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Abstract

We extend the ∆-rationalizability (see Battigalli and Siniscalchi (2003)) to infinite

strategic form games with incomplete information. The most important feature of the

∆-rationalizability is that there is no specified epistemic type space à la Harsanyi. How-

ever, we can impose a collection of exogenous restrictions on first order beliefs over payoff

types and strategies represented by a collection of correspondences ∆. When ∆ represents

only restrictions on beliefs over payoff types, we show that the ∆-rationalizable sets are

nonempty under general topological conditions. Robustness with respect to almost com-

mon belief for rationality of ∆-rationalizability is established under general conditions by

two alternative approaches. We can approximate common belief by finite order of mutual

beliefs; we can approximate common belief by common p-belief. One important feature

of our analysis in the robustness is that in the second approach, different level of belief is

allowed for every order of mutual belief among players.
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1 Introduction

One of the most important solution concept in game theory is the rationalizability. In

contrast to the equilibrium approach, the rationalizable set is defined to be the logical

consequence of the following two promises: (O1) every player is rational in the sense

that each one forms a subjective probability distribution over his opponents’ choice of

strategy and maximizes his expected utility relative to the prior, and (O2) the fact (O1)

and the structure of the game are common knowledge among the players. One advantage

of the definition is that it clarifies what is assumed and what is implied. In their seminal

papers, Pearce (1984) and Bernheim (1984) first formalize these ideas and provide many

interesting properties of the rationalizable sets.

In practice, however, the assumptions required for the rationalizability rarely hold. In

his seminal paper, Bernheim argues that:

“Practically speaking, we might not expect agents to check the consistency of their

beliefs for more than a finite number of levels. This leads us to ask whether the theory

of strategic behavior developed above is robust to deviations form perfect rationality.”

Bernheim (1984), p.1017.

Following this line of analysis, this paper develops a general rationalizability for strate-

gic form games with incomplete information and investigate the robustness of the solution

concept. The rationalizability we provide are defined to be the combinations of payoff

types and strategies that are implied by the following two assumptions: (R1) each player is

rational and his first order belief satisfies some exogenous restrictions and (R2) the struc-

ture of the game and the fact (R1) is common belief among players. The two assumptions

are essentially the same as the two promises mentioned above.

However, two important features of our analysis are worthy discussed. Rather than

modelling asymmetric information on payoff relevant parameters by means of the Harsanyi

types(Harsanyi (1967)), we use the payoff types only to denote the possible values of the

payoff relevant parameters. The payoff type for each player can be interpreted as the

private information that he have about which game being played and the expected utility
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of other players. We can accommodate exogenous restrictions on players’ first order beliefs

in stead of imposing a specific type space. Thus, the structure of the game is then defined

to be the spaces of the payoff types, the strategy spaces, and the payoff mappings of each

player. In such a framework we might embed the set of payoff types into a universal type

space1 and this approach would avoid untended restrictions on beliefs due to the adoption

of a “small” type space, as noted by Battigalli and Siniscalchi (2003). The analysis here

can be viewed as a coherent theory in the sense of Gul (1996) since we explicitly express

what is assumed and what is implied.

The imposed exogenous restrictions on each player’s first order beliefs over the payoff

types and the strategies of his opponents are represented by a set of correspondences.

Each of them maps the payoff types for each player into a subset of all his possible first

order beliefs — all probability distributions over the strategy spaces times the space of

the payoff types of his opponents. These correspondences are generally denoted ∆. Note

that the restrictions may depend on the occurrence of payoff types.

The ∆-rationalizable sets, as mentioned above, are thus defined to be the combinations

of payoff types and strategies which are consistent with the assumptions (R1) and (R2).

This definition coincides with the ∆-rationalizable sets defined in Battigalli and Siniscalchi

(2003) for finite strategic form games with incomplete information. Thus, our work can

be viewed as a generalization of theirs. However, when the space of payoff types and the

strategy space become infinite, the existence and the “best response property” become

nontrivial. These results are proved when the underlying payoff type spaces and strategy

spaces are compact metric, the correspondences in ∆ are closed and all the payoff functions

are continuous.

The robustness is then defined to be that when the common certainty assumption in

(R2) is replaced by some appropriate almost common belief assumption, the implication

of the strategic behavior of these assumptions should be close to the ∆-rationalizability.

Since the solution concept we consider is set-valued, we define the closeness in terms of

1For more discussion on this point, see Battigalli and Siniscalchi (2003) and Battigalli and Siniscalchi

(1999).
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sets rather than points. However, one can still ask whether each point in the set implied

by the almost common belief is close to some point in the set implied by the common

certainty assumption as in Bernheim (1984).

We define the almost common belief in two alternative ways. We can approximate by

means of finite order of mutual belief, as in Bernheim (1984). We can use common p-belief

formalized by Monderer and Samet (1989) as a approximation of common certainty. The

robustness in the first approach is easily established by the mathematical properties of

the Hausdorff distance topology. In the second approach, an important departure from

the literature in our analysis is that we allow different level of belief in every order of

mutual belief in defining common p-belief.

Thus, the p in the common p-belief becomes a sequence in (0, 1] and an event E is

common p-belief if every player assigns probability at least p1 on the event E(this event

is denoted E1), every player assigns probability at least p2 on the event E1(this event

is denoted E2), every player assigns probability at least p3 on the event E2(this event

is denoted E3), etc. One of our main contribution is to establish the robustness of the

∆-rationalizability to such a definition of almost common knowledge under the same

topological conditions mentioned above.

At first glace, it seems that these topological conditions are hard to understand. How-

ever, it is well-known that compactness and continuity are important conditions for the

existence of the best responses. Since we are interesting in the robustness of a set-valued

solution concept, it seems difficult to describe the closeness of subsets when the under-

lying space is not metrizable. Indeed, there are many interesting topologies that can be

endowed in the space of all subsets of a topological space(see, for example, Aliprantis

and Border (1999)) in terms of the open sets rather than metric. Yet, the topology on

the space of all nonempty compact subsets induced from the Hausdorff distance coincides

with all these topologies in metric spaces. So it seems a good start point to begin with

metric spaces.

Gul (1996) has provided a similar robustness result by the second approach for finite

games with complete information. However, in finite games, the implication of common
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p-belief of rationality becomes the same for sufficiently large p while this is not true in

general for games with infinite strategy spaces. Another important difference between

his analysis and ours is that his use of common p-belief can accommodate lexicographic

preferences, while we focus on preferences consistent with the subjective expected utility

models. The techniques needed for the lexicographic preferences with infinite state spaces

are beyond the scope of the current paper. However, most results in Gul (1996) can be

generalized to finite strategic form games with incomplete information by our framework.

The rest of this paper is organized as follows. Section 2 provides the definitions and

important properties of our main solution concept. An existence theorem and the “best

response property” are proved there. Section 3 focuses on the robustness of the solution

concept. Two alternative approaches are discussed and the robustness are established

there for both ways. The Appendix consists of some mathematical preliminaries needed

for our analysis and the omitted proofs.

2 Rationalizable Sets

In this section, the ∆-rationalizable sets are defined formally for strategic form games

with incomplete information via a procedure of iterative deletion of combinations of the

payoff types and the strategies. The exogenous restrictions are explicitly expressed in

terms of correspondences. The procedure will find out all combinations of payoff types

and strategies implied by assumptions (R1) and (R2).

For those correspondences that represent only the restrictions on each player’s beliefs

over the payoff types of his opponents, the existence of the ∆-rationalizable sets is proved

under general topological conditions. A corresponding “best response property” is also

proved for the ∆-rationalizable sets. We also define a notion of consistency for the ∆-

rationalizable sets.
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2.1 Definitions and Notations

Consider a strategic form game with incomplete information:

G ≡ (N, {Θi}i∈N , {Si}i∈N , {ui}i∈N) ,

where N denotes a finite set of players, Θi is the set of all possible payoff types, Si is the

strategy space, and ui : S ×Θ → < denotes the payoff function for player i. Throughout

this paper, Θi×Si is assumed to be a compact metric space and ui is a continuous function

for all i ∈ N .

As mentioned in the introduction, we use exogenous restrictions by meas of correspon-

dences from the space of the payoff types for each player into all his possible first order

beliefs. Formally, for each player i, consider the correspondence ∆i : Θi � ∆(Θ−i × S−i)

for each player i and let ∆ ≡ (∆i)i∈N . To avoid confusion, we will use ∆θi
in place of

∆i (θ
i). Then the set ∆θi

is interpreted as the exogenous restriction of the beliefs for

player i when θi occurs. Let Σ be the collection of all such correspondences.

The ∆-rationalizable sets are defined to be the combinations of payoff types and

strategies that are implied by the assumptions (R1) and (R2). The following definition

formalizes this idea and provide a procedure of iterative deletion of combinations of the

payoff types and the strategies.

Definition 2.1. Let G = (N, {Θi}i∈N , {Si}i∈N , {ui}i∈N) be a strategic form game with

incomplete information, and let ∆ ∈ Σ. Let Ti ⊂ Θi × Si and let T ≡
∏

i∈N Ti. Define

Λi(T, ∆) ≡ {(θi, si) ∈ Θi × Si : there exists µ ∈ ∆θi
such that µ(T−i) = 1 and si ∈

F i[µ, θi]}, where F i[µ, θi] ≡ arg maxsi∈Si

∫
Θ−i×S−i

ui(s, θ) dµ(s−i, θ−i). When T = ∅, let

Λi(T, ∆) = ∅.

Then the set of ∆-rationalizable strategies is defined to be R(G, ∆) ≡
⋂∞

n=1 Λn(Θ ×

S, ∆), where Λ(Θ×S, ∆) ≡
∏

i∈N Λi(Θ×S, ∆) and Λn
i (Θ×S, ∆) ≡ Λi(Λ

n−1(Θ×S, ∆), ∆).

Battigalli and Siniscalchi (2003) provides a corresponding definition for finite strategic

form games with incomplete information. We extend the work to games with infinite

strategy spaces and infinite payoff types spaces. As in the finite case, the restrictions on
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beliefs represented by ∆, in general, may be inconsistent with the two assumptions (R1)

and (R2). In this case, the set of ∆-rationalizable strategies will be empty.

The restrictions represented by the correspondences are general to enough to incorpo-

rate many interesting cases. On one extreme, let ∆ be defined by ∆θi ≡ ∆(Θ−i × S−i)

for all i ∈ N and θi ∈ Θi, that is, there is no restriction on players’ beliefs. On the other

extreme, let η ∈ ∆(Θ) and define ∆ by ∆θi ≡ {µ ∈ ∆(Θ−i×S−i) : margΘ−i
= margΘ−i

η}

for all i ∈ N and θi ∈ Θi. Then ∆ represents a common prior over the payoff types.

2.2 Existence and Other Properties

For the existence and robustness of the ∆-rationalizable sets, a sub-collection of Σ is

introduced here before the discussion of our main results in this section. Let Σ0 denotes

the sub-collection consisted of closed correspondences2. Closed correspondences in this

place are exactly those with closed graphs and satisfying a minimal continuity assumption

(more precisely, upper hemi-continuity)3. These properties are important to ensure the

existence and robustness.

One useful result for the sub-collection Σ0 is the following lemma:

Lemma 2.1. Suppose that Ti is a closed subset of Θi × Si for each i ∈ N and let T =∏
i∈N Ti. If ∆ ∈ Σ0, then Λi(T, ∆) is closed and hence compact.

2.2.1 Existence

Another important sub-collection of Σ are those only representing restrictions on each

player’s beliefs about the payoff types of his opponents. More specifically, ∆ belongs to

this subset if for each i ∈ N and for each θi ∈ Θi, there exists a nonempty subset P

of ∆(Θ−i) such that ∆θi
= {µ ∈ ∆(Θ−i × S−i) : margΘ−i

µ ∈ P}. We denote by Σ1

for the set of all such correspondences which are closed. Clearly, the two extreme cases

mentioned in the last subsection lie in this sub-collection.

2For formal definition of closed correspondence, see Appendix.
3For more extensive and rigorous discussion of closed correspondences, see Appendix
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The following theorem shows that all elements in Σ1 are consistent with (R1) and

(R2).

Theorem 2.1. Let G = (N, {Θi}i∈N , {Si}i∈N , {ui}i∈N) be a strategic form game with

incomplete information. If ∆ ∈ Σ1, then for all θ0 ∈ Θ, the set ({θ0} × S) ∩ R(G, ∆) is

not empty.

The compactness of the strategy spaces is also important for games with complete

information to ensure the existence of the rationalizable sets, and Lipman (1994) provides

a example where common belief of rationality is not the intersection of any finite order

of mutual belief of rationality when the underlying strategy spaces are not compact.

It should be noted that the metrizable assumption is not essential for Lemma 2.1 and

Theorem 2.1, but it is important for our analysis of the robustness.

2.2.2 Best Response Property

When the strategy spaces are finite, it is clear that only finite rounds of elimination is

needed, as noted by Battigalli and Siniscalchi (2003). However, in games with infinite

available strategies, it may be insufficient to achieve common belief of rationality among

players even after a infinitely countable many rounds of iterative elimination, as shown

by Lipman (1994).

An important aspect mentioned above is that common belief of an event can be defined

by two alternative approaches — that one can define common belief by the intersection

of all finite order of mutual belief and that one can define common belief via self-evident

events. The point is that the definition by the two approaches should be equivalent. It

should be noted that both Pearce (1984) and Bernheim (1984) define the rationalizable

sets via the “best response property” and show that this definition is equivalent to that

from a iterative elimination procedure. The ‘best response property” is very closed to a

self-evident event since a set of strategy combinations satisfies this property if all strategies

in it can be rationalized by the same set. The theorem stated below is an analogy to the

“best response property” for ∆-rationalizable sets.
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Theorem 2.2. Let G = (N, {Θi}i∈N , {Si}i∈N , {ui}i∈N) be a normal form game, and let

∆ ∈ Σ0. Then we have Λ(R(G, ∆), ∆) = R(G, ∆).

2.2.3 Consistency

Since the restrictions we consider is quite general, it is important to demonstrate the

consistency between different games with essentially the same structures.

To illustrate the idea, consider two strategic form games with incomplete information

G0 = (N, {Θ0
i }i∈N , {Si}i∈N , {vi}i∈N)

and

G1 =
(
N, {Θ1

i }i∈N , {Si}i∈N , {ui}i∈N

)
,

and suppose that Θ0 ⊆ Θ1 and vi(s, θ) = ui(s, θ) for all θ ∈ Θ0 and s ∈ S. Intuitively, if

two restrictions associated with G0 and G1 coincide on Θ0, then the ∆-rationalizable sets

associated with these restrictions should be the same on Θ0. The following proposition

formally demonstrates this intuition.

Proposition 2.1. Let G0 and G1 be given as above. Suppose that ∆0 and ∆1 are cor-

respondences associated with G0 and G1, respectively, and satisfy that for all i ∈ N and

θ ∈ Θ0, ∆θi

0 = ∆θi

1 . Then we have that R(G0, ∆0) = R(G1, ∆1) ∩ (Θ0 × S).

Proof. Note that since ∆θi

0 = ∆θi

1 for all i ∈ N and θi ∈ Θ0
i , it follows that for all

T =
∏

i∈N Ti ⊆ Θ0 × S, Λi(T, ∆0) = Λi(T ∪ ((Θ \Θ0)× S), ∆1) ∩ (Θ0 × S).

Remark 2.1. If Θ0 is a singleton set, then G0 becomes a game with complete information.

In this case, Proposition 2.1 shows that ∆-rationalizable set is a generalization of that for

games with complete information.

3 Robustness

In this section, we investigate the robustness of the ∆-rationalizable sets. Recall that two

fundamental assumptions of the ∆-rationalizable sets are (R1) and (R2). We approximate
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the common belief assumptions in (R2) by two alternative ways — via finite order of

mutual belief as in Bernheim (1984) and via common p-beliefs formalized in Monderer

and Samet (1989).

Remark 3.1. Borgers (1994) and Gul (1996) use common p-belief of rationality and ex-

ogenous restrictions to refine the rationalizable sets. The purpose of common p-belief

there is to capture “cautious behavior” and thus the usage has to be compatible with

non-Archimedian probabilities. However, we use the common p-belief here to capture

the approximate common belief only, and we do not discuss preferences other than those

consistent with the subjective expected utility models.

3.1 Robustness to Finite Orders

It might be hard to achieve infinite order of mutual beliefs, as noted in Bernheim (1984).

Thus, it is important to investigate the implications of finite order of mutual beliefs.

Remark 3.2. To describe the nearness of sets, let K(Θ × S) denote the collection of all

nonempty compact subsets of Θ × S. Since Θ × S is assumed to be compact metric, a

nature metric on K(Θ× S) is the Hausdorff distance4, denoted by dH.

The theorem stated below shows that, for ∆-rationalizable sets, we can approximate

the implications of the common belief assumption by finite order of mutual beliefs.

Theorem 3.1. Let G = (N, {Θi}i∈N , {Si}i∈N , {ui}i∈N) be a strategic form game with

incomplete information, and let ∆ ∈ Σ0. Moreover, suppose that R(G, ∆) 6= ∅. Then

dH(Λn(Θ× S, ∆), R(G, ∆)) → 0 in K(Θ× S) as n →∞.

Remark 3.3. Note that the Hausdorff distance between two sets A and B is defined by

dH(A, B) ≡ max{supa∈A d(a, B), supb∈B d(b, A)} for any metric space (X, d). Thus, the

assertion in the theorem above can be replaced by the claim that for any any given ε ≥ 0,

there is some M ∈ N such that n ≥ M implies that for any (θi, si) ∈ Λn
i (Θ× S, ∆), there

exists (θi
0, s

i
0) ∈ R(G, ∆) such that d((θi

0, s
i
0), (θ

i, si)) ≤ ε.

4For a formal definition, see Appendix
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3.2 Robustness to Common p-belief

3.2.1 Definitions and Some Properties

To take the second approach, some definitions and notations are needed.

Definition 3.1. Let G = (N, {Θi}i∈N , {Si}i∈N , {ui}i∈N) be a strategic form game with

incomplete information, and let ∆ ∈ Σ0. For any T =
∏

i∈N Ti ⊆ Θ × S and any

p ∈ (0, 1], define Λp
i (T, ∆) ≡ {(θi, si) ∈ Θi×Si : there is some µ ∈ ∆θi

so that µ(T−i) ≥ p

and si ∈ F i[µ, θi]}.

To illustrate the definition, let us say that an event E is p-believed by player i if he

assigns probability at least p to the event E . There is mutual p-belief in E if it is p-believed

by every player. For any given ∆, consider the following set of assumptions:

A0 : every player i is rational and his beliefs satisfy the set of restrictions ∆i,

A1 : there is mutual p1-belief in A0,

A2 : there is mutual p2-belief in A0 ∩ A1,

....

An+1 : there is mutual pn+1-belief in A0 ∩ A1 ∩ ... ∩ An,

....

Let us denote Λ(p1,...,pn)(Θ × S) ≡ Λpn(Λ(p1,...,pn−1)(Θ × S)) for all n ∈ N. Then the

set
⋂

n∈N Λ(p1,...,pn)(Θ×S) consists of combinations of payoff types and strategies that are

consistent with the event
⋂

n∈NAn. Note that we allow different levels of belief in each

order of mutual belief among players. Clearly, the event A0 is the same as the assumption

(R1). But we relax the common belief assumption in (R2) to common p-belief defined in

the introduction.

When p = p1 = ... = pn = ..., we denote Λ(p1,...,pn)(Θ× S) by Λp,n(Θ× S). Note that

in this case, the set Rp(G, ∆) ≡
⋂

n∈N Λp,n(Θ × S) corresponds to the event that A0 is

common p-belief among the players in the sense of Monderer and Samet (1989).

11



Some important properties of the operator Λp are summarized in the following lemma:

Lemma 3.1. Suppose that Θ×S is a compact metric space and ui is continuous for each

i ∈ N .Then:

(a) For any T =
∏

i∈N Ti closed in Θ× S and for any p ∈ (0, 1), Λp
i (T, ∆) is closed.

(b) For any p ∈ (0, 1) and for any T1 =
∏

i∈N T1,i ⊆ T2 =
∏

i∈N T2,i, we have that

Λp
i (T1, ∆) ⊆ Λp

i (T2, ∆). Moreover, for all n ∈ N, Λp,n(Θ× S, ∆) ⊆ Λp,n−1(Θ× S, ∆).

(c) For any p, p′ ∈ (0, 1) with p ≤ p′ and for any T =
∏

i∈N Ti closed in Θ × S, we

have that Λp′

i (T, ∆) ⊆ Λp
i (T, ∆).

(d) For any sequence {pn} ⊂ (0, 1), we have the following inclusions:

∞⋂
m=1

Λsup{pn},m(Θ× S, ∆) ⊆
∞⋂

m=1

Λ(p1,..,pm)(Θ× S, ∆) ⊆
∞⋂

m=1

Λinf{pn},m(Θ× S, ∆)

.

Proof. We omit the proofs of (b) and (c).

(a) Note that if {µi
n}n∈N ⊆ ∆i(θ

i
n) is a sequence satisfying that µi

n(T−i) ≥ p and

µi
n → µi, then we have µi(T−i) ≥ lim supn→∞ µi

n(T−i) ≥ p(see, for example, Aliprantis

and Border (1999), Chapter 14). Then all other arguments are similar to the proofs in

Lemma 2.1.

(d) By (b) and (c), it is easy to check that

Λsup{pn},m(Θ× S, ∆) ⊆ Λ(p1,..,pm)(Θ× S, ∆) ⊆ Λinf{pn},m(Θ× S, ∆)

for all m ∈ N.

As mentioned in section 2.2.2, it is important to note that the rationalizable sets can

also be defined via the “best response property”. We argued there that the equivalence

of the two alternative ways comes from the equivalence of two approaches in defining

common belief. An analogous equivalence theorem holds for common p-beliefs and the

p-evident events as demonstrated by Kajii and Morris (1997). The theorem stated below

shows that an analogous “best response property” for common p-beliefs.
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Theorem 3.2. For any G = (N, {Θi}i∈N , {Si}i∈N , {ui}i∈N) and ∆ ∈ Σ0, we have that

for all p ∈ (0, 1), Rp(G, ∆) = Λp(Rp(G, ∆), ∆).

3.2.2 The Robustness Result

To show the robustness with respect to approximate common belief via common p-beliefs,

some notions on the convergence are needed. Since we allow different levels of belief in

each order of mutual belief, the parameter representing the approximation becomes a

sequence in (0, 1] rather than a number in (0, 1]. To avoid the non-convergent behav-

ior of coordinates with large subindex, we impose the sup-norm topology on the set of

parameters.

Formally, let Ω ≡ (0, 1]N, and let d∞ : Ω × Ω → < be a metric on Ω defined by

d∞(p,q) ≡ supn∈N |pn − qn|. Let 1 ≡ (1, ..., 1, ...) ∈ Ω.

With these notations, the theorem stated below shows that every ∆-rationalizable set

is robust with respect to common p-belief.

Theorem 3.3. Let G = (N, {Θi}i∈N , {Si}i∈N , {ui}i∈N) be a strategic form game with

incomplete information, and let ∆ ∈ Σ0. Suppose that pn → 1 in (Ω, d∞). Then either

(1) there exists some M ∈ N such that n ≥ M implies that
⋂

k∈N Λ(pn
1 ,...,pn

k )(Θ×S, ∆) =

∅ = R(G, ∆), or

(2)
⋂

k∈N Λ(pn
1 ,...,pn

k )(Θ× S, ∆) → R(G, ∆) in (K(Θ× S), dH).

Recall that in our analysis, one can avoid unintended restrictions on beliefs due to the

adaption of “small” type spaces. In fact, we do not impose any restrictions other than

those represented by ∆. Thus, the robustness we proved here is more general than the

models defined on a specific type space.

Remark 3.4. In our two robustness theorems, closeness are defined on the space Θ × S

rather than {θi}×Si for each θi. However, a slight modification in our proofs can provide

the stronger version of convergence. In deed, in both cases, we show that as n increase,

both Rpn(G, ∆) and Λn(Θ × S) decrease if pn ↑ 1. So clearly for any θi ∈ Θi, both
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Rpn

i (G, ∆)∩ ({θi}×Si) and Λn(Θ×S)∩ ({θi}×Si) decrease. Note that all these sets are

also compact, so the intersection is empty if and only if for some n, Rpn

i (G, ∆)∩({θi}×Si)

or Λn(Θ× S) ∩ ({θi} × Si) is empty. So all arguments apply to these sets too.

4 Concluding Remarks

This paper provides a general definition for ∆-rationalizable sets and proves its robust-

ness with respect to two alternative definitions of almost common belief. Within this

framework, one can easily extend the analysis of Gul (1996) to strategic form games

with incomplete information. However, all analysis provided here focuses on strategic

form games. So it is interesting to investigate the robustness of the extensive-form ra-

tionalizable sets and the ∆-rationalizable sets for extensive form games with incomplete

information defined by Battigalli and Siniscalchi (2003).

Nevertheless, one should note that the common belief assumption here is replaced

by common “strong belief” defined by Battigalli and Siniscalchi (2003) in defining ∆-

rationalizable sets for extensive form games with incomplete information. Thus, it is not

clear how to define the robustness in analyzing ∆-rationalizable sets for extensive form

games with incomplete information.

Another interesting extension of the current paper is to investigate the robustness of

the assumption that the preference consistent with the subjective expected utility model

is common belief among players. Indeed, in the framework of Epstein and Wang (1996),

this is a sensible question. However, it is not clear how to define a corresponding notion

of common p-belief there.

5 Appendix

The appendix consists of two parts. Some necessary mathematical preliminaries are pre-

sented in the first part. The second part contains the proofs of the theorems stated in
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this paper.

5.1 Mathematical Preliminaries

5.1.1 Correspondences

Fist, we list some definitions and properties of correspondences between topological spaces

that are needed for the following analysis.

Definition 5.1. Let X and Y be two topological spaces. A correspondence ϕ : X � Y

is upper hemicontinuous at point x ∈ X if for every open neighborhood U of ϕ(x), the

upper inverse ϕu(U) ≡ {x ∈ X : ϕ(x) ⊆ U} is a neighborhood of x in X. We say that ϕ

is upper hemicontinuous on X if it is upper hemicontinuous at every point of X.

Definition 5.2. A correspondence ϕ : X � Y between topological spaces is closed if its

graph

Grϕ ≡ {(x, y) ∈ X × Y : y ∈ ϕ(x)}

is closed.

The following two theorems are very useful for our analysis. The proofs can be found

in, for example, Aliprantis and Border (1999), Chapter 16.

Lemma 5.1. A closed correspondence is closed-valued.

Theorem 5.1. A closed-valued correspondence with compact Hausdorff range space is

closed if and only if it is upper hemicontinuous.

Theorem 5.2. Let ϕ : X � Y be a closed-valued correspondence between topological

spaces. Suppose that Y is a compact Hausdorff space. Then the two statements below are

equivalent:

(a) For any x ∈ X, if xα → x in X and yα ∈ ϕ(xα) for each α, then the net {yα} has

a limit point in ϕ(x).

(b) ϕ is upper hemicontinuous.
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By these theorems, we have the following immediate corollary:

Corollary 5.1. Let ϕ : X � Y be a correspondence between metric spaces and suppose

that Y is compact. Then the two statements below are equivalent:

(a) For any x ∈ X, if xn → x in X and yn ∈ ϕ(xn) for each α, then the sequence

{yn} has a limit point in ϕ(x) and ϕ is closed-valued.

(b) ϕ is closed.

5.1.2 Hausdorff Distance

We begin with the definition of the Hausdorff distance between subsets of a metric space.

Definition 5.3. Let (X, d) be a metric space. For each pair of nonempty subsets A and

B of X, define

dH(A, B) ≡ max{sup
a∈A

d(a, B), sup
b∈B

d(b, A)}.

The following notion of convergence, however, is defined solely in terms of the topology

of X.

Definition 5.4. Let {En} be a sequence of subsets of a topological space X. Then:

(a) A point x ∈ X belongs to the topological lim sup, denoted Ls En, if for every

neighborhood V of x there are infinitely many n with V ∩ En 6= ∅.

(b) A point x ∈ X belongs to the topological lim inf, denoted LiEn, if for every

neighborhood V of x, we have V ∩ En 6= ∅ for all but finitely many n.

Two useful lemmas are provided below:

Lemma 5.2. Let En be a sequence of nonempty compact subsets of a Hausdorff space X.

Suppose that En+1 ⊆ En for all n ∈ N, then
⋂

n∈N En = Ls En = Li En.

Proof. Let x ∈
⋃

n∈N(X \ En). Then there is some n ∈ N such that x ∈ (X \ En).

Since En is compact and hence closed in X, there is some neighborhood V of x such that
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V ⊆ (X \ En). Considering that En+1 ⊆ En for all n ∈ N, V ⊆ (X \ Em) for all m ≥ n.

Therefore, x does not belong to Ls En ∪ Li En.

Conversely, suppose that x ∈
⋂

n∈N En. Then for any neighborhood V of x, it is clear

that V ∩ En 6= ∅. Thus, x ∈ Ls En ∩ Li En.

Lemma 5.3. Suppose that En,E
′
n and E ′′

n are three sequences of subsets of a topological

space X. Suppose that En ⊆ E ′
n ⊆ E ′′

n for all n ∈ N, then Ls En ⊆ Ls E ′
n ⊆ Ls E ′′

n and

Li En ⊆ Li E ′
n ⊆ Li E ′′

n.

Proof. Directly from the definition.

Fix a compact metric space (X, d) and let K denotes the collection of all nonempty

compact subsets of X. Then (K, dH) is a metric space. The following theorem states that

two notions of convergence coincide on K. The proof can also be found in Aliprantis and

Border (1999), Chapter 2.

Theorem 5.3. If X is a compact metric space, then for any sequence of nonempty com-

pact subsets Kn and K a compact subset, lim dH(Kn, K) = 0 if and only if Ls En =

Li En = K.

5.2 Proofs

Let G = (N, {Θi}i∈N , {Si}i∈N , {ui}i∈N) be a strategic form game with incomplete infor-

mation. The following lemma is trivial but is important for the following analysis:

Lemma 5.4. For any T1 =
∏

i∈N T1,i ⊆ T2 =
∏

i∈N T2,i, we have Λi(T1, ∆) ⊆ Λi(T2, ∆).

Moreover, for all n ∈ N, Λn(Θ× S, ∆) ⊆ Λn−1(Θ× S, ∆).

Proof of Lemma 2.1:

Proof. Let {(θi
n, s

i
n)}n∈N be a sequence in Λi(T, ∆) with limit (θi, si). It suffices to show

that (θi, si) ∈ Λi(T, ∆).
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For each n ∈ N, there exists µi
n ∈ ∆θi

n such that µi
n(T−i) = 1 and si

n ∈ F i[µi
n, θ

i
n].

Since Θ−i×S−i is a compact metric space, so is ∆(Θ−i×S−i)(see, for example, Aliprantis

and Border (1999),Chapter 14).

Since ∆i is a closed correspondence, by Corollary 5.1 there is a convergent subse-

quence {µi
m}m∈N of {µi

n}n∈N with limit µi ∈ ∆θi
. Moreover, for any si

0 ∈ Si, we have∫
Θ−i×S−i

[ui(s
i
n, s

−i, θi
n, θ

−i)− ui(s
i
0, s

−i, θi
n, θ

−i)]dµi
n(s−i, θ−i) ≥ 0.

Sice µi
n → µi, for any given ε > 0, there exists N0 ∈ N such that n ≥ N1 implies that∣∣∣∣∫

Θ−i×S−i

[
ui(s

i, s−i, θi, θ−i) − ui(s
i
0, s

−i, θi, θ−i)
]

dµi
n(s−i, θ−i)

−
∫

Θ−i×S−i

[ui(s
i, s−i, θi, θ−i)− ui(s

i
0, s

−i, θi, θ−i)] dµi(s−i, θ−i)

∣∣∣∣ ≤ ε/2.

Moreover, Since Θ× S is compact metric, ui is uniformly continuous for each i ∈ N .

So for some N2 ∈ N, we have that

∣∣[ui(s
i
n, s

−i, θi
n, θ

−i)− ui(s
i
0, s

−i, θi
n, θ

−i)]− [ui(s
i, s−i, θi, θ−i)− ui(s

i
0, s

−i, θi, θ−i)]
∣∣ ≤ ε/2

for all (θ−i, s−i) ∈ Θ−i × S−i and n ≥ N2.

Thus, for all n ≥ N0 = max{N1, N2},∣∣∣∣∫
Θ−i×S−i

[
ui(s

i
n, s

−i, θi
n, θ

−i) − ui(s
i
0, s

−i, θi
n, θ

−i)
]

dµi
n(s−i, θ−i)

−
∫

Θ−i×S−i

[ui(s
i, s−i, θi, θ−i)− ui(s

i
0, s

−i, θi, θ−i)] dµi(s−i, θ−i)

∣∣∣∣ ≤ ε.

Then, ∫
Θ−i×S−i

[ui(s
i, s−i, θi, θ−i) − ui(s

i
0, s

−i, θi, θ−i)] dµi(s−i, θ−i)

= lim
n→∞

∫
Θ−i×S−i

[ui(s
i
n, s

−i, θi
n, θ

−i) − ui(s
i
0, s

−i, θi
n, θ

−i)] dµi
n(s−i, θ−i) ≥ 0.

Therefore, si ∈ F i[µi, θi] and hence (θi, si) ∈ Λi(T, ∆).

Proof of Theorem 2.1:
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Proof. By Lemma 5.4, for each n ∈ N, we have that Λn+1
i (Θ × S, ∆) ⊂ Λn

i (Θ × S, ∆).

Note that for any family of closed subsets in a compact space, finite intersection property

implies that this family has a nonempty intersection. By Lemma 2.1, it suffices to show

that for all n ∈ N andθi ∈ Θi, Λn
i (Θ× S, ∆) ∩ ({θi} × Si) 6= ∅. We proceed our proof by

induction in n.

It is clear that for any θi ∈ Θi and any µi ∈ ∆θi
, F i[µi, θi] 6= ∅ since Si is compact and

Ui(s
i, µi) ≡

∫
Θ−i×S−i

ui(s
i, s−i, θi, θ−i) d µi(s−i, θ−i) is continuous in si. Thus, ({θi}×Si)∩

Λi(Θ× S, ∆) 6= ∅ for all i ∈ N and θi ∈ Θi. Suppose that ({θ} × S) ∩ Λk(Θ× S, ∆) 6= ∅

for all k ≤ n and θ ∈ Θ. Let θi ∈ Θi. Considering that ∆θi
= {µ ∈ ∆(Θ−i × S−i) :

margΘ−i
µ ∈ P} for some P ⊆ ∆(Θ−i), it follows that there exists µi ∈ ∆θi

such that

µi(Λn
−i(Θ× S, ∆) = 1. Then F i[µi, θi] 6= ∅ by the compactness of Si and continuity of Ui.

Thus, Λn+1
i (Θ× S, ∆) ∩ ({θi} × Si) 6= ∅ for all i ∈ N .

Proof of Theorem 2.2:

Proof. Let (θi, si) ∈ Ri(G, ∆). Then for each n ∈ N, there exists µi
n ∈ ∆θi

such that

µi
n(Λn

−i) = 1 and si ∈ F i[µi
n, θ

i]. Since Θ × S is compact metric, so is ∆(Θ × S) and

hence ∆θi
is compact. Let {µi

m}m∈N be a convergent subsequence of {µi
n}m∈N such that

µi
m → µi for some µi ∈ ∆θi

.

For each n ∈ N, µi(Λn
−i(Θ × S)) ≥ lim supm→∞ µi

m(Λn
−i(Θ × S)) = 1 since µi

m →

µi(see, for example, Aliprantis and Border (1999),Chapter 14). From Lemma 5.4 and

R−i(G, ∆) =
⋂

n∈N Λn
−i(Θ×S), we have that µi(R−i(G, ∆)) = limn→∞ µi(Λn

−i(Θ×S)) = 1

by the continuity of countably additive measures. By continuity of ui, it is clear that

si ∈ F i[µi, θi]. Thus, (θi, si) ∈ Λi(R(G, ∆), ∆).

For the converse, suppose that (θi, si) ∈ Λi(R(G, ∆), ∆). Then there exists µi ∈ ∆θi

such that µi(R(G, ∆)) = 1 and si ∈ F i[µi, θi]. Note that µi(R−i(G, ∆)) = 1 implies that

µi(Λn
−i(Θ× S)) = 1 for all n ∈ N. It follows that (θi, si) ∈ Ri(G, ∆).

Proof of Theorem 3.1:
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Proof. By Lemma 2.1 and Lemma 5.4, we have that Λn(Θ×S, ∆) is compact and Λn+1(Θ×

S, ∆) ⊂ Λn(Θ × S, ∆) for all n ∈ N. Then, R(G, ∆) =
⋂

n∈N Λn(Θ × S, ∆) implies that

dH(Λn(Θ× S, ∆), R(G, ∆)) → 0 as n →∞ by Theorem 5.3 and Lemma 5.2, where dH is

the Hausdorff metric on compact sets.

Proof of Theorem 3.2:

Proof. Let (θi, si) ∈ Rp
i (G, ∆). For each n ∈ N, there exists µi

n ∈ ∆θi
such that µi

n(Λn
−i) ≥

p and si ∈ F i[µi
n, θ

i]. Since Θ × S is compact metric, so is ∆(Θ × S) and hence ∆θi
is

compact. Let {µi
m}m∈N be a convergent subsequence of {µi

n}m∈N such that µi
m → µi for

some µi ∈ ∆θi
.

For each n ∈ N, µi(Λn
−i(Θ×S)) ≥ lim supm→∞ µi

m(Λn
−i(Θ×S) ≥ p since µi

m → µi(see,

for example, Aliprantis and Border (1999),Chapter 14). Moreover, since Rp
−i(G, ∆) =⋂

n∈N Λp,n
−i (Θ × S) and Λp,n

−i (Θ × S) ⊆ Λp,n−1
−i (Θ × S) by Lemma 3.1, we have that

µi(Rp
−i(G, ∆)) = limn→∞ µi(Λp,n

−i (Θ × S)) ≥ p by continuity of countably additive mea-

sures. By continuity of ui, it is easy to see that si ∈ F i[µi, θi]. Thus, (θi, si) ∈

Λp
i (R

p(G, ∆), ∆).

For the converse, suppose that (θi, si) ∈ Λp
i (R

p(G, ∆), ∆). Then there exists µi ∈ ∆θi

such that µi(Rp(G, ∆)) ≥ p and si ∈ F i[µi, θi]. Note that µi(Rp
−i(G, ∆)) ≥ p implies that

µi(Λp,n
−i (Θ× S)) ≥ p for all n ∈ N by Lemma 3.1. It follows that (θi, si) ∈ Rp

i (G, ∆).

Proof of Theorem 3.3:

Proof. Note first that for all p ∈ (0, 1), by Lemma 3.1 (a), we have Rp(G, ∆) is a compact

subset of Θ× S.

Then we claim that
⋂

p∈(0,1) Rp(G, ∆) = R(G, ∆).

By Lemma 3.1(c), it is easy to see that p ≤ p′ implies that
⋂∞

m=1 Λp,m(S, ∆) ⊆⋂∞
m=1 Λp′,m(S, ∆). Thus,

⋂
p∈(0,1) Rp(G, ∆) =

⋂∞
k=1

⋂∞
n=1 Λpk,n(S, ∆) for any {pk}k∈N ⊂

(0, 1) with pk ↑ 1. So
⋂

p∈(0,1) Rp(G, ∆) =
⋂∞

n=1

⋂∞
k=1 Λpk,n(S, ∆).
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Then, we show by induction that
⋂∞

k=1 Λpk,n(Θ× S, ∆) = Λn(Θ× S, ∆) for all n ∈ N.

Note that it is straightforward to check that
⋂∞

k=1 Λpk,n(Θ× S, ∆) ⊇ Λn(Θ× S, ∆)

For n = 1, note that Λi(Θ×S, ∆) = Λpk
i (Θ×S, ∆) =

⋂∞
k=1 Λpk

i (Θ×S, ∆) for all i ∈ N .

Now, fix some n ≥ 2. If (θi, si) ∈
⋂∞

k=1 Λpk,n
i (Θ × S, ∆), then for all k ∈ N, there exists

µi
k ∈ ∆θi

so that µi
k(Λ

pk,n−1
−i (Θ × S, ∆)) ≥ pk. By taking subsequence, we may assume

that µi
k → µi. Then for any k ∈ N,

µi(Λpk,n−1
−i (Θ× S, ∆)) ≥ lim sup

m→∞
µi

m(Λpk,n−1
−i (Θ× S, ∆)) ≥ lim sup

m→∞
pm = 1.

Moreover, since Λ
pk+1,n−1
−i (Θ × S, ∆) ⊆ Λpk,n−1

−i (Θ × S, ∆) for all k ∈ N, by continuity of

probability measure, it follows that µi(
⋂∞

k=1 Λpk,n−1
−i (Θ×S, ∆)) = limk→∞ µi(Λpk,n−1

−i (Θ×

S, ∆)) = 1. Note also that µi ∈ ∆θi
since ∆θi is compact. Therefore, by continuity of ui

and induction hypothesis, (θi, si) ∈ Λn
i (S, ∆).

Thus, by Theorem 5.3 and Lemma 5.2, since Rp(G, ∆) is compact, we have that

dH(Rp(G, ∆), R(G, ∆)) → 0 as p → 1. Moreover, note that R(G, ∆) = ∅ if and only if

for some π ∈ (0, 1), p ≥ π implies that Rp(G, ∆) = ∅. The claim follows directly from

that for a family of compact sets, finite intersection property holds if and only if it has a

nonempty intersection.

To complete the proof, note that by Lemma 3.1 (d), for any p ∈ Ω, we have that

∞⋂
m=1

Λsup{pn},m(Θ× S, ∆) ⊆
∞⋂

m=1

Λ(p1,..,pm)(Θ× S, ∆) ⊆
∞⋂

m=1

Λinf{pn},m(Θ× S, ∆).

Suppose that {pn} is a sequence satisfying pn → 1 in (Ω, d∞). Then for each n ∈ N, it

follows that

Rsupm{pn
m}(G, ∆) ⊆

⋂
k∈N

Λ(pn
1 ,...,pn

k )(Θ× S, ∆) ⊆ Rinfm{pn
m}(G, ∆)

.

Thus, by Lemma 5.3,

Rsupm{pn
m}(G, ∆) ⊆ Lin∈N

⋂
k∈N

Λ(pn
1 ,...,pn

k )(Θ× S, ∆)

⊆ Lsn∈N
⋂
k∈N

Λ(pn
1 ,...,pn

k )(Θ× S, ∆) ⊆ Rinfm{pn
m}(G, ∆).
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But, pn → 1 implies that supm{pn
m} → 1 and infm{pn

m} → 1. By the claim above, it

follows that

dH(Rsupm{pn
m}(G, ∆), R(G, ∆)) → 0

and

dH(Rinfm{pn
m}(G, ∆), R(G, ∆)) → 0

as n →∞ whenever R(G, ∆) 6= ∅.

Moreover, if R(G, ∆) = ∅, then infm{pn
m} ≥ π implies that

⋂
k∈N Λ(pn

1 ,...,pn
k )(Θ×S, ∆) =

∅. That is, for some M ∈ N, n ≥ M implies that
⋂

k∈N Λ(pn
1 ,...,pn

k )(Θ× S, ∆) = ∅.

Thus, we have that

dH(
⋂
k∈N

Λ(pn
1 ,...,pn

k )(Θ× S, ∆), R(G, ∆)) → 0

as n →∞.
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