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Abstract

When a price limit regime exists for all of the stocks involved in an index, the

index return is an aggregate of limited variables and thereby it is restricted to the

same limits. We argue that neither a censored nor a truncated distribution model is

appropriate for the aggregate return. The proposed mixed beta distribution allows

for varying conditional mean and volatility, and with increasing volatility it changes

from leptokurtic to platykurtic densities. The model is illustrated and statistically

evaluated with an empirical application to the Shanghai stock market index returns

under a 10 % price change limit regime.
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1 Introduction

Daily price limits for all traded stocks are implemented in many stock markets, for ex-

ample, in France, Italy, Japan, and especially in emerging markets, for example, China,

Korea, Taiwan, and Thailand. Within a trading day, the price for a single stock cannot

move outside the limits, and the daily return is restricted to an interval [a, b], a < 0 < b.

As a consequence, the daily return on the stock market index is restricted to the same

interval. The focus of this paper is on modelling the conditional distribution of stock

index returns, when a price change limit applies to the individual stocks. Generally, the

adequate specification of the conditional distribution of index returns is an important

issue for the assessment of the expected volatility and market risk, for portfolio selection

as well as for the pricing of derivatives.1

The intention of price limits is to decrease volatility. In fact, setting a floor a and a ceiling

b for the stock price returns within a day, the variance of the return on individual stocks

as well as on the stock market index is restricted to be less than or equal to (b−a)2

4
, where

the maximum variance is reached when the probability mass is equally distributed to the

extreme returns a and b. The variance bound, however, does not guarantee that the price

limits effectively decrease volatility.

How should the statistical analysis of index returns account for the price limits? Common

practice in the analysis of limited variables suggests to check whether the censored or the

truncated distribution model is appropriate. For a sample of individual stock returns

that includes those daily returns which hit the limits, the doubly censored distribution

appears to be suitable. For at least two reasons, however, the censored distribution model

does not match with the index return data. First and primarily, even when the index

movements are affected quite frequently by limit hits of individual stocks, the index return

itself will rarely, if at all, hit the limit. Due to its aggregate nature the index return data

usually will not even reveal on which days it is affected by limit hits of stocks. Second, not

1For an assessment of market risk under a price limit regime see Friedmann and Sanddorf-Köhle

(2001).
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only the index return but also the individual stocks may be influenced by the price limit

regime already when the price approaches the limit. Several authors suggest a magnet

effect of price limits, i.e. the asset price accelerates towards the limits as it gets closer

to the limits, see Aran and Cook (1997), Lehmann (1989), and Subrahmanyam (1994),

and for empirical support Cho et al. (2002). The reasons proposed for the magnet effect

are mainly the fear for illiquidity, causing traders to sell which pulls the price closer to

the floor, and behavioral investors who believe in price trends and, anticipating that the

ceiling will be reached, contribute to accelerate price changes as price gets closer to the

ceiling.

Because practically no observed index returns hit the limits, a doubly truncated distri-

bution model with support on the finite interval [a, b] may be considered to be more

promising. The natural candidate for truncation is the normal distribution or a more

general family of bell shaped distributions. Any family of doubly truncated bell shaped

density functions, however, is fairly restrictive with respect to the analysis of price limit

effects. For example, it does not allow for U-shaped densities, which concentrate the prob-

ability mass close to the floor and to the ceiling of the admissible range of index returns.

For periods of extreme volatility, with an increasing proportion of stocks which hit the

limits, U-shaped densities should not be excluded a priori. More formally, the class of

doubly truncated bell shaped distributions restricts the possible variances to the interval

[0, (b−a)2

12
]. The maximum variance applies to the continuous uniform distribution over

[a, b] as a limiting case of doubly truncating a bell shaped density whose variance tends

to infinity. Thus, to use a truncated normal model for the index returns under a price

limit regime would artificially restrict the volatility and thereby exaggerate any potential

dampening effect of the price limit on the volatility.

Another drawback of using a truncated or censored normal distribution for approximat-

ing the conditional return distribution is the implied reduction of the kurtosis. Empirical

evidence provided by index return data under price limit regimes indicates that the con-

ditional distribution model should be flexible enough to allow for leptokurtosis, see for

example Su and Fleisher (1998) and Friedmann and Sanddorf-Köhle (2002).
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Summarizing so far, it is not surprising that the common approach to the analysis of

stock index returns is to ignore any price limits imposed on the traded stocks. Instead,

in this paper we propose a flexible statistical model to account for the price limits in the

specification of the conditional mean and volatility dynamics as well as in the conditional

distribution model with support on [a, b].

The paper is organized as follows. Section 2 considers the price limit implications for an

MA(1)-GJR-GARCH(1,1) specification of the conditional mean and volatility dynamics

in a parametric conditional distribution framework. Section 3 develops a mixed beta

distribution model with a time varying µ− σ−parameterization. The distribution model

is based on two beta distributions, and, contrary to the truncated normal model, it allows

for the whole range of admissible volatilities. Depending on the time varying conditional

mean and volatility the kurtosis and skewness also vary over time, where the shape of

the density changes with increasing volatility from a leptokurtic bell shape over a hat

shape (with the probability concentrated around the center and close to the limits) to a

platykurtic U-shape. The distribution depends, apart from the time varying mean and

volatility, on two additional time invariant parameters which determine the weighting

between the two beta distributions and the volatility spread between them.

Section 4 provides an empirical application of the model to Chinese stock indices subject

to a 10% price limit. We consider the daily returns on the Shanghai A index (domestic

investors) and the Shanghai B index (foreign investors) for the time period from December

1996 until September 1999. Based on the maximum likelihood estimates we apply various

graphical evaluations and formal tests of the model specification, as suggested by Diebold,

Gunther, and Tay (1998). The applied test procedures are based on the Rosenblatt

transformation of the return series, which should provide identically, uniformly distributed

random variables with support on the unit interval, if the specification is correct. After a

subsequent transformation, tests for Gaussian white noise are used to evaluate the model

specification. Overall the results confirm that the model provides a close approximation

to the conditional distribution of the Shanghai A and B index returns subject to a 10 %

price limit regime. We conclude with section 5.
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2 Modelling the conditional distribution of limited

index returns

Suppose that the range of values of daily index returns is restricted to the interval [a, b].

For the distribution of the index return rt conditional on the past of the process up

to t − 1 we assume a parametric distribution model with support [a, b], which specifies

the conditional density ft for a given conditional mean µt = Et−1(rt), given conditional

variance σ2
t = Vart−1(rt), and additional time invariant parameters ν,

rt|rt−1, rt−2, . . . ∼ ft(r) = f(r;µt, σ
2
t ,ν), r ∈ [a, b]. (1)

With regard to the conditional mean return we will check the index return data for linear

dependencies. A priori, there is some theoretical and empirical evidence that price limits

cause linear dependencies in the individual stock return data, see Shen and Wang (1998).

Fama (1989) supposed that price discovery is delayed, when price constraints prevent

price from reacting fully to news ε, that means when price constraints prevent price from

reaching its new equilibrium. Accounting for this potentially delayed price response to

news, we assume a first order moving average process,

µt = µ+ ψεt−1, |ψ| < 1, (2)

where the news variable εt is represented by the unpredictable index return, i.e.

εt ≡ rt − µt.

Apart from the commonly observed nonlinear dependencies in daily stock market returns

the case of a price limit regime provides an additional argument for volatility spillovers

due to the shift of trading activities until the subsequent trading days, see Fama (1989),

and Kim and Rhee (1997) for empirical support of the volatility spillover hypothesis. For

the volatility dynamics we propose to use the GARCH approach of Glosten, Jagannathan

and Runkle (1993), GJR for short, providing a flexible and parsimonious approximation

of conditional variance dynamics. Its special characteristic is to allow for asymmetric
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volatility effects:

σ2
t = ω + (α + γI)ε2

t−1 + βσ2
t−1. (3)

Here, I = 1 if εt−1 < 0 and I = 0 if εt−1 ≥ 0. For σ2
t > 0 ∀ t the conditions ω > 0, α ≥ 0,

α+ γ ≥ 0, and β ≥ 0 are required.

For the process to be well-defined in the framework of a price limit regime with a < rt < b,

the conditional variance has to fulfil the restriction

σ2
t ≤ (b− µt)(µt − a), (4)

where (b − µt)(µt − a) is the maximum variance over all probability distributions with

support [a, b] and mean µt.
2 The upper bound for the variance is even lower, if the

Bernoulli distribution is not a special case of the assumed probability model. For example,

for the doubly truncated normal distribution the upper bound for the variance is equal

to (b− a)2/12.

Due to the restricted range of εt, implied by the price change limit, the conditional variance

of the MA(1)-GJR GARCH(1,1) specification with γ ≥ 0 is bounded by

ω

1 − β
≤ σ2

t ≤ ω + max[(α + γ)ε2
min , αε

2
max]

1 − β
, (5)

where

εmin =



















(a− µ) + ψ(µ− b)

1 − ψ2
for 0 ≤ ψ < 1

a− µ

1 + ψ
for −1 < ψ ≤ 0

εmax =



















(b− µ) + ψ(µ− a)

1 − ψ2
for 0 ≤ ψ < 1

b− µ

1 + ψ
for −1 < ψ ≤ 0

.

Therefore, a sufficient condition for the predicted volatility to be well-defined is

ω + max[(α + γ)ε2
min , αε

2
max]

1 − β
≤ min

µt

[(b− µt)(µt − a)], (6)

2The maximum variance is reached with distributing the probability mass to the interval limits,

according to

p := Prob(rt = b) =
µt − a

b− a
, Prob(rt = a) = 1 − p.
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where the conditional mean µt is restricted by

µ+ min[ψεmin , ψεmax] ≤ µt ≤ µ+ max[ψεmin , ψεmax]. (7)

3 Beta distribution and mixed beta distribution

The beta distribution model is known to comprise a large variety of different shapes

of a distribution over a finite range. After briefly reviewing the beta distribution, we

will generalize it to a mixture of beta distributions in the sense of section 3. We will

demonstrate that the mixed beta distribution captures very well the special features of

the index return distribution when a price limit regime applies to the individual stocks.

We have assumed that the range of values of the index returns is restricted to the interval

[a, b]. Modelling the conditional distribution of the index return r with a beta distribution

is equivalent to assuming that the conditional distribution of the transformed return x,

x =
r − a

b− a
(8)

is given by the standard form of the beta distribution with the probability density function

f(x) =
1

B(c, d)
xc−1(1 − x)d−1, 0 < x < 1, (9)

with real parameters c > 0, d > 0, and B denoting the beta function. The mean and

variance of the standard beta distribution are given by

µx =
c

c+ d
, σ2

x =
µx(1 − µx)

c+ d+ 1
. (10)

For our purpose it is convenient to reparameterize the density in terms of µx and σ2
x as

the given parameters, with

0 < µx < 1, and 0 < σ2
x < µx(1 − µx) ≤

1

4
,

where the upper bound of the variance applies to the limiting case of a Bernoulli distri-

bution. Obviously the range of values for the mean and for the variance is not subject

to any restriction other than the finite support of the distribution. Mean and variance of
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the transformed return x are related to the mean µ and variance σ2 of the index return

r by µx = µ−a

b−a
and σ2

x = σ2

(b−a)2
. Then the parameters c and d can be expressed by

c = µxθ, and d = (1 − µx)θ, with θ =
µx(1 − µx)

σ2
x

− 1. (11)

Notice that the parameter θ = c+d indicates the precision of the distribution, with θ = 0,

if the variance takes its maximum value, and θ going to infinity, if the variance tends to

zero.

It is well known that the family of beta distributions includes unimodal distributions for

c > 1, d > 1 (i.e. low volatility), U-shaped distributions for c < 1, d < 1, and J-shaped

distributions for (c− 1)(d− 1) < 0.3

The skewness α3 and the kurtosis α4 of the beta distribution can be expressed in terms

of µx and θ as

α3 =
4(0.5 − µx)
√

µx(1 − µx)
·
√

1 + θ

2 + θ
, (12)

α4 = 3 − 6

3 + θ

(

1 − k

(

1 + θ

2 + θ

))

, (13)

with

k =
1

µx(1 − µx)
− 4 ≥ 0.

From (13) it follows immediately, that a necessary condition for the beta distribution to

be leptokurtic is k > 1, i.e. µx(1−µx) < 0.2. When applying the beta distribution model

to index return series under a symmetric percentage price change limit, the transformed

conditional mean return will typically be close to 0.5. Thus, the beta distribution would

be restricted to have a negative excess kurtosis. In order to obtain a more flexible family

of distributions we propose to generalize the simple beta distribution to a mixture of

two beta distributions with parameters c1, d1, and c2, d2, which have the same mean µx,

but differ in their respective precision θ1 and θ2, say θ2 < θ1, or equivalently σ2
2 > σ2

1.

Generally, the excess kurtosis of the mixture of two distributions with the same mean and

3See Johnson, Kotz, Balakrishnan (1996), chapter 25.
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existing moments up to the fourth order can be arbitrary large, depending on the mixing

parameter and the second moments of the component distributions, see appendix A.1.

Thus we propose the following probability density function:

f(x) = πf1(x) + (1 − π)f2(x), 0 < x < 1 (14)

with

f1(x) =
1

B(c1, d1)
xc1−1(1 − x)d1−1

f2(x) =
1

B(c2, d2)
xc2−1(1 − x)d2−1,

with

c1 = µxθ1 and d1 = (1 − µx)θ1,

c2 = µxθ2 and d2 = (1 − µx)θ2,

The variance of the mixed beta distribution (14) is given by

σ2
x = πσ2

1 + (1 − π)σ2
2 = µx(1 − µx)

(

π

1 + θ1
+

(1 − π)

1 + θ2

)

=:
µx(1 − µx)

1 + θ
, θ > 0, (15)

where the precision θ of the mixed distribution is related to the precision of the component

distributions by
1

1 + θ
=

π

1 + θ1

+
1 − π

1 + θ2

. (16)

Defining η := θ2/θ1, 0 < η < 1, equation (16) can be solved for θ1 and θ2 = ηθ1, as a

function of any given precision θ ≥ 0, that means, as a function of any given variance

σ2
x ≤ µx(1 − µx):

θ1 = g(θ) +
√

g2(θ) + θ/η, and θ2 = η θ1, (17)

with

g(θ) =
1

2

((

π +
1 − π

η

)

θ −
(

π

η
+ 1 − π

))

. (18)

In the following we consider the mixed beta distribution parameterized with µx, σ
2
x, π, η

for modelling the conditional distribution of stock index returns. Using the mixed beta
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Figure 1:

Component volatilities (σt,1, σt,2) for different values of η with µx = 0.5

distribution for modelling the time varying conditional distribution of index returns un-

der a price limit regime, we allow for time varying conditional moments µt and σ2
t of

the index returns, which transform according to section 2 into the conditional moments

µxt
= µt−a

b−a
and σ2

xt
=

σ2

t

(b−a)2
. Then the precision θt is implied by (15). We assume time

invariant weights π, 1−π of the component distributions, as well as a time invariant ratio

η = θt,2/θt,1. This assumption means that the dynamics of (θt,1, θt,2) are implied by the

dynamics of (µxt
, σ2

xt
) according to (17) and (18).

The assumption of a constant η implies a nonlinear relation between the volatilities σt,1

and σt,2, with 0 < σ2
t,1 < σ2

t,2 ≤ µxt
(1 − µxt

), of the mixed distribution’s components.

Figure 1 displays this relation, where µxt
= 0.5, for various values of η. For tranquile

periods the high volatility σt,2 is allowed to be considerably higher than σt,1, whereas in

extremely volatile periods both standard deviations are enforced to approach the upper

bound. Obviously our specification covers a wide range of admissible relations between the

component volatilities. Notwithstanding the parsimonious specification with a constant

η the shape of the proposed density model adapts to different volatilities in an extremely
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Figure 2:

Conditional densities of Shanghai B index returns for

σx,0.50 = 0.12, σx,0.90 = 0.19, σx,0.95 = 0.22, σx,0.99 = 0.26

(Mixed beta distribution with π = 0.811, η = 0.127, µx = 0.516)

flexible way. As an example, consider the different shapes of the mixed beta density

for alternative variances from an application to the conditional distribution of the daily

returns on the Shanghai B-share index, when it was affected by a 10%-price change limit

imposed on the individual shares.4 Figure 2 displays the conditional densities of the

transformed returns over the unit interval for the median volatility σx,0.50 = 0.12, and

for the volatility percentiles σx,0.90 = 0.19, σx,0.95 = 0.22, σx,0.99 = 0.26. The parameters

of the density are π = 0.811, η = 0.127, with the unconditional mean µx = 0.516. The

shape of the distribution also easily adapts to a time varying conditional mean µxt
. The

conditional distribution of the transformed returns in turn determines the conditional

distribution of the index return rt = a + (b − a)xt. Notice that in contrast to common

4Our empirical analysis relates to the dynamics of the daily stock index returns on the Shanghai A-

share index (domestic investors) and on the B-share index (foreign investors) when a 10%-price change

limit was imposed on the individual shares (for details of the specification of the volatility dynamics and

for a statistical evaluation of the model specification see section 4).
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Figure 3: Kurtosis as a function of volatility (Shanghai A index)

π = 0.942, η = 0.075, µ = 0.075%

volatility modelling with an infinite range of the returns, in our case the conditional

standard deviation σt cannot be considered as a scaling factor applied to an invariant

distribution of standardized returns. Using the mixed beta distribution with a limited

range according to the price change limits, the shape of the distribution changes with the

standard deviation σt. In particular the time varying volatility implies that the kurtosis

also varies over time, and, if µxt
6= 0.5, the skewness as well. The range of possible values

for the kurtosis and skewness depends on the parameters π, η. It is getting larger with

an increasing difference in the variance of the two component distributions (η decreasing)

and an increasing weight π of the low volatility component.

As an illustration consider figure 3, which displays the kurtosis as a function of the

volatility of the daily returns on the Shanghai A-share index, for which we have specified a

time invariant conditional mean return. In the graphical display of the functional relation

between kurtosis and volatility we have marked the volatility/kurtosis percentiles for 50%,

90%, 95%, and 99%. One observes that the conditional distribution is leptokurtic during

the periods with low volatility, that means for more than 95% of the daily returns on
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the Shanghai-A index. Only when the predicted volatility is very high, the limited range

of the returns induces a negative excess kurtosis. Generally the range for the volatility

and for the kutosis of the limited index returns is restricted by the parameters for the

volatility dynamics as indicated.

Negative excess kurtosis is an inherent implication of extremely high volatility under a

price limit regime. The market volatility arrives at its upper bound when the probability

mass is equally distributed to the price limits, with the excess kurtosis equal to −2. Our

distribution model includes this implication of price limits as a special case. Using a more

restrictive model such as the truncated normal distribution, the excess kurtosis is also

negative, arriving at the value of −1.2 in the limiting case of a uniform distribution.

Whether the excess kurtosis is positive in tranquile periods is an empirical question. In

the framework of our model specification it is related to the empirical relevance of using

a mixture of different beta distributions instead of a simple beta distribution. Figure 3

already indicates the necessity of mixing, because the excess kurtosis is positive for more

than 95 % of our predicted volatilities.

4 An empirical application

Daily price limits are currently in place in many international stock markets, e.g. in

France, Italy, Japan, and especially in emerging markets, e.g. China, Korea, Taiwan, and

Thailand. In China, after a period of more than four years without any price regulation,

a price change limit was introduced on December 16, 1996 (Chinese Securities News,

December 1996).

In this section we will apply the proposed framework for modelling the conditional dis-

tribution under a price change limit regime to Chinese stock market index returns, for

the period from December 1996 until September 1999. Apart from daily price limits one

main characteristic of Chinese stock markets is market segmentation. There are two types

of shares traded at the Shanghai stock exchange. So called A-shares, traded in domes-
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tic currency, are designated only for private Chinese citizens and domestic institutions.

B-shares, introduced in Shanghai in February 1992, are designed to attract foreign capi-

tal. B-shares can be owned and traded by foreign investors only, and are held mainly by

international institutional investors.

The data base for our analysis consists of the value-weighted daily closing price indices

for the Shanghai A-shares and B-shares.5

4.1 Basic Statistics

Table 1 presents basic statistics of continuous daily market return rates. The second

column, giving the mean, standard deviation, and the respective t−value, shows that

for all of the index return series the mean daily return is not significantly different from

zero. The third column presents the skewness and kurtosis together with the Jarque-Bera

statistic. According to the kurtosis of the return series we conclude that the distributions

are clearly nonnormal. This conclusion is strongly supported by the Jarque-Bera statistic.

With respect to the minimum and maximum returns, notice that the price change limit

refers to the discrete rate of return, i.e. 0.9pt−1 ≤ pt ≤ 1.1pt−1, while the analyzed data

represents continuous return rates rt = ln(pt) − ln(pt−1). Thus under the price limit

regime the observed return rates should satisfy the restriction ln(0.9) = −10.54% ≤ rt ≤
9.53% = ln(1.1).6

The Ljung-Box statistics in the last column of table 1 were used to test for serial corre-

lation. With respect to the significance level notice that the Ljung-Box statistics have

been corrected to allow for ARCH effects.7 In all cases the null hypothesis of white noise

cannot be rejected. Due to the correction for general ARCH effects, however, the power

of the modified Ljung-Box test decreases.

5The data is from Global Financial Data.
6For computational reasons we have extended the range slightly to [1.01 · ln(0.9), 1.01 · ln(1.1)] in order

to avoid realizations at the limits.
7See Diebold (1995) pp. 444-445.
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Table 1:

Daily Market Returns from 1992 to 1999: Test Statistics

Mean Skewn. Min LB*(6)

Index StdDev Kurt. Med. LB*(12)

t(µ = 0) JB Max LB*(18)

Sha.A 0.055 −1.06 −10.80 6.07 (0.416)

T = 677 2.008 9.27 0.089 12.78 (0.385)

0.708 (0.479) 1207.3 (0.000) 7.45 19.60 (0.356)

Sha.B −0.061 0.26 −10.09 10.32 (0.112)

T = 678 2.829 5.07 −0.145 17.73 (0.124)

−0.557 (0.578) 123.9 (0.000) 9.41 20.48 (0.306)

p-values in parentheses, JB: Jarque-Bera-Statistic, LB∗(m): under ARCH corrected Ljung-Box-Test.

4.2 Estimation results

For the conditional mean and volatility dynamics we estimate the model

µt = µ+ ψεt−1, |ψ| < 1,

σ2
t = ω + (α+ γI)ε2

t−1 + βσ2
t−1.

Let φ := (µ, ψ, ω, α, β, γ)′ and ν := (π, η)′. The log-likelihood function is specified using

the mixed beta distribution model according to section 4:

lnL(φ,ν|rT , rT−1, . . . ; a, b) =
∑

t

ln [π f1(rt; φ,ν, a, b) + (1 − π) f2(rt; φ,ν, a, b)] .

The recursive formula for the log-likelihood of the observation rt is given in the appendix

A.2. Obviously the log-likelihood function is highly nonlinear in the parameters. The

maximization of the log-likelihood function has been performed with the BHHH algorithm.

The application of the BHHH algorithm to various sets of initial values has converged to

the same maximum. The parameter estimates are presented in table 2. For the original

model specification the estimate of ψ is insignificant in case of the A-share index, while

the estimate of γ is insignificant for the B-share index. In table 2 we report only the

estimation results for the final specifications. The estimates of the GJR parameters α

and β are highly significant for both segments, confirming the presence of autoregressive
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Table 2:

Parameter Estimates

Mean GJR-Parameter Mixed Beta

µ ψ ω α β γ 1 − π η LogL

Sha.A 0.075 0.637 0.196 0.534 0.162 0.059 0.078 −1265.5

(1.46) (4.60) (3.53) (8.36) (2.03) (3.37) (4.16)

Sha.B -0.184 0.134 0.893 0.193 0.690 0.189 0.127 −1558.9

(-2.08) (3.55) (3.56) (5.26) (12.8) (4.64) (7.33)

t-values in parentheses

conditional heteroskedasticity in the series. With respect to the asymmetric reaction of

the predicted volatility to good and bad news, the expected pattern of a stronger volatility

response to bad news is significant only in case of the A-share index.

Inserting the parameter estimates in (7) and (5), we get the following bounds for the

conditional mean and volatility for the two index returns:

A index: µt = 0.075 % 1.176 % ≤ σt ≤ 9.386 %

B index: −1.774 % ≤ µt ≤ 1.331 % 1.697 % ≤ σt ≤ 9.516 %.

For both of the index returns the model implied range of volatility is consistent with the

admissible range (6) due to the price limit, because

√

min
µt

((b− µt)(µt − a)) = 10.017% for the A index,

√

min
µt

((b− µt)(µt − a)) = 9.865% for the B index.

For comparison, using a doubly truncated bell shaped density for the conditional distri-

bution, the volatility would be restricted to be less than (b − a)/
√

12 = 5.85%, i.e., the

volatility in the case of a uniform distribution. Thus, whenever the GARCH model pre-

dicts volatilities above this artificial limit a doubly truncated normal distribution model,

for example, breaks down.

With respect to a simple beta distribution model as a competing approach, the estimated

density parameters η and π clearly indicate the necessity of using a mixture of two beta
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distributions as low and high volatility components. For an illustration of the wide range

of different shapes of the estimated densities, see figure 2. The estimates of 1 − π, giving

the weight of the high volatility component, are 0.058 and 0.189. Both estimates are

significant at the 1 % level. The estimated values of η are 0.075 for the domestic index

return and 0.127 for the foreign index return, and both are significantly different from

1, displaying a high volatility spread between the two component distributions, compare

figure 1. With parameter combinations π close to unity and η near zero, the mixed beta

distribution model allows for a wide range of the kurtosis as a function of the volatility,

see figure 3, whereas a simple beta distribution model would a priori imply a negative

excess kurtosis.

4.3 Density Evaluation

In this section we apply several specification tests to the estimated model. The applied

testing procedure basically relies on the research of Rosenblatt (1952), who shows that

the transformation of a random variable with its own cumulative distribution function

gives a uniformly distributed random variable.

Let {ft(rt|rt−1, rt−2 . . .)}T
t=1 be the sequence of the true conditional densities governing

a return series rt, and let {f̂t(rt|rt−1, rt−2 . . .)}T
t=1 be a corresponding series of specified

densities with the estimates inserted for the parameters. Finally, let {rt}T
t=1 denote the

corresponding series of realizations. Diebold, Gunther, and Tay (1998) show, that the

transformed random variables

ut =
∫ rt

−∞

f̂t(w) dw = F̂t(rt), t = 1, . . . , T

have support on the unit interval and are i.i.d. and uniformly distributed, if the specified

density coincides with the true density, i.e. f̂t(rt|rt−1, rt−2, . . .) = ft(rt|rt−1, rt−2, . . .).

A wide variety of tests and graphical tools are then available to check both for indepen-

dence and uniformity. One simple graphical display to evaluate the appropriateness of a

probability model is the so-called P-P plot.8 The P-P plot is based on the ordered ran-

8See e.g. Spanos (1999) pp. 232
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Figure 4:

P-P plot – Shanghai A index

dom variables u(1) < . . . < u(t) < . . . < u(T ). In the case where the ut are i.i.d uniformly

distributed, the ordered random variables u(t) are beta distributed with mean t/(T + 1),

t = 1, . . . , T . This suggests a graphical way to check the distribution assumption using

the P-P plot:
(

t

T + 1
, u(t)

)

t = 1, . . . , T.

If the distribution model is correctly specified then the transformed variables ut are uni-

formly distributed and the plot should roughly look like a straight line through the origin.

For both, the Shanghai A and B index return series, the transformed variables were

calculated using the estimated mixed beta distributions.9 In figure 4 we show the P-P

plot together with the 95% confidence band for the transformed Shanghai A return series.

In both cases the plot lies within the range of the 95% confidence band. This result

indicates that the specified mixed beta distribution provides a good approximation to the

9The graphics for the Shanghai A index are presented in the paper; the figures for the Shanghai B

index are available from the authors on request. The integration of the mixed beta density function was

performed by Monte Carlo simulation with 30,000 replications.
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Figure 5:

Histogram of u series – Shanghai A index

conditional distribution of the Shanghai A and B-share index returns.

After confirming the appropriateness of the distribution model, we now examine whether

the transformed variables ut are i.i.d. The obvious graphical tool to detect linear depen-

dencies is the correlogram of (u − ū). In order to detect nonlinear dependencies we also

examine the correlograms of powers of (u− ū). The correlograms are supplemented with

the usual Bartlett 95% confidence intervals. Figure 5 contains the correlogram of (u− ū)

and powers of (u − ū) up to order four. For both the A index returns and the B index

returns, the correlogram of (u − ū) as well as the correlograms of the powers of (u − ū)

display no serious dependencies.

Additional to the graphical assessment of the u-series we apply a nonparametric test for

uniformity. Crnkovic and Drachman (1996) suggested to use the Kuiper test, which is

based on the distance between the observed density of u and the theoretical density. The

Kuiper statistics for the two transformed index return series are given in the sixth column

of table 3. At a significance level of 5% the null hypothesis of a uniform distribution

cannot be rejected for the u series.
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Table 3:

Density Evaluation

Index Mean Skewn. LR

t(µz = 0) Kurtosis KS

Variance JB Kuiper(u)

t(σ2
z = 1)

Sha.A 0.002 -0.168 (0.075) 0.469 (0.926)

0.049 (0.961) 3.124 (0.512) 0.024 [0.034]∗

1.014 3.622 (0.164) 1.078 (0.699)

0.217 (0.828)

Sha.B 0.020 0.195 (0.039) 3.359 (0.340)

0.525 (0.599) 3.175 (0.386) 0.028 [0.034]∗

0.997 5.161 (0.076) 1.131 (0.619)

-0.004 (0.940)

p-values in parentheses; LR: likelihood-ratio statistic for autocorrelation;

KS: Kolomogorov-Smirnov statistic; ∗: critical value at the 5% significance level.

The applied tests for uniformity are, as common, nonparametric and notoriously data

intensive. Crnkovic and Drachman recommend that for the application of the Kuiper test

at least 1000 observations should be available. The poor small sample properties of the

test are also confirmed by simulation studies of Berkowitz (2001). On the other hand, it

is difficult to develop parametric tests for uniformity, e.g. likelihood ratio tests, because

of the discontinuity of the objective function. For this reason, Berkowitz (2001) proposes

to consider a further transformation of the data. If the probability model is correctly

specified, then the following transformation of the u series

zt = Φ−1
(
∫ rt

−∞

f̂t(w) dw
)

= Φ−1(ut)
i.i.d.∼ N(0, 1),

where Φ−1 denotes the inverse of the standard normal cumulative distribution function,

yields an i.i.d. N(0,1) distributed time series.10 The advantage of this transformation

is that under the null the data follow a normal distribution and thus a wide variety of

parametric as well as nonparametric tests are available.

10See Berkowitz (2001).
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If our conditional density specification is appropriate for the Chinese stock index returns,

then the corresponding z series should have zero mean and unit variance. The t statistics

in table 3 indicate that in all cases the null cannot be rejected. The results of the

usual tests for skewness and kurtosis applied to the z series of the Shanghai A returns

confirm our density specification. In the case of the Shanghai B returns the skewness test

indicates significant positive skewness, while the hypothesis of zero excess kurtosis cannot

be rejected at the 5% level. However, when the Jarque-Bera test is applied to the z series,

the null of a normal distribution cannot be rejected at the 5% level for both index return

series. Using the Kolmogorov-Smirnov test to check for normality of the z series confirms

the above conclusion.

Finally, we consider the likelihood ratio test for the z series developed by Berkowitz (2001)

to test against a first-order autoregressive alternative with mean and variance possibly

different from (0,1). LR in table 3 denotes the likelihood ratio test statistic. For the A

index as well as for the B index first-order serial correlation cannot be detected at the 5%

significance level.

5 Conclusions

In this paper we propose a new approach for the conditional distribution of daily stock

index returns when for all of the involved stocks a price limit is imposed. Obviously

the price limits on the individual stocks imply that the index return, and the return on

any portfolio as well, is bounded in the same way. Empirically the aggregate return, in

contrast to the individual stocks, will rarely, if at all, hit the limit. For this reason a

censored distribution model is not suitable for the portfolio return. On the other hand

a truncated normal distribution is too restrictive both with regard to the volatility and

to the kurtosis of the conditional return distribution. In contrast, the proposed mixed

beta distribution model appears to capture the special features of the limited index return

very well. In particular, it allows for a wide range of the kurtosis, depending on the time

varying volatility.
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Our analysis provides some important insights for higher conditional moments of index

returns under a price change limit. Not only the volatility is restricted by the limits, but

also the kurtosis is typically less than three in periods of extremely high volatility. On the

other hand our empirical study of Chinese stock market index returns under price limits

indicates that for the major part of the sample, where the volatility is moderate or low,

the conditional excess kurtosis is positive and compares with the standard observation

for daily return time series. A simple beta distribution model, which is contained in our

approach as a special case, would be unable to capture this feature of the data.

The distributional form of asset returns is highly relevant for theoretical and empirical

analyses in economics and finance, for example, in asset, portfolio and option pricing. It

is beyond the scope of this paper and suggested as a topic of future research to investigate

the implications of the mixed beta distribution model, which appears to be appropriate

for index returns under price limits.

21



A Appendix

A.1 Moments of mixed distributions

We derive some simple properties of the central moments of a density function f that is

obtained as a mixture of two densities f1 and f2 with the same mean µ,

f(x) = πf1(x) + (1 − π)f2(x), 0 < π < 1, x ∈ IR.

The mixed density f has the same mean µ and if for n ≥ 2 the central moments µn,i =

E(Xi − µ)n exist for the random variabels Xi with density function fi, i = 1, 2, then the

n−th central moment of the random variable X with the mixed density f is

µn = E(X − µ)n = πµn,1 + (1 − π)µn,2.

Denoting the second central moments of f1, f2, f also as σ2
1 , σ

2
2, σ

2, respectively, the fol-

lowing Lemma holds for the skewness α3 = µ3

σ3 and the kurtosis α4 = µ4

σ4 :

Lemma 1 The kurtosis (skewness) of the mixed density f can be written as a multiple

of an averaged kurtosis (skewness) of the component distributions:

αn =
µn

σn
= Mnᾱn n = 3, 4,

with

Mn = π
σn

1

σn
+ (1 − π)

σn
2

σn
≥ 1

ᾱn = ωnαn,1 + (1 − ωn)αn,2

ωn =
πσn

1

πσn
1 + (1 − π)σn

2

.

Proof:

For n ≥ 3 we have

αn =
µn

σn
=

πµn,1 + (1 − π)µn,2

σn

=
πσn

1αn,1 + (1 − π)σn
2αn,2

σn

=
(πσn

1 + (1 − π)σn
2 )

σn
· (πσn

1αn,1 + (1 − π)σn
2αn,2)

(πσn
1 + (1 − π)σn

2 )

= Mn · ᾱn.

22



With regard to the size of Mn we get

Mn =
πσn

1 + (1 − π)σn
2

σn
=
π(σ2

1)
n

2 + (1 − π)(σ2
2)

n

2

(πσ2
1 + (1 − π)σ2

2)
n

2

=
E[(σ̃2)

n

2 ]

(E[σ̃2])
n

2

≥ 1

by Jensen’s inequality, where σ̃2 takes the values σ2
1 , σ

2
2 with probabilities π, 1−π, respec-

tively.

Corollary 1 The kurtosis of the mixed distribution has no upper bound.

Proof:

Let the variance of one of the component distributions tend to zero and its respective

weight tend to one, say σ2
1 = δ(1 − π), π → 1, for some δ > 0, whereas σ2

2 > 0 is fixed,

then M4 ≈ (1−π)−1 grows to infinity. The unboundedness of M4 implies that the kurtosis

α4 of the mixed density has no upper bound.

The following corollary gives another instructive representation of the factor M4 for the

kurtosis of the mixed density.

Corollary 2 Equivalent to the formula for α4 in Lemma 1 the kurtosis of the mixed

density f is given by

α4 = (1 + Var

(

σ̃2

σ2

)

) · ᾱ4.

Proof:

With E(σ̃2) = πσ2
1 + (1 − π)σ2

2 = σ2 we have

Var

(

σ̃2

σ2

)

= E

(

σ̃4

σ4

)

−
(

E(σ̃2)

σ2

)2

= E

(

σ̃4

σ4

)

− 1,

thus M4 = E
(

σ̃4

σ4

)

= 1 + Var
(

σ̃2

σ2

)

.
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A.2 Recursive formula for the log-likelihood

Information up to t−1 implies σ2
t−1, εt−1, hence the parameters of the conditional density

are:

µt = µ+ ψεt−1 and µxt
=

µt − a

b− a

σ2
t = ω + (α+ γI)ε2

t−1 + βσ2
t−1 and σ2

xt
=

σ2
t

(b− a)2

θt =
µxt

(1 − µxt
)

σ2
xt

− 1 =
(µt − a)(b− µt)

σ2
t

− 1

g(θt) =
1

2

[(

π +
1 − π

η

)

θt −
(

π

η
+ 1 − π

)]

θt,1 = g(θt) +

√

g2(θt) +
θt

η

θt,2 = η θt,1

ct = µxt
θt,1

dt = (1 − µxt
) θt,1.

Given the observation rt, its contribution to the log-likelihood is

ln [π f1(rt; φ,ν, a, b) + (1 − π) f2(rt; φ,ν, a, b)]

with

f1(rt; φ,ν, a, b) =
1

(b− a)ct+dt−1B(ct, dt)
(rt − a)ct−1(b− rt)

dt−1

f2(rt; φ,ν, a, b) =
1

(b− a)η(ct+dt)−1B(ηct, ηdt)
(rt − a)ηct−1(b− rt)

ηdt−1

24



References

Arak, M., Cook, R.E., 1997. Do daily price limits act as magnets? The case of treasury

bond futures, Journal of Financial services research 12, 5-20.

Berkowitz, J., 2001. Testing density forecasts, with applications to risk mangement, Jour-

nal of Business & Economic Statistics 19, 465-474.

Cho, H., Russell, J., Tiao, G.C., Tsay, R., 2002. The magnet effect of price limits: Evi-

dence from high frequency data on Taiwan Stock Exchange, forthcoming in Journal

of Empirical Finance.

Crnkovic, C., Drachman, J., 1996. Quality control, Risk 9, 139-143.

Diebold, F.X., 1995. Modeling volatility dynamics, in: Hoover, K.D., ed., Macroecono-

metrics – Developments, Tensions, Prospects (Kluwer Academic Publishers, Boston)

427-466.

Diebold, F.X., Gunther, T.A., Tay, A.S. 1998. Evaluating density forecasts with appli-

cations to financial risk management, International Economic Review 39, 863-883.

Fama, E.F., 1989. Perspectives on Oktober 1987, or What did we learn from the chrash,

in: Kamphuis, R.W., Kormendi, R.C., Watson, J.W.H., eds., Black Monday and

the Future of Financial Markets (Irwin, Homewood, IL) 71-82.
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