumption is ridiculously high for all filtering methods.  In addition, 

the model matches the business cycle asymmetries only for very low frequency movements.  In terms 

of other moments it does no better than the exogenous shock case.  We conclude that our model as 

presently setup is not any an improvement in terms of its ability to match business cycle moments. 

We next consider a version of our model driven entirely by exogenous shocks.  This is not the 

same as the model in table 4, however, since our model allows for these exogenous shocks to 

influence the allocation of labor or production and R&D.  There is an additional transmission 

mechanism that is missing in the first case.  The results of setting I equal to 1 million and σ to the 

same value as table 4, are reported in table 6.  The only substantive difference this model yields is a 

drop in the volatility of investment at all frequencies.  Since investment volatility is already too 

small, this is not an encouraging development. 

Finally, we consider a version of the model where shocks come from both sources.  We set I to 

ten and σ to .0175.  In terms of the volatility, the exogenous shocks are by far the most important 

source of variation., but the contribution of endogenous shocks is still nontrivial.  These results are 

in table 7.  Consumption volatility is still too high, and higher than the first model.  Investment 

volatility is too low and lower than the first model.  This model does just as well in terms of 

asymmetries, and slightly better in terms of matching correlations with leads and lags of output.  

But the overall fit is not overwhelmingly better or worse. 
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In order to formalize our comparison of moments across we compute measures of the 

percentage deviations of the models moments from the US data moments.  We report both the root 

mean squared deviation (RMSD), and the mean absolute deviations (MAD) for two sets of moments. 

The first set of moments is the volatility of output, the relative volatility of consumption, the 

relative volatility of investment, and the contemporaneous correlations of consumption and 

investment with output.  These are reported in the top panel of table 8.  As can be seen the simple 

exogenous shock model with no R&D is clearly the best fitting model.  The version of our model with 

only exogenous shocks fits almost as well.  The two shock model is a bit worse and the model with 

only Schumpeterian shocks has a very bad fit. 

If we use all the reported moments we get the values in the bottom panel.  Here the results 

are identical to the first table when the HP-filter is used.  Surprisingly, the results are different if 

one uses the band pass filter.  In this case the two-shock version fits best, the exogenous shock 

version with R&D is generally second best, and the no-R&D model is third best.  The Schumpeterian 

shocks only model is fourth, though it is not bad in relative terms as in the top panel. 

 

 6. Conclusions 

In this paper, we are trying to discover if the process of creative destruction used in 

Schumpeterian models of growth is a reasonable source for the technology shocks used to drive 

business cycles, particularly in the context of RBC models.  We conclude that the process alone is not 

appropriate.  In our simple model with no labor-leisure choice and no diffusion mechanism for these 

technology shocks, we find that in order to generate realistic volatilities for output we also generate 

highly counterfactual volatilities of consumption and investment, and that we fail to match observed 

business cycle asymmetries. 

We also show that versions of our model which rely heavily on exogenous symmetric shocks 

fail to match consumption and investment movements any better than an equivalent RBC model 

with no Schumpeterian mechanism. 
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On the other hand, we do find that when we consider correlations of consumption and 

investment with output leads and lags, our model matches moments better than the simple RBC 

model, at least when a band pass filtering method is used. 

As a result we conclude that further exploration of the potential contribution of 

Schumpeterian shocks to business cycle and other aggregate fluctuations is worth considering.  

While this model cannot fit the US moments as well as many RBC models, it is likely that this 

failure can be attributed in large part, to the lack of sophistication in modeling the non-

Schumpeterian aspects of the model.  In particular, we do not have any sort of labor-leisure decision 

in our model.  Allowing for this type of substitution would go a long way in dampening the volatility 

of consumption our model generates.  In addition, our model does not incorporate any sort of R&D 

spillovers or technological diffusion of innovations across sectors.  These may well be important and 

will undoubtedly change the aggregate behavior of output, investment & consumption. 

Because of this lack of diffusion we are forced to drive changes in aggregate output by 

assuming a small number of intermediate goods sectors.  It may be more profitable to build a model 

with a large number of intermediate sectors generating approximately smooth growth, and consider 

innovations which affect all industries equally as coming from some other source.  In earlier related 

work, we were able to generate more realistic models when we allowed for movements in basic 

research to be distinct from movements in applied research, for example. 
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Table 1 

Definition of Variables 

Endogenous variables that change over time: 
Ai level of applied knowledge in intermediate industry i 
A aggregate level of applied knowledge 
z aggregate RBC-style productivity shock 
K capital stock owned by household 
Ki capital employed in industry  
Pi shares of production firm i owned by household (1 in equilibrium) 
Ri shares of research firm i owned by household (1 in equilibrium) 
Si state of research success for industry i; 1 is success, 0 is failure 
w real wage 
r real interest rate 
Li labor hired by research firm i (same for all i in equilibrium) 
L aggregate labor hired by all R&D firms 
Ni labor hired by production firm i (same for all i in equilibrium) 
N aggregate labor hired by all production firms 
Yi output of intermediate good i 
Y output of final goods 
pi price of intermediate good i 
πi profits earned by current production firm i  (same for all i in equilibrium) 
P
iq  price of one share in the current production firm i  (same for all i in equilibrium) 
R
iq  price of one share in the current research firm i  (same for all i in equilibrium) 

ρi probability that Si'=1 (same for all i in equilibrium) 
I number of industries in the economy 
J number of industries that successfully innovate; J≤I 
η random innovations to z 
 
Parameters: 
α capital share in output from a Cobb-Douglas production function; 0<α<1. 
β time discount factor; β<1. 
γ CES parameter from momentary utility function; γ>0. 
δ rate of depreciation; δ>0. 
θ growth factor for Ai when Si=1; θ>1. 
κ sensitivity of ρ to R&D inputs; κ>0. 
ψ autocorrelation parameter for z. 
σ2 variance of innovations in z. 
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Table 2 

Values of Parameters Used in Simulations 

 
Parameter Description Value 

α Capital share in GDP 0.30 

β Time discount factor for utility 0.995 

δ Depreciation rate 0.02 

θ Size of rungs on the applied technology ladder 1.04877 

γ Elasticity of substitution 0.1397 

κ Ease of R&D 3.390 

ψ Autocorrelation for z shocks 0.95 

Ι Number of Intermediate Goods Sectors 1 to 1,000,000 

σ Standard deviation of z innovations 0 to .01836 

 



 26

Table 3 
Moments from U.S. Data (1947:I-2002:IV)* 

 
HP Filter (λ=1600) Y C I Band Pass (6,32) Y C I 
Standard deviation 0.0175 0.0135 0.1025 Standard deviation 0.0149 0.0121 0.0759 
Relative to Y 1 0.7724 5.8523 Relative to Y 1 0.8140 5.1020 
Steepness -0.6060 -0.2555 0.1292 Steepness -0.4496 -0.3064 0.3299 
Deepness -0.0847 -0.2262 0.0004 Deepness -0.2630 0.2352 1.3217 
Correlation with Y+4 0.0747 0.2480 0.0107 Correlation with Y+4 0.0399 0.1787 0.1318 
Correlation with Y+3 0.3249 0.3997 0.2105 Correlation with Y+3 0.3373 0.4087 0.3317 
Correlation with Y+2 0.6030 0.5494 0.4047 Correlation with Y+2 0.6568 0.6140 0.5252 
Correlation with Y+1 0.8449 0.6319 0.5310 Correlation with Y+1 0.9054 0.7146 0.6123 
Correlation with Y 1 0.5880 0.5382 Correlation with Y 1 0.6545 0.5217 
Correlation with Y-1 0.8450 0.3698 0.2738 Correlation with Y-1 0.9054 0.4394 0.2704 
Correlation with Y-2 0.6020 0.0964 -0.0400 Correlation with Y-2 0.6568 0.1293 -0.0610 
Correlation with Y-3 0.3238 -0.1774 -0.3093 Correlation with Y-3 0.3373 -0.1830 -0.3595 
Correlation with Y-4 0.0758 -0.3532 -0.4781 Correlation with Y-4 0.0399 -0.4081 -0.5298 
        
Band Pass (2,6)    Band Pass (20,80)    
Standard deviation 0.0041 0.0045 0.0336 Standard deviation 0.0133 0.0084 0.0365 
Relative to Y 1 1.0819 8.1586 Relative to Y 1 0.6335 2.7418 
Steepness -0.2638 0.1477 -0.0905 Steepness -0.0763 0.0329 0.2348 
Deepness 0.2261 -0.1537 -0.0754 Deepness -0.6442 -0.7053 -0.6322 
Correlation with Y+4 0.1619 0.2376 0.0341 Correlation with Y+4 0.6288 0.6416 0.5880 
Correlation with Y+3 -0.1730 -0.1468 0.0344 Correlation with Y+3 0.7754 0.6968 0.6141 
Correlation with Y+2 -0.4161 -0.1535 -0.3033 Correlation with Y+2 0.8922 0.7158 0.6011 
Correlation with Y+1 -0.0955 -0.0079 -0.1409 Correlation with Y+1 0.9695 0.6974 0.5461 
Correlation with Y 1 0.2879 0.5004 Correlation with Y 1 0.6435 0.4516 
Correlation with Y-1 -0.0955 0.0093 -0.0243 Correlation with Y-1 0.9695 0.5451 0.3216 
Correlation with Y-2 -0.4161 -0.0613 -0.0808 Correlation with Y-2 0.8922 0.4222 0.1774 
Correlation with Y-3 -0.1730 0.0028 -0.1034 Correlation with Y-3 0.7754 0.2867 0.0324 
Correlation with Y-4 0.1619 -0.2520 -0.2141 Correlation with Y-4 0.6288 0.1503 -0.1007 

 
 

                                                      

* Source: Bureau of Economic Analysis. 
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 Table 4 
Moments from a pure exogenous shock version of our model (Model 1) 

018364.,95.,02.,1397.,995.,3. ====== σψδγβα  
 

HP Filter (λ=1600) Y C I Band Pass (6,32) Y C I 
Standard deviation 0.0175 0.0251*** 0.0625*** Standard deviation 0.0145 0.0157** 0.0516*** 
Relative to Y 1 1.4457*** 3.5830*** Relative to Y 1 1.0854*** 3.5579*** 
Steepness 0.0010*** -0.0687 -0.2119 Steepness 0.0073 -0.0396 -0.1734* 
Deepness 0.0035 0.0045 -0.0086 Deepness 0.0079 0.0083*** -0.0124*** 
Correlation with Y+4 0.1115 -0.3136*** 0.3613*** Correlation with Y+4 0.0282 -0.6116*** 0.4164*** 
Correlation with Y+3 0.2741 -0.3495*** 0.5332*** Correlation with Y+3 0.3012 -0.6929*** 0.7075*** 
Correlation with Y+2 0.4755* -0.3778*** 0.7329*** Correlation with Y+2 0.6241 -0.5821*** 0.9188*** 
Correlation with Y+1 0.7174*** -0.3946*** 0.9585*** Correlation with Y+1 0.8921 -0.2664*** 0.9503*** 
Correlation with Y 1 0.3246*** 0.5915 Correlation with Y 1 0.1603*** 0.7705*** 
Correlation with Y-1 0.7173*** 0.3810 0.2997 Correlation with Y-1 0.8921 0.5373*** 0.4346*** 
Correlation with Y-2 0.4756* 0.3999*** 0.0752 Correlation with Y-2 0.6241 0.7380*** 0.0724* 
Correlation with Y-3 0.2745 0.3900*** -0.0898*** Correlation with Y-3 0.3012 0.7354*** -0.2070* 
Correlation with Y-4 0.1123 0.3601*** -0.2045*** Correlation with Y-4 0.0282 0.5983*** -0.3565** 
        
Band Pass (2,6)    Band Pass (20,80)    
Standard deviation 0.0067*** 0.0174*** 0.0255*** Standard deviation 0.0136 0.0126** 0.0433 
Relative to Y 1 2.6093*** 3.8161*** Relative to Y 1 0.9303*** 3.1866*** 
Steepness -0.0095 -0.0377 -0.0931 Steepness -0.0016 -0.0075 -0.0901 
Deepness 0.0073 -0.0039 0.0058 Deepness 0.0421 -0.0306*** 0.0558*** 
Correlation with Y+4 0.1800 0.1791 -0.1092 Correlation with Y+4 0.6539 -0.4095*** 0.8891*** 
Correlation with Y+3 -0.0922 0.2155*** -0.3842*** Correlation with Y+3 0.7903 -0.2707*** 0.9367*** 
Correlation with Y+2 -0.3918 -0.1014 -0.1764 Correlation with Y+2 0.8987 -0.1053*** 0.9407*** 
Correlation with Y+1 -0.2081* -0.8058*** 0.9879*** Correlation with Y+1 0.9709 0.0799*** 0.8974*** 
Correlation with Y 1 0.7406*** -0.2484*** Correlation with Y 1 0.2765*** 0.8053*** 
Correlation with Y-1 -0.2081* 0.1640* -0.4029*** Correlation with Y-1 0.9709 0.4596** 0.6647*** 
Correlation with Y-2 -0.3918 -0.1669 -0.0806 Correlation with Y-2 0.8987 0.6199*** 0.4963*** 
Correlation with Y-3 -0.0922 -0.1844** 0.1879*** Correlation with Y-3 0.7903 0.7497*** 0.3114*** 
Correlation with Y-4 0.1800 -0.0274*** 0.1860*** Correlation with Y-4 0.6539 0.8434*** 0.1214*** 

 
* significantly different from the corresponding US data moment at 90% confidence 
** significantly different from the corresponding US data moment at 95% confidence 
*** significantly different from the corresponding US data moment at 99% confidence 

 



 28

 Table 5 
Moments from our model driven only by A shocks (Model 2) 

0,95.,1,04877.1,02.,1397.,995.,3. ======== σψθδγβα I  
 

HP Filter (λ=1600) Y C I Band Pass (6,32) Y C I 
Standard deviation 0.0185 0.1043*** 0.0613*** Standard deviation 0.0154 0.0543*** 0.0326*** 
Relative to Y 1 5.6600*** 3.3293*** Relative to Y 1 3.5279*** 2.1166*** 
Steepness -0.0733*** -1.6703*** 1.6070*** Steepness -0.0643 -0.5754 0.5042 
Deepness 1.6699*** 0.0342*** 0.2487*** Deepness 0.4825** 0.0251 0.1385*** 
Correlation with Y+4 0.1198 -0.2193*** 0.2602*** Correlation with Y+4 0.0430 -0.5836*** 0.6270*** 
Correlation with Y+3 0.2799 -0.2570*** 0.3326** Correlation with Y+3 0.3115 -0.6582*** 0.7897*** 
Correlation with Y+2 0.4775* -0.2915*** 0.4090 Correlation with Y+2 0.6294 -0.5127*** 0.7376*** 
Correlation with Y+1 0.7134*** -0.3369*** 0.5043 Correlation with Y+1 0.8935 -0.1525*** 0.4443*** 
Correlation with Y 1 0.4154*** -0.2408*** Correlation with Y 1 0.2943*** 0.0107*** 
Correlation with Y-1 0.7134 0.3599 -0.2375*** Correlation with Y-1 0.8935 0.6380*** -0.3825*** 
Correlation with Y-2 0.4774* 0.3090*** -0.2321*** Correlation with Y-2 0.6294 0.7544*** -0.5882*** 
Correlation with Y-3 0.2798 0.2560*** -0.2168* Correlation with Y-3 0.3115 0.6462*** -0.5768*** 
Correlation with Y-4 0.1195 0.2045*** -0.1952*** Correlation with Y-4 0.0430 0.4231*** -0.4302 
        
Band Pass (2,6)    Band Pass (20,80)    
Standard deviation 0.0072*** 0.0821*** 0.0478*** Standard deviation 0.0149 0.0288*** 0.0178*** 
Relative to Y 1 11.4759*** 6.6875*** Relative to Y 1 1.9417*** 1.2008*** 
Steepness -0.0055*** -0.8764*** 0.8835*** Steepness -0.0307 -0.1070 0.0880 
Deepness 0.8699*** 0.0202*** 0.1019*** Deepness -0.0059 -0.0224 -0.0992 
Correlation with Y+4 0.1771 0.1705 -0.1654 Correlation with Y+4 0.6707 -0.4034*** 0.7902*** 
Correlation with Y+3 -0.0838 0.1869*** -0.2090*** Correlation with Y+3 0.8005 -0.2545*** 0.7093** 
Correlation with Y+2 -0.3784 -0.1101 0.0808*** Correlation with Y+2 0.9036 -0.0786*** 0.5858 
Correlation with Y+1 -0.2170** -0.7738*** 0.8100*** Correlation with Y+1 0.9722 0.1166*** 0.4233*** 
Correlation with Y 1 0.7823*** -0.7433*** Correlation with Y 1 0.3224*** 0.2276*** 
Correlation with Y-1 -0.2170** 0.1115 -0.1388 Correlation with Y-1 0.9722 0.5022* 0.0273*** 
Correlation with Y-2 -0.3784 -0.1913* 0.1677*** Correlation with Y-2 0.9036 0.6498*** -0.1628*** 
Correlation with Y-3 -0.0838 -0.1710** 0.1745*** Correlation with Y-3 0.8005 0.7597*** -0.3334*** 
Correlation with Y-4 0.1771 -0.0048*** 0.0224*** Correlation with Y-4 0.6707 0.8283*** -0.4768*** 

 
* significantly different from the corresponding US data moment at 90% confidence 
** significantly different from the corresponding US data moment at 95% confidence 
*** significantly different from the corresponding US data moment at 99% confidence 
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Table 6 
Moments from our model driven only by z shocks (Model 3) 

018364.,95.,000,000,1,04877.1,02.,1397.,995.,3. ======== σψθδγβα I  
 

HP Filter (λ=1600) Y C I Band Pass (6,32) Y C I 
Standard deviation 0.0175 0.0247*** 0.0169*** Standard deviation 0.0145 0.0154** 0.0129*** 
Relative to Y 1 1.4171*** 0.9678*** Relative to Y 1 1.0589*** 0.8877*** 
Steepness 0.0098*** -0.0694 -0.0381 Steepness 0.0065 -0.0408 -0.0633 
Deepness 0.0041 0.0125 0.0329 Deepness -0.0100 0.0075 0.0091*** 
Correlation with Y+4 0.1169 -0.3051*** 0.3877*** Correlation with Y+4 0.0359 -0.6043*** 0.5218*** 
Correlation with Y+3 0.2783 -0.3315*** 0.5286*** Correlation with Y+3 0.3074 -0.6687*** 0.7835*** 
Correlation with Y+2 0.4763 -0.3537*** 0.6912*** Correlation with Y+2 0.6275 -0.5430*** 0.9264*** 
Correlation with Y+1 0.7168*** -0.3638*** 0.8716*** Correlation with Y+1 0.8930 -0.2192*** 0.8647*** 
Correlation with Y 1 0.3569*** 0.3449*** Correlation with Y 1 0.2061*** 0.5982*** 
Correlation with Y-1 0.7170*** 0.4019 0.1025*** Correlation with Y-1 0.8930 0.5732*** 0.2157 
Correlation with Y-2 0.4767 0.4102*** -0.0735 Correlation with Y-2 0.6275 0.7601*** -0.1402 
Correlation with Y-3 0.2788 0.3962*** -0.1980* Correlation with Y-3 0.3074 0.7453*** -0.3723 
Correlation with Y-4 0.1174 0.3632*** -0.2785*** Correlation with Y-4 0.0359 0.6010*** -0.4614 
        
Band Pass (2,6)    Band Pass (20,80)    
Standard deviation 0.0067*** 0.0172*** 0.0089*** Standard deviation 0.0137 0.0125* 0.0104*** 
Relative to Y 1 2.5603 1.3242*** Relative to Y 1 0.9156*** 0.7582*** 
Steepness -0.0089 -0.0348 0.0062 Steepness -0.0116 -0.0439 -0.0227 
Deepness 0.0023 0.0003 0.0190 Deepness -0.0545 -0.0066 -0.0213 
Correlation with Y+4 0.1799 0.1754 -0.1392 Correlation with Y+4 0.6551 -0.3636*** 0.8877*** 
Correlation with Y+3 -0.0860 0.2144*** -0.3288*** Correlation with Y+3 0.7912 -0.2194*** 0.8902*** 
Correlation with Y+2 -0.3920 -0.1057 -0.0630*** Correlation with Y+2 0.8992 -0.0508*** 0.8475*** 
Correlation with Y+1 -0.2101** -0.7993*** 0.9522*** Correlation with Y+1 0.9711 0.1352*** 0.7582*** 
Correlation with Y 1 0.7495*** -0.4796*** Correlation with Y 1 0.3299*** 0.6234*** 
Correlation with Y-1 -0.2101** 0.1569* -0.3147*** Correlation with Y-1 0.9711 0.5080 0.4504*** 
Correlation with Y-2 -0.3920 -0.1758 0.0311 Correlation with Y-2 0.8992 0.6615*** 0.2596*** 
Correlation with Y-3 -0.0860 -0.1798** 0.1932*** Correlation with Y-3 0.7912 0.7830*** 0.0627 
Correlation with Y-4 0.1799 -0.0189*** 0.1173*** Correlation with Y-4 0.6551 0.8675*** -0.1287 

 
* significantly different from the corresponding US data moment at 90% confidence 
** significantly different from the corresponding US data moment at 95% confidence 
*** significantly different from the corresponding US data moment at 99% confidence 
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Table 7 
Moments from our model driven by a combination of A & z shocks (Model 4) 

0175.,95.,10,04877.1,02.,1397.,995.,3. ======== σψθδγβα I  
 

HP Filter (λ=1600) Y C I Band Pass (6,32) Y C I 
Standard deviation 0.0177 0.0394*** 0.0258*** Standard deviation 0.0148 0.0221*** 0.0163*** 
Relative to Y 1 2.2379*** 1.4645*** Relative to Y 1 1.5018*** 1.1089*** 
Steepness -0.0051*** -0.3345 0.1751 Steepness -0.0053 -0.1159 -0.0160 
Deepness 0.0170 0.0068* 0.0641 Deepness 0.0021 0.0091 0.0193*** 
Correlation with Y+4 0.1161 -0.2332*** 0.2990*** Correlation with Y+4 0.0348 -0.5274*** 0.5115*** 
Correlation with Y+3 0.2788 -0.2548*** 0.3978*** Correlation with Y+3 0.3071 -0.5845*** 0.7321*** 
Correlation with Y+2 0.4764* -0.2778*** 0.5143** Correlation with Y+2 0.6278 -0.4677*** 0.8208*** 
Correlation with Y+1 0.7164*** -0.2941*** 0.6433*** Correlation with Y+1 0.8933 -0.1741*** 0.7115*** 
Correlation with Y 1 0.3126*** 0.1401*** Correlation with Y 1 0.2039*** 0.4264 
Correlation with Y-1 0.7162*** 0.3242 -0.0026*** Correlation with Y-1 0.8933 0.5202 0.0682** 
Correlation with Y-2 0.4762* 0.3155*** -0.1049 Correlation with Y-2 0.6278 0.6679*** -0.2310** 
Correlation with Y-3 0.2787 0.2937*** -0.1743*** Correlation with Y-3 0.3071 0.6333*** -0.3951 
Correlation with Y-4 0.1163 0.2625*** -0.2177*** Correlation with Y-4 0.0348 0.4874*** -0.4269 
        
Band Pass (2,6)    Band Pass (20,80)    
Standard deviation 0.0068*** 0.0298*** 0.0179*** Standard deviation 0.0139 0.0148*** 0.0115*** 
Relative to Y 1 4.3853*** 2.6319*** Relative to Y 1 1.0699*** 0.8279*** 
Steepness -0.0021 -0.2002 0.1751 Steepness -0.0138 -0.0220 -0.0367 
Deepness 0.0108 0.0024 0.0295 Deepness -0.0713 -0.0386 0.0081 
Correlation with Y+4 0.1825 0.1378 -0.1095 Correlation with Y+4 0.6553 -0.3572*** 0.8561*** 
Correlation with Y+3 -0.0824 0.1694*** -0.2146*** Correlation with Y+3 0.7913 -0.2179*** 0.8443*** 
Correlation with Y+2 -0.3932 -0.0885 -0.0015*** Correlation with Y+2 0.8992 -0.0545*** 0.7883*** 
Correlation with Y+1 -0.2114** -0.6310*** 0.6645*** Correlation with Y+1 0.9710 0.1259*** 0.6876*** 
Correlation with Y 1 0.6069*** -0.4326*** Correlation with Y 1 0.3151*** 0.5441* 
Correlation with Y-1 -0.2114** 0.1141 -0.1839 Correlation with Y-1 0.9710 0.4860 0.3692 
Correlation with Y-2 -0.3932 -0.1457 0.0638* Correlation with Y-2 0.8992 0.6316*** 0.1817 
Correlation with Y-3 -0.0824 -0.1422* 0.1401*** Correlation with Y-3 0.7913 0.7451*** -0.0071 
Correlation with Y-4 0.1825 -0.0103*** 0.0590*** Correlation with Y-4 0.6553 0.8222*** -0.1867 

 
* significantly different from the corresponding US data moment at 90% confidence 
** significantly different from the corresponding US data moment at 95% confidence 
*** significantly different from the corresponding US data moment at 99% confidence 

 



 31

Table 8 
Comparison of Fit Various Models 

 
Based on Five Key Moments 

),,,,( YIYCY Y

C

Y

C ρρσ σ
σ

σ
σ

 

 

  Model 1 Model 2 Model 3 Model 4 
HP Filter (λ=1600) RMSD 0.529 3.256 0.647 1.110 
 MAD 0.903 1.446 1.220 1.277 
      
Band Pass (2,6) RMSD 1.322 5.036 1.498 1.903 
 MAD 1.330 1.844 1.562 1.588 
      
Band Pass (6,32) RMSD 0.500 1.783 0.562 0.677 
 MAD 0.800 1.282 1.116 1.143 
      
Band Pass (20,80) RMSD 0.544 1.126 0.525 0.562 
 MAD 0.605 0.921 0.829 0.832 

 
 

Based on all Reported Moments 
 

  Model 1 Model 2 Model 3 Model 4 
HP Filter (λ=1600) RMSD 7.280 111.668 15.957 29.031 
 MAD 2.831 23.048 4.713 6.882 
      
Band Pass (2,6) RMSD 22.329 21.129 21.940 17.256 
 MAD 7.999 8.071 7.865 6.333 
      
Band Pass (6,32) RMSD 1.853 2.537 1.863 1.741 
 MAD 1.283 1.678 1.236 1.207 
      
Band Pass (20,80) RMSD 2.002 2.556 1.210 1.140 
 MAD 1.181 1.370 0.807 0.768 
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Appendix 1 

The reward for success can be written as the expected present value of the profit stream, 

where this stream is discounted both by the real interest rate and by the probability of losing the 

monopoly to a newly successful research firm. 
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where the second subscript, used in the summation and product, indicates the time period. 

Future profits are a constant fraction, (θ1-α-1)/θ 1-α, of production.  The level of technology, 

θ‘Ai, does not change as long as the firm is the monopoly producer.  Consequently, we can rewrite the 

success reward as: 
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Since M changes as aggregate output rises, with large I large the expected effects of success 

or failure by any given research firm on M will be small.  Note also that M will be the same for all 

research firms as long as ρ is the same.  There may be more than one solution to the system of 

equations that jointly determine the M's and ρ's for all firms, but one solution is the symmetric one, 

where M and ρ are constant over time. 
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Appendix 2 

In order to induce stationarity, we take all the variables which grow at the same rate as A in 

the previous section and divide them by A.  This gives the following stationary variables: 

ACC /ˆ ≡     AKK /ˆ ≡     Aww /ˆ ≡     Aqq RR /ˆ ≡     Aqq PP /ˆ ≡     A/ˆ ππ ≡  

AAgA /'~' ≡ . 

The transformed law of motion for A  can be written: '1)1(/'' εθρ ++−=≡ AAg A , where 

)1]()/[(' −−= θρε IJ , and J is distributed Binomial (I,ρ). Note that 0}'{ =εE  and  

2)1()1(}'{ −
−

= θρρε
I

Var .   

Substituting (2.18) and (2.19) into the household's budget constraint, and transforming 

variables,  gives: R
A qgKKrwC ˆ)'1('ˆˆˆ)1(ˆˆ −+−++−+= πδ , with expected consumption when the 

household makes its share decisions given by: R
A qgKEKrwCECE ˆ)}'1('ˆ{ˆˆ)1(ˆ}ˆ{ˆ −+−++−+=≡ πδ . 
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