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Abstract 
 

We present a discrete-time version of an otherwise standard Schumpeterian 

growth model. Unlike continuous-time models, with discrete time models, linear 

production functions for probabilities make no sense as they imply probabilities greater 

than one for sufficiently high inputs. 

We show that in discrete time is possible for more than one firm to innovate 

simultaneously.  How the profits are divided in the case of these ties is critical for 

aggregate behavior.  Both a monopolist and a group of potential Bertrand competitors 

value an additional unit of R&D input only to the extent that it will succeed where all 

other inputs in the industry fail.  Potentially collusive firms place the same value, but also 

value the success of their own inputs, even if another firm also succeeds. 

This has implications for the choice a modeling framework.  If ties are prevalent, 

models with linear functions for R&D in continuous time, while tractable, will miss 

important behavior.  We present evidence consistent with ties being prevalent in many 

industries. 

In general equilibrium, where all prices are endogenously determined, the amount 

of R&D undertaken by a group of firms that engage in Bertrand competition when there 

is a tie is less than the amount undertaken if there is a single R&D firm. 

In general equilibrium, the amount of R&D undertaken by a group of firms that 

colludes when there is a tie is greater than the amount undertaken if there is a single R&D 

firm. 
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1  Introduction 

 

Schumpeterian growth arises from the research and development (R&D) activities 

of innovators pursuing the monopoly rents that accrue to new proprietary technologies.  

There is a large and insightful literature on Schumpeterian growth, including papers by 

Aghion and Howitt (1992), Grossman and Helpman (1991), and Segerstrom, Anant and 

Dinopoulos (1990).  However, the Schumpeterian growth literature has thus far ignored 

the effects of post-innovation market structure when several innovators can be successful 

at once, that is, when ties are possible.  It is easy to understand why: in the continuous 

time models that are typical in this literature, the probability of a tie is infinitesimal.  

Arguably, this ignores an important aspect of reality.  R&D projects take time, and that 

time is naturally identified with the length of a discrete time period.  If the period length 

is substantial then simultaneous (that is, same period) discoveries of similar innovations 

are likely to be common.1 

Whether the additional complexity of modeling ties is worthwhile depends on 

how important they are empirically.  If they rarely occur in the real world, then there is 

little to be lost in using continuous time models and the fact that their solutions are more 

tractable makes them very attractive.  However, if ties occur frequently then the 

tractability may not be worth the cost. 

We use data on markups and on the average growth rates of Solow residuals from 

Phillips (1993) to examine the importance of ties.  The data are at the two-digit SIC level.  

Assume these industries grow in discrete jumps of size θ, equal to the gross markups, 

with constant probabilities, ρ.  We can solve for the probabilities of success in R&D by 

using )1( −= θρg . 

Table 1 presents the values of µ and θ for the sixteen industries where markups 

are greater than one and the implied values for ρ.  Given ρ, we can calculate the 

probability of a tie given an innovation occurs, assuming J equally sized firms.  This is 

                                                 
1 A famous example of such a tie might be the simultaneous introduction of VHS and Beta video cassette 
recording technologies.  Closer to home, readers of academic literature can probably think of numerous 
examples of similar ideas being published at about the same time. 
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reported in the last column of Table 1 for various values of J.  The results show that ties 

are likely to empirically important for most industries. 

 

The remainder of the paper explores a discrete time, infinite-horizon model that is 

analogous to the continuous time models that dominate the Schumpeterian growth 

literature.  Sections 2-4 respectively describe the three sectors of the model economy: 

innovators, producers, and consumers.  Producers employ labor in the production of a 

consumption good with the current technology.  In each period J innovators come into 

existence and employ labor with the goal of discovering a labor-saving technology and 

supplanting the current producer or producers. 

Section 5 presents partial equilibrium analysis, assuming the industry is small 

enough to take wages and interest rates as given.  Curiously, aggregate R&D is the same 

when J>1 and ties result in (profit-dissipating) Bertrand behavior as when J=1.  The 

distribution of R&D across J>1 innovators is indeterminate.  Of course, such 

indeterminacies are common in constant-returns-to-scale models, but ours is not such a 

model. In discrete time, the probability of success cannot be globally linear in inputs.  So 

the source of the indeterminacy must lie elsewhere.  We introduce a notion, called 

constant returns to duplication, that is interpretable as having innovators decide how 

many independent experiments they are going to run simultaneously during the period.  

In the Bertrand case, an additional experiment is of value to an innovator only if it 

succeeds when all other experiments fail.  This is true whether the innovator or its 

competitors are conducting the other experiments; indeed it is true whether or not the 

innovator has competitors.  Since the marginal value of an experiment depends only on 

the number of experiments and not on which innovators are running them, the total 

equilibrium number of experiments is independent of the number of innovators.  Thus, in 

parital equilibrium, the Bertrand case yields the same level of R&D as the monopoly case.  

By contrast, if ties result in collusive behavior or, equivalently, if a monopoly is 

randomly granted to one of the successful (risk-neutral) firms, then the results differ from 

the Bertrand case.  In the collusive case an experiment has value whenever it is successful, 

so the aggregate number of experiments is higher than in the Bertrand case.  In summary, 

if the number of innovators exceeds one, allowing collusion induces higher growth. 
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Section 6 extends the analysis of Section 5 with a simple general equilibrium 

model that makes wages and interest rates endogenous.  If J>1, the real wage depends on 

whether there was a tie in the previous period because of the effect on market structure in 

the output market.  As a result, the equivalence of Bertrand and monopolistic behavior 

does not carry over from the partial equilibrium scenario.  Section 6 also considers the 

welfare properties of the various market structures.  As in the previous literature – see, 

for example, Aghion and Howitt (1998) – welfare effects are ambiguous.  In all cases 

growth may be either too rapid or too slow, so it may or may not be optimal to allow 

collusion to increase the growth rate.  Simulations suggest that, for reasonable parameters, 

the Bertrand outcome exhibits insufficient growth, suggesting that allowing collusion in 

the event of ties may be welfare-enhancing.  Indeed, growth is substantially increased 

toward – but not beyond – the optimum even if there are only two innovators.  There is 

an optimal number of innovators such that allowing collusion yields growth close to the 

socially optimal level.  This optimal number of innovators is rather small.  Finally, the 

welfare loss is asymmetric in the sense that the loss associated with allowing collusion 

and overshooting the optimal number of innovators by as much as nearly a thousand is 

significantly smaller than the loss associated with imposing Bertrand competition. 

Section 7 contains some concluding remarks. 

 

2  Innovators 

Consider an industry that uses labor to produce a consumption good.  There are 

countably infinitely many time periods indexed by the positive integers.  The prevailing 

technology in period t is characterized by its (constant) output per worker, 0>tA .  At the 

beginning of each period J≥1 innovators are born.  The innovators employ labor in hopes 

of discovering a new technology characterized by output per worker of tAθ  where θ>1.  

If an innovator hires l  workers, it has a probability )(lρ  of discovering the new 

technology.  Successful innovators (if any) cease research and begin production in period 

t+1.  Unsuccessful innovators cease to exist. 

A constant returns to scale assumption is widely imposed in the Schumpeterian 

growth literature.  Specifically, it is assumed that ρ is homogeneous of degree one over 
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input levels satisfying )1,0(∈ρ .  Of course, constant returns cannot hold globally 

because ρ is bounded above by one.  On the other hand, the intuition behind constant 

returns – that proportional increases in inputs should lead to (at least) a proportional 

increase in output – is compelling.  We reconcile this logic with its failure to hold 

globally when applied to ρ by taking the view that it is misleading to think of ρ as a 

typical production function.  In our view, R&D underwrites experiments which may be 

successful or unsuccessful.  It is then natural to assume that an increase in inputs results 

in a proportional increase in the number of experiments underwritten.  The properties of 

ρ can then be deduced from the properties of the stochastic outcomes of the experiments.  

The length of a time period is naturally identified with the time required to run an 

experiment, and the innovator’s choice of labor dictates how many experiments it can run 

simultaneously. 

A natural analog to constant returns to scale, which we call constant returns to 

duplication, posits that all experiments have the same required labor input and the same 

(independent) probabilities of success.  Let φ be the amount of labor required to conduct 

one experiment.  Then the number of successes in x experiments (requiring labor input of 

φx=l ) is binomially distributed.  As is well known, this distribution is approximately a 

Poisson distribution if φ is small.  Specifically, if an innovator hires l  units of labor, the 

probability that it has at least one success – and hence discovers the new technology – is 
ll κρ −−= e1)( , where κ>0. 

Now consider the problem facing each of the J innovators in each period t.  Let 

jtl   be the labor employed by innovator j in period t, let ),...,( 1 Jttt lll = , let jt−l be  tl  

with the jth element  removed, and let ,...),(~
211 +++ = ttt lll .2  Given (possibly stochastic) 

sequences of wage rates ,...),(~
211 www =  and interest rates ,...),(~

211 rrr = , a Nash 

equilibrium for innovators is a sequence ,...),(~
211
eee lll =  such that, for all innovators j in 

all time periods t, 

[ ]lll
l

l l
t

e
t

e
jttj

e
jt we −−∈ +−+

− )~,()1(maxarg 11,νκ  (2.1) 

                                                 
2 For any variable, say x, tx~ will denote a (possibly stochastic) sequence of values of x beginning in period 
t. 
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where )~,( 11,
e
t

e
jttj +−+ llν  is the expected present value of the profit stream – discounted to 

period t – associated with introducing an innovation in period t+1.  The first order 

condition associated with (2.1) – assuming an interior solution – is 

0)~,( 11, =−+−+
−

t
e
t

e
jttj we lllνκ κ  (2.2) 

Note that 1, +tjν  depends on e
jt−l because this determines how many competitors the 

successful innovator can expect to face, that is, how many other successful innovators 

from period t there will be.  Note also that 1, +tjν  depends on e
t 1

~
+l  because this determines 

how long the successful innovator in period t will enjoy the lead in technology.  The 

properties of 1, +tjν  will be derived below. 

 

3  Producers 

In each period, t, producers – that is, the most recently successful innovators – 

enjoy a state-of-the-art technology with constant marginal cost tt Aw / .  Producers 

simultaneously choose prices to maximize current profits.  They face competition from 

each other as well as from one or more of the previous producers that have the next oldest 

technology with marginal cost tt Aw /θ , where θ>1.  If in period t there is a single 

producer, or if there are several producers who can collude, they charge the previous 

producers’ marginal cost.3 This keeps the previous producers out of the market and earns 

aggregate profit of θθθπ /)1(/)1( tttttt CPACw −=−= , where tC  is the quantity 

demanded.  By contrast, if there are several producers who are unable to collude, they 

charge their own marginal cost, ttt AwP /= , and earn aggregate profit 0=tπ  in the 

resulting Bertrand equilibrium.  Producers in the aggregate employ ttt ACN /≡  units of 

labor. 

The properties of 1, +tjν  , the expected present value of the profit stream associated 

with introducing an innovation in period t+1, can now be described.  A successful 

innovator in period t has the most efficient technology in period t+1 with probability 

                                                 
3 This assumes that profits are increasing in price below tt Aw /θ .  Such is the case given the assumptions 
about consumers imposed below. 
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11 =+tγ .  Thereafter, the probability that its technology remains the most efficient in 

period τ conditional on having been the most efficient in period τ -1 equals the 

probability that all innovators fail in period τ -1: 

∑
== =

−
−

−

=

−∏
J

j
j

j ee
J

j

1
1,

1,

1

τ
τ

κ
κ

τγ
l

l  

Thus, conditional on being successful, an innovator discounts profits in period s 

back to period t by the factor 

∏
+= ++

≡
s

tt
s rr 111

1
τ τ

τγδ  

which incorporates the probability of survival as well as the interest rate. 

When J=1, if the sole innovator in period t is successful it becomes a monopolist 

until it is supplanted by a new successful innovator.  The associated value of 1+tν  – to be 

denoted s
t 1+ν  – is 

∑
∞

+=
++ −=

1
11 /)1(

ts
tsss

s
t ACwθδν  (3.1) 

When J>1, R&D ties sometimes occur.  Suppose, given a tie, successful 

innovators become Bertrand competitors thereafter.  A successful innovator in period t 

enjoys no unless all other innovators fail.  This probability is itjiit eeji
ll ≠Σ−−

≠ =Π κκ .  Thus 

in this case, the value 1, +tjν  – to be denoted b
tj 1, +ν – is4 

∑
∞

+=
+

Σ−
+ −= ≠

1
11, /)1(

ts
tsss

b
tj ACwe itji θδν κ l  (3.2) 

Finally, suppose successful innovators collude ex post and that each has an equal 

share of the monopoly profit until a new technology is discovered.  Then the value 1, +tjν  

– to be denoted c
tj 1, +ν  – is 

∑ ∑
−∈

∞

+= +
+ ⎥

⎦

⎤
⎢
⎣

⎡
+

−
=

12 1 1
1, )#1(

)1(
)(

JU ts t

sssc
tj UA

Cw
U

θδ
αν  (3.3) 

                                                 
4 Although b

tv 1+  can differ across firms, since firms may invest different amounts, the firm subscript is 
suppressed to simplify notation, and similarly for α(j) below. 
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where α(U) is the probability that the set of successful innovators is U, 2J-1 denotes the 

collection of subsets of innovators that do not include j, and #U is the number of 

successful innovators in set U.  Note that c
tj 1, +ν  can also be interpreted as the expected 

discounted payoff from successful innovation if a monopoly position – e.g. a patent – is 

granted randomly to one of the successful innovators. 

 

4  Consumers 

In each period, t, consumers divide their current income between consumption Ct, 

and savings in the form of a full set of Arrow-Debreu assets.  Let itQ  denote the holdings 

of asset i in period t, purchased in period t-1.  With J independent R&D firms each either 

succeeding or failing there are 2J different states of nature.  Consumers’ current income 

is comprised of the wage for their one unit of inelastically supplied labor, wt, and the 

current value of the previous period’s investments, itit
J
i Qd

2

1=Σ . 

Taking the stochastic sequence of wage rates, interest rates, output prices, and 

profits as given, consumers choose consumption and investments each period to 

maximize the expected present value of lifetime utility, )(1
1 t

t
t CU−∞
=Σ β , subject to the 

constraint that current expenditures on consumption and savings must equal current 

income for all t and for all realizations of the stochastic process: 

∑∑
=

+
=

−+=
22

1
1

1

J

i
itit

J

i
ititttt QqQdwCP  

where the dit denotes the payoff of one unit of asset i in period t and the qit denotes its 

price. 

Subject to well-known regularity conditions, the consumers’ problem can be 

solved recursively using the Bellman equation: 

)]},([{)(max),( 11
1

+++=
+

ttttt VECUV
t

ΩQΩQ
Q

β  

where Ct satisfies the budget constraint, 
2

1}{ J
iitt Q =≡Q  and Ωt is the information set used to 

form expectations in period t.  Standard dynamic programming techniques yield the 

consumers’ necessary conditions for all t and all realizations: 
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iCU
P
dE

P
qCU t

t

it

t

it
t ∀

⎭
⎬
⎫

⎩
⎨
⎧

= +
+

+ ;)(')(' 1
1

1β  (4.1) 

In interest of tractability and comparability with the rest of the literature, we 

follow the common practice of restricting attention to the utility function 

)1/()1()( 1 σσ −−= −
tt CCU  where )1,0(∈σ . 

The market discount factor, r+1
1 , is the intertemporal price of one unit of 

consumption tomorrow in terms of one unit of consumption today.  Purchasing one of 

each available Arrow-Debreu assets gives exactly one unit of consumption with certainty.  

We use this fact, sum and manipulate the I equations in (4.1) and get 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+

−

+

+

σ

β
t

t

t

t

C
C

P
P

E
r

1

11
1  (4.2) 

 

5  Partial Equilibrium 

Consider a partial equilibrium model of a single R&D race where current wages 

are exogenous to the industry.  A successful innovation by only one firm at time t will 

yield a stream of expected monopoly profits, m
t 1+ν , beginning in period t+1.  With only 

one firm engaged in R&D, equation (2.2) reduces to  

t
m
t we t =+

−
1νκ κl  (5.1) 

Solving this for ℓt gives the amount of labor hired given the wage rate, wt, the 

value of future profits, m
t 1+ν , and the ease of R&D, κ. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

+
m
t

t v
w

1

ln1
κκ

l  

If more than one firm engages in R&D (i.e. J>1) and ties result in Bertrand 

competition in the product market, then a firm receives the stream of monopoly profits if 

and only if it is the only firm to innovate.  In this case (2.2) becomes 

weee ijiijij m
t =−+ ≠≠ Σ−
+

Σ−− ]0)1()[( 1
lll κκκ νκ , where )1( ijie l≠Σ−− κ  is the probability that at 

least one other firm innovates.  This reduces to 

we m
t

L =+
−

1νκ κ  (5.2) 
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where jjL lΣ=  is the aggregate employment by all R&D firms. 

Surprisingly, equations (5.1) and (5.2) yield the same aggregate employment, 

since L=l when there is only one R&D firm.  Thus, a monopolistic innovator will hire 

the same amount of R&D as a group of innovators that expect to engage in Bertrand 

competition if there is an R&D tie.  Intuitively, all firms value an additional unit of labor 

only to the extent that it will succeed where all other units fail.  For the monopolistic 

innovator this is because it owns any success from all other units anyway.  For a member 

of a group this is because any success from units it does not own results in zero profits 

due to competition. 

 

6  Simple General Equilibrium 

A general equilibrium is a list of stochastic sequences 

111111111
~,~,~,~,~,~,~,~,~ qQ πwPrCNl  such that, for all t and all realizations of the stochastic 

process, (1) 1
~
l is Nash equilibrium for innovators, (2) 1

~C and 1
~Q solve the consumers’ 

problem, (3) the full employment conditions 1=+ tt LN  are satisfied, (4) the credit 

market clearing conditions, that Qit equal profits in state t+1 and state i for all t and i, are 

satisfied, and (5) the output price sequence 1
~P  and the profit sequence 1

~π  are derived as 

described above. 

As is generally (though not universally5) the case in the Schumpeterian growth 

literature, we restrict attention to stationary equilibria.  Consumption rises over time as 

new technologies are discovered.  Let output in the first period be numeraire; that is 

11 =P .  The nature of equilibrium depends on the assumptions imposed on the market 

structure.  We again consider three structures: (1) a single innovator, (2) multiple 

innovators that dissipate profits through Bertrand competition if more than one is 

successful, and (3) multiple innovators that successfully collude if more than one is 

successful.  Of course, the first structure is a special case of either of the latter two.  We 

refer to these, respectively, as the monopoly case, the Bertrand case, and the collusive 

case. 

                                                 
5 See Deissenberg and Nyssen (1998). 



10 

 

6.1  Single Innovator 

When J=1, the successful innovator always becomes a monopolist.  Posit a 

stationary equilibrium with a constant interest rate, r, and a constant output price, P=1.  

Then, since the monopoly price always prevails, 

1
1

1
1 ==

+

+
+

t

t
t A

wP θ  

for all t.  Given an innovation in period t, consumption will be constant at Ct+1 until 

further innovation occurs and (3.1) reduces to  

11
1

1
1

+−+ ⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛

−+
= tL

s
t C

er θ
θν κ  

for all t. Now, by the definition of the output production function and the labor market 

clearing condition, 

)1(11 LAC tt −= ++  

for all t.  Substituting the previous three relationships into the innovator’s first order 

condition (2.2) and manipulating transforms it into 

rLe L +=−−+− 1)]1()1(1[ θθκκ  (6.1) 

 

Equation (4.1) in this case is 

}{)1( 1
σσ β −

+
− += tt CErC  

In a stationary equilibrium this implies 

)]1()[1(1 ρρθβ σ −++= −r  

This and the definition of ρ imply 

)]1)(1(1[
1)1(

−−+
=+ −− σκ θβ Le

r  (6.2) 

Now (6.1) and (6.2) provide two equations in r and L. The former exhibits r 

decreasing in L while the latter exhibits r increasing in L.  The unique solution will exist 

with L>0 if ββθκθ /)1()1( −≥− .  The left side of this condition reflects the expected 

profitability of research while the right side reflects the degree to which future profits are 

discounted.  Thus, if the likelihood of success (reflected in κ) and the gain from 
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innovation (reflected in θ) are sufficiently high and the future is not discounted too 

heavily (as reflected in β) then equilibrium will exhibit positive investment in research.  

Otherwise, L = 0 in equilibrium and only (6.2) is satisfied, yielding no growth and an 

interest rate equal to the rate of time preference.  The equilibrium values of the other 

variables can be derived in a straightforward manner. 

 

6.2  Multiple Innovators: Bertrand 

When J>1 R&D ties will sometimes occur.  When they do the structure of the 

equilibrium depends on producer behavior.  This subsection assumes that multiple 

producers dissipate profits through Bertrand competition.  Production in this case is 

greater than that with only one producer.  This leads to cycles of monopoly and 

competition in the production sector which do not exist in the other market arrangements 

we consider. 

Posit a stationary equilibrium exhibiting interest rates, rM and rC where the 

superscript M denotes a variable’s value when there is a monopoly producer and a C 

denotes its value when production is competitive.  As before, posit a constant output price, 

P=1.  When a period-t innovator, say innovator j, is the only successful firm, it enjoys 

monopoly profits until it is supplanted.  In this case the output price satisfies 

1/ 111 == +++ t
M
tt AwP θ . 

If it is not the only successful firm, it and its Bertrand competitors will dissipate their 

profits by charging an output price (normalized to one) of 6 

1/ 111 == +++ t
C
tt AwP  

Now, since consumption will be constant at Ct+1 for as long as the successful 

period-t innovator is not supplanted, and since positive profits only accrue if innovator j 

is the only successful firm, (3.2) reduces to 

CMkC
er

r
r

M
tLM

M

k
bk

tj M ,;1
1

1
1

1
11, =⎟

⎠
⎞

⎜
⎝
⎛ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−+
+

+
= +−+ θ

θν
κ

 

for all t.  By the definition of the output production function and the labor market clearing 

condition, 
                                                 
6 Since output is numeraire, the increased competition is reflected in a higher nominal wage, rather than a 
lower nominal output price. 
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CMkLAC k
t

k
t ,);1(11 =−= ++  

for all t.  Substituting the previous four relationships into the innovator’s first order 

condition (2.2) and manipulating yields 
MML rLe

M

+=−−+− 1)]1()1(1[ θθκκ  (6.3) 

C
MM

M
ML r

r
rLe

C

+=
+

+
−−− 1

)(
)1()1)(1(

ρ
θκ κ  (6.4) 

There are two conditions because R&D employment and interest rates are 

different when current producers compete than it is when there is only one producer.  

Note that (6.3) & (6.4) only determine aggregate R&D employment, the distribution of 

investment across innovators is indeterminate.  Of course, such indeterminacies are 

common in general equilibrium models with constant returns to scale, but this is not such 

a model.  Intuitively, an innovator’s marginal experiment is of value if and only if it 

succeeds when all other experiments fail.  This is true whether the innovator or its 

competitors are conducting the other experiments; indeed as illustrated in section 5, it is 

true whether or not the innovator has competitors.  We assume below that all R&D firms 

are equally sized: JLmmj /=l , JLccj /=l for all i 

The consumer’s Euler equations (4.2) can be written as 
1

1
1

1010
1 ]))(1([)1( −−

−
−−− −−++=+ σσ θρρθρρβ

M

C
L
LMMMMMr  (6.5) 

where 
MLM e κρ −≡0 , )1( //)1(

1
JLJJLM MM

eJe κκρ −−− −≡  
1

101
1

10
1 ])1()([)1( −−−

−
−− −−++=+ σσ θρρθρρβ CC

L
LCCC

C

Mr  (6.6) 

where 
CLC e κρ −≡0 , )1( //)1(

1
JLJJLC CC

eJe κκρ −−− −≡  

Equations (6.3) - (6.6) provide four equations in CMCM rrLL &,, .   Appendix 1 

shows that this set of equations implies CM LL >  and CM rr > .  Intuitively, when 

production is competitive, the real wage is higher than when there is a monopoly.  This 

leads to a substitution of labor away from R&D and into production. 

 

6.3 Multiple Innovators: Collusion 

Now suppose that when multiple innovators are successful they collude and split 

the monopoly profits equally.  Posit a stationary equilibrium with an interest rate of r, a 
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constant output price, P = 1, and symmetric investment, jJLj ∀= /l .  Then, since the 

monopoly price always prevails, 

1
1

1
1 ==

+

+
+

t

t
t A

wP θ  

for all t.  Since consumption will be constant at Ct+1 for as long as the successful period-t 

innovators are not supplanted, (3.3) reduces to 

∑
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er

α
θ
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Finally, 

)1(11 LAC tt −= ++  

Substituting these equations into the innovator’s first order condition (2.2) and 

manipulating yields 

∑
−

=

−−−−
−+

−− −−−+=+
1

0

/)1(/
)!(!

!
1

1/ )1()()1()1(1
J

i

iJLiJJL
iJi

J
i

JLL eeLeer κκκκ θθκ  (6.7) 

Of course, when J=1, this corresponds to the monopoly case.  The summed term 

is the expected inverse of the number of an innovator’s successful competitors, and is 

declining in L.  Thus the r satisfying (6.7) is declining in L. 

The consumer’s Euler equation is the same as the monopoly case (6.2) and is 

reproduced here as (6.8). 

)]1)(1(1[
1)1(

−−+
=+ −− σκ θβ Le

r  (6.8) 

Equilibrium values of L and r solve (6.7) and (6.8).7  If there is a solution to (6.7) 

and (6.8) – that is, if ββθκθ /)1()1( −≥− – then there is a unique stationary equilibrium 

and it exhibits a positive level of investment; otherwise, the unique stationary equilibrium 

exhibits no investment in R&D.  

Appendix 2 shows that L is larger when J>1 than when J=1.  Since J=1 is the case 

of a single innovator we examined above, it follows that more aggregate R&D labor is 

hired with multiple innovators if collusive production is expected.  

                                                 
7 As before, L in equilibrium iff ββθκθ /)1()1( −≥− . 
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It is easy to verify, given the properties of the binomial distribution imply 

1
)(1

0 +
−
=Σ j

jJ
j

α is declining in J, that an increase in the number of innovators J decreases 

JL /=l : faced with more competitors, each innovator invests less.8  

 

6.4  A social planner’s problem 

Let ,...},,{ 1
2

11 AAA θθ=A  be the set of attainable technology levels.  A stationary 

social plan is a function ]1,0[: →Aλ  that assigns a level of investment to each level of 

technology.  Define the social planner’s problem as choosing a stationary social plan to 

maximize the expected present value of utility, 

∑
∞

=

−−

−1

11

1
1

t
t

t CE σ

σ
β  

subject to the constraint that ]1,0[)( ∈Aλ  for all A∈A .  Let ),( λAW  be the expected 

present value of implementing the plan λ if the current technology is A.  Note that the 

choice of utility function implies ),()',( 1 λθλθ σ AWAW −=  if )()(' AA λθλ =  for all 

A∈A .  Let ),(max)( λλ AWAV = .  Standard continuity and compactness arguments 

imply that )(AV  is well defined if σβθ −> 11 , that is, if the maximal growth rate isn’t too 

large relative to the rate of time preference.  It follows from the properties of W and the 

optimality of V that )()( 1 AVAV σθθ −= .  Let λ* be an optimal stationary plan.  Then, for 

any A∈A  , standard recursive arguments imply 

[ ])()))((1()())(())](1([)( *1*1*
1

1 AVAAVAAAAV λρθλρβλ σσ
σ −++−= −−

−  

where, recall, Le κρ −−= 1)(l .  Solving for )(AV  yields 

[ ])(*1)(*

1*1

)1(1
))(1(

1
1)( AA ee

AAAV κλσκλ

σσ

θβ
λ

σ −−−

−−

+−−
−

⎟
⎠
⎞

⎜
⎝
⎛

−
=  

Since )(AV  is maximal, )(* Aλ  must maximize it for all A.  Differentiating )(AV  

with respect to *λ , setting the result equal to zero, and manipulating it yields 

[ ]{ } 1
)1(1)1(

)1))((1(
)(*1)(*

1*)(*

=
+−−−

−−
−−−

−−

AA

A

ee
Ae

κλσκλ

σκλ

θβσ
θλβκ  (6.9) 

                                                 
8 Graphically, an increase in J shifts (6.4) and (6.5) to the left in ℓ – (1+r) space, illustrating the result 
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Note that the left side of (6.9) is strictly decreasing in )(* Aλ , implying a unique 

optimal level of investment.  Note also that the optimal level of investment is 

independent of A, that is, the social planner would optimize by choosing the same value 

for L in every period. 

Unfortunately, (6.9) cannot be explicitly solved for the optimal L for purposes of 

comparison with the outcomes discussed in previous sections.  Numerical simulations are 

tractable however.  The next section presents some examples. 

 

7  Some numerical simulations 

It is well known that Schumpeterian growth models can exhibit either insufficient, 

optimal, or excessive growth relative to the social optimum.  (See, for example, Aghion 

and Howitt (1998).)  The intuition is compelling.  On the one hand, successful innovators 

raise the entire future trajectory of the economy, but enjoy profits only until supplanted; 

this suggests growth rates will be too slow.  On the other hand, successful innovators 

destroy the profitability of current producers, a social loss that innovators do not 

internalize; this suggests that growth rates will be too high.  Either effect may dominate.   

An implication of our analysis is that the welfare properties of equilibrium also 

depend on market structure.  If there are at least two innovators, and if growth is 

insufficient in the Bertrand case, it can be increased toward (and even beyond) the 

optimal rate by allowing collusion.  If growth is too high in the Bertrand case, allowing 

collusion worsens the problem.  To provide a feel for the possible magnitudes of these 

effects, some simulations are reported in Table 2.  For various parameter values, the table 

compares the social optimum, the monopoly outcome, Bertrand outcomes for various 

numbers of innovators, and the collusive outcome with the same numbers.  In each 

simulation, imposing Bertrand competition in the case of ties substantially reduces 

growth below the social optimum.  Further it reduces it below the level found in the 

monopoly case.  Growth is significantly increased by allowing collusion even if there are 

only two innovators.  In the last section we illustrate a case where collusion can even lead 

to R&D levels higher than the social optimum. 

 

8  Concluding Remarks 
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This paper has argued that post-innovation market structure matters in discrete-

time Schumpeterian growth models.  Having a single innovator yields a socially 

suboptimal level of R&D and a growth rate that is too low.  When the probability of 

simultaneous discoveries is non-negligible, having more than one innovator lowers 

aggregate growth rates if profits are dissipated by Bertrand competition in the event of a 

tie.  By contrast, having multiple innovators can increase growth if they are allowed to 

collude in the event of a tie.  The increased growth rate, which comes at the cost of 

additional R&D expenditures, may or may not be welfare improving, but simulations 

suggest that allowing collusion may get it wrong by less than prohibiting collusion does.  

The results of R&D ties are usually not identical patents.  We have modeled 

innovation as a discovery that lowers the cost of producing goods.  It is just as easy to 

interpret innovation as an increase in quality of goods produced while cost remains 

constant.  When ties occur in quality improvements the result will most likely be goods 

that are imperfect substitutes.  In this case, the monopoly rents would not be completely 

dissipated and our results from the collusion case would apply. 

Even if ties result in identical goods, however, it is possible that the collusive case 

is still the most relevant if patents are granted to only one firm.  For example, if 

simultaneous discoveries are awarded to the first firm in line at the patent office, or by 

some random process, then the expected reward from a tie will be non-zero and the 

collusive case applies. 
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Appendix 1 

Multiple Innovators: Bertrand 

 

We have four equations, (6.3) – (6.6) in four unknowns, CMCM rrLL &,,  

We can rewrite (6.4) as: 
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Recall (6.3): 
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Hence, it must be that θ=A . 

We can use (6.5) and (6.6) to get: 
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and rewrite A as: 
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Recall the definitions, 
kLk e κρ −≡0 , )1( //)1(

1
JLJJLk kk

eJe κκρ −−− −≡ ; k=M,C 

Suppose CM LL = . 

It is easy to see that this implies A=1<θ. 

 

Next, suppose CM LL < . 

This implies CM
00 ρρ >  and 1

1
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It is possible to rewrite A above as: 
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Since 1<−σθ , we have A<1<θ. 
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Hence it must be that CM LL > . 

 

In this case, CM
00 ρρ <  and 1

1
1 <

−
−

C

M

L
L , so DC and DM above are both negative. 

This, in turn, implies that CM rr > . 
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Appendix 1 

Multiple Innovators: Collusion 

 

Equation (6.7) is: 
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Separating out the first term in the sum gives: 
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With J=1 A=0 and this reduces to (6.1) from the single innovator case 

For a given level of L, 1+r is higher in the case where J>1 than when J=1. 
Since r is decreasing in L for (6.7) and increasing in L for (6.8), moving from J=1 to J>1 
will result in an increase in equilibrium L.  As illustrated below: 
 

 1+r 

L 

(6.8) 

(6.1) 

(6.7) 
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Table 1 

Probabilities of Ties Inferred from Mean Technology Growth & Markups 
 

SIC 
code 

description µ θ ρ ties 
(J=2) 

ties 
(J=5) 

ties 
(J=10) 

ties 
(J=100) 

20 Food 2.16% 1.48 4.49% 1.15% 1.83% 2.06% 2.26%
22 Textile mill products 3.76% 1.06 62.64% 24.13% 35.10% 38.29% 40.99%
23 Apparel & other textiles 2.22% 1.06 37.08% 11.53% 17.63% 19.53% 21.20%
24 Lumber & wood products 2.13% 1.10 21.29% 5.98% 9.34% 10.43% 11.39%
25 Furniture & fixtures 1.47% 1.10 14.68% 3.97% 6.25% 6.99% 7.65%
26 Paper 2.10% 1.30 7.01% 1.82% 2.89% 3.24% 3.55%
28 Chemicals 3.55% 3.12 1.67% 0.42% 0.67% 0.76% 0.83%
29 Petroleum 2.69% 1.15 17.97% 4.95% 7.76% 8.67% 9.49%
30 Rubber & Plastics 1.74% 1.06 29.07% 8.56% 13.25% 14.73% 16.05%
32 Stone, Clay & Glass 1.49% 1.17 8.78% 2.30% 3.64% 4.08% 4.48%
33 Primary Metals 0.27% 1.13 2.10% 0.53% 0.85% 0.95% 1.05%
34 Fabricated Metals 1.53% 1.07 21.79% 6.14% 9.58% 10.69% 11.68%
35 Machinery 3.00% 1.05 59.91% 22.46% 32.88% 35.95% 38.55%
36 Electrical & Electronic 3.82% 1.23 16.62% 4.54% 7.14% 7.98% 8.73%
37 Transportation Equipment 2.33% 1.15 15.51% 4.21% 6.63% 7.41% 8.11%
38 Instruments 2.25% 1.04 56.26% 20.38% 30.09% 32.98% 35.44%

 Average of All 2.28% 1.27 23.55% 7.69% 11.59% 12.80% 13.84%
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Table 2 
Results from Simulations 

 
β=0.95 θ=1.05 κ=25 σ=0.75 

 Monopoly Bertrand Collusion Optimum
no. of R&D firms J=1 J=2 J=5 J=10 J=100 J=2 J=5 J=10 J=100  

R&D labor 3.00% 2.99% 2.98% 2.98% 2.97% 3.56% 4.05% 4.26% 4.46% 12.58% 
% optimal 23.86% 23.76% 23.68% 23.65% 23.63% 28.31% 32.20% 33.83% 35.48% 100.00% 

expected utility 90.65 90.61 90.58 90.57 90.57 92.03 93.09 93.51 93.90 99.60 
% welfare loss -8.98% -9.02% -9.05% -9.06% -9.07% -7.60% -6.53% -6.12% -5.72% 0.00% 

avg. growth rate 2.64% 2.63% 2.63% 2.62% 2.62% 2.95% 3.18% 3.28% 3.36% 4.78% 
 

β=0.90 θ=1.05 κ=25 σ=0.75  
  Monopoly Bertrand Collusion Optimum
no. of R&D firms J=1 J=2 J=5 J=10 J=100 J=2 J=5 J=10 J=100   
R&D labor 2.79% 2.78% 2.77% 2.77% 2.77% 3.31% 3.75% 3.94% 4.13% 9.44%
% optimal 29.61% 29.47% 29.37% 29.34% 29.30% 35.06% 39.78% 41.73% 43.71% 100.00%
expected utility 42.08 42.07 42.06 42.06 42.06 42.32 42.50 42.57 42.63 43.37
% welfare loss -2.98% -2.99% -3.00% -3.01% -3.01% -2.42% -2.00% -1.84% -1.69% 0.00%
avg growth rate 2.51% 2.51% 2.50% 2.50% 2.50% 2.81% 3.04% 3.13% 3.22% 4.53%

 
β=0.95 θ=1.20 κ=25 σ=0.75  

  Monopoly Bertrand Collusion Optimum
no. of R&D firms J=1 J=2 J=5 J=10 J=100 J=2 J=5 J=10 J=100   
R&D labor 6.89% 6.83% 6.73% 6.70% 6.67% 9.42% 12.51% 14.20% 16.30% 22.14%
% optimal 31.12% 30.86% 30.41% 30.27% 30.14% 42.53% 56.49% 64.14% 73.62% 100.00%
expected utility 298.16 294.21 289.70 288.31 287.12 404.22 514.53 558.87 597.69 641.18
% welfare loss -53.50% -54.11% -54.82% -55.04% -55.22% -36.96% -19.75% -12.84% -6.78% 0.00%
avg growth rate 16.43% 16.34% 16.24% 16.21% 16.19% 18.10% 19.12% 19.43% 19.66% 19.92%
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β=0.95 θ=1.05 κ=12.5 σ=0.75  
  Monopoly Bertrand Collusion Optimum
no. of R&D firms J=1 J=2 J=5 J=10 J=100 J=2 J=5 J=10 J=100   
R&D labor 3.42% 3.39% 3.38% 3.37% 3.37% 3.80% 4.09% 4.20% 4.30% 18.67%
% optimal 18.30% 18.17% 18.09% 18.07% 18.05% 20.35% 21.89% 22.48% 23.04% 100.00%
expected utility 86.39 86.35 86.33 86.32 86.32 86.99 87.41 87.57 87.72 96.28
% welfare loss -10.27% -10.31% -10.33% -10.34% -10.35% -9.66% -9.21% -9.04% -8.89% 0.00%
avg growth rate 1.74% 1.73% 1.72% 1.72% 1.72% 1.89% 2.00% 2.04% 2.08% 4.52%

 
β=0.95 θ=1.05 κ=25 σ=0.10  

  Monopoly Bertrand Collusion Optimum
no. of R&D firms J=1 J=2 J=5 J=10 J=100 J=2 J=5 J=10 J=100   
R&D labor 3.07% 3.03% 3.02% 3.01% 3.01% 3.65% 4.17% 4.38% 4.60% 14.48%
% optimal 21.19% 20.95% 20.83% 20.80% 20.77% 25.23% 28.77% 30.27% 31.79% 100.00%
expected utility 39.81 39.57 39.45 39.41 39.39 43.96 47.77 49.42 51.13 113.62
% welfare loss -64.96% -65.17% -65.28% -65.31% -65.33% -61.31% -57.95% -56.50% -55.00% 0.00%
avg growth rate 2.68% 2.66% 2.65% 2.64% 2.64% 2.99% 3.24% 3.33% 3.42% 4.87%

 
β=0.95 θ=2.00 κ=25 σ=0.95  

  Monopoly Bertrand Collusion Optimum
no. of R&D firms J=1 J=2 J=5 J=10 J=100 J=2 J=5 J=10 J=100   
R&D labor 12.52% 12.32% 11.56% 11.37% 11.21% 19.16% 29.86% 37.31% 48.07% 26.14%
% optimal 47.91% 47.15% 44.22% 43.48% 42.89% 73.31% 114.23% 142.73% 183.89% 100.00%
expected utility 1129.84 1108.50 1094.80 1091.39 1088.69 1184.72 1189.92 1184.11 1173.16 1191.44
% welfare loss -5.17% -6.96% -8.11% -8.40% -8.62% -0.56% -0.13% -0.61% -1.53% 0.00%
avg growth rate 95.63% 94.28% 93.36% 93.13% 92.95% 99.17% 99.94% 99.99% 100.00% 99.85%
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