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Abstract

For an N players coordination games, Tanaka (2000) proved that the

notion of N/2 stability defined by Schaffer (1988) is a necessary and sufficient

condition for such a long run equilibrium in an evolutionary process with

mutations (in the sense of Kandori, et. al. (1993)). We argue that the

critical number in Schaffer’s stability is not unique in every application, but

can vary with variables determined before the coordination games. In our

specific model, these variables are the portfolio choices of the banks. We

derived a Z* stability condition for the long run equilibrium for the banking

system, in which there is no speculative bank run. This critical number

of players is a function of the size for risky investment, and varies with

total risky investments when there are more than two banks. We use this

framework to analyze the effect of speculative behavior on banks’ risk taking

and the phenomenon of system risk, calculating the probability when more

than one banks fail together (system risk).
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1 Introduction

Since Diamond and Dybvig1 (1983), the speculative behavior in the banking sys-

tem has received much attention in the literature. Speculative run refers to the

case where all depositors demand their money simultaneously, which then forces

the bank to liquidate its assets at short notice, which may provoke its failure. This

equilibrium, however, is just one of the two in the coordination games where all

depositors make their simultaneous decisions to withdraw or not. Like all coordina-

tion games, e.g., the stock or exchange markets, the multiplicity and indeterminacy

problem has impeded further analysis on the effects of speculative behavior to the

banking system, let alone the contagious effects of bank failures, noticed as system

risks.

There have been several approaches2 proposed to resolve this indeterminacy.

We focus our attention on the one driven by the evolutionary force with the random

mutations by Kandori, Mailath, and Rob (1993, hence KMR). In the evolutionary

explanation, it is assumed that the time span for depositors’ decisions is stretched

into long enough periods, and an explicit dynamic process is specified describing

1Diamond and Dybvig (1983) studied a single bank screening model, with incomplete infor-

mation about infinitely many depositors’ types for early and late consumption. They showed

that there are two types of Bayesian equilibria. One, a Pareto-dominant equilibrium, has only

depositors with genuine preference for early consumption withdrawing early. The second, a

Pareto-dominated speculative bank run equilibrium, has depositors who actually prefer late con-

sumption, fearing withdrawal by others of the same type, also withdrawing early.
2One approach is to introduce sunspots, which turns the coordination games into a game with

incomplete information (see Harsanyi (1973)). This approach does not select either equilibrium,

rather, it characterises the range of private information where each equilibrium happens. Recent

literature (Goldstein and Pauzner (2003) for example) has applied the approch of global game

by Classon and Van Damme (1993). The intution is to introduce private observation of each

agent about the incomplete information in the sunspots model. They show that, a risk dominant

equilibrium will be selected if agents adopt dominant strategies in the incomplete information

games (See also Morris and Shin (2002)).
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how depositors adjust their choices over time as they learn (from experience) about

the other depositors’ choices. ”This approach tries to explain how an equilibrium

emerges, based on trial-and-error leaning” (KMR, p30). Unfortunately, this does

not help on equilibrium selection, since both equilibria (due to their strictness)

survive the evolutionary force of this sort.

The contribution of KMR is to introduce a random switch3 (characterized by a

Markov chain) into the evolutionary process. This randomness allows transitions

(perpetually fluctuates) from one equilibrium to the other in the course of evo-

lution, and an equilibrium is called long term equilibrium, if the system spends

most of the time on that equilibrium. Tanaka (2000) showed that the N/2 stability

defined by Schaffer (1988) is a necessary and sufficient condition for such a long

run equilibrium in the sense of KMR. Temzelides (1997) applied this N/2 stability

to the Diamond and Dyvig’s model, and showed that a sufficiently high deposit

rate suffices to select the no run equilibrium as the long term equilibrium.

The purpose of this paper is to argue that the critical number in Schaffer’s

stability is not unique in every application, but can vary with variables determined

before the coordination games of depositors. In our specific model, the variables

are portfolio choices of the banks. We derived a Z* stability condition for the

long run equilibrium in the banking system. This critical number of players is a

function of the size for risky investment, and varies with total risky investments

when there are more than two banks. We use this framework to analyze the effect

of speculative behavior on banks’ risk taking, and the phenomenon of system risk,

calculating the probability when more than one banks fail together.

In the present paper, banks act as portfolio managers4, essentially developed

3Kim (1996) compares the vaious evolutionary froces with randomness, including Matsui and

Matsuyama (1995), Young (1993), KMR (1993), and Foster and Young (1990). KMR assumes a

random (formulated by the Markov chain) mutation.
4It is well known that sufficiently large exogenous shocks can cause a crisis. For example,

Allen and Gale (1998) describe a model in which financial crises are caused by exogenous asset-
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by Pyle (1971), and Hart and Jaffee (1974). The idea is to assimilate all assets

and liabilities of the bank and consider the whole bank itself as an enormous

portfolio of these securities. Klein (1974) pointed a major weakness in traditional

portfolio theoretic model that ceteris paribus, if a bank wishes to increase its

loan/asset ratio it must accept a reduction in the marginal return on loans. That

is, the return is increasing, but the marginal rate of return is decreasing in the

size of investment. The most famous application of this approach is to provide a

framework to analyze the risk taking behavior with the rescue policy (e.g., bail out)

in case of failures (see Freixas and Rochet (1998)). Here, it serves a more important

role in that it provides a channel to explain the interconnection among banks: as

quantity competition in an industry, the concavity of the marginal value function

induces a game among banks’ investments. Thus, via their mutual influence on

marginal value of the same risky assets, the extent that banks are connected will

be determined in the system. In other words, we can use this framework to discuss

the system risk problem.

Evidence of bank crises caused by bad portfolio management can be found in

Japan. Total commercial loans outstanding as a percentage of GDP was recorded

to increase from 73% in 1986 to 97% in 1992. Most of the loans were to the home

loan finance companies, to their keiretsu affiliates and to borrowers speculating

in real estate property. Foo (2003) observed that the banks are affected by the

stock market downturn as the Nikkei’s drop shrinks the value of the banks’ stock

portfolio. The banks depend on a rising stock value to boost capital gains on profits

or sell their stock portfolio assets to write off their NPLs. With a falling stock

market, the banks have trade off losses to both their NPLs and their stock portfolio.

Moreover, the declined stock portfolio erodes the paper gains use to meet the strict

Basle international capital adequacy standards of 8% of outstanding loans.

We consider the following two period game, after adding speculative with-

return shocks. Following a large (negative) shock to asset returns, banks are unable to meet

their commitments and are forced to default and liquidate assets.
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drawals among depositors in Klein’s portfolio choices. At the beginning of the

first stage, banks, receiving5 a total one unit of fund, determine the proportion

to invest in safe asset (high liquidity) or risky asset (low liquidity). Safe asset

gives low but certain return, while the risky asset gives high but uncertain returns

containing two parts: deterministic part ( as Klein ) and a random term. A trade

off will be: the benefit for investing more risky asset is for high return; while the

cost will be the possible negative shock and the penalty for early liquidation. The

shock is realized and observed by each agents at the end of the first stage. Observ-

ing this shock, agents make decisions whether to withdraw their deposits from the

bank, and the payment of the investments are received at the end of stage two, if

the banks did not fail. In such a way, the whole banking system are connected.6.

Our specific results include: first, we propose a Z* stability condition, which is

proved to be a necessary and sufficient condition for such a long run equilibrium

in the sense of KMR. This critical number of Z* is a function of the total risky

investment in the banking system. In the case with two banks, this value could

vary across banks. Second, speculative behaviors do not frustrate single bank’s

risky taking, but rather, encourage the bank to maintain a high enough level of

risky investment, to keep the system stay in the equilibrium of no run. This

indicates that although the speculative run equilibrium will be eliminated in the

long run, the probability of fundamental run will increase with the mere possibility

of speculative behavior. Third, the single bank case does not necessarily apply to

the case with multiple banks. Symmetric banks can take different level of risks,

which induces a different in the probability of bank failures. The probability of

joint failures increases, compare to the case without speculation, but the individual

probability of bank failures do not necessarily increase.

5Here we do not consider predeposit decision, because consuemrs would not agree to deposit

if they knew that a run would take place (see Peck and Shell (2003)).
6The timing is similar to the timing in the sunspot literature (see Peck and Shell (2003) and

Ennis and Keister (2002).
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Temzelides (1997) also studied equilibrium selection by evolutionary process in

a banking system where depositors can strategically choose to withdraw prema-

turely or to stay within a bank. Temzelides showed that by setting a sufficiently

high deposit rate, banks can avoid the speculative run result in the post deposit

stage by selecting no run equilibrium as the long term equilibrium. The intu-

ition is that evolutionary force will pick up the strategy with high relative payoff.

By increasing deposit rate, staying within the bank will give relative high payoff.

Moreover, the probability of bank run can be decrease to zero hence. This no-run

result is criticized to be unrealistic ( Peck and Shell), because we do encounter

bank failures from time to time. Bank failures do happen in our model, and the

difference comes from our setting of a random shock, denoting the sudden change

of the fundamentals in the system. Hence, like Temzelides (1997), banks can avoid

speculative run in the long run, the probability of fundamental run increases.

Compared to the literature using Carlsson and van Damme (1993)’s framework,

since agents are assumed to make noisy observations about fundamentals. These

observations serve as a coordination device for agent beliefs about the true state

of the economy. The construction allows for determining a unique equilibrium for

each realization of fundamentals in the Diamond and Dybvig model. An excellent

paper analyzing this approach is Goldstein and Pauzner (2000).

Owing to its single bank mechanism problem, the problem of system risks is not

mentioned in the Diamond and Dybvig model. Chen (1999), Dasgupta (2003) and

Rochet and Vives (2002) extends Diamond and Dybvig model to explain contagious

bank failures due to bank runs, by considering interbank deposits like those in

Rochet and Tirole (1996). There are other interbank linkages like the contractual

obligations between banks, OTC derivative and money market transactions (Staub

(1998)).

The remainder of the paper is organized as follows. Section 2 gives the model

with a representative bank. We characterize the criteria of a Z* stability and
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prove that it will induce a long run equilibrium in the sense of KMR. Section 3

extends the model to two banks, and the Z* stability is revisited. We then discuss

the probability of systemic risk and speculative behaviors. Section 4 contains the

concluding remark.

2 The Model

In this section, I describe the environment in a banking system with one bank. I

will turn to the multiple bank case in the next section. Throughout the model,

all agents are assumed risk neutral7 and services provided by bank(s) are assumed

homogenous.

The model has two periods, t = 1, 2. Figure 1 helps illustrating the timing.

Firstly, in the beginning of t = 1, there N identical depositors who put8 their

money in bank 1. This total deposit of one unit is the only source of fund (see

also Acharya,2001, Matutes and Vives (2000) for similar assumptions). The bank

behaves as a portfolio manager9 of this fund, and invests the borrowed fund in safe

and risky (with less liquidity) asset. Let s be the proportion invested in the safe

asset and r be the proportion invested in the risky asset. With fund constraint,

s+ r = N . The investment is divisible (like Matutes and Vives (2000)).

Safe asset produces certain but relatively low return per unit of investment,

and to simplify (but will not affect our point), the marginal rate of return is

assumed to be 1. In other words, the investment on safe asset performs more

7Hence we do not consider the wealth effect coming from the increasing degree assumption of

relative risk attitude.
8There is no predeposit decision, that is, whether to deposit in a bank like Beck and Shell

(2003).
9The theory of portfolion management has helped for banking behavior, essentially developed

by Pyle (1971), and Hart and Jaffee (1974). The idea is to assimilate all assets and liabilities of

the bank into securities of a particualr, and to consider the whole bank itself as asn enromour

portfolio of these securites.
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like the preparation for sudden liquidity need. Risky asset, on the other hand,

produces a relatively higher but uncertain return. The return consists of two part:

deterministic and shock. The deterministic part is a increasing concave function,

reflecting the monopoly influence of the bank on the project. Following Klein

(1974), we assume this marginal rate of return to be a concave function of level of

investment. That is, if all investment lasts until the end of t = 2, denote R(r) + ε

as the marginal return for per unit of investment on risky asset, and R0(r) > 0 and

R00(r) < 0. The shock reflects unexpected effect, which is distributed according to

F (.) over (−∞,∞), with density function of f(). In case of premature withdrawal

(which is divisible), there will be a fine of λ > 0, per unit of investment withdrawn,

catching the suspending cost of withdrawal.

Having made its investment decision under uncertainty, we follow Diamond

and Dybvig (1983) in assuming that the bank is mutually owned and liquidated

in period 2. So, the chief managers of the bank and the depositors, who do not

withdraw in period 1, will get a pro rata share of the bank’s assets in period 2.

Since the determination of share of profit is not our main point, we assume that

a proportion α, 0 < α < 1, of the banks’ asset will pay the salaries to the chief

manager, and (1− α) will be splitted to the remaining depositors.

In the end of t = 1, the shock on the risky asset is realized. Having observed

the bank’s portfolio decision10 and the value of realized shock, each depositor de-

termines whether to withdraw from the bank in the beginning of t = 2. Here,

we concentrate on the coordination effect among depositors (see also Temzelides

(1997)), without discussing mimicking behavior induced by the assumption of pri-

vate information about the types of depositors (like the DDmodel). Each depositor

needs to compare the relative returns for early and late withdrawals, which de-

pend on the size of shock as well as the total number of withdrawers. Let z (to be

10That is, we consider full disclosure of the bank’s portfolio decision. Partially disclosure like

in Davies and McManus (1991), and Matutes and Vives (2000) will be mentioned in our further

research.
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endogenously determined) be the number of depositors who choose to stay until

the end of t = 2. The per unit return for withdrawing now is assumed to be 1

if the bank is solvent; if the bank becomes insolvent, it is assumed that each de-

positor gets the payment from deposit insurance ω, with ω > 0. In Diamond and
Dybvig (1983, p408), ω is assumed to be zero. That is, let ε∗(r, z) be the level of

shock below which the bank will become insolvent. The per unit return for early

withdrawal is u1(r, z, ε).

u1(r, z, ε) = 1 if ε > ε∗(r, z),

= ω11 if ε < ε∗(r, z).

Here, insolvency denotes the case where a bank’s equity reaches a non-positve

value (Freixas and Rochet (1998, p 248)). Let π(r, z, ε) denote the bank’s equity

value given that the withdrawing number is z. There are two possible values for

π(r, z, ε): if z > r, the overall withdrawal is affordable by the liquidity preparation,

then π(r, z, ε)= (z − r)+ r[R(r) + ε]; if z < r, the bank needs to pay the per unit

fines π for convertibility if the investment, and hence π(r, z, ε)= (r−(1+λ)(r−z))

[R(r− (1 + λ)(r− z)) + ε]. In both cases, π(r, z, ε) is increasing in z and ε. Hence

the critical value ε∗(r, z) is the value such that for z > r, (z− r)+ r[R(r) + ε] = 0

and for z < r, (r− (1+λ)(r− z))[R(r− (1+λ)(r− z))+ ε]. = 0. ε∗(r, z) is smaller

when z > r. It is important to notice that insolvency involves with two kinds of

bank failures: fundamental run and speculative run. The former happens when

ε < ε∗(r,N), and the latter happens when ε∗(r,N) < ε < ε∗(r, 1). assumption

(continuous, monotonically increasing) guarantees that ε∗(r,N) and ε∗(r, 1) exist.

If a depositor does not withdraw prematurely, then she will get a pro rata share

of the bank’s assets in period 2. Let u2(r, z, ε) denote the per unit return.

u2(r, z, ε) =
(1− α)π(r, z, ε)

z
if ε > ε∗(r, z),

= ω if ε < ε∗(r, z).

All returns are realized in the end of t = 2.
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This game is solved backward. It is a typical n player coordination game, so

the following result has been proved by various literature. (footnote here)

Lemma The states of z = 0 and z = N are the only two NE in pure strategy.

Proof: See the proof for Lemma one in Kim (1996). ¤
Let ϕ(r, z, ε) = u2(r, z, ε)− u1(r, z, ε).

ϕ(r, z, ε) =
(1− α)π(r, z, ε)

z
− 1 if ε > ε∗(r, z),

= 0 if ε < ε∗(r, z).

KMR presented an analysis of long run equilibria of stochastic evolutionary dy-

namics for 2× 2 games. Tanaka (2000) extends their model to an N players game.

To incorporate this approach, it is assumed that the depositors take turn (with

uncertain order) to make their withdrawing decisions, and if the interval between

turns is sufficiently small, the time span for the second period can be stretched to

be sufficiently (in KMR’s sense) very long. Let the subscript t denote the value

for a variable at run t. Then zt denote the number of agents choosing to stay in

run t. A Darwinian deterministic component is defined as: zt+1 = b(zt) Hence

b(z) > z when ϕ(r, z, ε) > 0, and b(z) < z when ϕ(r, z, ε) < 0.

Two related notions on evolutionary stability are defined as follows. Firstly, the

notion of finite population Evolutionarily stable strategy (ESS) by Schaffer (1988)

is defined as the following: if ϕ(r, n− 1, ε) > 0, staying is a finite population ESS;

if ϕ(r, 1, ε) < 0, withdrawing is a finite population ESS.

Lemma Both the states of z = 0 and z = N are equilibrium in ESS.

Proof: Since both are strict equilibrium, the results are proved in, for example,

Weibull (1995). ¤
Second, Shaffer (1988) further defines M-stabilty of finite population ESSs.

Consider a state in which all players chooses not withdrawing. If there are M or
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fewer mutant players chooses to withdraw, the average payoff of the players who

choose to stay is larger than the average payoff of the mutant players, then staying

is called an M- stable (finite population ) ESS. Formally, staying is an M-stable

ESS if ϕ(r, z, ε) > 0 for z > M , and ϕ(r, z, ε) < 0 for z < M . When M = N/2 we

obtain the condition for staying to be an N/2 stable ESS12 as follows:

ϕ(r,
N

2
, ε) > 0

N/2 stability of staying means that, when N/2 (a half of population) or fewer

mutant players choose to withdraw, the average payoff of the players who choose

to stay is larger than the average payoff the mutant players. Tanaka (2000) showed

that N/2 stability of a finite population evolutionarily stable strategy defined by

Shaffer (1988) is a necessary and sufficient condition for a long run equilibrium

in the sense of KMR. In Temzelides (1997), there is no random shock ε, and the

risky investment is replaced with deposit rate. But most importantly, Temzelides

replaced z in ϕ(r, z, ε) with N
2
to characterize the conditions of deposit rates for

”staying” to be an N
2
stable ESS. We argue that the critical value is no longer

N
2
when r is determined before the beginning of the coordination games. The

intuition is easily seen from comparing u1(r, z, ε) and u2(r, z, ε), where a higher

r will increase the advantage for staying, and hence will increase the number of

mutants to defect from the equilibrium. Hence, denote Z∗(r, ε) as the number of

agents choosing to stay, given r and ε.

Proposition (1) If ϕ(r, Z∗(r, ε), ε) > 0, a long run equilibrium is the state z=N,

where all agents stay. (2) If ϕ(r, Z∗(r, ε), ε) < 0, a long run equilibrium is

the state z=0, where all agents withdraw. (3) Z∗(r, ε) decreases with r and

ε.

Proof: See KMR’s theorem 3 and the theorem in Phode and Stegeman (1996).

¤
12This condition is for staying to be an N/2 or higher stable ESS. If the following condition

holids in addition to this equation, then staying is exactly N/2 stable. ϕ(r, N2 − 1, ε) < 0
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Let bε(r) be the lowest level of shocks that ϕ(r, Z∗(r, ε), ε) > 0.We need to deter-
mine the location of bε(r). Since by definition, ε∗(r, z) is the level of shocks such that
π(r, z, ε) = 0, and ε∗(r,N) < ε∗(r, z) < ε∗(r, 1). Because when ϕ(r, Z∗(r, ε), ε) = 0,

we have π(r, Z∗(r, ε), ε) = Z∗(r,ε)
(1−α) > 0. It is true that ε∗(r, Z∗(r, ε)) < bε(r). We still

need to determine whether bε(r) T ε∗(r, 1). Since bε(r) is the level of shocks that
will support all depositors to stay in the long run, and ε∗(r, 1) is the level of shocks

that will support all depositors to stay right away. It must be that bε(r) < ε∗(r, 1).

Moreover, since π(r, z, ε) takes two values depending on the size of r. Let bε1(r) andbε2(r) be the respective critical value for r 6 Z∗(r, ε) and r > Z∗(r, ε). Comparing

the relative size of π(r, z, ε), it can be shown that bε1(r)< bε2(r, λ), as R0(r) > 0.

Moreover, ∂bε1(r)
∂r
=∂bε1(r)

∂r
¡0.Insummary, whenε > bε1(r) and bε2(r) for r 6 Z∗(r, ε)

and r > Z∗(r, ε), respectively, the bank will not encounter bank failure in the long

run.

In the beginning of the t = 1, the bank determine its portfolio choices on safe

and risky assets. That is, let πk(r,N, ε) = max
r,s

R∞bεk(r){s+r[R(r)+ε]}dF (ε), k = 1, 2.
In the beginning of t = 1, the bank max{π1(r,N, ε), π2(r,N, ε)}.

Proposition (1) The optimal level of risky assets is higher with speculation. (2)

The bank will invest less than a half of the deposit on the risky asset.

Proof: Rearrange πk(r,N, ε) = (N − r) + r[R(r) + (1 − F (bεk(r))]. Let r and
r denote the values that maximizes π1(r,N, ε) and π2(r,N, ε). The first order

condition of maximization is: 1 = [R(r)+(1−F (bεk(r))]+r[R0(r)−f(bεk(r))]∂bεk(r)
∂r
.

Denote the RHS of the above equation as Xk(r). The second order condition of

maximization is that ∂Xk(r)/∂r < 0. Since bε1(r) < bε2(r), it can be checked from
the first order conditions that r1 < r2.

Suppose π1(r,N, ε) < π2(r,N, ε), that is, by the definition of maximization,

X2(r2) = 1 > X2(r1), which cannot be true because ∂Xk(r)/∂r < 0 by the second

order condition. Hence it must be that π1(r,N, ε) > π2(r,N, ε). ¤
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3 Multiple Banks and System Risk

In this section, we describe the case with two banks, and calculate the probability

of joint failures.

The timing of the game is as the single bank case. There are N depositors for

each bank, which invests the deposit on the safe and risky assets. Let si and ri be

the portfolio choices for bank i, and si + ri = N.

The marginal returns for safe assets are assumed to be one, and that of risky

assets are a function of two banks’ risky investment, plus a random term, repre-

senting the effects from unexpected shocks. That is, denote R(r1 + r1) + ε as the

marginal return for per unit of investment on risky asset, and Ri(.)=
R()
∂ri

>0 and

Rij(.)<0 for i, j = 1, 2. The distribution of ε is as the single bank case.

Given banks’ portfolio decisions, each depositor observes the realization of

the random term and make their decisions to withdraw or stay. The decisions

are similar to the single bank case. Denote zi as the number of depositors who

choose to stay until the end of t = 2, and ε∗i (r1, r2, zi) as the level of shock below

which the bank will become insolvent. The per unit return for early withdrawal is

u1(r1, r2, zi, ε).

u1i (r1, r2, zi, ε) = 1 if ε > ε∗i (r1, r2, zi),

= ω if ε < ε∗i (r1, r2, zi).

ε∗i (r1, r2, zi) is the level of shock that πi(r1, r2, zi, ε) = 0. Depending on the relative

size of ri, there are two possible values: The first is when zi > ri, πi(ri, brj, zi, ε)=
(zi − ri)+ ri[R(ri, brj) + ε], where for j 6= i, brj = rj if zj > rj, and brj = rj −

(1 + λ)(rj − zj) if zj < rj. The second term is when zi < ri, πi(ri, brj, zi, ε)=
(ri− (1+λ)(ri−zi))[R(ri− (1+λ)(ri−zi))+ε], where for j 6= i, brj = rj if zj > rj,

and brj = rj−(1+λ)(rj−zj) if zj < rj. Similar to the single bank case, ε
∗
i (r1, r2, zi)

is smaller when zi > ri. The fundamental bank run happens when ε < ε∗i (r1, r2, zi),

which includes fundamental run (i.e., ε < ε∗i (r1, r2, N)) and possible speculative
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run (i.e., ε∗i (r1, r2, N) < ε < ε∗i (r1, r2, 1)).

If a depositor does not withdraw prematurely, then she will get a pro rata share

of the bank’s assets in period 2. Let u2i (r1, r2, zi, ε) denote the per unit return.

u2i (r1, r2, zi, ε) =
(1− α)πi(ri, brj, zi, ε)

z
, if ε > ε∗i (r1, r2, zi),

= ω if ε < ε∗i (r1, r2, zi).

All returns are realized in the end of t = 2.

It is easily checked that there will be two NE in each bank. Let ϕi(r1, r2, zi, ε)=

u2i (r1, r2, zi, ε)- u
1
i (r1, r2, zi, ε). We next derive the property of Z*- stability condi-

tion for these two banks. Denote Z∗i (r1, r2, ε) as the number of agents choosing

to stay in bank i, given r1, r2 and ε. Let bεi1(r1, r2) and bε2i (r1, r2, λ) denote the
critical values of ε such that ϕi(r1, r2, Z

∗
i (r1, r2, ε), ε) = 0 for ri 6 Z∗i (r1, r2, ε)

and ri > Z∗i (r1, r2, ε), respectively. Let π
k
i (r1, r2, N, ε) be the corresponding pay-

off maximums, where πki (r1, r2, N, ε) = max
r,s

R∞bεk(r1,r2){s + r[R(r1, r2) + ε]}dF (ε),

k = 1, 2.

Proposition (1) Z∗i (r1, r2, ε) is decreasing in r1, r2 and ε. (2) max{π1i (r1, r2, N, ε),

π2i (r1, r2, N, ε)} is decreasing in rj. (3) ri and rj can be different.

Proof: (1) See the proof in KMR’s theorem 3. (2) Since Z∗i (r1, r2, ε) is decreas-

ing in r1, r2 and ε, bεi1(r1, r2) decreases with rj by applying the implicit function

theorem on the condition ϕi(r1, r2, Z
∗
i (r1, r2, ε), ε) = 0, and this implies the result.

¤

Proposition The probability of system risk is higher with speculation, but the

individual probability of bank failure does not necessarily increase.

Proof: Simply calculate the cumulative values F (bε1i (r∗1, r∗2)), and F (bε11(r∗1, r∗2))×
F (bε11(r∗1, r∗2)). ¤
Summer (2003) provides an excellent summary of the existing literature on

system risk. The evidence for speculative runs abounds both in Taiwan and in
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other countries. In December, 2003, Kaohsiung Business Bank in Taiwan suffered

a sudden withdrawal of 3.6 billions in one month, simply because of a whisper

of a rumor for bank run. Ironically, that bank has been taken over by Central

Deposit Insurance Corporation in 2002, and hence all depositors are fully insured.

In Japan, a speculator example of a bank run occurred in October 1995 where the

Hyogo Bank experienced more than the equivalent of $1billion withdrawals in just

one day. In 1991, in Rhode Island in the USA, a perfectly solvent bank was forced

to close after the TV channel, CNN, used a picture of this bank to illustrate a

story on bank closures, which lead the bank’s customers to believe the bank was

insolvent, whereas it was not.

Acharya (2001) interpreted system risks in a portfolio framework, where two

banks simultaneously choose whether to invest in highly related assets and the

returns for each asset is exogenously given and randomly distributed. This, how-

ever, summarizes the assets portfolio problems into an odd 2 × 2 game with two

symmetric equilibria (i.e., combination like (highly related, low related) does not

have any meaning.

4 Concluding Remarks

For an N players coordination games, Tanaka (2000) proved that the notion of

N/2 stability defined by Schaffer (1988) is a necessary and sufficient condition

for such a long run equilibrium in an evolutionary process with mutations (in

the sense of Kandori, et. al. (1993)). We argue that the critical number in

Schaffer’s stability is not unique in every application, but can vary with variables

determined before the coordination games. In our specific model, these variables

are the portfolio choices of the banks. We derived a Z* stability condition for the

long run equilibrium for the banking system, in which there is no speculative bank

run. This critical number of players is a function of the size for risky investment,

and varies with total risky investments when there are more than two banks. We
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use this framework to analyze the effect of speculative behavior on banks’ risk

taking and the phenomenon of system risk, calculating the probability when more

than one banks fail together (system risk).

We consider the following two period game, after adding speculative with-

drawals among depositors in Klein’s portfolio choices. At the beginning of the

first stage, banks, receiving13 a total one unit of fund, determine the proportion

to invest in safe asset (high liquidity) or risky asset (low liquidity). Safe asset

gives low but certain return, while the risky asset gives high but uncertain returns

containing two parts: deterministic part ( as Klein ) and a random term. A trade

off will be: the benefit for investing more risky asset is for high return; while the

cost will be the possible negative shock and the penalty for early liquidation. The

shock is realized and observed by each agents at the end of the first stage. Observ-

ing this shock, agents make decisions whether to withdraw their deposits from the

bank, and the payment of the investments are received at the end of stage two, if

the banks did not fail. In such a way, the whole banking system are connected..

Our specific results include: first, we propose a Z* stability condition, which is

proved to be a necessary and sufficient condition for such a long run equilibrium

in the sense of KMR. This critical number of Z* is a function of the total risky

investment in the banking system. In the case with two banks, this value could

vary across banks. Second, speculative behaviors do not frustrate single bank’s

risky taking, but rather, encourage the bank to maintain a high enough level of

risky investment, to keep the system stay in the equilibrium of no run. This

indicates that although the speculative run equilibrium will be eliminated in the

long run, the probability of fundamental run will increase with the mere possibility

of speculative behavior. Third, the single bank case does not necessarily apply to

the case with multiple banks. Symmetric banks can take different level of risks,

which induces a different in the probability of bank failures. The probability of

13Here we do not consider predeposit decision, because consuemrs would not agree to deposit

if they knew that a run would take place (see Peck and Shell (2003)).
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joint failures increases, compare to the case without speculation, but the individual

probability of bank failures do not necessarily increase.
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