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Abstract

This paper develops a new covariance-based test of orthogonality that may
be attractive when regressors have roots close or equal to unity. In this case
standard regression-based orthogonality tests can suffer from (i) size distortions
and (ii) uncertainty regarding the appropriate model in which to frame the alter-
native hypothesis. The new test has good size and power against a wide range of
reasonable alternatives for stationary, non-stationary, and local to unity regres-
sors, while avoiding non-standard limiting distributions, size correction, and unit
root pre-tests. Asymptotic results are derived and simulations suggest good small
sample performance. As an empirical application we test for the predictability of
stock returns using two persistent regressors, the dividend-price-ratio and short-
term interest rate. The recent literature highlights the role of size distortions
in traditional tests using these predictors. On the other hand, while often over-
turning these rejections, recently employed size-corrected regression-based tests
may restrict power to alternatives that become less plausible the more persis-
tent the regressor. The covariance-based tests, which have correct size without
restricting power, also show considerably weaker evidence against orthogonality
than do traditional regressions. Nevertheless, even allowing for near-unit root
behavior, in many cases we still reject orthogonality at long horizons using the
dividend yield and at short to medium horizons using the one-month treasury
bill rate.

1 Introduction

This paper develops a new covariance-based method for testing orthogonality when
the conditioning variable has a root close or equal to unity. This new method provides
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a t-test with good size properties without reference to prior knowledge, estimates, or
pre-tests regarding the size of the root. Furthermore it has non-trivial power against
a broad range of alternatives. In this sense the alternative hypothesis is defined more
broadly than in common regression specifications.
To fix ideas, consider the following simple orthogonality regression of y; on lagged
Ti—1
Yt = Bo + Brxi—1 + €21, (1)

together with a first order autoregressive specification for the marginal distribution
of x4
Ty = po + p1%-1 + €1, (2)

with a value of p; close or possibly equal to unity and innovations given by

=(2) -~ )

€2t 0 o21 022

This would appear to roughly characterize several common empirical applications,
including, for example, orthogonality tests involving the regression of log returns on
the lagged dividend yield or interest rates and the regression of excess foreign currency
returns on the lagged forward premium. Although the returns in such regressions
generally show little persistence, the regressors are highly serially correlated and may
be well characterized by roots near unity.

Typically it is the case that a risk-neutral market efficiency condition implies
orthogonality of v with respect to I ;1 = o(xt—1,x¢—2,%¢—3,...), the information
contained in all past values of ;. The null hypothesis of orthogonality implies 3; = 0,
and a common test of market efficiency is provided by a standard t-test on this
parameter. This null hypothesis carries no implications regarding the root p; of x;
and often this may not be of direct economic interest. However, if the value of p;
is close or equal to one, it can become a difficult nuisance parameter. In particular,
as discussed below, a large value of p; can impact a standard orthogonality t-test in
two ways: (i) by causing size distortions and (ii) by leading to trivial power under
certain reasonable alternatives. Roots in x; equal to one may sometimes be ruled on
a priori grounds (nominal interest rates, for example, should not be negative), but
roots close to one in a local to unity sense generally can not be.

The size problem is well documented in Mankiw and Shapiro (1986), Cavanagh
et al. (1995), and Stambaugh (1999). It results from a Dickey-Fuller type bias in
the nonstandard distribution of the estimator Bl when o192 # 0 and p; is close to
one.! For a known value of p; = 1 this bias may be corrected using cointegration
type adjustments in order to obtain correct asymptotic size. More realistically, for
fixed values of p; < 1, two stage procedures based on a unit root pre-test can also
provide correct large sample size. Unfortunately, such procedures have been found
to overcorrect under a local to unity specification, again creating size distortions in
the empirically relevant case of moderate sample sizes and roots just slightly below

1512 is unrestricted under the null hypothesis similarly to p, and must also be considered a
nuisance parameter.



one (Cavanagh et al. (1995), Elliot (1998)).2 The covariance based t-test proposed
here is fundamentally different than the regression t-test, and thus avoids this size
distortion problem altogether.

The second issue that arises for p; close or equal to one is that of power under
reasonable alternatives. This appears to be less widely discussed. Under the null
of orthogonality, we have 3, = 0, allowing y; (e.g. returns) to be stationary even
if x; (e.g. dividend yields) follows a local to unity or unit root process. The null
hypothesis is thus reasonably incorporated into a regression such as (1). However,
the exact form of the alternative is usually left unspecified by economic theory and
just what constitutes a sensible alternative may depend on the persistence properties
of the data. If x4 is clearly stationary, 5; # 0 in (1) provides a reasonable alternative
hypothesis. However, if x; is local to unity or a unit root process, this will only
constitute an appropriate alternative if the process for y; (e.g. returns) is thought
to be equally persistent, a possibility which may often lack empirical support. Note
for example, that if y; is stationary, but x; has a unit root, then 3; must equal 0
and y; must be i.i.d. in order for (1) to hold true. Yet, this merely implies that
the regression specification is “unbalanced” and does not imply orthogonality in the
more general sense. And it is not clear if the tests of orthogonality based on 3, in
(1) have any reasonable power, because setting 3; = 0 is not sufficient to provide a
correct dgp under the null hypothesis. A more reasonable test of orthogonality to
consider in this context would be a regression of ; on the pre-filtered version of x;_1
as in

Yt = Yo + 71 (Te—1 — T4—2) + €24

But this requires a unit root pre-test, whose problem was discussed above. Of course,
more elaborate parametric regressions can also nest both alternatives, but this may
come at the expense of complicating the size problem. The new test we propose has
reasonable power against both sets of alternatives: 3; # 0 when z; is stationary, and
v; # 0 when z; is a unit root process, without requiring size correction or pre-test.

The covariance-based testing approach we develop begins with the following intu-
ition. Consider first x; stationary (1(0)). The regression coefficient 3; =cov(y:, x¢—1)/var(zi_1)
is equal to 0 if and only if the numerator cov(y:, z:—1) = 0. For stationary x; the
orthogonality test may therefore be restated as a test of cov(y, x4—1) = 0. Next,
rewrite x;_1 as an infinite sum of its past first-differences:

1 = (T4—1 —w—2) + (Xp—2 —x4—3) + ... = Azp 1 + Azp o+ ...

This purely algebraic decomposition then allows us to rewrite the contemporaneous
covariance between y; and x;_1 in terms of a (one-sided) long run covariance between
y: and the first-difference Ax;_1 as

cov (Yyg, Te—1) = Z cov (yt, Axs_p) . (3)
h=1

Zmore appropriate corrections based on first stage confidence intervals for the local to unity
parameter.



The next step is to extend this decomposition to the case where x; follows a
unit root (I(1)) process. In particular, we can define a contemporaneous covariance
between y; and z;_1 in analogous fashion, as the long-run covariance between y; and
the first-difference of x;_;, as®

t—1

cov (ye, m4-1) = 3 cov (yr, Aze_p).,
h=1

initializing x; at t = 0. Assume y; and Az;_1 are stationary, and define a pseudo-
covariance between x;—1 and y; as

t—1 00
Ay Az 1= tliglo Z cov (Y, Azy_p) = Z cov (Y, Azy_p), (4)
h=1 h=1

which is well-defined if Y 37 |cov(ys, Azy—p)| < co. As seen from (3), when x; is
stationary, the pseudo-covariance is written as

Ay, Az = COV (Yp, T—1) . (5)

Therefore, Ay a5 is well-defined both when z; is I(1) and I(0) and provides an ei-
ther an exact (x; I1(0)) or an approximate (z; I(1)) measure of the contemporaneous
covariance between y; and x;_1.

When z; has a root close to unity, a useful model of z; is the so-called local-to-
unity process

xt:(l—g)mt_l—i—ut, t=1,2,..., ¢>0,

with z; = 0 for ¢ < 0. As shown in the Appendix, when 372, p[cov(ys, ut—p)| < oo,
the pseudo-covariance takes the form

Ay Az = Z cov(yg, ug—p) + O (nil) , (6)
h=1

and it bears the same meaning as when z; is I(1).

The proposed orthogonality test is then based on a test of the null hypothesis
that Ay Az = 0, a parameter which is well defined for both stationary and unit root
nonstationary z;. To see the relationship between this parameter restriction and
more common tests of orthogonality, note first that y; orthogonal to I, ;1 implies
Ay,Az = 0. This follows from the fact that Az;_; belongs to I,;—1 for h > 1 and is
therefore orthogonal to y;, implying cov(y:, Ax;_p) = 0 for all A > 1. Thus a rejection
of Ay Az = 0 constitutes a valid rejection of orthogonality.

Next consider the power of the test against various alternatives. When z; is
stationary, 8; = %@)—1) has a finite dominator, so that 3; = 0 if and only if
Ay,ax =cov(yg, x4—1) = 0. So for stationary z; the test has power against the same
alternatives as the standard t-test. For p; = 1 (unit root) and 3, # 0 both y; and x;

3This concept, expanded upon here, was first given in Maynard (2002).



have unit roots, implying an infinite (and hence non-zero) value of Ay o,. Therefore
the test still maintains power against 3; # 0 for nonstationary z;. In addition, it
also provides power against other reasonable alternatives (e.g. 7 # 0) for which
tests based on (; can not provide power. For example, although no longer infinite,
Ay,az # 0 also holds for v # 0.

Estimation follows from the fact that the parameter A, A, is well defined and
consistently estimated by the same standard kernel covariance estimator for both
stationary and unit root nonstationary x;. Thus we can a provide single estimator
for Ay Ax without the necessity of pretesting or estimating p;. The feature appears
to be particularly useful when empirical researchers have to conduct econometric
analysis when the variables in question could be I(0) or I(1), for instance testing the
efficient market hypothesis based on the current period stock return and past dividend
or labor-productivity issues (Fisher, 2002, Christiano, Eichenbaum and Vigfussen,
2002).

A second useful feature of the estimator is that is shown to have a unique limit
distribution for all (finite) values of the local to unity parameter c. This allows us to
avoid conservative two-stage inference procedures, such as Bonferroni bounds, that
are generally necessitated by the lack of a consistent estimator for the local to unity
parameter. We provide an asymptotically exact test, based on a single t-statistic with
a limiting standard normal distribution that is equally valid under both unit root and
local to unity (finite c) assumptions. No bias corrections or other adjustments are
required. This test is suggested primarily when roots are close to unity so that a
local to unity model is appropriate. However, it also shown to provide conservative
inference when x; is stationary.

These methods are used to revisit well-known orthogonality tests involving the
prediction of stock returns using dividend-yields and interest rates. Both variables
are highly persistent leading much recent literature to explore size distortions. In
fact, using size-corrected regression-based tests, original results suggesting strong
predictive content in dividend-yields have often been overturned. However, while
properly correcting for size, such regressions may also restrict power to alternatives
that imply near-nonstationarity in stock returns (i.e. near I(2) behavior in stock
prices). By using covariance-based tests we are able to allow for alternatives that
leave returns stationary, while still violating orthogonality. The covariance-based
tests also show considerably weaker evidence against orthogonality than do traditional
regressions. Nevertheless, even allowing for near-unit root behavior, in many cases
we still reject orthogonality at long horizons using the dividend yield and at short to
medium horizons using the one-month treasury bill rate.

The size problem inherent in these regressions has generated an active area of
research and a number of alternative techniques have been proposed. However, they
are all differ substantially approach and most address only the issue of size. Begin-
ning with Cavanagh et al. (1995), several papers (Torous, Valkanov, and Yan (01),
Valkanov (2003), and Campbell and Yogo (2003)) employ local to unity asymptotics
to provide size corrections for regression based tests. Cavanagh et al (1995) for exam-
ple, provide critical vales using two-stage bounds Bonferroni and Scheffe type bounds



procedures. Stambaugh (1999) and Lewellen (2002) give finite sample corrections to
regression based tests under more restrictive assumptions, while Elliott and Stock
(1994) and Stambaugh (1999) consider Bayesian approaches. With suitable (strictly
exogenous) instruments, the FM-IV estimator of Kitamura and Phillips (1997) can
also eliminate size problems, even under local to unity assumptions and without prior
testing on p;. Finally, sign and rank tests (Campbell and Dufour, 1995, 1997) provide
exact finite sample size without restrictions on x; under the null hypothesis. How-
ever, they find proper specification of the process for x; still has important power
implications, and independence assumptions on y; may restrict their use in test with
long-horizon returns. Bootstrap and subsampling approaches have also been em-
ployed under the assumption of a fixed root less than unity (Nelson and Kim (1993),
Goetzmann and Jorion (1993) and Wolf (2000)).

The remainder of the paper is organized as follows. Section 2 introduces the
kernel-based estimator of Ay A, and demonstrates its asymptotic behavior when x;
is I(1), 1(0), and local-to-unity. Section 3 discusses how to conduct inference based
on the estimate of A\, A,, and Section 4 reports some simulation results. Empirical
application is reported in Section 5, and Section 6 concludes. Proofs are given in the
Appendix in Section 7, and Section 8 collects some technical results.

2 Estimation of pseudo-covariance

In this section, we develop an estimator of the pseudo-covariance and derive its asymp-
totic properties. First we state the assumptions.

Assumption A
(ye, Azy) are generated by

o0 0
2t = ( Ay_;t > :A(L)ﬁgt:ZAjEtfja Z]HAJ||<OOa (7)
j=0 j=0

ey ~ iid(0,13), with finite fourth moment,
o0

Lyy(h)  Tynaa(h)

R2|T(R)|| < oo, >1; Fh:[yy yar =FEzz_,,
3 e oz 1 (= | ol Al B,
where || A|| is the supremum norm of a matriz A.

The assumption var(e;) = I3 is innocuous because we do not normalize the ele-

ments of A;. We propose to estimate a pseudo-covariance by
R n—1 B\ ~ R 1 n
Ay, Ax = ;; k <m> Cazy(h);  Tazy(h) = - t—zh;1 YtAxp, (8)

where m is the bandwidth and k(x) is the kernel. We assume k(x) and m satisfy the
following assumptions.



Assumption K

The kernel k(x) is continuous and uniformly bounded with k(0) = 1, [° |k (z)|x'/2dx <
0, fo k%(z)dz < oo and
. 1—Fk(x)
Assumption M
1 me
—+ ——=0 asn — oo.
m n

Assumption K is satisfied by the Bartlett kernel with ¢ = 1. Other kernels such
as the Parzen kernel, Tukey-Hanning kernel, and Quadratic Spectral kernel satisfy
Assumption K with ¢ = 2. The following two lemmas show the asymptotic bias and
variance of Ay A, and its consistency.

2.1 Lemma

If Assumptions A, K and M hold, then

lim m?F (X%Afc - yA;C> =—k ZFAaJy

n—oo

The proof of this Lemma is omitted because it is the same as that of Theorem 10
in Hannan (1970, p. 283). Let fy,(\) denote the spectral density of y; and fazy(A)
denote the cross-spectral density between Az; and y;, and similarly for fya,()) and
fazaz(A). The following Lemma is a one-sided version of Theorem 9 of Hannan (1970,
p. 280).

2.2 Lemma

tim var (R,a) = V = dn? / T () di {uy (0) Favae (0) + [yas (02}
0

n—oo m

2.3 Corollary
If Assumptions A, K and M hold, then X%AI —p Ay, Az @S N — OO.

2.4 Remarks

1. If k () is symmetric, we have

o

V=_(3) 47T2/ @) dz { fyy (0) fazaz (0) + [fyaz (0)*} = (3) hjn var (Wy,Az)
—0o0
where @y A, is the estimate of the long-run covariance between y; and Axy.

So, the asymptotic variance of X%AI is just half the limiting variance for the
two-sided case.



2. From Lemmas 2.1 and 2.2, the asymptotic mean squared error is minimized by
choosing m such that

m* = | 2qk2 (Z rmy(h)hq> n / 1%

h=1

/(2q+1)

Assuming k(z) is symmetric, we can rewrite m* as

m* = <qua(q)n / /_ ZkQ (x)dx)l/(2q+l), (9)

4((2m) " 3252, Ty (h)h9)°
fyy (0) foAm (0) + [fyAm (0)]2’

giving expressions similar to those in Andrews (1991, pp. 825, 830). If m is

chosen optimally, then the rate of convergence is n?/(24+1).

alg) =

3. When Az, follows ARFIMA(p,d,q) with —1 < d < 0, Lemma 2.2 still holds,
but fazaz (0) = fyaz (0) = fazy (0) = 0 and the limiting variance is 0. This
suggests that the rate of convergence is faster when Ax; is overdifferenced and
will depend on d.

4. Lemma 1 (11) (p. 12) of Maynard (2002) shows that Y ;% h? |Tyaz(h)| < oo,
so Lemma 2.2 holds if Ax; is I(d) with —1 < d < 0. Intuition for this result
is given on p. 16-17 in the paragraph “Why then are the biases in Table 5 so
reasonable...” and the proof is in Appendix A3 (p. 29).

2.5 The limit distribution when z; is (1)

It is well known that the estimator of the two-sided long-run covariance between
y¢ and Ax; has normal limiting distribution (Hannan, 1970, Theorem 11, p. 289).
However, currently there is no results that show the asymptotic normality of the
one-sided long-run covariance estimator. Omne of the reasons is because the one-
sided long-run covariance estimator does not admit a simple expression in terms of
periodograms. To see why, let I.(w) be the periodogram of z;, then it follows that

n—1 h 1 n n—1 h m
§ : /o § : iwh
hEI k <m> E Zt—hRt = £ k <m> / IZ(W)e dw

t=h+1 -T

It is easy to see that K, (w) does not have a simple expression such as Fejér kernel,
and indeed it has a nonnegligible imaginary part. In the present paper, we work
directly with fyA;B by applying the martingale approximation a la Phillips and Solo
(1992) and show the asymptotic normality of Xy, Az- The following theorem establishes

it.



2.6 Theorem

If Assumptions A, K and M hold, 35 > 1 such that >.7° ___|h|°||[T'(h)]| < oo, and
m?/n +n/m**tt — 0, then

% (X%Am« — )\y,Am) —q N(0,V), as n — .

The optimal bandwidth m* does not satisfy the rate condition on m of Theorem
2.6, which is a standard result when the bandwidth is chosen to minimize the mean
squared error. m needs to grow faster than m™* for Theorem 2.6 to hold. Since the
optimal rate of increase of m is n'/(24+1) from Remark 2.4 (2), the upper bound on
m, m?/n — 0, does not appear to pose a severe problem when ¢ is 1 or 2.

2.7 The limit distribution when z; is 7 (0)

The argument so far is based on the assumption that z; is I(1). However, in prac-
tice often we do not have strong prior knowledge about whether x; is I(1) or I(0).
With additional Lipschitz continuity assumption on the kernel, X%Ax converges to
Eyixy—1 = Ay, Az When z; is an I(0) process. Let us first state the assumptions on x¢
and y;.

Assumption B

o

vy = ( vt ) =B(L)er=Y» Bjerj, > jllBjll <o, (10)
=0 =0

et ~ 1d(0,Iy), with finite fourth moment
o0

q — yy(h) yx(h) _ /
S < s, o) = | 2 Tl | < B,

—0o0

and fz(0), fy(0) > 0, where f.(X\) and fy(\) are the spectral density of x; and y;.

We use ~(h) to denote the autocovariance of vy to distinguish it from the autoco-
variance of z; in Assumption A. Note that v,, (1) = Eyiri—1 = Ay Ax-

2.8 Lemma

If Assumptions B, K and M hold and k(x) is Lipschitz(1), then
Vit (e = Apae) = BOU/mIVE Ty (1) = 70y (1) + Ba+0p(1), (1)
where 7, (1) = n~tS" o yewe—1 and B, is the bias term satisfying

B _ 0, if Bysxy_p =0 forall h > 1,
"7l O(nY?m~9), otherwise.



In addition, k(1/m)v/n(q, (1) = v4(1)) —a N (0,Z) as n — oo, where

E= Z {’Ya::c(u)’}/yy(u)+7$y(u+1)7yz(u_1)}+ Z kzyry((),l,u,u—i—l).

U=—00 U=—00

2.9 Remarks

1. When z; is I(1), Theorem 2.6 requires the rate condition m?/n+mn/m?t! — 0.
Therefore, if Eyxi—p, # 0 for some h, then we need to use a kernel with ¢ = 2
and choose m so that m?/n +n/m* — 0 for Ay o, to have a Gaussian limiting
distribution centered around A, a, both when z; is I(1) and I(0). However,
when the hypothesis of interest is the orthogonarity between y; and I, ;_1, then
m needs to sastisfy only m?/n 4+ n/m2at) — 0.

2. If you knew z; = I(0), then you would estimate Ey;x1—1 by 7,, (1), and the

limiting variance of /):y,mg is the same as that of 7, (1). Therefore, /):y,Am is
robust to misspecification of the integration of order, apart from the bias term
in (11).

2.10 The limit distribution when z; is modelled as local to unity

Let x; be a local-to-unity process:
c
xt:(l——)xt,lJrut, t=1,2,...., ¢>0, (12)
n

with 2, = 0 for ¢ < 0. Then Ay ag = > 7€V (Y, ur—p) + O(n~1) as seen in (6 ), and
also Ay A, behaves very similarly as when z; is 1(1). The following Lemma establishes
the limiting behavior of Ay A,.

2.11 Lemma

Suppose xy¢ is generated by (12) with (yi,ut) satisfying Assumption A. Then X%Afc =
1 E(h/m)Tuy(h) 4+ Op((m/n)), where Tuy(h) is defined in (8) with u; replacing
Tt.

This Lemma establishes the first order equivalence of the limit theory for A, A
under both I(1) and local to unity assumptions (finite, positive ¢) on ;. The fact that
the limiting distribution is the same for all finite ¢ > 0 has the important practical
implications, since it means that no prior knowledge on c¢ is required in order to
conduct inference. This would seem to be a desirable property. By contrast, many
econometric procedures, including several common cointegration tests, that are valid
for ¢ = 0 may fail for ¢ > 0 (Elliott, 1998).

10



3 Possible ways to conduct inference

3.1 Estimation of the limiting variance of the estimator

Suppose z; is I(1) and Lemma 2.6 gives the limiting distribution of X% Az- To conduct
inference, we need to estimate the limiting variance of (n/m)"/ QX% Az, V. Of course,
we can use V = 472 [ k2 (z) dz{fyy (0) Facaz (0) + Fyaz (0) fazy (0)}, where fy, is
a standard periodogram-based estimator of f,;,. By standard arguments, this is a
consistent estimator of V.

We may consider another estimator of V, 17, whose particularly good performance
is suggested by simulations in Section 4. It is based on the exact finite sample variance
of X%AI, which is given by (see the equations (24)-(26) in the proof of Lemma 2.2)

n ~
—var ()\y Az)
m

:lezzék( > (h>uioo {Tasas (W) Tyy(u+h — 1)

+ PAmy (u + h) FyAx(u - h/) + kA:L‘yAry(Ov hl7 u, U + h)} ¢n(u7 h/, h),

where ¢,,(u, h', h) is defined in the proof of Lemma 2.2 . The terms involving the
cumulants disappear in the limit. Define V' by replacing ' with I'yp, which reduces
the error from the approximation of the discrete sum in (22) by the integral in (29):

;Lk(h) (& )i (nz) o () (S ) Byt b= 1)

UL gy (u+ h) k <“?7th) Tyae(u—1')

h'=1h=
X¢n(u7 h/7 h)a

U=—0Q0

where k() and 7 are kernel and bandwidth. k(z) and 7 can, but do not need to, be
the same as k(z) and m. Estimating V' by 1% gives superior finite sample performance
than estimating V' by v (the results with using V is not reported in the present
paper).

Suppose (y¢, Axy) satisfies Assumption A and hence z; is I(1). Then the statistic

vV % (j\y,Az - Ay,Ax)
t)\ = —d N(O, 1),

ﬁ

from Lemma 2.6 if V —p V. The following Lemma shows that it is indeed the case.

3.2 Lemma

If Assumptions A, K, and M hold, the kernel Eﬁx) satisfies Assumption K with
k(x) =01if |z| > 1, and 1/m+m?/n — 0, then V —, V as n — oo.

3.3 Corollary

If the assumptions of Theorem 2.6 and Lemma 3.2 hold, then ty —q4 N(0,1) as

n — Q.

11
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3.4 Conservative inference: inference when z; is modelled as (1)
but is actually /(0)

Consider the case when (y;, z;) follows (10) and z; is actually (0). Since ¢y is based
on the autocovariance of y; and Az, the inference based on t) might be misleading.
However, if the Bartlett kernel k(x) = (1 — |z[)1{|z|] < 1} is used in V in (13)
and By, = 0 for all h > 1, then ty is O,((m/m)"/?). Therefore, when m is
chosen appropriately, large values of j\y,Ax suggest the rejection of the orthogonarity
between y; and I,; 1, and S\y,Aw serves as a tool for conservative inference. The
following Lemma establishes it. The power property of ¢y when z; is I(0) can be
checked by simulation.

3.5 Lemma

If Assumptions B, K and M hold, k(z) = (1 — |z|)1{|z| < 1}, 1/m + m?/n — 0, and
Eygxy_p, = 0 for all h > 1, then ty = Oy((m/m)'/?) as n — oo.
In order to understand the convergence, rewrite ¢ as

”1/2(5‘217&6 — Ay,ax)
(17)1/2m1/2

ty =

The numerator converges to a Gaussian random variable from Lemma 2.8 . V in the
denominator is an estimate of f,(0) = 0 and hence converges to 0 as m — 0o. Because
m tends to infinity, the asymptotic behavior of the denominator and ¢, depends on
the rate of convergence of V. Letting m tend to infinity but not too fast prevents 1%
from converging to 0 too fast and makes ) converge to 0 in probability.

In summary, by choosing m appropriately, the t) statistic provides a standard
inferential tool if z; is I(1) or local to unity but converges to zero when z; is I(0).
Simulation results reported below suggest that it works well in practice. The t)
statistic also works well by itself in the local to unity and unit root cases. Since these
tests are of primary interest when roots are close or equal to unity, ¢y may be simpler
to compute and equally useful in practice.

4 Finite sample performance: simulation results

This section provides a modest simulation study to gage the small sample accuracy
of the proposed test. The results indicate reasonable (and often quite good) size and
power in sample sizes as small as 100.

For the simulations below we have in mind a test of y; orthogonal to Z,;_1, the
information contained in past x;, as is often tested in practice using a regression of 1
on x;—1. Since size distortions rule out standard regression only for x; highly serially
correlated, it is this case which we focus on. In particular, we consider three models

12



for xy:

e = po+pr®e-1+ury, AR(1) (14)
Tt = po+ p1Ti—1 + paxi—2 +ury, AR(2) and (15)
(1-L)%z = e,,0<d<1. ARFIMA(0,d,0). (16)

The AR(1) model may also be written as a local to unity process by letting
p=1+< c<o. (17)
n

Often the primary economic interest centers on the relation between y; and x;_.
Two possible processes for y; are considered here. First we consider the standard
regression specification

Ye = dip + Bri—1 + ug. (18)

The deterministic component d; consists of either an intercept or a trend:

di = 0g or
di = 0p+ 01t
However, as discussed above, this implies (perhaps unrealistically) that y; is I(1)

when x; is I(1) and 3 # 0. Therefore, we also simulate from a regression of y; on
pre-filtered values of x;_1, as given by

Yt = dp +yurp—1 + ugg. (19)
With an AR(1) specification this data generating process is equivalent to
Yy =dr +7 (1= pr L) me1 + uag,

which simply becomes a regression of y; on Axz;_; when p; = 1. Note also that
the distinction between these two data generating processes is relevant only when
considering power. Under the null hypothesis y; is orthogonal to I,; 1, implying
that 0 = v = 0. Thus under the null hypothesis y; is simply given by

Y = dt + Ug,t. (20)

Finally, since y; orthogonal to past x;_j, j > 1 does not rule out contemporaneous
covariance between y; and x;, we allow the two innovation processes to be correlated
under both the null and alternative. They are specified by

u = (un uy )/ =22, & ~N(0,1)
Y= 21/2(21/2>/ —( ou 912 }
021 022

Our primary interest lies in the performance of the covariance-based t-statistic,
which is estimated as follows. In the trend model, Az; was de-meaned and y; de-
trended prior to estimation, where as in the intercept model on 1, was demeaned.*

“Note that removing the mean from Az; removes the trend in x;
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Since the regressor z;_1 is lagged we define z; = (y, Amt_l)/, where Ax; and y; are
now de-meaned. The pseudo-covariance

Ayar = ZE Yi, Ay )
h=1

is next estimated using the standard kernel covariance estimator (see Newey-West
(87), Andrews (91)) given by (8), using the Bartlett (Newey-West) kernel: k (z) =
1 — |z| for |z| < 1 and zero otherwise (see Hannan (70, p. 278)).

Implementation of the optimal bandwidth selection procedure requires the use
of a fist-stage parametric approximation. As in Andrews (91) this is assumed to
only provide a parsimonious approximation, not a correct specification. Although
separate univariate AR(1) models are typically employed, the optimal bandwidth in
this case depends on the behavior of the cross auto-correlations and necessitates a
joint model. Allowing for a moving average component also seems desirable given
possible over-differencing in Axz;. A VARMA(1,1) is therefore employed. Using the
asymptotically efficient three stage linear regression method of Dufour and Pelletier
(2002) avoids non-linear optimization, keeping estimation simple.”

Next, we estimate V, the approximate finite sample variance of )\y Az given in (13)
using the same kernel and lag-length specifications.® This is the variance estimator
for the I(1) and local to unity cases and is used to form the t-statistic

tx = (V)2 (n/m) Ay aq.

It is this covariance-based t-test, that is employed in the tables discussed below,
together with standard normal critical values.

4.1 Size

We first simulate under the null hypothesis with y; given by (20) and z; given by
the AR(1) process (14) with p; modelled local to unity as in (17). Both p; and
contemporaneous innovation covariance o1 are allowed to vary, while the other pa-
rameters are held fixed. In order to set a basis of comparison, in Table 1 we first
provide empirical rejection rates for a standard two-sided t-test on the coefficient in
the regression of y; on xy_1. All tests are conducted at a 5 percent nominal level.
The regressions shown in the top half of the table, include only an intercept, those in
the bottom half contain both an intercept and time trend. The size is approximately
correct for low values of p; and/or 12 but grows unreliable as p; approaches one and
the residual correlation increases. The size problem for the regression with intercept
becomes even more serious when a trend term is included.

®Simulation and empirical results using the optimal bandwidth formula derived earlier are still
underway. The current results rely on the Andrews (91) formula using a diagonal weight matrix with
diagonal elements (2, 1,1,2). This appears to work reasonably well.

SEstimation and simulation results with 7/m — 0, needed to guarantee conservative inference
for x:, are currently underway. The reported results hold m = m, but nevertheless show reasonably
good finite sample performance.
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The covariance-based test developed above was shown to provide correct large
sample size for p = 1 and for all local to unity alternatives with finite cleq0, as well
as conservative inference for all fixed values of p < 1. As shown by the rejection
rates in Table 2, the tests also work quite well in sample sizes as small n = 100. In
contrast with the rejection rates for the standard t-test discussed above, the finite
sample size is quite accurate for all values of p and o012, including even p = 1 and
o12 = 0.95, lying within 2 percentage points of the nominal level in all cases. This
results from the fact the long-run covariance estimator upon which the estimator is
based is asymptotically normal even for p; = 1, and as a result is not effected by
the same unit root biases. Note that behavior the behavior in the “de-trended” and
“de-meaned” cases are quite similar. To economize on space here on in we report only
the more realistic “de-trended” case, in which Ax; is de-meaned prior to estimation.

It is also of interest to investigate finite sample performance under higher order
autoregressive specifications for z;, such as the AR(2) model (15), with roots on, or
outside, but close to the unit circle. Such a specification seems to be of practical
relevance. Rudebusch (92, Table 2), for example, estimates autoregressive trend
stationary models for fourteen macroeconomic and financial series (including GNP,
industrial production, employment, prices, money stock, velocity, bond yields, and
stock prices). For a majority of the series a second (or higher) lag shows up significant.
In fact, the autoregressive estimates are fairly similar across the series, with p; > 1,
Py < 0 and the sum of the coefficients p; + py, close to, but slightly below one (a
unit root could not be rejected). Tables 4 shows finite sample rejection rates for
the covariance-based t-tests, with z; simulated from an AR(2) roughly matching the
characteristics of the economic series described above. The first root p; is set equal
to 1.5 in all cases while the second root py is taken both equal to —0.5 (unit root
case) and slightly less than —0.5 (near nonstationary case). The rejection rates, while
still reasonable, are less accurate than in the single lag case. In particular they show
a moderate tendency to over-reject, with a rejection rate just over 10 percent in the
worst case. However, as shown in Table 3 the standard t-tests also fare worse than
before, with rejection rates as high as 30 percent, so that the net improvement that
comes from using the covariance-based t-test in place of the standard t-test may
actually be larger than in the single lag case.

Finally, we investigate the size of the test under the assumption of long-memory or
fractional integration, simulating x; from (16). Like the local to unity specification,
the long-memory processes also provide an intermediate model between standard
short-memory stationary I(0) and unit root processes. Depending on the degree of
long memory, such a process may be either stationary (d < 0.5) or non-stationary
(d > 0.5). Stock and exchange rate volatilities, as well interest rates, foreign exchange
forward premium, and unemployment rates are arguably well modelled by such a
process. Although covariance t-tests have not been theoretically justified under long-
memory assumptions (Xy,Ax was however shown to be consistent) it is still of some
practical interest to know how such a test would fare were ¢, for example, mistakenly
modelled as local to unity when it was actually a long memory process. Table 5 shows
rejection for the covariance when z; is given by fractionally integrated model (16)
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for various values of 0 < d < 1. The size of the covariance-based test appears quite
accurate for all values of d, ranging from 0.04 to no more than 0.07.

In summary the size of the proposed covariance-based test seems generally to be
reasonable in sample sizes as small as n = 100, and is often quite accurate. We next
consider finite sample power.

4.2 Power

Finite sample power is examined using the autoregressive model (14) for x; together
with either the standard (18) or pre-filtered (19) regression with 8 # 0 or v # 0
respectively. In both cases, rejection rates are reported for various values of g or 7,
p1, and o129 for n = 100, with the other parameters held constant. The innovation
variances are set to one, o099 = o011 = 1, and the true trend d; is set equal to zero,
although the data is de-meaned or de-trended prior to estimation.

Table 6 shows finite sample power of the covariance-based test against 8 # 0 in
(18). Since for § # 0 a linear regression can be used to predict y; using x;—; this
represents a violation of orthogonality. When z; (and hence y;) is stationary this a
standard stationary regression relation. When x; (and hence y;) has a unit root the
two are cointegrated. The rejection rates indicate reasonable power in both cases,
with power increasing as ( is taken further away from zero.

Table 7 next shows the power of the covariance-based t-test for v # 0 in (19).
Since for v # 0 y; can be predicted using a linear regression of y; on (1 — p;L)xy—1
this also constitutes a violation of orthogonality. This second alternative is arguably
more realistic for a returns process when p; is close or equal to one, since y; remains
stationary (actually serially uncorrelated) even when the root in x; is close or equal
to unity. A second advantage is that the correlation between 1; and the regressor
(1 — pyL)zs_1and therefore the population R? for a regression of y; on (1 — pyL)zs_1
remains constant across different values of p; and o12. This makes the rejection rates
easier to interpret since they correspond not just to a particular value of 4 but also
to a particular R?. As can be seen in the table, the rejection rates appear reasonable,
although they vary considerably across parameter values. For an R? of 0.02 the
rejection rates range from a low just above 20 percent to rejection rates well above
90 percent. As the R? increases the rejection rates become uniformly higher with
minimum rejection rates of 34 percent for an R? of 0.04, 74 percent for an R? of 0.11,
and 90 percent for an R? of 0.20.

In summary, the covariance t-tests not only provide fairly accurate size in small
samples but also reasonable power against various alternatives.

5 Empirical Application

We apply the covariance-based tests to two well known orthogonality tests from the
finance literature. These test the orthogonality of stock returns (r;y1) relative to
past information inherent in the log dividend-price ratio (d; — p;) and the short term
interest rate ().
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Standard regression results imply that the dividend-price-ratio contains substan-
tial predictive power for stock returns, particularly for long-horizon returns [Campbell
and Shiller (1988a,b), Fama and French (1988b), Hodrick(1992), Shiller (1984)]. This
result has been interpreted either as a failure of market efficiency under risk-neutral
assumptions, or alternatively, as evidence of a time varying risk premium. Theoretical
considerations are generally argued to imply stationarity of the dividend-price-ratio
[Campbell and Shiller (1988)], although this has recently been disputed [Tuypens
(2002)]. Nevertheless, empirically, the dividend-price ratio is highly persistent. Con-
fidence intervals for the largest root are typically wide, containing the unit root
together with stationary values [Torous, Valkanov, and Yan (01)]. Likewise, it can be
difficult to reject unit roots during important sample periods [Campbell (92), Camp-
bell, Lo, and MacKinlay (1997, chapter 7, footnote 20)]. Furthermore, although the
dividend yield is a pre-determined regressor, it seems unlikely to be strictly exoge-
nous, since the stock price, which is closely related to past returns, enters into the
denominator. The combination of near unit root behavior and a failure of strict ex-
ogeneity is a recipe for size problems [Cavanagh, Elliot, and Stock (1995)]. As we
argue, it may also have important implications for power. Consequently, there has
been an ongoing debate as to the robustness of these findings. This issue was orig-
inally raised Stambaugh (1986), Mankiw and Shapiro (1992), but a large literature
has since developed employing sophisticated econometric tools.

One branch of this literature employs simulation and resampling techniques, as-
suming a fixed value of the autoregressive coefficient, close to, but less than one. Ho-
drick (1992) provides a careful simulation study suggesting possible over-rejection,
yet finds that even after accounting for size problems, the dividend yield still has
some predictive power for stock returns. Nelson and Kim (1993) draw similar conclu-
sions using randomized (bootstrapped without replacement) null distributions. On
the other hand, Goetzmann and Jorion (1993) and Wolf (2000) fail to find substan-
tial evidence of predictability at all using bootstrap and subsampling procedures,
respectively. Most recently Ang and Bekaert (2001) conclude (based on a Monte
Carlo study) that there is evidence for short (less than a year) but not long-horizon
predictability.

Under local to unity or unit root assumptions many common resampling tech-
niques lack theoretical justification, leading to a second stream of the literature using
local to unity based asymptotic techniques of the type proposed by Cavanagh, Elliot,
and Stock (1995). Viceira (1997) finds no evidence of predictability for one-month
returns under local to unity assumptions. Applying the long-run restrictions of the
dynamic Gordon growth model, Valkanov (2003) finds no evidence of predictability
at long-horizons (short-horizons are not tested). Torous, Valkanov, and Yan (2001)
extend the Cavanagh, Elliot, and Stock (1995) methodology, to long-horizon regres-
sions. They find evidence for short-horizon (a year or less), but not long-horizon
predictability. Lanne (2002) takes an indirect approach. Failing to reject stationar-
ity in the return series, he argues that stock returns are therefore unpredictable by
any highly persistent (i.e., local to unity) regressor. Tuypens (2002) makes a similar
argument.
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Earlier in this paper, we argued that persistent regressors create two potential
problems: size distortions and conceptual difficulties regarding the framing of the
alternative hypothesis. The existing literature concentrates almost exclusively on
fixing the size of regression-based tests. In this sense it addresses one part of the
problem, but not the other. By appropriately correcting size, they are capable of over-
turning previously spurious rejections. However, at the same time, the regression-
based nature of the tests restricts power to alternatives that become less plausible
the more persistent the regressor. In this case, the reversal of previous results may
instead be due to a lack of power against relevant alternatives. In principle, either of
these two effects, or more likely, a combination of both may be present.

To be concrete, suppose that the dividend yield is modelled as a local to unity or
unit root process. A non-zero population regression coefficient in the return-dividend-
price-ratio regression would then imply local to unity or unit root behavior in the
stock return. Therefore, unless we allow the stock return also to have a near unit
root component, the population regression coefficient in stock-return-dividend-yield
regression must be zero by definition. In this case, any properly sized ninety-five
percent confidence interval based on this regression coefficient, should include zero
ninety-five percent of the time. In fact, this is exactly the point made by Lanne
(2002) in arguing that the dividend yield can not have predictive power. However,
under the original null hypothesis of risk-neutral market efficiency, the returns are
not only linearly unrelated to past dividend-yields, but are fully orthogonal to all
information in past dividend-yields. This includes first-differences, high-frequency
components, and deviations of the dividend yield from recent historical averages, all
of which could contain potential predictive value for returns, even if the dividend yield
contained a unit root. Therefore, previous studies using regression-based tests, while
properly correcting for size, may still have inadvertently restricted the alternative
hypothesis. The weakening and in many cases overturning of the previous stylized
facts, could therefore be due either to the appropriate size correction, in which case
earlier results were misleading, and/or to undue restrictions on allowable alterna-
tives. By contrast, the covariance-based t-test has reasonable power against both the
traditional alternatives considered in regression-based tests, as well alternatives that
involve predictability based on prefiltered or first-differenced dividend yields.

Following much of the literature, we use monthly returns from 1927 to 1994 and
also consider separately the two subperiods: 1927-1951 and 1952-1994. The data
are the same as used by Campbell, Lo, and MacKinlay (1997, chapter 7).” The
monthly log or continuously compounded nominal returns are calculated as r;11 =
In((Pey1+ Diy1)/Pt), where P, and Dy are the stock price and dividend from the
CRSP value-weighed index of NYSE, AMEX, and NASDAQ stocks. The k period
return is then given by ri41 + ... + 14k for a horizon of £k = 1,3,12,24, 36, and
48 months. The nominal returns are next deflated by the CPI to the create the real
return series and the one month treasury bill is subtracted to create the excess return
series. Following standard practice, in order to avoid seasonality, the dividend yield is
calculated as the sum of dividends paid on the index over the previous year, divided

"We thank John Campbell for kindly providing us with this data.
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by the current level of the index: di —pr = In (D¢ + ...+ Di—11)/P;)).

Standard regression results using robust standard errors are shown in Table 8.
Results for excess returns are similar. Based on these results, the dividend-price ratio
has some predictive power at all horizons, and particularly strong predictive power
at longer horizons. The covariance-based t tests are shown in Table 9 using real
returns and in Table 10 using excess returns. Since nearly all plausible alternative
economic models imply a positive covariance between returns and dividend-yields,
Hodrick(1992) advocates the use of one-sided critical values. Based on this criteria
(one-sided 5 % critical value of 1.645) we reject orthogonality at long horizons (3-4
years) over the entire data set and quite strongly reject at the one year horizon during
the latter period. As such, the results provide some ammunition to both sides of the
debates. In accordance with the more recent literature discussed above, they confirm
that evidence against predictability weakens considerably when the near-unit root
nature of the regressors are taken into account. This suggests possible size problems
in earlier regressions. On the other hand, even after allowing for near-root behavior,
we can still reject orthogonality in several cases.

A second concern raised in the literature, comes from the reduction in effective
sample size due to the overlapping nature of long-horizon returns, typically of the
form of the form ry 11 +7119+ ... + 141y for k as large as 48 in monthly data. Even for
a well-behaved stationary regressor, HAC standard errors are therefore necessary in
order for proper asymptotic inference, and tests may still over-reject in finite sample
[Hodrick (1992), Nelson and Kim (1993), Richardson and Stock (1989), Valkanov
(2003), Ang and Bekaert (2001)]. While there is no particular reason to think that
the covariance-based test proposed here has any has any special finite sample ad-
vantage in this regard, it worth pointing out that no independence or white noise
restrictions are required on y;41. With a few restrictions, it may follow any short-
memory stationary process. The procedure therefore remains asymptotically valid
for long-horizon regressions (fixed & > 1). By contrast, some other attractive non-
parametric alternatives, such as sign and rank tests, do require independence and are
not directly applicable in this context.

Jegadeesh (91) and Cochrane (91) suggest a useful way to bypass this problem
using an alternative regression of the one period return r;411 on the sum of the past
k dividend yields Z?;&(dt—k — pi—k). This avoids long-horizon returns, and the
resulting the resulting correlation in the residuals, while still testing the same null
hypothesis. To see this note that

k—1

cov | 7441, Z(dt—k —pi—k) | = cov(ripr + T2+ oo+ Tk, di—g — Di—k)s

§=0
with both covariance terms equal to zero under the null hypothesis. However, by
adding a moving average structure to the dependent variable, this comes at the cost
of increasing the autocorrelation in the already persistent regressor. This further
increases the relative attractiveness of covariance based tests and other robust ap-
proaches relative to standard regression. ®

8A final problem, common to nearly all long horizon tests, is that orthogonality at different
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Table 11 shows results from this alternative regression. The results are generally
similarly to those in Table 8. This has eliminated the overlapping data problem,
but not the near unit root problem. Covariance based tests based on this same
formulation are presented in Table 12. Similar using the excess return in place or
real returns are shown in Table 13. Both results are qualitatively similar to the
long-horizon covariance based test presented above.

Interest rate measures have also been found to have some predictive power for
stock returns [Campbell (1987), Fama and French (1989), Hodrick (1992), Keim and
Stambaugh (1986)]. Here, we focus on the short-term interest rates. Unlike the
dividend-yield, the short rate has been found to help primarily in forecasting short-
horizon returns. Thus overlapping data becomes less of a concern. On the other
hand, short-term interest rates are if anything, more persistent than dividend yields,
giving rise to similar concerns. ?

Covariance based tests for real returns using the treasury bill rate are provided
in Tables 15 and 17. Similar results using excess returns are shown in Tables 16
and 18. Previous evidence of predictability in short horizon returns (particularly
3-12 months) is strongly confirmed in the latter period (1952-1994) and somewhat
more weakly so over the entire sample. The negative sign of the estimates is again
consistent with previous studies and implies that a rise in interest rates leads to an
expected decline in stock market value.

6 Conclusion

In regression-based orthogonality t and F tests it is often the case that the regressor is
highly serially correlated, with an autoregressive root close or possibly equal to unity.
This is well known to cause size problems in standard tests, due to the nonstandard
nature of the test statistic under both unit root and local to unity assumptions.
Simple two-stage procedures employing unit root tests together with size correction
can generally correct this problem in the I(1) case, but still produce size distortions
under local to unity assumptions.

Roots near unity may also artificially restrict the allowable alternatives hypothe-
sis, leading to poor size-adjusted power under reasonable alternatives. For example,
when the regressor has a unit root but the dependent variable does not, no linear
relation between the two can exist, so that the true regression coefficient is forcibly
equal to zero. A properly adjusted t-test based on this regression coefficient should
therefore generally support the null of orthogonality. However, such a regression im-
balance would not rule out a violation of orthogonality due to a linear relationship

horizons are tested separately, where in principle joint tests should be conducted to avoid data
snooping. [Ang and Bekaert (2001)]. We are equally guilty of this sin.

9Stationary transformations are sometimes applied to the treasury bill rate. For example, in
their textbook treatment, Campbell, Lo, and MacKinlay (1997, chapter 7) stochastically detrend the
interest rate, replacing the level by a triangularly weighted moving average of past changes, using
iy — Z;lzo i¢—j. It is interesting to note the rather close resemblance between this add hoc procedure
and the Bartlett (Newey-West) kernel weighting procedure employed in the covariance-based tests
developed here. Both allow power in directions that maintain the stationarity of the return series.
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between the dependent variable and the stationary transformations of the regressor.

The covariance-based t-test proposed here produces good size and power against
reasonable alternatives regardless of whether the regressor is stationary, nonstation-
ary, or local to unity. This comes without resort to unit root pre-tests or other forms
of prior information. Furthermore, because nonstandard distributions are avoided,
size adjustments are unnecessary. Simulation results suggest reasonably good size
and power in samples as small as one hundred, making this a practical tool for use
in empirical applications.

7 Appendix: Proofs

In the following sections, C' denotes a generic constant such that C' € (0, 00) unless
specified otherwise, and it may take different values in different places.

7.1 Proof of (6)

From the definition of x;, we have

_c t—2 _c k
Awt — ut —_ Ext—l — Ut n Zk:o (1 n) ut—l—ku t Z 1) (21)
n 0, t<0.

with lezlo = 0. It follows that

t—h—2 k
cov(ye, Azy_p) = { cov(ye, u—n) — & 34 "o (1= &) cov(ye, u—n-1-x), t>h+1,

0, t < h.
Therefore,
t—1
AyAe = lim cov (Y, Axy_p)
t—o00
h=1
t—1 t—1t—h—2
= Jlim > cov(ys,ur h)_*tliglo Z (1—*) cov(Yt, Ut—h—1—k)-
h=1 h=1 k=0

The first term converges to > p°  cov(ys, us—p). The second term is bounded by (by
letting p =k + h)

t—1t—h—2 c t—2 p—1
 lim Z lcov(ye, ug—p—1-k)| = — lim ZZ|cov(yt,ut,1,p)|
n t—oo n t—oo
h=1 k=0 p=1k=0
1 o 1
= 0 EZMCOV(%,UFPIJ)\ =0 nl
p=1

giving the stated result. B
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7.2 Proof of Lemma 2.2

The proof closely follows that of Theorem 9 of Hannan (1970, p. 280). See Hannan
(1970) pp. 313-316 for details. Observe that

n—1 n—1

" (Ryar) = sz( ) <h>cov(rmy (W) Faw (). (22)

h’ 1 h=1

Hannan (1970) p. 313 gives
cov (fmy (1), T aay (h)) (23)

= 17" ) {Tazae (@) Tyy(u+h = 1) + Tagy(u + B)Cyaz(u = 1)

U=—00

+k3AzyAmy(Oa h/, U, U + h)}¢n(ua h/, h)7

where kazyazy (0,1, u,u + h) is the fourth cumulant of z; (see Hannan, 1970, p.23
for the definition) and ¢,,(u, k', h) is given by

=0, u< —n+h; :1—%, —n+h <u<O0;
Gp(u, ' h) S =1—h/n, 0<u<h—H; =1-2F h p<u<n—h

It follows that ( 22) is comprised of

LS55y, (2) k() 5" Tavas (W Tyl + i~ K)yu i) (24

h'’=1h=1 U=—00

+% nZl nZl k < /> (Z) uioo LCagy(u+ h)Tyae(u — h')¢, (u, B’ k) (25)
+m Z Z < ) (Z) i kawyaay (0, 1wy + B)é, (u, 1, h). (26)
h'’=1h=1 U=—00

Let v = 1/ — h, and we can rewrite (24) as

ni S Tavas () Ty —v) {;Zh:’qsn(u,hwtv,h)k <h:;”> K (Z)}

v=—n+2 u=—00
(27)

where the summation Z’h runs only for {h: 1 <h<n—land1<h+v<n-—1}. The
bracketed expression converges to [~ k? (x) dz by the argument in Hannan (1970)
pp. 314-15. Furthermore,

> ) Tavas (W) Tyy(u—v) = 47° fazaq (0) fyy (0)  as n— oo,

v=—n+2 u=—00
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and hence (24) converges to 472 fazaz (0) fyy (0 fo k% (x)dx as n — oo. Similarly,
(25) converges t0 47 fagy (0) fyaz (0) [° k2 (z) do = 47? [fyA:p )12 [o° k? () dx. For
(26), from Hannan (1970, p. 211), the fourth cumulant of z; satisfies

Z Z Z ’kijkl(07Q>ra S)’ < 0, ivja kal = {y7 A:C} (28)

gq=—00 Tr=—00 §=—00

Therefore, (26) is bounded by

C% Z Z Z ‘kAxyAxy(O, h’,u,u + h)‘ =0 <T;l7l> ,

h!=—o00 h=—00 u=—00

and it follows that
Zvar (Na0) — 4 /0 K () dz { fawas (0) fuy (0)+ [fyae O}, (29)

as n — 00, giving the stated result. B

7.3 Proof of Theorem 2.6

In view of Lemma 2.1, it suffices to show that \/n/m(XyAm — EX%AI) —q N(0,V).
First, observe that

\/Z (Xy,m - E/)\\y,Am)

n—1 n
1 h 1
= =k (B) S e Buden) = THIL (30

V= \m) vn 4=,
where
1 = .
I = th:lk< ) nzz: (yeAzi_p, — Byt Awy_p)
1 X &
= mL3 < ) g een = Bndsin).

From Lemma 8.1 and Minkowski’s inequality, we have
2

k ﬁ h1/2

m

2

|/ h\"*1 2
() () 5) )=o)

m m m n
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because S7_1 |k (h/m)| (h/m) W2t~ I (z)|2'/2dz < co. Lemma 8.3 gives
I=Y"Zi+ Ry Zi=n' m /2 Zk < ) e M We o (32)
t=1 r=1
where ER2 = o(1 ) and f77(1) is defined in the statement of Lemma 8.3. Therefore,

W( v, Az — E/\y Az) —a N(0,V) follows if we show

ZZt —4 N(0,V), asn— oo. (33)
t=1

Let 7y = o(e¢,e4-1,...). Since Z; € Z; and E(Zy|Zy—1) = 0, Z; is a martingale
difference sequence and (33) follows from martingale CLT (Brown, 1971) if

n n

1
SOBZHT) = > EmZT) — V.
= t=1

> E(Z21{|Z| = ) —,0 forall §>0.

First we show (i). Observe that

E(Z\T, ) 1nzlnzlk< > ( )ZZet T (F5 (1)) e,

h=1u=1 r=1 s=1

E(nZ2|T;—1) is stationary and ergodic because ¢; is iid. Furthermore, from the law
of iterated expectations we have

E [E(nZ|Ti—1)] = nEZ}.
Therefore, (i) follows from the ergodic theorem if
nEZ} — V. (34)

From (30)-(32), we have

, /% (Xy,m - EXy,Az) =N Z 4+ I+ R,, E(II+ R,)* = o(1),
t=1

or equivalently,

Nz, = \/Z (X%Aw - EX%M> — (IT +R,).
t=1

Taking the second moment of the both sides gives

E (zn: Zt> 2 —F <\/Z (Maw = EXyan) = (T + Rn)>2. (35)
t=1
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The left hand side of (35) is Y. | EZ? = nEZ?, since Z; is a stationary martingale
difference sequence. From

E (\/Z (Xy,A:p — E/)\\y,Ax>)2 = var <\/Z (Xy,Am — EXyAm)) -V,

E(IT + R,)? = o(1), and Cauchy-Schwartz inequality, the right hand side of (35) is

2
var < n (/)\\%Ax — E/)\\%Ax)) +o(1) = V.

m

Therefore, we establish (34) and (i). For (ii), the stationarity of Z; gives Y, E(Z21{|Z;| >
§) = E(nZ?1{|nZ?| > né?), and E(nZ?1{|nZ}?| > né?) — 0 follows from E(nZ}?) —V <
oo and the dominated convergence theorem. Therefore, (33) and the stated result
follow. W

7.4 Proof of Lemma 2.8

A simple algebra gives

n—1 n
~ h\ 1
A = —)= _
v, Az Zk (m> n Z YeAzi_p,
h=1 t=h+1
n—1 h 1 n n—1 h 1 n
= Zk <m> n Z YtTt—ph — Zk (m> " Z YtTt—h—1
h=1 t=h+1 h=1 t=h+1
n—1 n n n
R\ 1 p—1\ 1
B S w5 ) e o
h=1 t=h+1 p=2 t=p
n n—1 n
1\1 h h—1 1
= k <> — > Y1+ Z [k <> —k <>} - Z YtTep
m n m m n
t=2 h=2 t=h+1
n—1
—1\1 n—1\1
DI <p> —ypTo — k < > —YnTo
=2 m n m n

= Tip+Ton + T3y + Tay,.
For Ti,, we have (note that Ay a, = Eyiri—1 = %:y(l))
Vi(Tn = Ayae) = k(1/m)Vn(ay (1) = 74, (1) + (k(1/m) = 1)VnEyae1.
From Theorem 14 of Hannan (1970, page 228) and k(1/m) — 1, we have
k(1/m)Vn(Fay (1) = 74,(1)) —a N(0,5), asn — oo,

where = is given by Hannan (1970) in equation (3.3) on page 209 and line 5 on page
211. The second term is O(nl/gm_q)Eyta:t,l from Assumption K.
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For T, first observe that

s =B ()4 (53] 5

ETy, = 0 when By p = 74, (h) = 0 for all b > 1. Otherwise, fix a small € > 0 so

that
E(Tyn) = aZm: [k (:1) —k (T)] nT_h%y(h)

h=2
n—1
h h—1 n—nh
o 2 B
h=em+1
= Bln + B2n-

Since k(z) — 1 = O(z?) as x — 0 from Assumption K, choosing ¢ sufficiently small
gives B, = O3 ,2y(h/m)i|y,,(h)]) = O(m™?). By, is bounded by, since k(z) is
Lipschitz(1),

n—1 n—1
1 1 1\?
- <OC= (= a = ),
Con 3 il < € (=) 3 b 00] = O™

Therefore, defining B,, = (k(1/m) — 1)y/nEyixi_1 + ET5, gives the bias term B, in

(11).
It remains to show var(y/nTs,) = o(1) and /n(T3, + Tan) = 0p(1). From Hannan
(1970) (equation (3.3) on page 209 and line 5 on page 211), we have

cov (VA (h) , /17y (H))

n—1
u
= Z < ’n|> {Vxx ’Vyy(u +h— h/) + ny(u + h)Vym( - h,)}
u—fn+1
+ Z ( \u|> Kyay (0, hyu,u+ 1').
u=—n+1

Therefore, of the variance of \/nT5,, the term that do not involve kzyzy is bounded
by, from the Lipschitz condition on k(-),

1 m m n—1
HZZ Z [V () Yy (4 B = ) 7y (1 + Ry (= 1)
h=1h'=1u=—n+1

fn[z e 0] D2 Py + Y ey 0] 32 ra()] | = 00m™).

U=—00 h=—00 U=—00 h!/=—o00

The variance of \/nTh, that involves kg, is bounded by

m2zz Z xymyOhuu—l—h)’ O(m™2),

h=1h'=1u=—n+1
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r=—o0

Finally, v/n(T5, + Tun) = 0p(1) follows from

because > 2 372 D22 |Kayay(0,9,7, 5)| < oo from Hannan (1970, p. 211).

1
f T3n + T4n Z k ( ) %ypl‘m

zo = Op(1), and

2

(S ) - 505

1 p—1 > m
< k(,n) Zhyy(r)’_O(ﬁ)’
p=2 r=—00
and the stated result follows. W
7.5 Proof of Lemma 2.11
From (21), we have
n n n t—h—2
1 1 c c\k
n Z ytA«Tt—h:ﬁ Z ytut—h—ﬁ Z Z (1_ﬁ> Ytut—h—1—k-
t=h+1 t=h+1 t=h+1 k=0
The stated result follows if we show
t—h—2 "
r, nzzk( )33 (1) =0, ().
t=h+1 k=0
Since (1 — £) ¥ = O(1), E|T,| is bounded by
1 n—1 t—h—2
7122’“( > Z Z | Eyius—n—1-k|
h=1 t=h+1 k=0
n—1 n—1
1 1 h m
< e (B) 3 3 rami-o (1 5k(2)) ().
h=1 t=h+1 k=—o0 h=1

giving the stated result. B

7.6 Proof of Lemma 3.2

From equations (24), (25) and (27) in the proof of Lemma 2.2, V comprises of two
parts, the first of which is

f i k(=) Tasas(wk <“m_”> B, (u — ) {/OOO k2 (2) do + 0(1)} .

v=—n+2 u=—00
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Because k (z) = 0 for |z| > 1 and m/n — 0, this simplifies to

uf:ﬂ%(%) T avas (U)uvzi:ﬁ'g(u%v) fyy(u—v){/oookQ (a?)dx—i—o(l)},

which converges to 472 fazaz (0) fuyy (O fo k% (z) dz in probability by the standard
argument. A similar argument gives Zv, a2 Zui_oo k((u—{—h)/m)f‘mﬂy (u+h)k((u—
R’y /m)T yAx(u — ') —p 47 fyaz (0)]? [3° k? () dx, and the stated result follows. W

7.7 Proof of Lemma 3.5
The Lemma follows if we show that there exists n > 0 that
Pr(V >nm™ ') -1, asn— . (36)

From the arguments in the proof of Lemma 3.2, V is equal to
S (%) Panae ) 30 B () fyy(v)] {/OOO K (2) da + 0(1)} (37)
3 () Pan i 3 F(2) Ranto | { [T a0t} o9

Uu=—m v=—m

(38) is equal to

Zk( Tyae (u ]{/ k2 (z d:z:+o()}20 a.s.,

for sufficiently large n. For (37), because Zv__m (v/m) y(v) —p fy(0) > 0 by the
standard argument, (36) follows if there exists € > 0 such that

T ( f; 74/: <%) foAx(v) > Eﬁll)

v=—m

= Pr <27r Wiz (A) Ing(N)dA > 6771_1) —1, asn— oo, (39)

—T

where (Priestley, 1981, p. 439)

1 & AN w1 sin2(ﬁm/2)>0
o m - 2mm sin?(A/2) — 7

h=—m

bl

Wi (A) =

the Fejer kernel. From Phillips (1999, Theorem 2.2 and Remark 2.4), we have

wAl’()\) - (1 - ei/\) wz(A) + ei("+1))‘(277n)*1/2Xn.
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It follows that

Wi (A) Inz(N)dA

= Wi (V) |1 — 2L (N\)dA (40)
F(2mn)"Y2X, [ Wa (V) 2Re [(1 - ei’\)ww()\)e_i(”ﬂ)/\] dn  (41)

-
m

+ [ Was (M) dr(2mn) X2 (42)
—T
We can ignore (42) because it is nonnegative. For (41), it follows from the Cauchy-
Schwartz inequality and Lemma 8.7 (b) that

W () 2Re [(1 - e“)wz(/\)e*i(nH)A} D\
w1 ) (]

—T

7 /
= 0, (( Wi (V) Asz)l 2) = Op(m~1/?),

—T

/
Wi () d)\>1 :

IN
N

—T

and (41)= O, (n~'/2m~1/2) = o,(m 1) follows. Rewrite (40) as

Wi (V) |1 — e 2EL(N)dA
+ [ Wi (M1 = (1(\) = EL())) dA

= A;+ As.

For A;, because f(0) > 0 and f;(A) is continuous in the neighborhood of the origin
since ) j||B;|| < oo, there exist D € (0,1) and c1, c2 > 0 such that, sufficiently large
n (Hannan, Theorem 2, p. 248)

infye(—pr,pa |1 — €A > e, infaelpr,pm EL(N) > co.

Therefore, in conjunction with Lemma 8.7 (a), we obtain

D
A1 > cie W=, ()\) )\2d>\ > Clcgfim_l, k> 0.
—Dm

For Aj,, it follows from Theorem 2 and Corollary 1 of Hannan (1970, pp. 248-9) and
their proof that

L)) =01),

St (43)

{ SUP), \e[—mn] |0V (Lx(N)
cov (I;(N), I;(X)) = o(1
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Therefore,

E(Ay)? = / Wa (N) Wz (V) [1— e 2|1 - e Pcov (L:(N), I(XN)) dXaN

< C/’r g W, ()\) Wi ()\’) )\2()\/)2 |COV (Ix()\),fa:()\/))‘d)\d)\/
= o(m?)

where the interchange of expectation and integration in the first line is valid by
(43) and Fubini’s Theorem, and the last line follows from Lemma 8.7 (b), (43),
and the dominated convergence theorem. Therefore, there exists 7 > 0 such that
(40)+(41)+(42)> n'm~! with probability approaching one, and (39) and the stated
result follow. H

8 Appendix B: technical results

8.1 Lemma

Under the assumptions of Theorem 2.6,
h 2
E (Z (yeDzsp — EytAJJt—h)) =0O(h), h=1,...,n—1.
t=1

8.2 Proof
Observe that

h 2 h h 2
E (Z (yeAxyp — EytACCt—h)> = var <Z Z/tAfEt—h> <K (Z ytAﬂft—h> .

t=1 t=1 t=1

From the product theorem (e.g. Hannan, 1970, pp. 23, 209), E(Z?Zl yeAzy_p)? is
equal to (recall I'ya,(h) = EyAxyyp)
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h
E <Zy Axy thSA:L‘s h)

t=1 =

h h h
= Z Z FyAx yAx(h) + Z Z F FA:{:Ax(S - t)
t=1 s=1 t=1 s=1
h h h h
+ZZFyAm s — —t)FAxy(S—t—{—h +ZZkyAmyAr( —h,s,s—h)
t=1 s=1 t=1 s=1
h—1
= B*Cyaz(h)*+ D (b= Iy (DT azax(l)
l=—h+1
h—1
+ Z — [IDTyae(l = WAz +h) + > (b= [I)kyasyaz(0,—h, 1,1 = h).
l=—h+1 I=—h+1

The first term on the right is bounded by (sup, s|T'yaz(s)])? < co. The second and
third terms on the right are bounded by hsup, [|T'(s)|| > ;2 . |[T()|| < Ch. From

(28), the fourth term on the right is bounded by A Y 2 > |kyazyaz (0, —r, 1,1 —

Ch, and the stated result follows. H

8.3 Lemma

Under the assumptions of Theorem 2.6,

n—1 n
1
— E k ( > E (yeAzy—p, — By Axy_p) = E Zy + Ry,
M \F -1 =1

where ER? = o(1) and

Z - WZk( ) >t o

r=1

fhr(l) = Z ]—i—r h (A;—‘,-'r)A ]

Jj=0

and Ajl- and A? denote the first and second row of A;, respectively.

8.4 Proof

The proof follows from an argument similar to Remark 3.9 (i) of Phillips and Solo
(1992, p. 980). First, we find an alternate expression of Y ;" ; y;Az;_p, so that it can
be approximated by a martingale. Express y; and Ax; as

(%)= (ais ) - (F=iee),
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where Ajl- and AJZ are the first and second row of A;, respectively. Observe that

yiAzi oy = AY(L)eA*(L)es

[o.¢] (o)
1 2
= E Ajgt—jg ALEt—h—k
j=0 =

= ZA}Q,J _pEi— 3+ZA iEt—j Z A _pEt—sy (s=h+k).
j=0

s=h,#j

Since A2, &;_; is a scalar, the first term on the right is
j—h J )

o0 oo

tr Z(A?_h)’A}Et_jfs;,j = tr (th(L)stEQ, oL Z AlLJ

j§=0 7=0

The second term on the right is, since A2 = 0 for s < 0,

ZAIEt —j Z AS hEt—s

5=0,#]
(o ¢] o0
= ftr Z (Ag—h)/Ajl‘Et—jE:‘/fs
=0 5=0,#j
00 j—l
= ftr (A2 Alst iers | +tr Z Alet J€t—s
Jj=0s=7+1 j=0 s=0
= tr (A2 Alz-:t jEis | +tr (A})’Aﬁ,hst,ss;_j
J=0s=j+1 s=0 j=s+1
[o.¢] [o.¢]
= ftr Z Z [(AZ_p) A} + (A AT ] et
j=0s=j5+1
[o¢] (e.)
= | DD (A A+ (AL AT ) e et | (r=s—])
j=0r=1
oo
= tr (Z i (L)esel T) ,
r=1
where .
th(L) - Z thrLj’ thT = ( ?ﬂ" h) A (Ajl-&—r)/A'fh-
j=0

Therefore, we may express y: Az, as
Yy Azy_p, = tr (fho )erer + Z (L etsffr) .
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Apply the B/N decomposition (Phillips and Solo, 1992) to f""(L) and rewrite it as

fhr(L) _ fhr(l) —(1— L)ff”"([,), r=20,1,...,

with
Iy =L, = Y0 = Y (AL ) AL+ (AL,) AZL] L (49)
3=0 s=j+1 s=j+1

It follows that

\/15 Z Yy Axy_p = tr (fho(l)\}ﬁ Zlgtgg + Z fhr(l)\/lﬁ tzl 5ta£_r> + Tan,  (45)

where

= =t (PO oy = ueh) + =t ( () eoe!, ensm) .

From Lemma 8.5, we have
Elrpp?<Cn™, h=1,....,n—1. (46)
Furthermore, observe that

(o) o0
Ey Az, = FE ZZA}ﬁt—jSQ—k—h(Az)/
=0 k=0

- iA}(A?_h)'ztr i(Ag_h)'A; :tr(fho(l)).
=0 =0

J

In conjunction with (45), it follows that

1 n
NG Z (yeAxp—p — By Axy_p)
=1

= tr <fh0(1)\}ﬁ Z (5755; - 12) + thr(l) 17”L thgé—r> + Tnh,
t=1 r=1 t=1

R

and hence
—g k h —g (yeAxy_p — EyyAxy_p) =T+ I1+ 111
— 2 m ) Jn YtAT—p YtRATi—h )

t=1

33



where 1T = m~—1/2 heq k (h/m) Ty and

h=1 t=1
1 « 1 < [h
= tr| — erey — Iy) — k( >fh0(1)>
(et
II = 1§:k(h> tr (if’”(l)lzn:etéi_r)
M=\ r=1 ﬁt:l
= Y Zy, Zy=n"t UZZk( )Z et " (Ve
t=1 r=1

From (46) and Minkowski’s inequality, we have E(II1)* = O(m~ ' (3", n~1/2)2) =
O(mn™1). For I, first observe that, since 4; = 0 for j <0,

IOI = Do (AF) A = [ Do (AT 4]
j=0 j=h

IN

supHA ||Z||A | < Ch~ 52] |Aj[| <Ch™%, h=1,....,n—1.
j=h j=h

Therefore, ||m=Y23" 1" k(h/m)f"0(1)]] < Cm~1/2, and it follows that E(I)? =
O(m™1), giving the stated result. B

8.5 Lemma

Under the assumptions of Theorem 2.6, for t =0, nand h=1,...,n—1,
2 © 2
(a) FE (tr (th(L)stsz)) <oo, (b) E <tr (Z f}”’(L)ata;_r>> < 00,
r=1

8.6 Proof

We need to show the result only for ¢ = n, because & is iid. For part (a), since
tr(f"0(L)ene)) = Py Otr(fhogn i€n—j) = 2520 sﬁz_jf]hoan_j, we have

E(tr (}’th(L)Sn&;l))Q _ iiE( e _jer i 0, k)

=0 k=0
2
[o.¢] (e.)
- _
< S| +C DI
=0 =0



This is finite because, uniformly in h=1,...,n — 1,

177001 = Z 1| < Z 1CAZ-R) Al < sup [[4A1G+1)™ 30 S llAl1 < C57°
s=j+1 s=j+1 s=j+1
and § > 1. N
For part (b), rewrite tr(>_ o2 | " (L)enel,_,) as
o oo - / (o)
YD) I (LEEIN ) 3) SEAN (7l ISR 3
r=1 j=0 r=1 j=0 7=0
where fh =& _ _j Eﬁl(ﬁhr)’z—:n,r,]’. Since fﬁ_j €Ih—j = 0(en—j,en—j—1,...) and
E(h ]|In —j—1) = 0, it follows that
2
o0 oo
| =D EE) CZZIIJ"}”IP<C<Sup|!f’”||> 177 11.
Jj=0 j=0 j=0r=1 7j=0r=1
(47)
Now
||E}W”: Z f;n“ = Z (As—i-r h A;"" Z (A;Jrr)/Ag—h
s=j+1 s=j+1 s=j+1

Hence supj, sup,, HEMH < sup, [|Ap|1 D252 || As|] < oo. Furthermore, uniformly in
h=1,...,n—1,

DI [ R N N S 7 WA 1117 WS N S N | W 117 WA

7=07r=1 j—O r=1s=j5+1 j—O r=1s=j+1
< Z Z I\ASHZHA IHZ Z || As— h||Z||A Il (48)
Jj=0s=j+1 7=0s=j+1

The first term in (48) is bounded by 772 >°% . [|As|| = 2272, jl|4;]| < oo. The
second term in (48) is bounded by

i i HApH:i f} HApH—ZZHAH—ZSHAS||<OO.

J=0 p=max{j—h+1,0} j=h+1p=j—h+1 s=1 p=s+1 =

Therefore, the right hand side of (47) is finite, and part (b) follows. W

8.7 Lemma
For Wi (A) = (2mm) ™! [sin?(mA/2)/sin?(\/2)], there exist D € (0,1) and & > 0 such
that

D
(a) Wi (A A% > kmt, (b)) supye_pa (Wi (A) [A2dA < Cm !
—Dr
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8.8 Proof

We can find a constant ¢ € (0, 1) such that, for A € [—7, 7],

c(A/2)? <sin?(M\/2) < (A/2)2. (49)

Therefore, there exists k£ > 0 such that

D D
Wz (M AN2dN > Cm? / sin?(mA/2)d\
—D7 —D7
mDm /2
= 20m 2 sin?(0)d6
—mDn /2
/2
> 2CH2mD] / sin?(6)d6
—7/2
w/2
~ 20Dm™! sin?(0)df > km !,
—7/2

giving part (a). Part (b) follows from (49) and |sinz| < 1. R
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9 Tables

Table 1: Standard t-statistic: Finite Sample size (local to unity)
c p o12=0 025 050 075 0.95
A. Demeaned Case
0.000 1.000 0.048 0.056 0.099 0.136 0.173
-1.000  0.990 0.045 0.055 0.089 0.111 0.129
-5.000  0.950 0.054 0.061 0.056 0.085 0.085
-10.000 0.900 0.051 0.059 0.058 0.070 0.069
-20.000 0.800 0.058 0.045 0.062 0.063 0.059
B. Detrended Case
0.000 1.000  0.060 0.090 0.165 0.236 0.291
-1.000  0.990 0.058 0.072 0.139 0.212 0.264
-5.000  0.950 0.050 0.064 0.099 0.129 0.150
-10.000 0.900 0.057 0.059 0.084 0.086 0.118

-20.000 0.800 0.050 0.052 0.069 0.070 0.074
Results are based on 2000 replications with N = 0100. The
process is given by z: = pxi—1 + €1+ and Yy = €2 for p =
1+4¢/N and € ~ i.i.d. N(0,X). Tests are conducted at the 0.05
level. Sizes are reported for a standard t-statistic based on the
regession of y; on x+_1
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Table 2: Finite Sample size (local to unity)

C P o12=0 0.25 0.50 0.75 0.95
A. Demeaned Case

0.000 1.000 0.045 0.047 0.037 0.052 0.053

-1.000 0.990 0.054 0.048 0.043 0.050 0.056

-5.000 0.950 0.052 0.039 0.052 0.048 0.047

-10.000 0.900 0.046 0.053 0.039 0.038 0.044

-20.000 0.800 0.046 0.049 0.045 0.041 0.056
B. Detrended Case

0.000 1.000 0.048 0.042 0.054 0.054 0.070

-1.000  0.990 0.051 0.060 0.057 0.057 0.066

-5.000 0.950 0.059 0.049 0.060 0.059 0.052

-10.000 0.900 0.061 0.051 0.041 0.040 0.049

-20.000 0.800 0.067 0.044 0.052 0.051 0.056
Results are based on 2000 replications with N = 0100. The
process is given by xt = pri—1+e€1,c and y¢ = €2+ for p = 1+¢/N
and €; ~ i.4.d. N(0,X). Tests are conducted at the 0.05 level.
Rejections rates are calculated for long-run covariance-based t-
test.

Table 3: Standard t-statistic: Finite Sample size (AR(2))
p1+ Py Po o12=0 025 050 075 0.95
A. Demeaned Case
1.000 -0.500 0.050 0.067 0.099 0.162 0.170
0.990 -0.510 0.045 0.059 0.070 0.091 0.120
0.975 -0.525 0.059 0.052 0.067 0.087 0.103
0.950 -0.550 0.057 0.064 0.060 0.059 0.075
0.925 -0.575 0.059 0.055 0.068 0.059 0.069
0.900 -0.600 0.055 0.064 0.049 0.056 0.064
0.800 -0.700 0.063 0.048 0.058 0.046 0.062
B. Detrended Case
1.000 -0.500 0.051 0.091 0.159 0.252 0.317
0.990 -0.510 0.060 0.071 0.120 0.180 0.203
0.975 -0.525 0.051 0.073 0.099 0.140 0.149
0.950 -0.550 0.061 0.052 0.079 0.096 0.109
0.925 -0.575 0.068 0.059 0.061 0.093 0.104
0.900 -0.600 0.046 0.060 0.072 0.080 0.084

0.800 -0.700 0.057 0.066 0.055 0.065 0.066
Results are based on 2000 replications with N = 0100. The process is
given by x; = pxt—1 + poxi—1€1,t and y: = ez for p; = 1.5 and € ~
i.i.d. N(0,X). Tests are conducted at the 0.05 level. Rejections rates are
calculated for long-run covariance-based t-test.
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Table 4: Finite Sample size (AR(2))

pL+ Py Po 012=0 025 050 075 0.95
1.000  -0500 0.064  0.061 0.091 0.110 0.104
0.990  -0.510 0.062  0.065 0.070 0.091 0.094
0975  -0.525 0.067  0.079 0.080 0.086 0.085
0.950  -0.550 0.070  0.061 0.061 0.076 0.083
0925  -0.575 0.064  0.073 0.066 0.077 0.082
0.900  -0.600 0.064  0.057 0.062 0.070 0.071
0.800  -0.700 0.074  0.070 0.075 0.085 0.079

Results are based on 2000 replications with N = 100. The process is
Ty = pTi—1 + pyxe—1€1,; and y. = ez for p, = 1.5 and
€ ~ t.i.d. N(0,%). Tests are conducted at the 0.05 level. Rejections rates
are calculated for long-run covariance-based t-test.

given by

Table 5: Finite Sample size (ARFIMA)

d o12=0 025 050 075 0.95

1.000 0.051 0.048 0.061 0.052 0.062
0.800 0.070 0.061 0.061 0.051 0.049
0.600 0.070 0.047 0.052 0.052 0.048
0.400 0.056 0.067 0.061 0.056 0.056
0.200 0.072 0.062 0.052 0.057 0.069

Results are based on 2000 replications with N = 0100. The process
is given by (1 — L)dmt =€1,; and y¢ = €2 and ei.i.d. ~ N(0,).
Tests are conducted at the 0.05 level. Rejections rates are calculated
for long-run covariance-based t-test.
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Table 6: Finite Sample power (y; = fx¢—1 + €2,1)

P1 o2 =015 020 035 050 0.75 1.00

1.000 0.000 0.143 0.254 0.738 0.970 1.000 1.000
0.500 0.120 0.219 0.688 0.962 1.000 1.000
0.950 0.091 0.200 0.680 0.963 0.999 1.000

0.990 0.000 0.247 0.374 0.671 0.754 0.792 0.806
0.500 0.130 0.195 0.464 0.683 0.753 0.740
0.950 0.080 0.118 0.307 0.507 0.640 0.692

0.975 0.000 0.253 0.380 0.718 0.799 0.828 0.836
0.500 0.143 0.218 0.527 0.724 0.782 0.776
0.950 0.086 0.150 0.331 0.540 0.691 0.734

0.925 0.000 0.257 0.435 0.791 0.902 0.939 0.950
0.500 0.155 0.248 0.585 0.815 0.886 0.893
0.950 0.099 0.154 0.405 0.651 0.829 0.875

0.800 0.000 0.251 0.406 0.833 0.969 0.992 0.995
0.500 0.166 0.281 0.674 0.905 0.981 0.980

0.950 0.109 0.176 0.484 0.743 0.952 0.982
Results are based on 2000 replications with N = 100. The process is given by
x¢ = 14+ pxxi_1€e1, and yr = Bat — 1+€24, and p = 1+¢/n. and € ~ i.i.d. N(0,X).
Tests are conducted at the 0.05 level. Rejections rates are calculated for long-run
covariance-based t-test. The Bartlett (Newey-West) kernel is employed. Optimal
bandwidths are employed based on initial estimates from a VARMA(1,1).
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Table 7: Finite Sample power (y; = 3(1 — pL)xi—1 + €24 )

P1 o1 =015 020 035 050 075 1.00
r? =0.02 0.04 011 020 0.36 0.50

1.000 0.000 0.240 0.393 0.756 0.891 0.954 0.972
0.500 0.275 0.458 0.916 0.992 0.999 1.000

0.950 0.634 0.748 0.996 1.000 1.000 0.999

0.990 0.000 0.241 0.372 0.745 0.905 0.956 0.985
0.500 0.289 0.486 0.919 0.996 1.000 1.000

0.950 0.684 0.821 0.998 1.000 1.000 1.000

0.975 0.000 0.249 0.363 0.763 0.901 0.970 0.986
0.500 0.281 0.511 0.931 0.998 1.000 1.000
0.950 0.751 0.906 1.000 1.000 1.000 0.999
0.925 0.000 0.246 0.353 0.761 0.927 0.989 0.999
0.500 0.339 0.523 0.947 0.998 1.000 1.000
0.950 0.896 0.984 1.000 1.000 1.000 1.000
0.800 0.000 0.210 0.350 0.742 0.942 0.998 1.000
0.500 0.345 0.539 0.936 0.998 1.000 1.000
0.950 0.980 0.999 1.000 1.000 1.000 1.000

Results are based on 2000 replications with N = 100. The process is given by
xt =14 p*xxi_1€1,c and y = Ber,t—1+ €24, and p =1+ c¢/n and € ~ i.i.d. N(0,X).
Tests are conducted at the 0.05 level. Rejections rates are calculated for long-run
covariance-based t-test. The Bartlett (Newey-West) kernel is employed. Optimal
bandwidths are calculated using Andrews(91) based on initial estimates from a

VARMA(1,1).
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Table 8: Regression of long horizon real stock returns on log dividend price ratios

Ytk = Ttr1 + .o+ Teake
Ty = In ((Dt 4+ ...+ Dt_lg)/Pt)

Forecast Horizon (k)
k= 1.000 3.000 12.000 24.000 36.000 48.000
1927 to 1994
Jé; 0.016 0.043 0.200 0.38 0.533  0.654
R?> 0.007 0.014 0.073 0.143 0.207 0.261
ts 2380 1.598 2.658 4.221  4.843  4.707
1927 to 1951
Jéi 0.024 0.054 0.304 0.667 0.925 1.085
R?> 0.007 0.011 0.086 0.217 0.330 0.419
ts 1472 0.886 2.134 3.796  3.180  4.226
1952 to 1994
Jé; 0.027 0.080 0.327 0.579  0.757  0.843
R?> 0.018 0.049 0.188 0.322 0.411 0.417
ts  3.098 3.728 3.845 3.589 3.775  4.051

Regressions are estimated by OLS with Newey-West standard errors,
setting the bandwidth equal to k — 1.
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Table 9: Covariance-based orthogonality tests on long horizon real stock returns using
log dividend price ratios

yt+k:Tt+1+...+rt+k
vy =In((Dy+ ...+ Di_12)/P)

Forecast Horizon (k)

k= 1.000 3.000 12.000  24.000 36.000  48.000
1927 to 1994

15 1.5568 -0.8273 1.0232 1.6360 1.7722  1.8415

M 1.6979 8.5535  50.8592 60.0334 57.9444 61.1089
1927 to 1951

ta 1.5358 0.0336 -0.1144 0.6480 1.2349  1.6439

M 3.0416 5.6921 32.0844 37.9558 42.0417 42.0936
1952 to 1994

tn  0.0684 -0.8066 1.7281 0.5334 0.4550 -0.3376

M 3.1168 4.9193  49.1232 79.0276 45.8764 53.6242

The Bartlett (Newey-West) kernel is employed. Optimal bandwidths
are calculated using Andrews (91) based on initial estimates from a
VARMA(1,1).

Table 10: Covariance-based orthogonality tests on long horizon excess stock returns
using log dividend price ratios

Ytk = Tt+1+ -+ Ttk
gjt:ln ((Dt+---+Dt712)/Pt)

Forecast Horizon (k)
k= 1.000 3.000 12.000 24.000  36.000  48.000
1927 to 1994
tx 1.3939 -0.8743 0.8447  1.5824  1.7727  1.9412
M 1.8233  8.4450 55.5214 64.0799 61.2324 64.3484
1927 to 1951
tx 1.2946 -0.0970 -0.3579 0.3777 1.0294  1.2946
M 2.9226  5.7579  35.7451 40.2412 49.6852 45.8701
1952 to 1994
[ -0.0218 -0.8390 2.2099  1.0010 0.8855  -0.0260
M 3.4792  3.6139 46.1167 59.2861 41.0933 46.8382
The Bartlett (Newey-West) kernel is employed. Optimal bandwidths

are calculated using Andrews (91) based on initial estimates from a
VARMA(1,1).
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Table 11: Regression of one-period real stock returns on the sum of the past &k log
dividend price ratios

Yt+1 = Tt+1
v =1In((Di+ ...+ Di—12)/P)

k—1
Ttk = Zj:() Tt—j

Forecast Horizon (k)
k= 1.000 3.000 12.000 24.000 36.000 48.000
1927 to 1994
Ié) 0.013 0.005 0.001 0.001 0.001 0.000
R?> 0.004 0.006 0.007 0.008 0.007 0.007
tg 1.899 2.184 2.395 2.464 2.346  2.280
1927 to 1951
Ié) 0.016 0.007 0.002 0.002 0.002 0.002
R? 0.003 0.006 0.009 0.019 0.022 0.026
tp 1.016 1.320 1.627 2.310 2.426  2.605
1952 to 1994
6] 0.024 0.009 0.003 0.001 0.001  0.000
R? 0.015 0.018 0.021 0.020 0.010 0.006

tp 2.792 3.026 3.258 3.144 2.245 1.623
Regressions are estimated by OLS
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Table 12: Covariance-based orthogonality tests on one-period real stock returns using
the sum of the past k log dividend price ratios

Yt+1 = Te+1
zi=In((Dy+...+ Dy_12)/P,)

k—1
Ttk = Z]‘:o Tt—j

Forecast Horizon (k)

k= 1.000 3.000 12.000  24.000  36.000  48.000
1927 to 1994

txn  -0.7603 -0.4709 0.9442 1.6167 1.4943  1.8470

M 7.9767 19.6421 52.2798 67.3831 73.3721 77.8931
1927 to 1951

15 0.0131 -0.4910 -0.0587 0.8633  1.3027  1.9363

M 5.3690  13.3450 38.1420 45.0255 52.7361 54.7142
1952 to 1994

ta -1.1611 0.4537  1.9966  1.1060  0.5152  -0.1549

M 6.6822  20.5155 40.9108 50.5702 53.8202 56.2971
The Bartlett (Newey-West) kernel is employed. Optimal bandwidths
are calculated using Andrews (91) based on initial estimates from a
VARMA(1,1).

Table 13: Covariance-based orthogonality tests on one-period excess stock returns
using the sum of the past k log dividend price ratios

Yt+1 = T't41
xy =In((D¢+ ...+ Di_12)/P)

k—1
Tk = Zj:() Tt—j

Forecast Horizon (k)

k= 1.000 3.000 12.000  24.000  36.000  48.000
1927 to 1994

tx  -0.8736 -0.6610 0.6238  1.3907  1.4338  1.9937

M 7.9008 19.8360 53.4400 66.4861 74.4763 80.7502
1927 to 1951

ta -0.1985 -0.7069 -0.4273 0.4111 0.7884  1.6089

M 52661 13.2929 38.1117 46.0110 53.2981 55.1735
1952 to 1994

ta -1.0454 0.6150 2.3565  1.3829  0.8519  0.1502

M 6.6214 19.6746 41.1088 50.6446 53.9344 56.2212

The Bartlett (Newey-West) kernel is employed. Optimal bandwidths
are calculated using Andrews (91) based on initial estimates from a
VARMA(1,1).
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Table 14: Covariance-based orthogonality tests on one-period real stock returns using
the sum of the past k one-month treasury bill rates

Yt+1 = Tt+1
Ty = ’L't

k—1
LTtk = Zj:() Tt—j

Forecast Horizon (k)

k= 1.000  3.000  12.000 24.000  36.000 48.000
1927 to 1994

ta -0.9259 -1.9595 -2.1294 0.0952  -0.0851 -0.1499

M 5.5045  8.6988 14.3506 29.8385 79.6510  61.8166
1927 to 1951

tn  0.7627 -0.2085 -0.1921 -0.1539 -0.4502  -0.6276

M 2.3860  7.7249  97.9758 40.7324 178.5452 42.9660
1952 to 1994

i) -1.2465 -2.5412 -3.3329 -0.0605 0.2308 0.1637

M 39029 6.4884 14.7001 34.7366 88.8239  64.8568
The Bartlett (Newey-West) kernel is employed. Optimal bandwidths
are calculated using Andrews (91) based on initial estimates from a
VARMA(1,1).

Table 15: Covariance-based orthogonality tests on long horizon real stock returns
using one-month treasury bill rates

Ytk = Te+1 + oo+ Tepk
Tt — it

Forecast Horizon (k)

k= 1.000 3.000 12.000  24.000 36.000  48.000
1927 to 1994

1% -1.5117  -2.0220 -0.3204 -0.3652 -0.9623 -0.9220

M 5.4735 14.1007 47.7010 61.7078 71.6007 80.0715
1927 to 1951

[ 0.3851 0.2580  1.4957 -0.1954 -1.9794 -2.1226

M 2.4431  9.7259  31.2871 43.0105 53.2809 54.4925
1952 to 1994

tn  -2.1945 -3.0077 -1.1404 0.1190 0.0247  0.0854

M 5.3864  13.4467 43.4885 54.0247 63.8107 83.6159
The Bartlett (Newey-West) kernel is employed. Optimal bandwidths
are calculated using Andrews (91) based on initial estimates from a
VARMA(1,1).
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Table 16: Covariance-based orthogonality tests on long horizon excess stock returns
using one-month treasury bill rates

Ytk = Te41 + oo+ Tepk
Tt — it

Forecast Horizon (k)

k= 1.000 3.000 12.000  24.000  36.000  48.000
1927 to 1994

15 -1.3171  -1.7708 -0.3147 -0.6396 -1.2892 -1.3521

M 5.5695  14.1678 49.7583 64.9060 78.7877 85.1121
1927 to 1951

ta 0.5312 0.5332 1.3079  -0.6559 -2.0636 -2.0170

M 23619 9.8670 33.7999 48.7350 62.4440 67.1765
1952 to 1994

tn  -2.0799 -2.9289 -1.1101 0.0759 -0.1781 -0.2163

M 5.1226  13.3057 43.3002 50.7068 55.3688 61.1098
The Bartlett (Newey-West) kernel is employed. Optimal bandwidths
are calculated using Andrews (91) based on initial estimates from a
VARMA(1,1).

Table 17: Covariance-based orthogonality tests on one-period real stock returns using
the sum of the past k one-month treasury bill rates

Yt+1 = Tt41
Tt — it

k-1
Ttk = Zj:() Tt—j

Forecast Horizon (k)

k= 1.000 3.000 12.000  24.000  36.000 48.000
1927 to 1994

5% -0.9259 -1.9595 -2.1294 0.0952  -0.0851 -0.1499

M 5.5045 8.6988 14.3506 29.8385 79.6510 61.8166
1927 to 1951

133 0.7627 -0.2085 -0.1921 -0.1539 -0.4502  -0.6276

M 23860 7.7249 97.9758 40.7324 178.5452 42.9660
1952 to 1994

tn  -1.2465 -2.5412 -3.3329 -0.0605 0.2308 0.1637

M 3.9029 6.4884 14.7001 34.7366 88.8239  64.8568
The Bartlett (Newey-West) kernel is employed. Optimal bandwidths
are calculated using Andrews (91) based on initial estimates from a
VARMA(1,1).
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Table 18: Covariance-based orthogonality tests on one-period excess stock returns
using the sum of the past k one-month treasury bill rates

Yt+1 = Tt41
Ty = it

k—1
Ttk = Zj:() Tt—j

Forecast Horizon (k)
k= 1.000  3.000  12.000 24.000 36.000  48.000
1927 to 1994
(5 -0.8219 -1.6810 -1.6398 0.2551  -0.2636 -0.3875
M 5.5282 8.8894 15.5341 32.5941 65.9793 62.0156
1927 to 1951
tx 07217 01783 0.1343  0.2250  -0.3759 -0.2789
M 24175 7.7554  98.0647 41.3458 69.0598 42.7828
1952 to 1994
15) -1.0129 -2.4480 -3.2474 0.0023  0.0190 -0.0822
M 3.5796  6.0396  14.4741 35.9146 94.9259 68.4612

The Bartlett (Newey-West) kernel is employed. Optimal bandwidths
are calculated using Andrews (91) based on initial estimates from a
VARMA(1,1).
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