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ABSTRACT

Volatility models have been playing an important role in economics and finance. Using a multi-

variate generalized spectral approach, we propose a new class of generally applicable omnibus tests for

univariate and multivariate volatility models. Both GARCH models and stochastic volatility models

are covered. Our tests have a convenient asymptotic null N(0,1) distribution, and can detect a wide

range of misspecifications for volatility dynamics. Distinct from the existing tests for volatility mod-

els, our tests are robust to higher order time-varying moments of unknown form (e.g., time-varying

skewness and kurtosis). Our tests check a large number of lags and are therefore expected to be pow-

erful against neglected volatility dynamics that occurs at higher order lags or display long memory

properties. Despite using a large number of lags, our tests do not suffer much from loss of a large

number of degrees of freedom, because our approach naturally discounts higher order lags, which is

consistent with the stylized fact that economic or financial markets are more affected by the recent

past events than by the remote past events. No specific estimation method is required, and parameter

estimation uncertainty has no impact on the limit distribution of the test statistics. Moreover, there

is no need to formulate an alternative volatility model, and only estimated standardized residuals are

needed to implement our tests. We do not have to calculate tedious score functions or derivatives of

volatility models with respect to estimated parameters, which are model-specific and are required in

some existing popular tests for volatility models. We examine the finite sample performance of the

proposed tests. An empirical application to some popular GARCH models for stock returns illustrates

our approach.

Key Words: Generalized spectral derivative, Kernel, Multivariate generalized spectrum, Multivariate

GARCHmodels, Nonlinear volatility dynamics, Robustness, Specification testing, Stochastic Volatility

Model, Time-varying higher order moments of unknown form.
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1. Introduction

Volatility is one of the most important instruments in economics and finance. Volatility modeling

and forecasting is important in investment, security valuation, risk management and monetary policy

making. As a measure for uncertainty, volatility is a key input to many investment decisions and

portfolio creations. And it is crucially important in asset pricing. According to most asset pricing

theories, risk premium is determined by the conditional covariance between the future return on

the asset and one or more benchmark portfolios (e.g., the market portfolio or the growth rate in

consumption). Volatility is also important in pricing derivative securities, where the uncertainty

associated with the future price of the underlying asset is the most important determinant for derivative

prices. On the other hand, an important source of volatility clustering is information flows arriving in

a cluster manner. One can investigate how financial markets interact with each other by examining

volatility spillover among different markets. Moreover, the understanding of the volatility transmission

mechanism between asset prices and GDP growths is important for policy makers to reduce output

volatility. Policy makers often rely on market estimates of volatility as a barometer for the vulnerability

of financial markets and economy.

Since Engle’s (1982) seminal paper, traditional time series tools such as autoregressive moving

average (ARMA) models for the conditional mean have been extended to essentially analogous mod-

els for the conditional variance. Autoregressive conditional heteroskedasticity (ARCH) models are

now commonly used to capture volatility dynamics of financial time series. This class includes the

ARCH and GARCH models of Engle (1982) and Bollerslev (1987), as well as their various nonlinear

generalizations (e.g., Bera and Higgins’ (1992) nonlinear GARCH models, Nelson’s (1991) EGARCH

model, Glosten et al ’s (1993) threshold GARCH model, Sentana’s (1995) quadratic GARCH model,

Zakoian’s (1994) threshold ARCH model, to name just a few). For a survey of ARCH models, see

Bollerslev, Chou, and Kroner (1992), Bera and Higgins (1993), Bollerslev, Engle and Nelson (1994)

among others.

The empirical success of ARCH models in fitting univariate time series has motivated many re-

searchers to extend these models to multivariate contexts. It is a stylized fact that financial volatilities

move together over time across assets and markets. Recognizing this feature through multivariate

modeling should lead to more relevant empirical models and deeper insights into financial markets

than working with separate univariate models. Apart from possible efficiency gains in parameter

estimation, estimation of some financial “coefficients” such as the systematic risk (beta coefficients)

and the hedge ratio, requires estimating covariances between relevant variables. The motivation for

multivariate GARCH models also stems from the fact that many economic variables react to the same

information, and hence, have nonzero covariances conditional on the information set available. From

a financial point of view, multivariate GARCH modeling opens the doors to better decision tools in

various areas such as asset pricing, portfolio selection, hedging, and Value-at-Risk forecasts. Although

there is a huge literature on univariate models for volatility dynamics, asymmetry and fat-tails, much

fewer works are concerned with their multivariate extensions. Important examples of multivariate

volatility models are diagonal multivariate and vech-representation GARCH models of Bollerslev, En-

gle and Wooldridge (1988), the constant-correlation multivariate GARCH (CC-MGARCH) models

of Bollerslev (1990), the BEKK (named after Baba, Engle, Kraft and Kroner) models of Engle and
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Kroner (1995) and the dynamic conditional correlation (DCC) models of Engle (2002) and Tse and

Tsui (2002).

A popular class of models alternative to GARCH models in capturing volatility clustering is the

stochastic volatility (SV) models introduced by Taylor (1982, 1986). Unlike GARCH models, SV

models assume that the volatility process is driven by an unobservable information flow. They are

also closely related to continuous-time diffusion processes which are widely used in derivatives pricing

and other financial applications (e.g., Hull and White (1987)). See Gyhsels (1996) and Shephard

(1996) for excellent surveys on SV models and their applications.

Consistent parameter estimation, optimal volatility forecast, valid hypothesis testing and economic

interpretations all require correct specification of volatility models. For example, the systematic risk as

measured by the beta coefficient depends on the conditional second moments of asset returns, so does

the minimum-variance hedge ratio. Reliable estimates and inference of these quantities depend on well-

defined conditional heteroskedasticity models. There have not been rigorously developed specification

tests for SV models in the literature. There have been a number of specification tests for GARCH

models. Diagnostic tests for GARCH models in the literature can be divided into three categories:

portmanteau tests of the Box-Pierce-Ljung type, Lagrange multiplier (LM) tests, and residual-based

diagnostics.

The portmanteau tests of Box-Pierce type for the squared standardized residuals of a univariate

GARCH model have been used to test adequacy of the GARCH model. They have been also used as

the benchmark for detecting inadequacy of multivariate GARCH models. As these test statistics are

readily computable from the standardized residuals of a GARCH model, they have been widely used in

practice (e.g., Tsay 2001, p.115-118). Often the asymptotic χ2 distribution is used. However, Li and

Mak (1994) showed that the Box-Pierce type tests for volatility models are generally not asymptotically

χ2, because the limit distribution depends on parameter estimation uncertainty in volatility models.

In other words, substituting the estimated standardized residuals for the unobserved innovations will

change the asymptotic distribution of the test statistic. Li and Mak (1994) modified the Box-Pierce

type tests and derived the asymptotic distribution of their modified tests for univariate volatility

models. Ling and Li (1997) further extended this work and derived the asymptotic distribution of a

modified portmanteau statistic for multivariate volatility models. Ling and Li’s test is based on the

sum of the squared autocorrelations of suitably transformed residuals. However, Tse and Tsui (1999)

pointed out that there is a loss of information in the transformation of the estimated residuals, which

may induce severe loss of power.

There have been a number of LM tests for GARCHmodels, as considered in Bollerslev et al. (1988),

Engle and Ng (1993), Engle and Kroner (1995) and Lundbergh and Teräsvirta (1998). Lundbergh and

Teräsvirta’s (1998) LM test is a test of the standardized errors being i.i.d. against the alternative

that they follow an ARCH model. This test is asymptotically equivalent to Li and Mak’s (1994) test.

The LM test has an advantage over the portmanteau tests due to its efficiency when the alternative

hypothesis is correct. However, it requires the specification of an alternative GARCH model, and the

calculation of a LM test statistic depends on the alternative.

Tse (2002) proposed residual-based diagnostic tests for GARCH models. These tests resort to a

convenient auxiliary autoregression based on the squared standardized residuals or the cross products
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of the standardized estimated residuals as dependent variables, while lagged squared standardized

residuals or lagged cross products of the standardized residuals are the independent variables. Thus,

the form of the regression depends on a particular type of model inadequacy the researcher likes to

investigate, which dictates the power of the tests.

From a theoretical point of view, Box-Pierce type tests and residual-based tests for GARCH models

can detect many misspecifications in volatility dynamics of practical importance. However, they can

only capture linear ARCH alternatives, and may miss important nonlinear volatility dynamics, espe-

cially those with zero autocorrelation in standardized residuals. They may overlook certain volatility

dynamics, such as asymmetric behaviors in volatility. Asymmetric volatility dynamics are not uncom-

mon in practice. They can be caused by (e.g.) “leverage effects”, or by business cycles (Hamilton and

Lin (1996)). We note that LM tests can detect some specific nonlinear volatility features, depending

on the formulation of the alternative model (see Engle and Ng 1993).

Most existing tests for GARCH models usually check a fixed lag order. Recent empirical studies

(e.g., Baillie, Bollerslev and Mikkelsen 1996) find that high-frequency financial time series may display

long memory of financial time series in volatility clustering, where volatility depends on a very long

past history. Indeed, it is an important feature of a non-Markovian process that volatility may depend

on the entire past history rather than only first few lags of it. Thus, it is important to check not only

the functional forms of volatility dynamics but also its lag structure.

A volatility model with i.i.d. innovations is called a strong form volatility model in the literature

(cf. Drost and Nijman 1993). It is possible that a volatility model is correctly specified while the

standardized innovation displays higher order dependence possibly of unknown form. Indeed, Drost

and Nijman (1993) show that even if the innovation is i.i.d. at certain sample frequency, the innovation

when aggregated to a lower sample frequency will become serially dependent even if it is an martingale

difference sequence (m.d.s.).1 A volatility model where the innovation is not i.i.d. is called the semi-

strong or weak form volatility model. Recent studies (e.g., Gallant, Hsieh and Tauchen 1991, Hansen

1994, Harvey and Siddique 1999, 2000, Jondeau and Rockinger 2003) have documented that the

conditional skewness and kurtosis of asset returns are time-varying. Indeed, financial time series has

been characterized with asymmetric and heavy-tailed non-Gaussian distributions of unknown form.

It is therefore important to take into account the impact of other higher order time-varying moments

of unknown form when constructing tests for volatility models. All existing tests for volatility models

assume i.i.d. (possibly non-Gaussian) innovations and are not robust to time-varying higher order

dependencies which may generate (e.g.) heavy tails and jumps.

We emphasize that a volatility model is concerned with serial dependence in conditional variance.

Thus, tests that check all departures from i.i.d. are not suitable to test volatility models. For example,

the correlation integral test proposed by Brock et al. (1991,1996), popularly known as the BDS test,

has been documented to have excellent power against ARCH alternatives. However, the BDS test is

not suitable to test validity of GARCH models, because it can lead to a rejection due to the existence

1To ignore serial dependence in {zt} by assuming i.i.d. will not render inconsistent parameter estimation for mean
and variance parameters, although it would complicate the attempts to construct asymptotically efficient semiparametric
estimators of the variance parameters (see Gallant and Tauchen 1989, Engle and Granger 1991). Lee and Hansen (1994)
explicitly consider QMLE method with m.d.s. innovations.
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of time-varying higher conditional moments (e.g., skewness and kurtosis) even when a GARCH model

is correctly specified. In addition, the limit distribution of the BDS test statistic depends on parameter

estimation uncertainty in volatility models (Brock et al. 1991, Appendix D).

In this paper, we will propose a new approach to testing validity of volatility model. Both uni-

variate and multivariate volatility models — GARCH models and SV models are covered. There are

many ways to generalize univariate GARCH models to multivariate GARCH models, but the curse of

dimensionality quickly becomes a major obstacle because there is a relatively large number of com-

ponents in the conditional variance-covariance matrix, and each of these components contain several

parameters to be estimated. For manageable applications, rather restrictive assumptions usually have

to be made, as is the case of Bollerslev’s (1990) constant correlation multivariate GARCH models,

factor-multivariate GARCH models, and Engle’s (2002) time-varying correlation multivariate GARCH

model. It is therefore highly desirable to develop a specification test that can check the overall ade-

quacy of a multivariate GARCH model.

Specifically, we propose the multivariate generalized spectral derivative approach by extending

Hong’s (1999) univariate generalized spectral analysis. Generalized spectrum is a frequency domain

nonlinear analytic tool. Because of the use of the characteristic function, our approach can check a

variety of linear and nonlinear functional form misspecifications in volatility dynamics. Moreover, our

frequency domain approach can check a growing number of lags as the sample size increases without

suffering from the curse of dimensionality. Thus, our test is expected to be powerful against long

memory volatility processes, such as fractionally integrated GARCH (FIGARCH) model (Baillie and

Bollerslev 1996). Usually there would be a loss of power due to the loss of a large number of degrees of

freedom, but this is not the case here due to a downward weighting scheme for the lags. Our approach

is based on a kernel function and it naturally discounts higher order lags, which is consistent with the

stylized fact that economic and financial markets are usually more influenced by the recent events than

by the remote past events. The older the information, the less its impacts on the current volatility.

When constructing our tests, we do not require the formulation of any alternative volatility model.

Moreover, as an important feature of our tests, they are robust to parameter estimation uncertainty,

i.e., the use of estimated standardized residuals in place of true unobservable innovations has no impact

on the limit distribution of test statistics. Any
√
T−consistent parameter estimator suffices. We do

not require a specific method for estimation, and only estimated standardized residuals are needed to

implement our tests. In particular, we do not have to compute the tedious case-by-case score functions

or derivative of volatility models, unlike some popular tests for volatility models. All these desirable

features yield a convenient procedure in practice.

Moreover, when testing multivariate volatility models, our approach is also applicable to test each

univariate volatility component and their pairwise correlations. These separate inference procedures

can reveal useful information on inadequacy of a multivariate volatility model, which will be useful

when reconstructing the volatility model.

Section 2 introduces the volatility models and hypotheses of interest. Section 3 introduces a

multivariate generalized spectral analysis and shows how to use the derivatives of the generalized

spectral density to test volatility models. Section 4 constructs test statistics. We derive the asymptotic

normality distribution of the proposed test statistics in Section 5 and establish their asymptotic power
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property in Section 6. Section 7 discusses the choice of a data-driven lag order. Section 8 examines the

finite sample performance of the tests via Monte Carlo experiments. Section 9 considers an empirical

application. Section 10 concludes. All mathematical proofs are given in the appendix. Throughout,

we denote C for a generic bounded constant, A∗ for the complex conjugate of A, ReA for the real

part of A, and ||A|| for the Euclidean norm of A. All limits are taken as the sample size T → ∞. A

GAUSS code to implement our tests is available from the authors upon request.

2. Model and Hypotheses

Consider a stochastic d× 1 vector time series process {Yt}, where d ∈ N+ ≡ {1, 2, · · · } :
Yt = µt + εt,

εt = H
1/2
t zt,

E(zt|It−1) = 0 a.s.,

Var(zt) ≡ E(ztz
0
t|It−1) = Id a.s.,

(2.1)

where Id is the d×d identity matrix, {zt} is a d×1 unobservable martingale difference sequence (m.d.s.)
innovation vector with var(zt|It−1) = Id. By construction, µt = E(Yt|It−1) is the d × 1 conditional
mean vector of Yt given the information set available at time t − 1, It−1, and Ht =var(Yt|It−1) is
the d × d conditional variance-covariance matrix of Yt given It−1. Both µt and Ht are measurable

functions of information set It−1. Note that It−1 may include not only lagged dependent variables
but also exogenous variables and may date back to the infinite remote past. An important feature

of most economic and financial time series is that µt and Ht may depend on the entire past history

of Yt rather than only a few lags of Yt, as is the case for ARMA and/or GARCH processes. We

note that the conditions of E(zt|It−1) = 0 and var(zt|It−1) = Id ensure that µt completely captures

the conditional mean dynamics of Yt, and Ht completely captures the conditional variance and the

conditional correlations of Yt.

In many economic and financial applications, interest has been in modelling the conditional

variance-covariance matrix Ht, which characterizes the dynamics in volatility clustering of each time

series, as well as the evolution of their conditional correlations. Important examples of univariate

volatility models (i.e., when d = 1) include Bollerslev’s (1986) generalized ARCH (GARCH) model,

Nelson’s (1991) exponential GARCH (EGARCH) model, Higgins and Bera’s (1992) nonlinear ARCH

(NARCH) model, Glosten et al.’s (1993) asymmetric model (GJR model), Ding et al.’s (1993) asym-

metric power ARCH (APARCH) model, and Zakoian’s (1994) threshold ARCH (TARCH) model.

Important examples of multivariate volatility models (i.e., when d > 1) include vech-representation

form due to Bollerslev et al. (1988), the constant correlation multivariate GARCH (CC-MGARCH)

model due to Bollerslev (1990), and the BEKK model due to Engle and Kroner (1995), time-varying

conditional correlation multivariate GARCH models of Engle (2002) and Tse and Tsui (2002).

We emphasize that process (2.1) also cover both univariate and multivariate stochastic volatility
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(SV) models as well. To see this, let us consider a basic univariate SV model as used in Taylor (1986).
Yt = e1/2Λtεt,

Λt = γ + δΛt−1 + νηt,

{εt} ∼ i.i.d.(0, 1),

{ηt} ∼ i.i.d.(0, 1),

(2.2)

where the log volatility Λt is unobservable. This model is a successful alternative to the class of

GARCH models in capturing volatility clustering and heavy tails in financial time series. It is very

closely related to continuous-time diffusion models which are widely used in the derivative pricing

literature.

Our tests cannot be directly applied to test correct specification of latent volatility model e1/2Λt ,

which is a latent SV model by considering the observable standardized innovations

zt(θ) = H
−1/2
t (θ) [Yt − µt(θ)] ,

where µt(θ) = E (Yt|It−1) ,Ht(θ) =var(Yt|It−1) , and It−1 = {Yt−1, Yt−2, · · · } is the observed informa-
tion set available at time t− 1. For the SV model in (2.2), we have µt = 0 and Ht(θ) = E

£
eλt |It−1

¤
.

The latter can be computed using various filtration techniques, such as Gallant and Tauchen’s (1998)

reprojections techniques that are based on a projection of the data onto a seminonparametric transi-

tion density or Kim et al ’s (1998) particle filter algorithms, or Liesenfiled and Richard’s (2003) EIS

filtering method. We will impose our regularity conditions directly on µt and Ht(θ), rather than on

the latent volatility model e1/2λt . When the SV model correctly capture the conditional mean µt and

conditional varianceHt(θ), the standardized innovations {zt} is a m.d.s. with respect to the observable
information set It−1 such that E (zt|It−1) = 0 and var(zt|It−1) = Id. Therefore we can apply our tests
to whether var(zt|It−1) = Id. Note that the distribution of zt given It−1 under correct specification of
the SV model is unknown and can display serial dependence in higher order moments. Therefore, our

tests are highly desirable here because they are robust to time-varying higher order moments.

Our interest in this paper is in checking whether a parametric volatility model Ht(θ) ≡ H(It−1, θ)
is correctly specified for var(Yt|It−1), when θ ∈ Θ is a finite dimensional parameter, and Θ is the

parameter space. The hypotheses of interest are

H0 : Pr[Ht(θ0) = Var(Yt|It−1)] = 1 for some θ0 ∈ Θ

versus

HA : Pr[Ht(θ) 6= Var(Yt|It−1)] > 0 ∀ θ ∈ Θ.

Because many statistical inferences for economic and financial data are based on model Ht(θ), a test

of the hypothesis H0 is important from both theoretical and practical points of view. Interest in H0
is often based on the assumption that the conditional mean µt(θ) has been correctly specified. Thus,

strictly speaking, when H0 is rejected, it may be due to the misspecification of Ht(θ) and/or µt(θ). For

high-frequency economic and financial time series, it is believed that there exists mild or little serial

dependence in conditional mean. Therefore, the primary focus has been on the modelling of volatility
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and conditional correlation of {Yt}.
When d = 1, it has been suggested that Box-Pierce type tests for the squared standardized error

can be used to test adequacy of a GARCH model Ht(θ), i.e.,

BP2(p) = T (T + 2)
pP

j=1
(T − j)−1ρ̂22(j), p ∈ N, (2.3)

where ρ̂2(j) is the sample autocorrelation function of the squared standardized residuals {z2t (θ̂)},
zt(θ̂) = Ht(θ̂)

−1/2εt(θ̂), where θ̂ is an estimator of θ0. As this test statistic is readily computable from
the standardized residuals ẑt(θ̂), they have been widely used with an asymptotic χ2p distribution in

practice (e.g., Hafner 1998 p.112, Tsay 2001, p.115-118). However, Li and Mak (1994) showed that

the Box-Pierce type tests are generally not asymptotically χ2p.
2 Also, the limit distribution of BP2(p)

depends on parameter estimation uncertainty. In other words, substituting the estimated residuals for

the unobserved residuals will change the asymptotic distribution of the test statistic. It is necessary

to modify the test statistics to take into account the impact of parameter estimation uncertainty. Li

and Mak (1994) propose a modified Box-Pierce type test:

Q(p) = nρ̂02V̂
−1ρ̂2, (2.4)

where ρ̂2 = [ρ̂2(1), · · · , ρ̂2(p)]0, ρ̂2(j) is the sample autocorrelation in {z2t (θ̂)}, and V̂ is a consistent

asymptotic variance estimator which takes into account the impact of parameter estimation uncer-

tainty. The test Q(p) will be asymptotically χ2p under H0. Ling and Li (1997) further extended this
test to the multivariate case. The Ling-Li statistic is based on the squared sample autocorrelation

coefficients of a transformed vector of estimated residuals:

LLT (M) = T
MX
j=1

R̂2(j), j = 1, · · · ,M,

where

R̂(j) =

PT
t=j+1

h
zt(θ̂)

0zt(θ̂)− d
i h

zt(θ̂)
0zt(θ̂)− d

i
PT

t=1

h
zt(θ̂)0zt(θ̂)− d

i2 .

However, Tse and Tsui (1999) pointed out that there is a loss of information in the transformation of

the residual vectors, which may induce a severe loss of power. Tse (2002) proposed a residual-based

diagnostic test for GARCH models. These tests can be conveniently implemented by an artificial

autoregression procedure with the squared standardized residuals or the cross products of the stan-

dardized residuals as dependent variables, and lagged squared standardized residuals or lagged cross

products of the standardized residuals as the independent variables. Thus, to a certain extent, the form

of the regression depends on a particular type of model inadequacy the researcher wants to investigate.

From a theoretical point of view, Box-Pierce type tests for z2t (θ) can detect many misspecifications

2Although the asymptotic distribution of the Box-Pierce statistics has not been firmly established, there have been
arguments that the χ2 distribution may be used as an approximation. Especially, the estimation error is of minor order
when testing for serial correlation in the squared residuals (See Bellorslev 1990, footnote 7).
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of practical importance. However, they can only capture linear volatility alternatives and may miss

important nonlinear volatility alternatives, especially those that render zero autocorrelation in z2t (θ).

For example, it can miss an asymmetric dynamic patterns in volatility, such as asymmetric behavior

in volatility dynamics and conditional correlations.

On the other hand, most existing tests for volatility models employ a fixed lag order. From a

theoretical perspective, such tests can easily miss volatility misspecification that occurs at higher order

lags. Moreover, recent empirical studies (e.g., Baillie, Bollerslev and Mikkelsen 1996) find that high-

frequency financial time series displays long memory in volatility clustering, whereHt depends on a very

long history of Yt. Some financial theory (e.g., Easley and O’hara 1992) suggests the non-Markovian

property of high-frequency asset prices. Indeed, it is an important feature of a non-Markovian time

series process that Ht depends on the entire past history of Yt rather than only first few lags of it.

Thus, it may suffer from substantial power loss by using a fixed lag order. In practice, one can employ

a large lag order when a large sample size is available. However, the use of a large lag order usually

induces loss of a large number of degree of freedoms, causing low power against many alternatives of

practical importances. In particular, volatility and conditional correlations will be usually influenced

more by the recent market events than by the remote market events. As a consequence, the strength

of dependence in z2t (θ) on the past history will decay to zero as lag order increases. Below, we will

propose a new generally applicable test for H0 which avoids the aforementioned undesirable features
of the existing tests for volatility models.

3. Multivariate Generalized Spectral Approach

We will propose a unified test for H0 for both d = 1 and d > 1, by generalizing the univariate

generalized spectral approach proposed in Hong (1999) to a multivariate generalized spectral analysis.

The generalized spectrum is a spectral analysis based on the characteristic function. It is a basic

frequency domain analytic tool for nonlinear time series, just as the power spectrum is a basic analytic

tool for linear time series (e.g., Priestley 1981). Both time domain and frequency domain analytic

tools are equally informative on serial dependence of a time series. In some applications, however, the

frequency domain analysis is more enlightening and suitable. For example, as will be discussed below,

the multivariate generalized spectrum can reveal useful information on cyclical dynamics in volatility

clustering and the conditional correlations due to linear or nonlinear dependencies.

Define the standardized error of volatility model Ht(θ),

zt(θ) = H
−1/2
t (θ)εt(θ), (3.1)

where εt(θ) = Yt − µt(θ). Then the hypothesis H0 is equivalent to the hypothesis that

var [zt(θ0)|It−1] = Id a.s. for some θ0 ∈ Θ, (3.2)

where It−1 is the observable information available at time t− 1. This implies

var
£
zt(θ0)|Izt−1

¤
= Id a.s. for some θ0 ∈ Θ, (3.3)
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where Izt−1 ≡ {zt−1(θ0), zt−2(θ0), · · · }. Thus, to test H0, we can check if (3.3) holds. This is a standard-
ized residual-based approach. This is quite convenient, because there is no need to compute tedious

derivatives as in Li-Mak-Ling tests. Here, we still have the curse of dimensionality problem because

Izt−1 has an infinite dimension. Fortunately, the generalized spectral approach provides a sensible way
to tackle this difficulty.

Most existing tests are based on the sample autocorrelations in {zt(θ)}. This can only detect
misspecifications in volatility model Ht(θ) that render nonzero autocorrelations in {zt(θ0)}. Because
the autocorrelation is a measure for linear association, it may have lower power against nonlinear

volatility alternatives. Nonlinear volatility dynamics is not uncommon in practice. For example, it

is well-known that volatility reacts differently to a large price increase and a large price drop. This

is a so-called leverage effect. It has also been documented that stock price volatility tends to be

higher during the recession and tends to be lower during expansion (e.g., Hamilton and Lin 1996). In

multivariate contexts, it is believed that negative shocks tend to transmitted across financial markets

or different economies faster than positive shocks, as is the case for asymmetric international spillover

of business cycles. Therefore it is highly desirable to develop a test that can check a volatility model

against a variety of linear and nonlinear departures.

To be able to detect both linear and nonlinear departures, a sensible approach to testing H0
is to consider a test based on a smoothed nonparametric regression estimator for var[zt(θ)|zt−j(θ)]
and check whether this estimator is significantly different from zero. Such a test can detect many

neglected or misspecified nonlinear volatility dynamics, and is expected to work well when d ≤ 3.

For multivariate cases with d ≥ 4, this approach will unavoidably encounter the notorious difficulty of
“curse of dimensionality”. For such a dimension, smoothed nonparametric regressions would require an

astronomically large data set even in the i.i.d. context (cf. Silverman 1986). On the other hand, this

time-domain nonparametric approach does not deal with lag orders. Obviously, the use of a finitely

many lags will render the test unable to detect misspecification of volatility models which occurs at

higher order lags.

In this paper, we will propose a test for H0 by using a multivariate generalized spectral approach.
This is achieved by generalizing Hong’s (1999) univariate generalized spectral analysis to the multivari-

ate time series analysis. Such an extension is useful and important, because it allows us to investigate

linear and nonlinear interactions among different time series. There are a number of advantages of

our frequency domain approach. First, our test is of nonparametric nature, and therefore is able to

detect both linear and nonlinear volatility alternatives. Hence, we avoid the “curse of dimensionality”

problem associated with smoothed nonparametric estimation due to a large dimension of d, because

there is no need for smoothing at each lag. Second, our frequency domain approach naturally in-

corporates information from many lags. In other words, we can test a large number of lags without

suffering from the “curse of dimensionality”. This is particularly appealing in detecting long memory

volatility alternatives. Moreover, our nonparametric approach naturally discounts higher order lags,

thus alleviating the loss of a large number of degrees freedom due to the use of many lags. As a

consequence, our test is expected to be powerful against the alternatives where the dependence in

volatility decays to zero as j →∞. This is consistent with the stylized fact that financial markets are

usually more influenced by the recent events than the remote past events. Also, an appealing feature

9



of our approach is that any
√
T -consistent parameter, θ̂ say, does not affect the limit distribution of

our test, which is N(0, 1) under H0. One can proceed as if the true parameter θ0 were known and were
equal to θ̂, any

√
T -consistent estimator. This gives a very convenient procedure in practice.

For notational economy, we put zt ≡ zt(θ
∗), where θ∗ = p lim θ̂. Suppose {zt} is a strictly station-

ary process with marginal characteristic function ϕ(u) ≡ E(eiu
0zt) and pairwise joint characteristic

function ϕj(u, v) ≡ E(eiu
0zt+iv0zt−|j|), where i ≡ √−1, (u, v) ∈ Rd×Rd, and j ∈ {0,±1, · · · }. Following

the basic idea of the generalized spectrum of Hong (1999), who considered a univariate time series, we

consider the spectrum of the transformed series {eiu0zt}. It is defined as

f(ω, u, v) ≡ 1

2π

∞X
j=−∞

σj(u, v)e
−ijω, ω ∈ [−π, π], (3.4)

where ω is the frequency, and σj(u, v) is the covariance function of the transformed series:

σj(u, v) ≡ cov(eiu0zt , eiv0zt−|j|), j ∈ {0,±1, · · · }. (3.5)

Note that f(ω, u, v) is a complex-valued scalar function, although zt is a d × 1 vector. Compared to
the conventional power spectral density matrix (e.g., Hannan 1970) and higher order spectra (e.g.,

Brillinger 1980), an appealing feature of f(ω, u, v) is that no moment condition on {zt} is required.
The function f(ω, u, v) can capture any type of pairwise serial dependence in {zt}, i.e., dependence
between zt and zt−j for any nonzero lag j, including that with zero autocorrelation. It may be called
the generalized spectrum of {zt} because when E kztk2 < ∞, it can be differentiated to obtain the

conventional power spectral density matrix as a special case:

− ∂2

∂u∂v
f(ω, u, v)

¯̄
(u,v)=(0,0) =

1

2π

∞X
j=−∞

cov(zt, zt−|j|)e−ijω, ω ∈ [−π, π], (3.6)

where cov(zt, zt−|j|) is a d× d autocovariance matrix of {zt} at lag |j|.
The generalized spectrum f(ω, u, v) itself is not suitable for testing H0, because it can capture serial

dependence not only in mean but also in higher order conditional moments of zt. An example is that

{zt} follows an generalized asymmetric Student t distribution with time-varying skewness and kurtosis
(e.g., Hansen 1994). In this case, {zt} is a m.d.s. process but is not i.i.d. The generalized spectrum
f(ω, u, v) can capture this process, although {zt} is a m.d.s. with conditionally homoskedastic errors
(i.e., E(zt|Izt−1) = 0 a.s. and var(zt|Izt−1) = Id a.s.).

However, just as the characteristic function can be differentiated to generate various moments of

{zt}, f(ω, u, v) can be differentiated to capture serial dependence in various conditional moments. To
check serial dependence in volatility and conditional correlations of Yt, we can differentiate f(ω, u, v)

and use the following second order generalized spectral derivative

f (0,2,0)(ω, 0, v) ≡ ∂2

∂u∂u0
f(ω, u, v)|u=0 =

1

2π

∞X
j=−∞

σ
(2,0)
j (0, v)e−ijω, ω ∈ [−π, π], (3.7)
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where

σ
(2,0)
j (0, v) ≡ ∂2

∂u∂u0
σj(u, v)|u=0 = −cov(ztz0t, eiv

0zt−|j|) (3.8)

is a d × d vector. The measure σ
(2,0)
j (0, v) focuses exclusively on the conditional variance and the

correlation dynamics of {zt}. It checks whether the autoregression function var(zt|zt−j) at lag j is

constant. Under appropriate conditions, σ(2,0)j (0, v) = 0 for all v ∈ Rd if and only if var(zt|zt−j) is a
constant matrix.3 Unlike a smoothed nonparametric estimator for var(zt|zt−j), σ(2,0)j (0, v) does not

involve any smoothed parameter and does not suffer from the “curse of dimensionality”. Moreover,

the function f (0,2,0)(ω, 0, v) incorporates information on all lags which are difficult to handle using a

time domain approach.

It should be noted that the hypothesis of var(zt|Izt−1) = Id a.s. is not exactly the same as the

hypothesis of var(zt|zt−j) = Id for all j > 0. The former implies the latter but not vice versa.

There exists a gap between them. This is the price we have to pay to deal with the difficulty of the

“curse of dimensionality”. Nevertheless, the examples for which var(zt|zt−j) = Id for all j > 0 but

var(zt|Izt−j) 6= Id may be rare in practice and are thus pathological.4
There is another payoff of using f (0,1,0)(ω, 0, v).Define the supremum generalized spectral derivative

modulus

m(ω) ≡ sup
v∈Rd

°°°f (0,1,0)(ω, 0, v)°°° , ω ∈ [−π, π] . (3.9)

This can be viewed as the maximum dependence in mean of {zt} at frequency ω. It can capture cyclical
dynamics that is caused by either linear or nonlinear serial dependence in volatility and conditional

correlations of Yt. For example, it has been suggested that volatility tends to be higher during the

recession period than the expansion period (e.g., Hamilton and Lin 1996). Similarly, m(ω) can capture

cyclical dynamics in conditional correlations caused by linear or nonlinear dependence. For example,

it is often argued that negative shocks tend to be transmitted across markets faster than the positive

shock to the markets, as may occur in international spillover of business cycles. Such cyclical patterns

in correlation can be easily captured by m(ω).

Under H0, the generalized spectral derivative f (0,2,0)(ω, 0, v) becomes

f
(0,2,0)
0 (ω, 0, v) ≡ 1

2π
σ
(2,0)
0 (0, v) =

1

2π
cov(ztz0t, e

iv0zt), ω ∈ [−π, π] . (3.10)

This is a “flat” second order generalized spectral derivative in the sense that f (0,2,0)0 (ω, 0, v) does

not depend on frequency ω; it only depends on v. One can test H0 by comparing two consistent
estimators, one for f (0,2,0)(ω, 0, v), and the other for f (0,2,0)0 (ω, 0, v). Any significant deviation between

these estimators will indicate the rejection of H0. Below, we use a kernel method to develop a new
class of tests for H0.

3See Bierens (1982) and Stinchcombe and White (1998) for discussion on related issue in an i.i.d. context.
4This gap can be further narrowed down by using the function E(ztz

0
t|zt−j , zt−l), which may be called the bi-

autoregression function of rt at lags (j, l). An equivalent measure is the generalized third order central cumulant function
σ
(2,0)
j,l (0, v) = cov[ztz0t, exp(iv

0
1zt−j+iv02zt−l)], where v = (v1, v2). This is essentially a generalization of bispectral analysis

and still avoids the curse of dimensionality.
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4. Test Statistics

Suppose we have a random sample of size T and θ̂ is any
√
T -consistent estimator for θ0. An example

of θ̂ is the quasi-maximum likelihood estimator (e.g., Bollerslev and Wooldridge 1988, Lee and Hansen

1994, Lumsdaine 1996). Put ẑt = Ĥ
−1/2
t ε̂t, Ĥt = Ht(θ̂), and ε̂t = Yt − µt(θ̂). We can estimate the

multivariate generalized spectral derivative f (0,2,0)(ω, 0, v), by the following kernel estimator

f̂ (0,2,0)(ω, 0, v) ≡ 1

2π

T−1X
j=1−T

(1− |j|/T )1/2k(j/p)σ̂(2,0)j (0, v)e−ijω, ω ∈ [−π, π], v ∈ Rd, (4.1)

where

σ̂
(2,0)
j (0, v) = − 1

T − |j|
TX

t=j+1

¡
ẑtẑ

0
t − d

¢
[eiv

0ẑt−j − ϕ̂j(v)],

and

ϕ̂j(v) =
1

T − |j|
TX

t=|j|+1
eiv

0ẑt−|j| .

Here, p ≡ p(T ) is a bandwidth, and k : R → [−1, 1] is a symmetric kernel. Examples of k(·) include
Bartlett, Daniell, Parzen and Quadratic spectral kernels (e.g., Priestley 1981, p.442). The factor

(1 − |j|/T )1/2 is a finite-sample correction. It could be replaced by unity. Under certain conditions,
f̂ (0,2,0)(ω, 0, v) is consistent for f (0,2,0)(ω, 0, v). See Theorem 2 below.

On the other hand, the flat generalized spectral derivative f
(0,2,0)
0 (ω, 0, v) can be consistently

estimated using

f̂
(0,2,0)
0 (ω, 0, v) ≡ 1

2π
σ̂
(2,0)
0 (0, v), ω ∈ [−π, π], v ∈ Rd. (4.2)

Our test will be based on the quadratic form comparing (4.1) and (4.2):

Q̂ ≡
Z Z π

−π

°°°vech hf̂ (0,2,0)(ω, 0, v)− f̂
(0,2,0)
0 (ω, 0, v)

i°°°2 dωdW(v)
=

T−1X
j=1

k2(j/p)(1− j/T )

Z °°°vech hσ̂(2,0)j (0, v)
i°°° dW(v), (4.3)

whereW(v) = Πdc=1W0(vc), W0 : R→ R+ is a nondecreasing weighting function that weighs sets sym-
metric about zero equally, and the unspecified integrals are taken over the support of W(·). Examples
of W0(·) include the CDF of any symmetric probability distribution, either discrete or continuous.
Note that the second equality follows from Parseval’s identity.

4.1 Tests under non-i.i.d. Innovations

A volatility model with i.i.d. innovations {zt} in (2.1) is called a strong form volatility model

in the literature (cf. Drost and Nijman 1993). It is possible that Ht(·) is correctly specified while
the innovation {zt} displays higher order dependence, such as time-varying skewness and kurtosis.
Indeed, Drost and Nijman (1993) show that even if {zt} is i.i.d. at certain sample frequency, the
innovation when aggregated to a lower sample frequency will become serially dependent even if it is

12



an m.d.s.5 A volatility model where {zt} is not i.i.d. is called the semi-strong or weak form volatility

model. Recent studies (e.g., Gallant, Hsieh and Tauchen 1991, Hansen 1994, Harvey and Siddique

1999, 2000, Jondeau and Rockinger 2003) find that the conditional skewness and kurtosis of asset

returns are time-varying. Indeed, financial time series are characterized by heavy-tailed non-Gaussian

distributions of unknown form. For our tests, it is also important to take into account the impact of

other higher order time-varying moments which may be displayed in the form of (e.g.) heavy tails and

jumps. In light of this, tests assuming i.i.d. innovations for {zt} will not be robust to time-varying
conditional moments. They will have incorrect sizes; in particular, they may be likely to incorrectly

reject correct GARCH models with time-varying higher order moments. Thus, it is highly desirable

to develop tests robust to higher order moments dynamics of unknown form. To our knowledge, there

has been no such a test in the earlier literature. All existing tests assumed i.i.d. innovations. Here we

provide a test that is robust to time-varying higher order conditional moments of unknown form.

Our test statistic that is robust to time-varying higher order conditional moments of unknown

form is given as follows:

M̂(p) =

T−1X
j=1

k2(j/p)(T − j)

Z °°°vech hσ̂(2,0)j (0, v)
i°°°2 dW(v)− Ĉ(p)

,q
D̂(p), (4.4)

where

Ĉ(p) =
T−1X
j=1

k2(j/p)
1

T − j

TX
t=j+1

h°°vech ¡ẑtẑ0t¢°°2 − d
i Z ¯̄̄

ψ̂t−j(v)
¯̄̄2
dW(v),

D̂(p) = 2
T−2X
j=1

T−2X
l=1

k2(j/p)k2(l/p)
dX

a=1

dX
b=a

dX
a0=1

dX
b0=a0

Z Z

×
¯̄̄̄
¯̄ 1

T −max(j, l)
TX

t=max(j,l)+1

[ẑatẑbtẑa0tẑb0t − δabδa0b0 ]ψ̂t−j(u)ψ̂
∗
t−j(v)

¯̄̄̄
¯̄
2

dW(u)dW(v),

and ψ̂t(u) = eiu
0ẑt−T−1PT

t=1 e
iu0ẑt . The centering and scaling factors Ĉ(p) and D̂(p) are approximately

the mean and the variance of the quadratic form TQ̂ in (4.3). They have taken into account the impact

of time-varying higher order moments of unknown form in {zt}, such as time-varying skewness and
kurtosis. This ensures a correct level for M̂(p) asymptotically. Note that M̂(p) involves d- and 2d-

dimensional numerical integrations, which can be computationally quite intensive when d is large.

In practice, one may choose a finite number of grid points symmetric about zero or generate a finite

number of points drawn from a uniform distribution on [−1, 1]d. Our asymptotic theory allows for both
discrete and continuous weighting functions W0(·) which weigh sets symmetric about zero equally. A
continuous weighting function for W0(·) will ensure good power for M̂(p), but there is a trade-off
between computational cost and power when choosing a discrete or continuous weighting function

5To ignore serial dependence in {zt} by assuming i.i.d. will not render inconsistent parameter estimation for mean
and variance parameters, although it would complicate the attempts to construct asymptotically efficient semiparametric
estimators of the variance parameters (see Gallant and Tauchen 1989, Engle and Granger 1991). Lee and Hansen (1994)
explicitly consider the QMLE method with m.d.s. innovations.
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W0(·). One may expect that the power of M̂(p) will be ensured if sufficiently fine grid points are used.

4.2 Test Statistics Under i.i.d. Innovations

In many applications, practitioners often assume that the innovation {zt} is i.i.d.(0, Id). If this
assumption is indeed valid, our test statistic can be simplified, by taking into account the implication

of the i.i.d. properties of the innovations. When {zt} ∼ i.i.d.(0, Id), and the components of zt are
mutually independent (rather than just uncorrelated), we can simplify our test statistic as follows:

M̂o(p) =

T−1X
j=1

k2(j/p)(T − j)

Z °°°vech hσ̂(2,0)j (0, v)
i°°°2 dW(v)− Ĉo(p)

,q
D̂o(p), (4.5)

where W(v) =Qd
c=1W0(vc), and the centering and scaling constants

Ĉo(p) =

"
dX

a=1

Ã
T−1

TX
t=1

ẑ4at − 1
!
+
1

2
d(d− 1)

#Z
σ̂0(v,−v)dW(v)

T−1X
j=1

k2(j/p),

D̂o(p) = 2

 dX
a=1

Ã
T−1

TX
t=1

ẑ4at − 1
!2
+
1

2
d(d− 1)

Z |σ̂0(u, v)|2 dW(u)dW(v)
T−2X
j=1

k4(j/p),

with σ̂0(u, v) = ϕ̂(u+v)−ϕ̂(u)ϕ̂(v), ϕ̂(v) = n−1
Pn

t=1 e
iv0ẑt . Both Ĉo(p) and D̂o(p) have been simplified,

because the i.i.d. properties of {zt} has been exploited in deriving Ĉo(p) and D̂o(p).

4.3 Separate Diagnostics

The tests M̂(p) and M̂o(p) are designed to assess the overall performance of a multivariate volatility

model Ht(θ).When these tests reject H0, one may like to know what has caused the rejection, that is,
the likely source of misspecification. For example, is the rejection due to poor modeling of volatility

dynamics in each time series component, or poor modeling of the conditional correlations between

different time series components? If it is due to poor modelling of volatility dynamics, which component

of Yt has the poorest fit for its volatility dynamics? Or if it is due to poor modelling of conditional

correlation, which pair of Yt has the poorest fit for their conditional correlation? Information on these

patterns will be very useful in reconstructing a more satisfactory multivariate GARCH model.

For this purpose, we can consider a class of separate tests based on each individual component

of zt. When {zt} is m.d.s.(0, Id) but not i.i.d.(0, Id), we can construct the following individual test
statistic. Suppose rct = ẑactẑbct − δacbc where ac, bc ∈ {1, · · · , d} depends on c ∈ {1, · · · , 12d(d + 1)},
we define

M̂c(p) =

T−1X
j=1

k2(j/p)(T − j)

Z ¯̄̄
σ̂
(1,0)
cj (0, vc)

¯̄̄2
dW0(vc)− Ĉc(p)

,q
D̂c(p), (4.6)
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where

σ̂
(1,0)
cj (0, vc) = (T − |j|)−1

TX
t=|j|+1

rctψ̂ctj(vc),

and the centering and scaling factors

Ĉc(p) =
T−1X
j=1

k2(j/p)
1

T − j

TX
t=j+1

[ẑ2actẑ
2
bct − δacbc ]

Z ¯̄̄
ψ̂ct−j(vc)

¯̄̄2
dW0(vc),

D̂c(p) = 2
T−2X
j=1

T−2X
l=1

k2(j/p)k2(l/p)

Z Z

×
¯̄̄̄
¯̄ 1

T −max(j, l)
TX

t=max(j,l)+1

[ẑ2actẑ
2
bct − δacbc ]ψ̂ct−j(uc)ψ̂

∗
ct−j(vc)

¯̄̄̄
¯̄
2

dW0(uc)dW0(vc),

with ψ̂ct(v) = eivr̂ct − ϕ̂c(v), and ϕ̂c(v) = T−1
Pn

t=1 e
ivr̂ct .

Note that the components of r̂t include individual squared standardized residuals and their pairwise

cross-products. Thus, M̂c(p) can reveal useful information about which component has inadequate

modelling for volatility dynamics, and which pair has inadequate modeling for their conditional corre-

lation. However, we should emphasize that these tests are generally not asymptotically independent

when {zt} is m.d.s. but not i.i.d. Note also that M̂(p) is not a simple sum of the individual test

statistics M̂c(p). The latter is easier to compute because they only involve one- or two-dimensional

numerical integrations.

Suppose {zt} is i.i.d.(0, Id), we can have the following simplified individual test statistics: For
rct = zactzbct − δacbc , where (ac, bc) ∈ {1, · · · , d} depends on c ∈ {1, · · · , 12d(d+ 1)}, we define

M̂o
c (p) =

T−1X
j=1

k2(j/p)(T − j)

Z
|σ̂(1,0)cj (0, vc)|2dW0(vc)− Ĉo

c (p)

,q
D̂o
c(p), (4.7)

where the centering and scaling constants

Ĉo
c (p) =

"
δacbcT

−1
TX
t=1

(z4act − 1) + (1− δacbc)

#Z
σ̂c0(vc,−vc)dW0(vc)

T−1X
j=1

k2(j/p),

D̂o
c(p) = 2

"
δacbcT

−1
TX
t=1

(z4act − 1) + (1− δacbc)

#2 Z
|σ̂c0(uc, vc)|2 dW0(uc)dW0(vc)

T−2X
j=1

k4(j/p).

Again, M̂o(p) is not a simple sum of the individual test statistics M̂o
c (p). We will use these individual

tests in our empirical applications below.

5. Asymptotic Distribution

Because {zt} is not necessarily i.i.d. underH0, the derivation of the asymptotic distribution of M̂(p)
and M̂c(p) is much more challenging than under i.i.d., since we need to take into account the impact
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of possible time-varying higher order moments of {zt}. To derive the null asymptotic distribution of
the test statistics M̂(p), we first provide some regularity conditions.

Assumption A.1: {Yt} is a d × 1 strictly stationary process such that Yt = µt + H
1/2
t zt, where

µt ≡ E(Yt|It−1),Ht =var(Yt|It−1), and It−1 is an information set available at time t − 1 that may
contain lagged dependent variables {Yt−j , j > 0}, lagged shocks {εt−j ≡ H

1/2
t zt, j > 0}, as well as

current and lagged exogenous variables {Xt−j , j ≥ 0}, with E
°°z8t °° ≤ C;

Assumption A.2: For a sufficiently large integer q, there exists a strictly stationary process {zq,t}
measurable with respect to {zt−1, zt−2, · · · , zt−q} such that (a) as q → ∞, zq,t is independent of

{zt−q−1, zt−q−2, · · · } for each t, E(zq,t|It−1) = 0 a.s., E(zq,tz0q,t) = Σq a.s., (b)E
°°vech(ztz0t)− vech(zqtz0qt)°°4 6

Cq−2κ for some constant κ ≥ 1; (c) Σq → Id as q →∞, and E(z16q,t) 6 C for all large q.

Assumption A.3: µ(It−1, θ) and H(It−1, θ) are parametric models for µt and Ht, where θ ∈ Θ is

a finite-dimensional parameter. (a) µ(·, θ) and σ(·, θ) are measurable with respect to It−1 for each
θ ∈ Θ; (b) with probability one, µ(It−1, ·) and σ(It−1, θ) are twice differentiable with respect to
θ ∈ Θ; (c) for i, j ∈ {1, · · · , d}, E supθ∈Θ || ∂∂θµi(It−1, θ)||4ν 6 C, E supθ∈Θ || ∂∂θHij(It−1, θ)||4ν 6 C,

E supθ∈Θ || ∂2

∂θ∂θ0µi(It−1, θ)||2 6 C, and E supθ∈Θ || ∂∂θHij(It−1, θ)||2 6 C, where ν > 1.

Assumption A.4: θ̂ − θ0 = OP (T
−1/2), where θ0 ≡ p lim(θ̂) ∈ Θ.

Assumption A.5: Let Ît be the observed information set available at period t that may contain some
assumed initial values. Then limT→∞

PT
t=1 supθ∈Θ |µ(Ît−1, θ)−µ(It−1, θ)|6 C and limT→∞

PT
t=1 supθ∈Θ |vech(H(Ît−

6 C.

Assumption A.6: The kernel k : R −→ [−1, 1] is symmetric about 0, and is continuous at 0 and
all points except a finite number of points, with k(0) = 1,

R∞
0 k2(z)dz < ∞, and |k(z)| 6 C|z|−b as

z →∞ for some b > 1
2 .

Assumption A.7: W0 : R −→ R+ is nondegenerate, nondecreasing and weighs sets symmetric about
zero equally, with

R∞
−∞ v2dW0(v) <∞.

Assumption A.8: The process {zt, ∂
∂θµi(It−1, θ0),

∂
∂θHij(It−1, θ0), i, j = 1, 2, · · · , d} is an α-mixing

process with the α-mixing coefficient satisfying
P∞

j=−∞ α(j)
ν−1
ν ≤ C, where ν > 1 is as in Assumption

A.3.

Assumption A.1 is a regularity condition on the data generating process {Yt}. Note that {Yt} may
not be covariance-stationary. An example is the IGARCH process. Assumption A.2 implies ergodicity

for innovations {zt}. It holds trivially when {zt} is a Markovian process with an arbitrary but finite
order. It also covers many non-Markovian processes for {zt}.

Assumption A.3 are standard regularity conditions on the variance model H(It−1, θ). We allow
for H(It−1, θ) to depend on the entire past history It−1, rather than a vector with fixed dimension.
This is a distinct feature from the existing nonparametric test for the conditional variance models

(e.g., Li 2001). Assumption A.4 requires a
√
T -consistent θ̂, which need not be asymptotically most

efficient. It can be the conditional quasi-maximum likelihood estimator. This is similar in spirit

to Wooldridge’s (1990, 1991) robust modified moment-based tests for the conditional mean and the

variance specifications. Assumption A.5 is a condition on the truncation of information set It−1, which
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usually contains information dating back to the remote past and so may not be observable. Because of

the truncation, one may have to assume some initial values in estimating volatility model H(It−1, θ).
Assumption A.5 ensures that the use of initial values, if any, has no impact on the limit distribution

of M̂(p). For instance, consider ARMA(1,1)-GARCH(1,1) model:
µ(It−1, θ) = αYt−1 + βεt−1,

εt = H(It−1, θ)1/2zt,
H(It−1, θ) = γ + δH(It−2, θ) + τε2t−1,

where |α| ≤ ᾱ < 1 and |β| ≤ β̄ <∞. Here It−1 = {Yt−1, Yt−2, · · · } but Ît−1 = {Yt−1, Yt−2, · · · , Y1, ε̂0},
where ε̂0 is an initial value assumed for ε0. By recursive substitution, we have

E
TX
t=1

sup
θ∈Θ

¯̄̄
µ(Ît−1, θ)− µ(It−1, θ)

¯̄̄
= E

TX
t=1

sup
θ∈Θ

¯̄̄̄
¯̄β ∞X

j=t−1
αjεt−j−1 − βαt−1ε̂0

¯̄̄̄
¯̄

6 β̄
TX
t=1

Esup
α

¯̄̄̄
¯αt−1

Ã ∞X
l=0

αlε−l − ε̂0

!¯̄̄̄
¯

6 2β̄
TX
t=1

|ᾱ|t−1
"
E|ε0|

∞X
l=0

ᾱl +E|ε̂0|
#
6 C.

We can obtain a similar condition for H(·, θ) for a GARCH(1,1) model.
Assumption A.6 is a regularity condition on the kernel k(·). It includes all commonly used kernels

(see., e.g., Priestley 1981, p.442). For kernels with bounded support, such as the Bartlett and Parzen

kernels, b = ∞. For the Daniell kernel, b = 1, and for the Quadratic-spectral kernel, b = 2. These

kernels have unbounded support. As a consequence, all T − 1 lags contained in the sample is used in
the test statistics M̂(p). Assumption A.7 is a condition on the weighting function W (·) for transform
parameter v. The CDF of any symmetric continuous distribution with finite variance satisfies this

condition. Finally, Assumption A.8 imposes some temporal dependence condition on the related

processes. We now state the main result of this section.

Theorem 1: Suppose Assumptions A.1—A.8 hold, and p = cTλ for λ ∈ (0, (2b − 1)/(4b − 1)) and
c ∈ (0,∞). (i) M̂(p) d−→ N(0, 1) under H0. (ii) If {zt} is i.i.d.(0, 1), and the components of zt are

mutually independent, then M̂o(p)
d−→ N(0, 1).

An important feature of M̂(p) is that the use of estimated standardized residuals {ε̂t} rather than
unobservable errors {εt} has no impact on the limit distribution of M̂(p). One can proceed as if the
true parameter value θ0 were known and were equal to θ̂. The reason is that the estimator θ̂ converges

to θ0 at the parametric rate T−
1
2 , which is faster than the nonparametric estimator f̂ (0,m,0)(ω, 0, v).

Consequently, the limit distribution of M̂(p) is solely determined by f̂ (0,m,0)(ω, 0, v), and replacing θ̂ by

θ0 has no impact on it. This delivers a convenient procedure, because it does not require any specific

estimation method and one does not have to be concerned with the impact of parameter estimations

uncertainty. Of course, parameter estimation uncertainty in θ̂ may still have nontrivial impact on the

small sample distribution of M(p). In this case, one may use a bootstrap procedure similar to that of

Hansen (1996) to obtain more accurate levels of the tests in small samples.
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6. Asymptotic Power

Our tests are derived without assuming any alternative volatility models. To gain insight into the

nature of the alternatives that our tests are able to detect, we now examine the asymptotic behavior

of M̂(p) under the alternative to H0.

Theorem 2: Suppose Assumptions A.1 and A.3—A.8 hold, and p = cT λ for λ ∈ (0, 12) and c ∈ (0,∞).

p1/2

T
M̂(p)

p−→
·
2D

Z ∞

0
k4(z)dz

¸−1/2 Z °°°vech hf (0,2,0)(ω, 0, v)− f
(0,2,0)
0 (ω, 0, v)

i°°°2 dωdW(v)
=

·
2D

Z ∞

0
k4(z)dz

¸−1/2 ∞X
j=1

Z °°°vech hσ(2,0)j (0, v)
i°°°2 dW(v),

where

D = E
°°vech ¡z1z01 − Id¢°°2 Z kvech [f(ω, 0, v)− f0(ω, 0, v)]k2 dωdW(u)dW(v)

Consequently, for any sequence of nonstochastic constants, {CT = o(T/p1/2)},

lim
T→∞

Pr
h
M̂(p) > CT

i
= 1,

whenever E(ztz
0
t − Id|zt−j) is a measurable function of zt−j for some j > 0.

We thus expect that M̂(p) has relatively omnibus power against a wide variety of linear and nonlinear

alternatives with unknown lag structure, as is confirmed in our simulation below. It should be em-

phasized that the omnibus power property does not mean that the proposed tests are more powerful

than any other existing tests against every alternative. In fact, just because M̂(p) has to take care of

a wide range of possible misspecifications, it may be less powerful against certain specific alternative

than a parametric test. Nevertheless, the main advantage of our omnibus test, which is not shared

by any other parametric tests, is that M̂(p) can eventually detect all possible model misspecifications

that render the autoregression functions E(ztz0t − Id|zt−j) nonzero at any lag j > 0. This avoids the

blindness of searching for different alternatives when one has no prior information.

The existing tests for µ(It−1, θ) and H(It−1, θ) only consider a fixed order lag. They can easily
miss alternatives for which misspecification occurs at higher lag orders. Of course, these tests could

be used to check a large number of lags when a large sample is available. However, they may not be

expected to be powerful when the number of lags is too large. Such power loss, due to the loss of a

large number of degrees of freedom, is not shared by our test, thanks to the role played by the kernel

k(·). Most non-uniform kernels discount higher order lags (i.e., a higher order lag receives a smaller

weight). This enhances good power against stationary processes whose serial dependence decays to

zero as lag order j increases. Thus, our generalized spectral approach can check a large number of lags

without losing too many degrees of freedom. This feature is not available for popular χ2-type tests

with a large number of lags, which essentially give equal weighting to each lag. Equal weighting is not

fully efficient when a large number of lags is considered.

Since p limT→∞ Q̂(p) is positive whenever var(zt|zt−j) 6= 0 for some lag j > 0, M̂(p) is an asymp-

totically one-sided N(0,1) test. Thus, upper-tailed asymptotic critical values (e.g., 1.645 at the 5%
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level) should be used.

7. Data-Driven Lag Order

A practical issue in implementing our test is the choice of lag order or bandwidth p. An advantage

of our generalized spectral approach is that it can provide a data-driven method to choose p, which, to

some extent, let data themselves speak for a proper p. Before discussing specific data-driven methods,

we first justify the use of a data-driven lag order, p̂ say. For this purpose, we impose a Lipschitz

continuity condition on the kernel k(·). This condition rules out the truncated kernel k(z) = 1(|z| ≤ 1),
where 1(·) is the indicator function, but it still includes most commonly used kernels.
Assumption A.9: For any x, y ∈ R, |k(x)− k(y)| ≤ C|x− y| for some constant C.
Theorem 3: Suppose Assumptions A.1—A.9 hold, and p̂ is a data-driven bandwidth such that p̂/p =

1 + OP (p
−( 3

2
β−1)) for some β > (2b − 1

2)/(2b − 1), where b is as in Assumption A.5, and p is a

nonstochastic bandwidth with p = cT λ for λ ∈ (0, (2b − 1)/(4b − 1)) and c ∈ (0,∞). Then (i) under
H0, M̂(p̂)− M̂(p)

p−→ 0 and M̂(p̂)
d−→ N(0, 1). (ii) If {zt} is i.i.d.(0, Id), and the components of zt

are mutually independent, then M̂o(p̂)− M̂o(p)
p−→ 0 and M̂o(p̂)

d−→ N(0, 1).

Thus, as long as p̂ converges to p sufficiently fast, the use of p̂ rather than p has no impact on the

limit distribution of M̂(p̂). This is an additional “nuisance parameter-free” property.

Theorem 3 allows for a wide range of admissible rates for p̂. One plausible choice of p̂ is the

nonparametric plug-in method considered in Hong (1999). It minimizes an asymptotic integrated

mean square error (IMSE) criterion for the estimator f̂(ω, 0, v). Nonparametric plug-in methods are

not uncommon in the literature (e.g., Newey and West 1994, Silverman 1986). Consider some “pilot”

generalized spectral derivative estimators based on a preliminary bandwidth p̄ :

f̄ (0,2,0)(ω, 0, v) ≡ 1

2π

T−1X
j=1−T

(1− |j|/T ) 12 k̄(j/p̄)σ̂(2,0)j (0, v)e−ijω, (6.1)

f̄ (q,2,0)(ω, u, v) ≡ 1

2π

T−1X
j=1−T

(1− |j|/T ) 12 k̄(j/p̄)σ̂(2,0)j (0, v)|j|qe−ijω, (6.2)

where the kernel k̄(·) need not be the same as the kernel k(·) used in (3.6). For example, k̄(·) can be
the Bartlett kernel while k(·) is the Daniell kernel. Note that f̄(ω, u, v) is an estimator for f(ω, u, v)
and f̄ (q,0,0)(ω, u, v) is an estimator for the generalized spectral derivative

f (q,2,0)(ω, u, v) ≡ 1

2π

∞X
j=−∞

σ
(2,0)
j (0, v)|j|qe−ijω. (6.3)

Suppose for the kernel k(·), there exists some q ∈ (0,∞) such that 0 < k(q) ≡ limz→0
1−k(z)
|z|q < ∞.

Then the plug-in bandwidth is defined as

p̂0 ≡ ĉ0T
1

2q+1 , (6.4)
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where the tuning parameter estimator

ĉ0 ≡
"
2q(k(q))2R∞
−∞ k2(z)dz

R R π
−π
°°vech £f̄ (q,2,0)(ω, 0, v)¤°°2 dωdW(u)

Re
R π
−π
R
vech

£
f̄ (0,2,2)(ω, 0, 0)

¤
f̄(ω, v,−v)dW (v)dω

# 1
2q+1

=

 2q(k(q))2R∞
−∞ k2(z)dz

PT−1
j=1−T (T − |j|)k̄2(j/p̄)|j|2q

R °°°vech hσ̂(2,0)j (0, v)
i°°°2 dW (u)dW (v)PT−1

j=1−T (T − |j|)k̄2(j/p̄)vech
h
R̂2(j)

i
Re
R
σ̂j(v,−v)dW (v)


1

2q+1

,

with R̂2(j) = T−1
PT

t=j+1 ẑtẑ
0
t−j . The second equality here follows from Parseval’s identity. Note that

p̂0 is real-valued. One can take its integer part, and the impact of integer-clipping is expected to be

negligible.

The data-driven p̂0 in (6.4) involves the choice of a preliminary bandwidth p̄, which can be either

fixed or growing with the sample size T . If p̄ is fixed, p̂0 generally grows at rate T
1

2q+1 under HA, but

ĉ0 does not converge to the optimal tuning constant that minimizes the IMSE of f̂(ω, 0, v). This is

analogous in spirit to a parametric plug-in method. Following Hong (1999), we can show that when

p̄ grows with T properly, the data-driven bandwidth p̂0 in (6.4) minimizes an asymptotic IMSE of

f̂ (0,2,0)(ω, 0, v). The choice of p̄ is somewhat arbitrary, but we expect that it is of secondary importance.

This is confirmed in our simulation below.

From a theoretical point of view, the choice of p̂ based on the IMSE criterion may not maximize

the power of the test. A more sensible alternative would be to develop a data-driven p̂ using a power

criterion, or a criterion that trades off level distortion and power loss. This will necessitate higher

order asymptotic analysis and is beyond the scope of this paper. We are content with the IMSE

criterion here. Our simulation experience suggests that the power of our tests is relatively flat in the

neighborhood of the optimal lag order that maximizes the power, and the data-driven p̂0 based on

IMSE performs reasonably well in finite samples.

8. Monte Carlo Evidence

[To be completed]

8.1. Size

We examine the size performance of our tests under the following two DGPs:

DGP S.1: 
Yt = 0.2Yt−2 + εt,

εt =
√
htzt,

ht = 0.2 + 0.6ht−1 + 0.2ε2t−1,
{zt} ∼ i.i.d.N(0, 1).

20



DGP S.2: 

Yt = 0.2Yt−2 + εt,

εt =
√
htzt,

ht = 0.2 + 0.6ht−1 + 0.2ε2t−1,

zt =
h
a(εt−1) +

p
1− a2(εt−1)δt

i
ξt,

a(εt−1) = [1 + exp(−εt−1)]−1
{ξt} ∼ i.i.d.N(0, 1),

{zt} ∼ i.i.d.N(0, 1).

Under DGP S.1, the innovations {zt} is i.i.d.(0,1). This is a strong GARCH process, where all

conditional higher order moments are time-invarying. Under DGP S.2, the innovations {zt} has the
property that E(zt|It−1) = 0 and var(zt|It−1) = Id, but {zt} is not i.i.d. It can be shown that

Kurt(Yt|It−1) = 9 − 6a4(εt−1). This is a semi-strong GARCH process. It was first proposed by

Bossaerts, Härdle and Hafner (1996) in its rudimentary form, and extended by Yang and Hafner

(1997). Most existing tests are not robust to time-varying conditional higher order moments of {zt}.

8.2 Power

We consider the following alternatives:

DGP P.1: Threshold GARCH

DGP P.2: EGARCH

DGP P.3: Stochastic volatility models

DGP P.4: Quadratic GARCH

9. Empirical Application

[To be completed]

10. Conclusion

Volatility models have played an important role in economics and finance such as in the studies

of trade-off between return and risk, volatility clustering, and volatility spillover between financial

markets or between financial sectors and real sectors. We propose a class of new specification tests

for volatility models in time series, where the dimension of the conditioning information set may

be infinite. Both univariate and multivariate volatility models are covered. The tests can detect a

wide range of model misspecifications in volatility while being robust to higher order time-varying

moments of unknown form (e.g., skewness and kurtosis). They can check a large number of lags,

and naturally discount higher order lags, which is consistent with the stylized fact that economic or

financial markets are more affected by the recent past events than by the remote past events. No

specific estimation method is required, and the tests have the appealing “nuisance parameter free”

property that parameter estimation uncertainty has no impact on the limit distribution of the test
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statistics. Only the standardized estimated residuals are needed to implement our tests. There is no

need to compute score functions of volatility models as required in some existing tests. We examine

the finite sample performance of the proposed tests via a simulation study. An empirical application

to GARCH models for stock returns highlights our approach.
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