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Abstract 

 
The paper develops a unit-root test that allows for an unknown number of structural 

breaks with unknown functional forms.  The test is based on the fact that the behavior of such 
series can often be captured using a single frequency component of a Fourier approximation. 
Hence, instead of selecting specific break dates, the number of breaks, and the form of the 
breaks, the specification problem is transformed into selecting the proper frequency component 
to include in the estimating equation.  Our proposed test does not exhibit any serious size 
distortions, and shows decent power.  The appropriate use of the test is illustrated using real GDP 
and the interest rate differential. 
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1.  Introduction 

Perron’s (1989) seminal paper illustrates the problem of ignoring a structural break when 

testing the null hypothesis of a unit root.  If the break date is known, Perron (1989) shows how to 

modify the standard Dickey-Fuller (DF) test by including dummy variables to capture the 

changes in the level and trend.  Since the break date is often unknown, a number of papers allow 

the break date to be estimated along with the other parameters of the model1.  Note that the 

existing unit-root literature assumes, a priori, the presence of one or two structural breaks in the 

level and/or the trend of the series in question.  In principle, it is possible to have more than two 

breaks, but no such unit-root tests are readily available; it is cumbersome to obtain asymptotic 

distributions and critical values for different combinations of breaks when the number of breaks 

is more than two.  Nevertheless, the performance of the existing unit-root tests will critically 

hinge on the accuracy of estimated break locations and the assumed number of breaks.  The issue 

is important since, in applied work, both the break dates and the number of breaks are likely to 

be unknown. 

Moreover, structural breaks are assumed to occur instantaneously or manifest themselves 

contemporaneously, taking abrupt jumps in the mean or immediate changes in the slope.  This 

assumption may not be realistic in many cases.  For instance, as discussed in section 5, it is clear 

that the full impact of the oil price shock on real macroeconomic variables did not occur 

immediately.  As such, it would be desirable to consider tests for a unit root allowing for breaks 

such that the deterministic component of the model is a smooth transition process.  In that regard, 

Leybourne, Newbold and Vougas (1998) examined the procedures to test for a unit root in the 

                                                 
1 Recent works include Clemente, Montanes and Reyes (1998), Vogelsang and Perron (1998), 
Sen (1993), and Lee and Strazicich (2003), among others. 
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presence of a gradual structural change; see also Kepetanios, Shin and Snell (2003).  In their 

paper, however, only one break can be allowed for and the break date needs to be specified. 

The aim of this paper is to develop a unit-root test that allows for an unknown number of 

structural breaks with unknown functional forms.  Specifically, we attempt to approximate 

unknown functional forms of nonlinearity by using a Fourier function, which is a linear 

combination of sine and cosine functions.  Although our test can detect sharp breaks, it is 

designed to work best when breaks are gradual.  If changes are instantaneous or abrupt, the 

traditional approach of using dummy variables to capture structural changes may be more 

appropriate.  However, if structural breaks are smooth, our approximation can work better.  One 

important feature of our approximation method is that we do not need to assume that the dates of 

structural changes and the number of structural changes are known a priori.  Our goal is to 

control for the effect of unknown forms of nonlinear deterministic terms in testing for a unit root.   

We illustrate that a series containing multiple structural breaks with unknown functional 

forms can often be captured using a single frequency component of a Fourier approximation.  

Hence, instead of selecting specific break dates, the number of breaks, and the form of the 

breaks, the specification problem is transformed into incorporating a frequency component into 

the estimating equation.  We also show that our proposed unit-root test does not exhibit any 

serious size distortions, and shows decent power.   Throughout the paper, "→" indicates weak 

convergence as T→ ∞. 

2.  Approximating a nonlinear trend with a Fourier series 

 A simple modification of the Dickey-Fuller (DF) type test is to allow the intercept to be a 

time-dependent function denoted by α(t) so that 
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 yt = α(t) + β yt-1 + γ ·t + εt (1) 

where εt is a stationary disturbance with variance σ2 and α(t) is a deterministic function of t.  The 

key feature of (1) is the form of α(t).  In general, the functional form of α(t) is unknown so that it 

is not possible to estimate (1) directly.  However, regardless of the actual form of α(t), for any 

desired level of accuracy, it is possible to write:  

 0
1 1

/ 2( ) sin(2 / ) cos(2 / );
n n

k k
k k

Tt kt T kt T nα α α π β π
= =

<= + +∑ ∑  (2) 

where: n represents the number of frequencies contained in the approximation, k represents a 

particular frequency, and T is the number of observations.   

Note that equation (2) underlies the approach adopted by Bierens (1997) who suggests 

using Chebishev polynomials to approximate a nonlinear deterministic trend.  Busetti and 

Harvey (2003) adopt a similar approach for seasonality tests.  However, the use of many 

frequency components can lead to an over-fitting problem, and it seems difficult to obtain valid 

tests to determine the number of frequencies.  To keep the problem tractable, we consider a 

Fourier approximation using a single frequency component, so that 

 α(t) ≅ α0 + a1 sin(2πkt/T) + a2 cos(2πkt/T) (3) 

where: k represents the single frequency selected for the approximation, and a1 and a2 measure 

the amplitude and displacement of the sinusoidal component of the deterministic term.  As 

evidenced by papers such as Gallant (1984), Davies (1987), Gallant and Souza (1991), and 

Becker, Enders and Hurn (2004), a Fourier approximation using a single frequency component is 

shown to capture successfully the behavior of an unknown functional form.   

 In the absence of a nonlinear trend, a1 = a2 = 0 so that the standard Dickey-Fuller 

specification emerges as a special case.  However, if there is a break or nonlinear trend, at least 
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one Fourier frequency must be present in the data generating process.  Thus, instead of positing 

the specific form of α(t), the issue is to select the proper frequency to include in (3).  One key 

issue for our test is whether a single frequency can mimic the types of breaks typically seen in 

economic data.  Although (3) is especially suitable to mimicking smooth breaks, the solid lines 

in Panels 1 to 6 of Figure 1 show the six series (T = 60) containing the sharp structural breaks 

used in Clements and Hendry (1999) and Becker, Enders and Hurn (2004).  Panels 1 and 2 

illustrate the effects of shifting a single break towards the end of the data set.  Panels 3 and 4 

allow for two breaks (or what might also be called a temporary break) and Panels 5 and 6 depict 

two distinct breaks.  Of course, the essential features of all six series are invariant to inverting 

their magnitudes or to reordering the data from t = 60 to t = 1.  

 The dashed line (short dashes) in Panel 1, shows the time path of α(t) obtained by setting 

k = 1, a0 = 1.167, a1 = −0.231, and a2 = 0.150.  The values of a0, a1 and a2 were selected by 

regressing yt on α(t) for each integer frequency in the interval (1, 5).  The frequency k = 1 was 

selected as it provided the smallest value of the sum of squared residuals (SSR = 1.05).  In 

contrast, if we use only an intercept term, SSR = 3.33.  As noted by Davies (1987), the fit of a 

sinusoidal function can be sometimes be improved by using fractional frequencies.  Towards this 

end, we preformed grid search for the best fitting frequency in the interval 1/512 to 5 by steps of 

1/512.  The frequency with the best fit (k = 0.645) resulted in SSR = 0.585.  The other dashed 

line (long dashes) shows the time path of α(t) for k = 0.645, a0 = 1.25, a1 = −0.291, and a2 = 

−0.131. 

 For our purposes, the precise parameter values for the other panels of the figure are not 

especially important.  The key points illustrated by the six panels are:   
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1. A Fourier approximation of a structural break using a single frequency can often 

mimic the pattern in the data reasonably well.  It is well known that breaks shift the 

spectral density function towards frequency zero.  As such, the selection of the most 

appropriate frequency to mimic the breaks can occur at the low end of the spectrum.  

2. The Fourier approximation does not require that the pattern of the break be 

symmetric. The fitted values shown in Panels 1 and 3 are identical.  If we were to 

replace break 2 with yt = 1•(t ≤ 45) + 1.5•( t > 45), the values of the SSR in Panels 2 

and 4 would also be identical.  This is especially interesting since some tests for 

breaks, such as the Bai and Perron (1998) test, do find such u-shaped breaks 

especially well.  

3. Integer frequencies require that the starting and ending values of the series be equal.  

A shown by Davis (1987), a fractional frequency can often capture the effects of a 

break occurring near the beginning or end of the data.   

 Becker, Enders and Hurn (2004) show that a simple test based on the procedure outlined 

above can have reasonable power.  Using a 5% significance level, the power of their test using a 

single Fourier frequency is 48.5%, 29.4%, 40.8%, 28.4%, 87.7% and 17.1% for the series shown 

in Panels 1 through 6, respectively.  Moreover, they show that if the number of breaks is 

unknown, such a test can have better power than the Bai-Perron (1998) test.  

 Similarly, a Fourier approximation with a single frequency can capture some of the 

essential features of a series with a trend break.  The solid lines in Figure 2 depict four different 

processes with trend breaks.  For each of the series, we estimated the regression yt = a0 + a1 

sin(2πkt/T) + a2 cos(2πkt/T) + γ ·t + et, using the integer frequencies in the interval 1 ≤ k ≤ 5.  

The fitted values for the frequency resulting in the lowest sum of squared residuals are shown by 
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the lines with the short dashes.  For example, Panel 1 uses the values k = 2, a0 = 0.670, a1 = 

−0.062, a2 = −0.111 and γ = 0.016.  We repeated the exercise using each fractional frequency in 

the interval 1/512 to 5 in steps of 1/512.  The results using the fractional frequencies are shown 

by the long dashes in the four panels of Figure 2.  The four panels suggest that a Fourier 

approximation using a single frequency is capable of mimicking breaking trends quite well.  As 

in the case of a break in the intercept, the frequency can be of a small order.2  Also note that the 

integer frequencies seem to do as well as fractional frequencies.    

 
3. Test statistics 

 Since a single frequency component can mimic a reasonable variety of breaks, it seems 

reasonable to consider the following data-generating process (DGP): 

 yt = a0 + γ ·t + a1 sin(2πkt/T) + a2 cos(2πkt/T) + et  (4) 

 et = β et-1 + εt  (5) 

Note that β = 1 under the null hypothesis of a unit root, and β < 1 under the alternative 

hypothesis.   

 By adopting the above DGP, the asymptotic distribution for the test of the null hypothesis 

β = 1 is invariant to the magnitudes of a0, a1, a2 and γ.  We consider two different testing 

procedures.  The first is the Lagrange Multiplier (LM) testing procedure following Schmidt and 

Phillips (1992) and Amsler and Lee (1995).  We examine and provide the asymptotic 

distributions of the LM-type tests.  The second is based on the usual Dickey-Fuller testing 

                                                 
2 Notice that we included a linear trend in the set of deterministic regressors.  In principal, it is 
possible to mimic a continually increasing or decreasing series using a small value for the 
fractional frequency. 
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procedure.  The specific expressions for the asymptotic distributions of the DF version of the 

tests differ from those of the LM type tests.  However, since the asymptotic properties are not 

noticeably different from those of the LM type tests, they are omitted to save space.   

 For the LM test, we employ a two-step estimation methodology.  In the first step, we 

employ the LM principle by imposing the null restriction and estimate the following regression 

in first-differences: 

 ∆yt = δ0 + δ1 ∆sin(2πkt/T) + δ2 ∆cos(2πkt/T) + ut  (6) 

 We denote the estimated coefficients as δ∼0, δ
∼

1 and δ
∼

2 and construct a detrended series 

using these coefficients as:  

 S∼t = yt - ψ
∼ - δ∼0 t - δ

∼
1 sin(2πkt/T) - δ∼2 cos(2πkt/T),  t=2, … ,T  (7) 

where ψ∼ = y1 - δ
∼

0 - δ
∼

1 sin(2πk/T) - δ∼2 cos(2πk/T), and y1  is the first observation of yt. We subtract 

ψ∼  from yt to control for the effect of initial values, thus making S∼1 = 0.  The second-step 

regression equation is 

 ∆yt = φ S∼t-1 + d0 + d1 ∆sin(2πkt/T) + d2 ∆cos(2πkt/T) + εt.  (8) 

If S∼t-1 is not stationary, it must be the case that φ = 0; hence, the LM test statistic is: 

 τLM = t-statistic for the null hypothesis φ  = 0. (9) 

To allow for serially correlated as well as heterogeneously distributed innovations, we 

assume that the innovations εt in the DGP (5) satisfy the regularity conditions of Phillips and 

Perron (1988, p. 336).  Specifically, we assume: 

Assumption 1.  (a) E(εt) = 0 for all t; (b) sup
t

 E|εt|δ+ω < ∞ for some δ > 2 and ω > 0; (c) σ2 = 

lim
 T→∞ 

T-1 E(ST
2) exists and σ2 > 0, where ST = ∑

t=1

T

 εt; (d) {εt}1
∞ is strong mixing with mixing 

numbers αm that satisfy: ∑
1

∞

 αm
1-2/δ < ∞. 
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We also assume that the usual error variance exists: 

  σε
2 = lim

 T→∞ 
T-1 E(ε1

2 + ... + εT
2)   

The innovation variance σε
2 is estimated as the sum of squared residuals from regression (8).  In 

the presence of serial correlation, we need to estimate the long-run variance σ2  by choosing a 

truncation lag parameter l and a set of weights wj, j = 1, .., l such that: σ∼ 2 = γ^0 + 2Σwjγ
^

j , where γ^j 

is the jth sample autocovariance of the residuals from (8).  Then we modify the statistics 

accordingly with the correction factor ω∼ 2 = σ∼ 2/ σ∼ ε
2 to correct for the effect of autocorrelated 

errors as in Schmidt and Phillips (1992).  An alternative approach is to augment (8) with lagged 

values of ∆S∼t-j.  In the examples below, we consider this second approach.  

 To find the asymptotic distribution of the test statistic, we need to establish: 

 
Lemma 1:  Suppose that yt is generated by the DGP in (4) and (5) with β = 1, and one adopts 

the first step testing regression (6).  Then, 

T (δ∼0 - δ0)→ σ W(1)  

 1 
 T 

(δ∼1 - δ1) → σ [(2πk)
⌡⌠0

1 cos2(2πkr)dr]-1[W(1)+(2πk)
⌡⌠0

1 sin(2πkr)W(r)dr]  

 
 1 

 T 
(δ∼2 - δ2) → σ [

⌡⌠0
1 sin2(2πkr)dr]-1 [

⌡⌠0
1 cos(2πkr)W(r)dr]          (10) 

Proof.  See the Appendix. 

 Utilizing the results in Lemma 1, the asymptotic distribution of τLM
  is such that: 

 
Theorem 1:  Suppose that yt is generated by the DGP in (4) and (5) with β = 1, and one adopts 

the testing regressions (6) - (8).  Then, under the null hypothesis: 
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  τLM
  →  – 

 1 
 2  (σε/σ) [

⌡⌠0
1 V_(r)2dr]-1/2 (11) 

where V_(r) is the projection of the process V(r) on the orthogonal complement of the space 

spanned by the trigonometric function dz = (1, d sin(2πkr), d cos(2πkr))′; and where V(r) =  

W(r) – rW(1) – [(2πk)
⌡⌠0

 1cos2(2πkr)dr]-1[W(1)+(2πk)
⌡⌠0

 1sin(2πkr)W(r)dr]⋅ sin(2πkr) –  

[
⌡⌠0

 1 sin2(2πkr)dr]-1 [
⌡⌠0

 1cos(2πkr)W(r)dr]⋅ cos(2πkr), with W(r) being a Wiener process on r∈ [0, 

1]. 

Proof.  See the Appendix. 

 
The above results show that the asymptotic distribution of τLM depends on the frequency 

k, but is invariant to all other coefficients in the DGP.  In particular, the asymptotic distribution 

of the test for a unit root is invariant to coefficients a1 and a2.  As such, the test for a unit root 

does not depend of the nature of the nonlinear trend.3    

It is important to note that the test statistics will not be invariant to the magnitudes of a1 

and a2 unless both the sine and cosine functions in the estimating equations (6) and (8).  If either 

the sine or cosine function is excluded from (8), the test diverges when the coefficient a1 or a2 in 

the DGP (4) is not zero.4  Therefore, unlike Bierens (1997), we do not need to assume a1 = a2 = 0 

                                                 
3 At first, it would seem that the LM test statistic does not depend on the frequency k.  Saikkonen 
and Lutkephol (2002) show that LM-type tests with a general nonlinear shift function will not 
depend on the nuisance parameters in the nonlinear function.  They basically extend the finding 
of Amsler and Lee (1995) who initially show that the LM-type test will not depend on the 
nuisance parameter indicating the location of level shifts.  This result occurs, since the first step 
regression is based on first differences.  However, this invariance does not hold in the LM tests 
with the trigonometric functions.  Intuitively, the first difference of the sine (cosine) function 
becomes another trigonometric cosine (sine) function.  The dependency of the test on the 
frequency does not pose a problem, however, as seen from the simulation results in Section 4.  
 
4  We examine this issue more closely in Section 4.  
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under the null when testing for β = 1, and the nonlinear trend can exist both under the null and 

alternative hypotheses. 

To obtain critical values via simulations, we employ the DGP in (4) and (5) with β = 1 

and a1 = a2 = 0.  Since our tests are invariant a1 or a2 under the null, using any non-zero values 

of these coefficients will lead to the same critical values.  Pseudo-iid N(0,1) random numbers 

were generated using the Gauss procedure RNDNS and all calculations were conducted using the 

Gauss software version 6.0.10.  The initial values y0 and ε0 are assumed to be random, and we set 

σε
2 = 1.  The critical values of τLM are reported in the right-hand side of Table 1 for the sample 

sizes T = 100 and 500.  The critical values were calculated using 100,000 replications for 

different frequency values of k = 1,..,10.  

As suggested by Figures 1 and 2, the choice of k = 1 (or possibly k = 2) can mimic many 

types of structural breaks.  In most circumstances, the researcher can impose this pre-specified 

value to in order to approximate a wide variety of actual data-generating processes.  In this way, 

(6) can be estimated directly and the estimated coefficients can be used to construct (7).  The t-

statistic for the null hypothesis φ = 0 in (8) can be compared to the critical values reported in the 

right-hand side of Table 1.  In essence, the method filters out a low frequency component (such 

as a break or other form of nonlinearity) that might interfere with the unit-root test for β = 1.   

One problem with this procedure is that the critical values of τLM are further from zero 

than those for a linear model.  Thus, as we explore in detail below, it is possible to increase the 

power of the unit-root test by pre-testing for a nonlinear trend.  In order to develop such a test, 

we use the following F-statistic against the alternative nonlinear trend with a given frequency k: 

  F(k)= 0 1

1

( ( )) / 2
( ) /( )

SSR SSR k
SSR k T q

−
−

  (12) 
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Here, SSR1(k) denotes the SSR from equation (8), q is the number of regressors, and SSR0 

denotes the SSR from the regression without the trigonometric terms. The distribution of the F-

statistic is non-standard when the unit-root null is imposed on the DGP.  Specifically, the 

asymptotic distribution of F(k) obtained under the unit-root null hypothesis, is given as follows: 

 
Lemma 2:  Suppose that yt is generated by the DGP (4) and (5) with β = 1, and a1 = a2 = 0 such 

that the null implies the absence of the nonlinear functions.  Then,  

 F(k)→  Max
k 

  1 
 8 (σε

2/σ2)[(
⌡⌠0

1 V_(r)2dr)-1  –  (
⌡⌠0

1 V_0(r)2dr)-1]    (13) 

where V_0(r) the demeaned Brownian bridge, and V_(r) is defined in Theorem 1. 

Proof.  See the Appendix. 

In Table 2, we report the simulated critical values of F(k) against the alternative with a 

nonlinear trend at k frequency.  If the sample value of F(k) is sufficiently large (so that the null  

hypothesis a1 = a2 = 0 is rejected), employ our τLM statistics using the nonlinear trend Fourier 

function.  If the null is not rejected, it is possible to gain power by using the usual LM statistics 

without a nonlinear trend.  

One remaining question concerns the effect on the usual LM unit-root tests if a nonlinear 

trend exists but it is ignored.  Perron (1989) earlier suggested that there will be a bias against 

rejecting a false unit root if an existing structural break is ignored in the usual DF test.  We 

examine the asymptotic property of the LM tests under this situation with a nonlinear trend. 

 
Lemma 3:  Suppose that a nonlinear trend occurs in the data, and the DGP implies (4) and (5) 

with β < 1, but the nonlinear trend is ignored and usual LM tests with a linear trend are 

employed.  Then, the resulting OLS estimate follows: 
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φ^   →  
 σε

2(β - 1) 
 H(k,r)   (14) 

with  

H(k,r) = σε
2 + (1/3)(ε∞

2+ε1ε∞+ε1
2) + a1

2

⌡⌠0
1 sin2(2πkr)dr + a2

2

⌡⌠0
1 cos2(2πkr)dr  

+ a1
2 - 2σW(1)[a1⌡⌠0

1 r⋅sin(2πkr)dr+ a2⌡⌠0
1 r⋅cos(2πkr)dr];  

where β  is the true parameter value in the DGP (5). 

Proof. See the Appendix. 

 
First, looking at the numerator, we note that φ^  → 0 as β → 1.  The obvious conclusion is 

that the unit-root null will not be rejected for β near unity.  The power of the test will increase as 

β → 0, which is also obvious.  Second, the denominator gets larger as the magnitude of the 

coefficients a1 and a2 increase.  Then, we will observe that φ^  → 0 and this leads to non-rejections 

of the null.  This result implies that there will be loss of power under the alternative, if the 

existing non-trend is ignored.  Thus, the loss of power depends on the magnitude of the 

coefficients a1 and a2 under the alternative.  The loss of power is understood in line with Perron’s 

(1989) finding that unit-root tests will fail to reject a false unit root if an existing structural break 

is ignored.  This finding applies to the case of a nonlinear trend, and illustrates the importance of 

controlling for a nonlinear trend. 

A Data-Driven Method of Selecting k 

A completely agnostic approach to the problem of detecting breaks is to select k using 

purely statistical means.  We refrain from using the expression ‘estimate k’ since the 

trigonometric terms are employed to approximate, not actually identify, the potential breaks.  We 
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follow Davis (1987) by using a grid-search method such that the value k = k̂  minimizes the sum 

of squared residuals (SSR) from (8).  Specifically, for each integer value of k in the interval 1 ≤ k 

≤ kmax, we estimate (8) select k from the regression yielding the best fit.  Although the paper 

reports results for kmax as large as 10, we suggest using the integer values 1 through 5 since low 

frequencies are associated with breaks.  In contrast, as established in Becker, Enders and Hurn 

(2004), high frequency components could be due to various forms of stochastic parameter 

instability.  Let k̂  denote the value of k that yields the smallest sum of squared residuals.  We 

denote the fact that the critical values of τLM are a function of k̂  by:  

  τLM
  = τLM( k̂ ) (15) 

Practically speaking, the distribution of the statistic depends on how accurately the Fourier 

approximation in (4) mimics the actual DGP.  As discussed in Section 4, our simulations show 

encouraging results that the frequency is well-estimated.  As such, we conjecture that the grid-

search procedure yields a consistent estimate of k when the true DGP is given by (4).  Thus, we 

suggest using the critical values in Table 1 for the estimated value of k.  Moreover, since k is an 

unknown nuisance parameter, we can consider the following modification of the F-test given by 

(12): 

  F( k̂ ) = Max
k 

 F(k),   (16) 

where  k̂  = argmax
k 

 F(k).  It is obvious that the value of k giving a minimum SSR value will 

maximize the F-statistic in (12) such that k̂  = arginf
k 

 SSR1(k).  We also report the critical values 

of F( k̂ ) in the Panel 2 of Table 2.  To utilize our tests, we first obtain k̂ from (12) by minimizing 

the SSR and applying the F-test with F( k̂ ) to examine whether a nonlinear trend exists.  If the 



 14

null of absence of a nonlinear trend is rejected, then we employ our suggested statistics with a 

nonlinear trend Fourier function.  If the null is not rejected, we utilize the usual LM statistics 

without a nonlinear trend. 

 
A Dickey-Fuller Version of the Test 

 We adopt a second version of the test based on the usual Dickey-Fuller specification.  We 

introduce the DF-type test since it exhibits similar asymptotic properties and can be readily 

employed in empirical applications when it requires only the use of OLS.  We do not provide 

asymptotic results for the DF version of the test, since their expressions are more complicated 

and their asymptotic properties are not different from the LM version of the test.  Below, we will 

compare the performance of the DF-type test with the LM-type test via simulations.  

 In the DF version of the test, we nest both the null and alternative models and obtain the 

following testing regression: 

  ∆yt = ρ yt-1 + c1 + c2 t + c3 sin(2πkt/T) + c4 cos(2πkt/T) + et (17) 

The nesting equation could have additionally included ∆sin(2πkt/T) and ∆cos(2πkt/T), but we 

omit these terms to avoid collinearity since ∆sin(2πkt/T) = (2πk/T)cos(2πkt/T), and ∆cos(2πkt/T) 

= −(2πk/T)sin(2πkt/T).  As in the LM-version of the test, it is important to notice that we include 

both the sine and cosine functions in the testing regression.  Intuitively, both terms are included 

by nesting the null and the alternative models.  By including both terms, the resulting unit-root 

test statistics will be invariant to all coefficient parameters in the DGP (4) under the null.  As 

shown in Section 4, if the sine or the cosine function is excluded, the resulting test statistic will 

not be invariant to the coefficients in the DGP (4), and the tests will exhibit potentially spurious 
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rejections when the coefficients are non-zero; see Lee and Strazicich (2003) for a similar 

problem with linear structural changes.   

The DF type test statistic using (17) will depend only on the frequency k and the sample 

size T.  If the researcher is willing to specify k = 1, the test can be conducted directly.  If the 

value of k is estimated, the test for a break can be performed as follows: 

Step 1: Estimate (17) for all integer values of k such that 1 ≤ k ≤ 5.  The regression with 

the smallest SSR yields k̂ .  If the residuals exhibit serial correlation, augment (17) with lagged 

values of ∆yt.  

Step 2: Perform the F-test for the null hypothesis c3 = c4 = 0.  The critical values for 

sample sizes of 100 and 500 are shown in the lower left-hand portion of Table 2.  For example, 

with a sample size of 100, the critical value at the 5% level is 9.408.  This is slightly larger than 

the associated value of 9.010 for the LM version of the test.  If the frequency k is pre-specified, 

one can use the upper portion of the table.  If k is estimated, the supremum values listed Panel 2 

can be used.  In either case, if the sample value of F is less than the critical value reported in 

Table 2, the null hypothesis of a linear trend is not rejected.  At this circumstance, we 

recommend performing the usual linear Dickey-Fuller test.  

 Step 3:  Let τDF
  denote the t-statistic for the null hypothesis ρ = 0 in (17).  Critical values 

of τDF are reported on the left-hand side of Table 1 for each possible estimated value of k.  As in 

the LM-version of the test, we suggest using these critical values even if k is estimated.  

The Absence of a Time Trend:  In some circumstances there is no need to include a 

deterministic time trend in (17).  We refer to this test as τDF_C.   For these situations, we obtained 

the appropriate critical values by excluding the trend function t from the estimating equation.  

The critical values obtained from our Monte Carlo simulations are shown in Table 3.  For 
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example, for T = 100, and k = 1, the 5% critical value for the null hypothesis ρ = 0 is –3.816.  

Notice that the corresponding value in Table 1 is –4.347.  Hence, it is possible to increase the 

power of the test by excluding an unnecessary time trend from the estimating equation.  The 

right-hand side of Table 3 shows the critical values for the F-test for the null hypothesis c3 = c4 = 

0 for each value of k.  When k is treated as an unknown, it is necessary to use the reported 

supremum F( k̂ ) values. 

  
4.  The Monte Carlo experiments 

In this section, we conduct a number of simulation experiments to evaluate performance 

of the unit-root tests combined with a Fourier representation of a nonlinear trend.  All 

simulations are performed using Monte Carlo 20,000 replications.  To save space, we report only 

the results where k is estimated from the data.  Clearly, the test will have better performance is 

the actual value of k in the DGP is used.  Our approach is a two-step procedure in that we first 

determine if a nonlinear trend exists or not.  For the LM version of the test, we estimate (8) and 

test the null hypothesis δ1 = δ2 = 0 using the values reported in the lower portion of Table 2.  

Similarly, for the DF-type test, we estimate an equation in the form of (17) and test the null 

hypothesis c3 = c4 = 0.  Hence, for each test, we use a supremum test F( k̂ ) where k̂ = arginf 

SSR(k).  If the null hypothesis of a liner trend, a1 = a2 = 0 (or δ1 = δ2 = 0) cannot be rejected, we 

apply usual linear Dickey-Fuller or LM unit-root tests.  Instead, if the null hypothesis is rejected, 

we use the DF or LM test statistics reported as τDF or τLM in Table 1.  The lag determination is 

done jointly along the lines suggested by Ng and Perron (1995).  Starting from a maximum of p 

= 8 lagged terms, the procedure looks for significance of the last augmented term.  We use the 

10% asymptotic normal value of 1.645 on the t-statistic of the last first-differenced lagged term.  
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Size of the test for β = 1:  Table 4 reports the size of the LM version of our test for various 

values of a1 and a2, β = 1.0 and 0.9, values of k = 1 through 5 for a sample size of 100.  Consider 

Panel (a) of the table for the case k =1, a1 = 0, and a2 = 5.  At the five-percent significance level, 

the test rejects the null hypothesis of a unit root (i.e., β = 1) in exactly five percent of the 20,000 

Monte Carlo replications.  At the ten-percent significance level, we reject the null hypothesis in 

8.9 percent of the replications.  Since the asymptotic critical values are invariant to the 

magnitudes of a1 and a2, it is not surprising to find that that the empirical rejection rates are 

similar across all non-zero values of these two parameters.  Also observe that these results are 

insensitive to the actual value of k used in the DGP.  Notice that when a1 = a2 = 0, the data-

generating process (DGP) is actually linear.  Nevertheless, at the five-percent and ten-percent 

significant levels, the null hypothesis β = 1 is rejected in seven percent and 12.9% of the 

replications, respectively.   

We also performed the experiment for T = 500.  The results, available from us on request, 

indicate that increasing the frequency from k = 1 to k = 2 or 3 induces a slight reduction in the 

empirical size of the test.  

Power of the test:  As in most unit-root tests, when the sample size is small, the power of the test 

is low.  Consider Panel (b) of Table 4 for the case k =1, a1 = 0, and a2 = 5.  All simulations were 

conducted using the value of β = 0.9.  At the five-percent and ten percent significance levels, the 

test correctly rejects the null hypothesis of a unit root (i.e., β = 1) in only 10.8 percent and 16.9 

percent of the Monte Carlo replications, respectively.  Notice that the test does better when a1 = 

a2 = 0 since the model is actually linear.  Increasing the frequency also increases the size of the 

test.  In a second experiment (available from us on request) shows that increasing the sample size 

to T = 500 greatly improves the power of the test.  
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Estimates of the frequency k:  One attractive feature of the test is that it yields an approximation 

to the form of any break(s) present in the DGP.  As such, it is important to document that the 

estimated frequency seems to be quite close to the actual frequency present in the DGP.  The 

right-hand-portion of Table 4 reports the proportions of the frequencies estimated for a variety 

series.  The test is most likely to select the correct frequency when a1 and a2 are large (since 

these increase the importance of the trigonometric components), when β is small (since a unit 

root is a ‘low frequency’ event) and when T is large.  As such, we recommend using the 

estimated value of k in performing the test for β = 1.  

 Table 5 performs a similar Monte Carlo experiment using the DF version of the test. 

Notice that this version of the test also has very good size properties.  As shown in Panels (b) and 

(d) of the table, the power is low with a sample size of 100 but is almost 100% in every case with 

a sample size of 500.  For the same values of a1 and a2, the LM version of the test usually has 

better size and power properties and the estimated frequency is usually closer to the true 

frequency.  Nevertheless, the differences are small enough that the applied researcher might want 

to use the DF version of the test as well. 

Next, we conducted another Monte Carlo experiment to determine the effects of ignoring 

nonlinearities in the trend due to trigonometric components.  Lemma 3 above indicates that 

ignoring a nonlinear trend affect the performance of the usual unit-root tests both under the null 

and alternative hypotheses.  Tables 6 and 6a indicate the magnitudes of the size distortions and 

loss of power for the DF-type test and the LM-type test, respectively.  When β = 1, the linear DF 

and LM tests exhibit serious size distortions.  This is true regardless of the magnitudes of a1 and 

a2, the sample size, and the frequency present in the DGP.  Under the alternative when β = 0.9, 

the power of the DF and the LM test is extremely low.  In most instances, the power is near zero.  
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On the other hand, the simulation results in Tables 4 and 5 show that when the nonlinear trend 

does not exist in the DGP (i.e., a1 = a2 = 0), using the tests with the nonlinear trend does not 

seriously distort the performance of the test.  The estimation of a nonlinear trend when the trend 

is actually linear does not distort the size of the test and the power is comparable to the usual 

unit-root tests.  

Earlier, we noted that it is important to include both sine and cosine functions in our 

testing regressions to make the tests invariant to the coefficient parameters in the DGP.  We now 

examine this issue using a Monte Carlo experiment.  We assume that the DGP in (4) and (5) 

includes only the cosine function and does not include the sine function. Thus, we have: 

  yt = a0 + γ ·t + a2cos(2πkt/T) + et   (4)′ 

  et = β et-1 + εt     (5)′ 

Then, the null and alternative model can be specified as: 

 Null:   ∆yt = µ0 + a2 ∆cos(2πkt/T) + v1t  

 Alternative :  yt = µ1 + φ0 ·t +φ2 cos(2πkt/T) + v2t  

Nevertheless, the DF and/or LM testing regressions should include both sin(2πkt/T) and 

cos(2πkt/T) to make the resulting unit-root statistics invariant to the coefficient a2.  The term 

sin(2πkt/T) is to be added to the testing regression which nests the null and alternative models, 

since ∆cos(2πkt/T) = −(2πk/T)sin(2πkt/T).  To save space, we report only the results of a DF-

type testing regression that omits sin(2πkt/T).  

 ∆yt = c0 + c2 t + c4 cos(2πkt/T) + ρ yt-1 + et       (17)′ 

 Table 7 reports the results of 20,000 replications of (4)′ and (5)′ estimated using (17)′.  

However, as shown in Panel (a) of Table 7, the size of the test is correct only when a2 = 0 so that 
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the nonlinearity disappears.  When β = 0.9, Panel (b) of Table 7 shows that the null hypothesis if 

a unit root is always rejected unless the actual DGP is linear (i.e., a2 = 0).  Thus, the null 

hypothesis is rejected too often.  Although this misspecification might result in a test with good 

power, it also means that the test produces spurious rejections since it has the wrong size.  The 

point is that the invariance of our test to a1 and a2 is obtained by nesting both the null and 

alternative models in the estimating equation.   

 
5. Examples of the test 

 In this section, we apply our test to two well-studied examples.  Both are designed to 

illustrate the ability of the test to mimic an unknown number of breaks of unknown functional 

form occurring at unknown break dates.  

Real U.S. GDP:  In his own work, Perron (1989) used the oil price shock of 1973 as the break 

date when examining quarterly values of real U.S. GNP.  However, the actual dating of the oil 

price shock may not be so obvious.  In fact, during 1973, OPEC increased posted prices by 5.7% 

on April 1, 11.9% on June 1, 17% on October 16, and declared an export embargo on October 

20.  Moreover, structural breaks need not occur instantaneously or manifest themselves 

contemporaneously.  Consider the effects of the October 1973 oil price shock on real U.S. GDP 

measured in billions of 1996 dollars:  

 
 1973:1 1973:2 1973:3 1973:4 1974:1 1974:2 1974:3 1974:4 1975:1
GDP 4092.3 4133.3 4117.0 4151.1 4119.3 4130.4 4084.5 4062.0 4010.0

 
 Although Perron (1989) used 1973:1 as his break date, real GDP actually rose in 1973:2 

and 1973:4, fell in 1974:1, rose in 1974:2 and then fell steadily for the next three quarters.  Such 

behavior cannot be adequately captured by a single break in the trend.  Instead, it is more likely 



 21

that the main effect of the oil price shock on real GDP was delayed at least one quarter and that 

the effect of the shock was smooth and sustained.  As such, it is seems plausible to allow for 

some form of smooth break.  

 In order to perform the LM version of out test, we obtained data on real U.S. GDP for the 

period 1947:1 through 2003:2 from the website of the Federal Reserve Bank of St. Louis 

(FRED).  We let {yt} denote the natural logarithm of real U.S. GDP and estimated a regression in 

the form of (8) using integer values of k ranging from 1 to 10.  Since the regression equation 

using k = 1 had the lowest residual sum of squares, we used this value as the consistent estimate 

of the actual frequency.  Imposing k = 1, the estimated equation, with t-statistics in parentheses,  

becomes: 

  ∆yt =  0.00868 − 0.18569 ∆sin(2πt/T) + 0.06151 ∆cos(2πt/T)    (6)′ 
                (24.33)     (−10.28)                       (3.41) 
  
Next, we used these three estimated coefficients to construct tS and ψ as in (7) and estimated an 

equation in the form of (8).  Since we wanted to control for serial correlation in the residuals, we 

augmented (8) with lagged changes of { tS }. The tenth augmented lag had a t-statistic of 2.77 so 

we used ten lags of t iS −∆ to obtain: 

     
10

1
1

ˆ0.0128 0.0094 0.1859 sin(2 / )+0.0602 cos(2 / )+t t i t i
i

y S t T t T Sπ π β− −
=

∆ = − + − ∆ ∆ ∆∑  (8)′ 

 The sample value of the F-statistic for the null hypothesis that the coefficients on the 

trigonometric components jointly equal zero is 128.19.  If we compare this value to that reported 

in Table 2, it is clear that we can reject the hypothesis of linearity.  However, the coefficient for 

1tS − has a t-statistic of −2.602.  As shown in Table 1, at the 5% significance level, with k = 1, the 

critical value of τLM  is –4.110.  Hence, we cannot reject the null hypothesis of a unit root.   
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 A key feature of the test is that it allows us to mimic the form of the nonlinearity present 

in the data.  Since we are now most interested in the nature of the nonlinearity, we re-estimated 

equation (8)′ allowing for the possibility of fractional frequencies.  Since fractional frequencies 

can best capture the nature of the nonlinearity, we performed a grid search using the frequencies 

in the interval 0 < k ≤ 2 we found that k = 1.45 resulted in the lowest sum of squared residuals.  

The top panel of Figure 3 plots the actual value of the {yt} series along with the fitted value of 

the trend for k = 1.45.  You can clearly see that the nonlinear trend does capture the upward drift 

of the series.  Panel b of Figure 3 shows just the time varying intercept from: 

  ∆yt =  0.01004 + 0.04307 sin[2π(1.45)t/T] +0.16120 cos[2π(1.45)t/T]  (8)′′ 
                (30.66)     (3.88)                                 (14.33) 
 
 Instead of a sharp break, Panel b indicates that the drift in U.S. GDP growth began to turn 

around sometime near the end of 1958.  Trend growth continued to increase (reaching a 

maximum of 0.0174% per quarter near 1976.  Thereafter, trend growth exhibited a sustained 

decline until 1997.  In contrast, the type of break used by Perron (1989) assumes a constant long-

run growth rate that displayed a one-time fall in 1973:1.  

The Term-Structure of Interest Rates:  A number of papers, including Enders and Granger 

(1998), Shin and Lee (2001), Lanne and Saikkonen (2002), and Seo (2003) suggest that interest 

rate spreads should be stationary such that the adjustment towards the long-run equilibrium 

follows a threshold process.  To explore this possibility we obtained monthly values of the 3-

month T-bill rate and the 1-year (R1) and 3-year (R3) rates on U.S. government securities over 

the 1990:1 through 2003:11 period.  The time paths of the three rates are shown in Figure 4.  It is 

clear that the 3-year rate was substantially above the two shorter-term interest rates throughout 

the early 1990s.  However, in the 1995 - 2000 period, the spreads between R3 and the shorter-
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term rates declined substantially.  In mid-2001, R3 did not decline as rapidly as the other two 

rates so that the spread became large.  

 Although the type of behavior shown in Figure 4 might be the result of a threshold 

process, it is plausible to argue that persistence of the magnitudes of the gaps are due to several 

structural breaks in the equilibrium level of the spread.  Towards this end we estimated each 

possible interest rate pair as a linear process and as a nonlinear Fourier process in the DF-form: 

 1 1 3 4
1

sin(2 / ) cos(2 / )
p

t t i t i t
i

y y c c kt T c kt T yρ π π β ε− −
=

∆ = + + + + ∆ +∑  (18) 

where yt is the gap between the long-term and the short-term interest rate.  Alternatively, yt is the 

difference between the 1-year rate and the T-bill rate, the 3-year rate and the T-bill rate, and 3-

year rate and the 1-year rate. 

 Our selected specification excluded time as a regressor since there is no theoretical reason 

to believe that there is a deterministic trend in interest rate spreads.  Since this specification is 

nested within our more general model, the test statistics reported in Tables 1 and 2 are 

appropriately sized.  However, it is possible to increase the power of our test by using the critical 

values reported in Table 3.  Recall that these critical values were generated without using time as 

a regressor.  For the DF version of the test, we estimated equation (18) using integer frequencies 

in the range 1 ≤ k ≤ 10 and selected the values of k resulting in the smallest residual sum of 

squares. The resulting estimations can be summarized as follows: 

R-long R-short F-value τDF k p DF TAR 
R1 T-bill 8.54 −5.51 1 12 −3.52 0.243 
R3 T-bill 13.40 −5.97 1 11 −3.27 0.917 
R3 R1 11.33 −5.39 1 11 −2.72 0.702 
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 Notice that when yt is the difference between the 1-year rate and the T-bill rate, the 

sample value of F for the null c3 = c4 = 0 is 8.54.  Table 3 indicates that the critical values for T = 

100 are 6.591, 7.783 and 10.627 at the 10%, 5% and 1% significance levels, respectively. Hence, 

if wanted to use the 1% significance level, it would be possible to conclude that the intercept for 

the spread between these two rates does not have a break.  As such, it would be appropriate to 

perform a standard Dickey-Fuller test to determine if the spread is stationary.  The linear Dickey-

Fuller test (see the next-to-last column of the table) indicates that the t-statistic for the null 

hypothesis ρ = 0 is −3.52.  Using the standard Dickey-Fuller distribution, we can just reject the 

null hypothesis at the 1% significance level (the critical value is −3.51).   

 The situation is a bit different for the other two regression equations.  In both instances, 

the sample value of the F-statistic for the null hypothesis c3 = c4 = 0 can be rejected at the 1% 

level for (R3 − T-bill)t and for (R3 − R1)t.  Given our finding of the nonlinearity in the data, we 

test for a unit root using the critical values of τDF_C that are reported in Table 3.  It should be 

clear that both of the sample values are sufficiently negative that we can reject the null 

hypothesis of a unit root at the 1% significance level (the critical value is –4.433).  By way of 

comparison, the t-values (−3.27 and –2.72) for the standard Dickey-Fuller test imply that the 

spreads for (R3 − T-bill)t and (R3 − R1)t are unit-root processes. 

 For our purposes, the key issue is how the spreads adjust over time.  In particular, we 

wanted to examine whether the interest rate spreads follow a threshold process.  When we apply 

Hansen’s (1997) test for threshold behavior, we are unable to reject the null hypothesis of no 

threshold any conventional significance level.  We used 1000 Monte Carlo replications to obtain 

the appropriate critical values for the test.  The prob-values (listed under TAR in the table above) 
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for the three spreads are 0.243, 0.917 and 0.702, respectively.  Hence, it is unlikely that our 

Fourier approximation detects any type of threshold behavior.  

 To obtain a better understanding of the nature of the Fourier adjustment process, the solid 

line in Figure 5 shows the time path of the difference between the 3-year rate and 1-year rate. 

One can clearly see that the spread was much higher in the early 1990s and in 2002 than in the 

intervening years.  The estimated model (with t-statistics in parentheses) is: 

 ∆yt = −0.223 yt-1 + 0.160 + 0.080 sin(2πkt/T) + 0.069 cos(2πkt/T) +
11

1
î t i

i

yβ −
=

∆∑  (18)′ 

                      (−5.38)        (5.29)    (3.97)                     (4.16) 
where: k = 1. 

 The time-varying mean of the {yt} sequence can be obtained by dividing the Fourier 

intercept [i.e., 0.160 + 0.080 sin(2πkt/T) + 0.069 cos(2πkt/T)] by 0.232 (i.e., one minus the sum 

of the autoregressive coefficients).  You can clearly see by the smooth line in Figure 5, the time-

varying mean mimics the fact that the spread was much higher in the early 1990s and in the later 

part of the sample than in the intervening years.  Given that the spreads are stationary, we also 

examined the breaks that are identified by the Bai-Perron procedure.  Allowing for a maximum 

of five breaks with a minimum break-size of 12 months, the BIC selected three breaks.  The first 

occurs at 1994:11, the second at 2000:12, and the third at 2002:6. The dashed line in Figure 5 

shows the breakpoints and the four sub-period means of the (R3 – R1) spread.  Notice that these 

sharp breaks are similar to the Fourier intercept.  The difference, of course, is that the Fourier 

intercept is smooth and that the Bai-Perron procedure does not embody a unit-root test.   

 
6. Summary and conclusion 
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The paper develops a unit-root test that allows for an unknown number of structural 

breaks with unknown functional forms.  The test is based on the fact that a single frequency 

component of a Fourier approximation can capture a process of gradual change in a time-varying 

intercept.  Nevertheless, as shown in Section 2, the test can often capture sharp breaks and/or 

nonlinear trends.  Hence, instead of selecting specific break dates or the form of the breaks, the 

specification problem is transformed into selecting the proper frequency component to include in 

the estimating equation.  

In Section 3, we show that our test is invariant to all parameters in the DGP except for the 

frequency.  As such, we are able to develop a procedure to determine whether a Fourier 

frequency component belongs in the estimating equation.  This F-test is a supremum-type test in 

that the selected frequency provides the smallest residual sum of squares.  In Section 4, we show 

that our proposed unit-root test does not exhibit any serious size distortions, and shows good 

power.  In Section 5, the appropriate use of the test is illustrated using real GDP and the interest 

rate differential.  We show that real U.S. GDP can be characterized as a unit-root process with a 

nonlinear trend.  We reaffirm the well-known result that interest rate spreads are stationary 

although the equilibrium value of the spread has been time-varying.   
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Table 1: Critical Values of τDF and τLM 
  

   τDF    τLM  

T k 1% 5% 10%  1% 5% 10% 
100 1 -4.954 -4.347 -4.050  -4.687 -4.110 -3.820 
 2 -4.700 -4.039 -3.704  -4.235 -3.565 -3.220 
 3 -4.461 -3.770 -3.424  -3.977 -3.301 -2.961 
 4 -4.294 -3.626 -3.294  -3.842 -3.179 -2.856 
 5 -4.199 -3.551 -3.222  -3.765 -3.117 -2.806 
 10 -4.031 -3.425 -3.124  -3.606 -3.019 -2.733 

Linear* -4.044 -3.450 -3.146  -3.632 -3.054 -2.766 
       
500 1 -4.835 -4.278 -4.006  -4.585 -4.041 -3.780 
 2 -4.578 -3.985 -3.676  -4.152 -3.550 -3.222 
 3 -4.371 -3.750 -3.426  -3.914 -3.299 -2.977 
 4 -4.252 -3.627 -3.304  -3.804 -3.184 -2.881 
 5 -4.163 -3.560 -3.247  -3.740 -3.135 -2.834 
 10 -4.027 -3.447 -3.155  -3.603 -3.047 -2.769 

Linear* -3.977 -3.423 -3.134  -3.575 -3.033 -2.754 
* These are the critical values of the usual DF or LM statistics 
with a linear trend.  

 
 
 

Table 2: Critical Values of F(k) and F( k̂ ) 
 

  F(k) 
   τDF    τLM  

T k 10% 5% 1%  10% 5% 1% 
100 1 7.219 8.700 12.000  7.182 8.575 11.629 
 2 4.622 5.985 9.200  3.771 4.963 7.746 
 3 3.329 4.414 7.027  2.918 3.844 6.133 
 4 2.930 3.853 5.811  2.627 3.447 5.546 
 5 2.681 3.532 5.497  2.479 3.274 5.144 
 10 2.338 3.046 4.780  2.304 3.027 4.708 
         

500 1 6.925 8.287 11.166  6.859 8.157 10.85 
 2 4.549 5.843 8.597  3.738 4.882 7.520 
 3 3.388 4.460 6.826  2.921 3.844 5.966 
 4 2.868 3.732 5.719  2.652 3.452 5.378 
 5 2.711 3.520 5.368  2.514 3.281 5.117 
 10 2.420 3.133 4.711  2.352 3.087 4.756 

 
 

 
 
 
 

 

 Panel 2: F( k̂ ) = Max F(k) 
  τDF    τLM  

T 10% 5% 1%  10% 5% 1% 
100 8.052 9.408 12.469  7.679 9.010 11.983 
500 7.659 8.852 11.523  7.344 8.532 11.084 
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Table 3: Critical Values of τDF_C without a linear trend and F(k) 
  

   τDF_C
    F(k)  

T k 1% 5% 10%  1% 5% 10% 
         
100 1 -4.433 -3.816 -3.495  10.193 7.137 5.756 
 2 -3.975 -3.270 -2.900  6.736 4.256 3.207 
 3 -3.733 -3.059 -2.710  5.471 3.539 2.680 
 4 -3.618 -2.968 -2.640  5.111 3.302 2.494 
 5 -3.543 -2.910 -2.597  4.916 3.139 2.396 

Linear* -3.525 -2.902 -2.583     
    F(k̂) = Max F(k) 
    10.627 7.783  6.591  

       
500 1 -4.362 -3.762 -3.456  9.566 6.837 5.580 
 2 -3.886 -3.239 -2.892  6.404 4.170 3.190 
 3 -3.702 -3.060 -2.727  5.537 3.521 2.679 
 4 -3.583 -2.970 -2.646  5.100 3.267 2.510 
 5 -3.541 -2.938 -2.619  4.909 3.155 2.444 

Linear* -3.435 -2.870 -2.572     
      F(k̂) = Max F(k) 
      9.952 7.448  6.360  
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Table 4: Finite Sample Performance of τLM 
 

(a) T = 100, β = 1 
 

DGP 5% 10% Relative frequency of the selected values of k 

k a1 a2 Rej. rate Rej. rate Linear* 1 2 3 4 5 6 ≥ 
1 0 0 0.070 0.129 0.95 0.04 0.00 0.00 0.00 0.00 0.00 
 0 5 0.050 0.089 0.69 0.31 0.00 0.00 0.00 0.00 0.00 
 3 0 0.056 0.097 0.87 0.13 0.00 0.00 0.00 0.00 0.00 
 3 5 0.051 0.093 0.57 0.43 0.00 0.00 0.00 0.00 0.00 

2 0 0 0.071 0.130 0.95 0.04 0.00 0.00 0.00 0.00 0.00 
 0 5 0.051 0.098 0.23 0.00 0.77 0.00 0.00 0.00 0.00 
 3 0 0.037 0.066 0.80 0.00 0.20 0.00 0.00 0.00 0.00 
 3 5 0.049 0.098 0.09 0.00 0.91 0.00 0.00 0.00 0.00 

3 0 0 0.075 0.131 0.95 0.04 0.00 0.00 0.00 0.00 0.00 
 0 5 0.049 0.099 0.00 0.00 0.00 1.00 0.00 0.00 0.00 
 3 0 0.044 0.083 0.46 0.00 0.00 0.54 0.00 0.00 0.00 
 3 5 0.050 0.101 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

4 0 0 0.070 0.130 0.95 0.04 0.00 0.00 0.00 0.00 0.00 
 0 5 0.051 0.100 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
 3 0 0.049 0.095 0.11 0.00 0.00 0.00 0.89 0.00 0.00 
 3 5 0.051 0.101 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

5 0 0 0.075 0.131 0.95 0.04 0.01 0.00 0.00 0.00 0.00 
 0 5 0.048 0.097 0.00 0.00 0.00 0.00 0.00 1.00 0.00 
 3 0 0.050 0.102 0.01 0.00 0.00 0.00 0.00 0.99 0.00 
 3 5 0.051 0.101 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

 
(b) T = 100, β = 0.9 

 
DGP 5% 10% Relative frequency of the selected values of k 

k a1 a2 Rej. rate Rej. rate Linear* 1 2 3 4 5 6 ≥ 
1 0 0 0.268 0.437 0.99 0.01 0.00 0.00 0.00 0.00 0.00 
 0 5 0.108 0.169 0.72 0.28 0.00 0.00 0.00 0.00 0.00 
 3 0 0.097 0.151 0.92 0.08 0.00 0.00 0.00 0.00 0.00 
 3 5 0.113 0.193 0.57 0.43 0.00 0.00 0.00 0.00 0.00 

2 0 0 0.275 0.438 0.99 0.01 0.00 0.00 0.00 0.00 0.00 
 0 5 0.210 0.350 0.11 0.00 0.89 0.00 0.00 0.00 0.00 
 3 0 0.130 0.196 0.74 0.00 0.26 0.00 0.00 0.00 0.00 
 3 5 0.205 0.360 0.02 0.00 0.98 0.00 0.00 0.00 0.00 

3 0 0 0.271 0.435 0.98 0.01 0.00 0.00 0.00 0.00 0.00 
 0 5 0.242 0.407 0.00 0.00 0.00 1.00 0.00 0.00 0.00 
 3 0 0.198 0.315 0.38 0.00 0.00 0.62 0.00 0.00 0.00 
 3 5 0.247 0.408 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

4 0 0 0.277 0.441 0.98 0.01 0.00 0.00 0.00 0.00 0.00 
 0 5 0.253 0.416 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
 3 0 0.245 0.407 0.09 0.00 0.00 0.00 0.91 0.00 0.00 
 3 5 0.252 0.412 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

5 0 0 0.271 0.434 0.98 0.01 0.00 0.00 0.00 0.00 0.00 
 0 5 0.257 0.416 0.00 0.00 0.00 0.00 0.00 1.00 0.00 
 3 0 0.253 0.419 0.01 0.00 0.00 0.00 0.00 0.99 0.00 
 3 5 0.254 0.419 0.00 0.00 0.00 0.00 0.00 1.00 0.00 
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Table 5: Finite Sample Performance of τDF 
 

(a) T = 100, β = 1 
 

DGP 5% 10% Relative frequency of the selected values of k 

k a1 a2 Rej. rate Rej. rate Linear* 1 2 3 4 5 6 ≥ 
1 0 0 0.073 0.132 0.95 0.04 0.01 0.00 0.00 0.00 0.00 
 0 5 0.046 0.080 0.85 0.15 0.00 0.00 0.00 0.00 0.00 
 3 0 0.070 0.125 0.88 0.11 0.01 0.00 0.00 0.00 0.00 
 3 5 0.052 0.092 0.71 0.29 0.00 0.00 0.00 0.00 0.00 

2 0 0 0.072 0.132 0.95 0.04 0.01 0.00 0.00 0.00 0.00 
 0 5 0.051 0.099 0.31 0.01 0.69 0.00 0.00 0.00 0.00 
 3 0 0.046 0.084 0.76 0.01 0.23 0.00 0.00 0.00 0.00 
 3 5 0.050 0.099 0.12 0.00 0.88 0.00 0.00 0.00 0.00 

3 0 0 0.074 0.133 0.95 0.04 0.01 0.00 0.00 0.00 0.00 
 0 5 0.050 0.104 0.01 0.00 0.00 0.99 0.00 0.00 0.00 
 3 0 0.049 0.091 0.44 0.00 0.00 0.56 0.00 0.00 0.00 
 3 5 0.052 0.102 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

4 0 0 0.076 0.135 0.95 0.04 0.01 0.00 0.00 0.00 0.00 
 0 5 0.051 0.100 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
 3 0 0.052 0.099 0.11 0.00 0.00 0.00 0.89 0.00 0.00 
 3 5 0.052 0.102 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

5 0 0 0.074 0.132 0.95 0.04 0.01 0.00 0.00 0.00 0.00 
 0 5 0.050 0.098 0.00 0.00 0.00 0.00 0.00 1.00 0.00 
 3 0 0.050 0.101 0.01 0.00 0.00 0.00 0.00 0.99 0.00 
 3 5 0.050 0.098 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

 
(b) T = 100, β = 0.9 

 
DGP 5% 10% Relative frequency of the selected values of k 

k a1 a2 Rej. rate Rej. rate Linear* 1 2 3 4 5 6 ≥ 
1 0 0 0.208 0.345 0.98 0.01 0.01 0.00 0.00 0.00 0.00 
 0 5 0.086 0.122 0.84 0.16 0.00 0.00 0.00 0.00 0.00 
 3 0 0.111 0.189 0.93 0.06 0.00 0.00 0.00 0.00 0.00 
 3 5 0.106 0.175 0.67 0.33 0.00 0.00 0.00 0.00 0.00 

2 0 0 0.207 0.348 0.98 0.01 0.01 0.00 0.00 0.00 0.00 
 0 5 0.159 0.276 0.17 0.00 0.83 0.00 0.00 0.00 0.00 
 3 0 0.121 0.191 0.70 0.00 0.30 0.00 0.00 0.00 0.00 
 3 5 0.159 0.285 0.03 0.00 0.97 0.00 0.00 0.00 0.00 

3 0 0 0.207 0.345 0.98 0.01 0.01 0.00 0.00 0.00 0.00 
 0 5 0.184 0.321 0.00 0.00 0.00 1.00 0.00 0.00 0.00 
 3 0 0.164 0.266 0.35 0.00 0.00 0.65 0.00 0.00 0.00 
 3 5 0.188 0.326 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

4 0 0 0.207 0.348 0.98 0.01 0.01 0.00 0.00 0.00 0.00 
 0 5 0.188 0.325 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
 3 0 0.191 0.322 0.08 0.00 0.00 0.00 0.92 0.00 0.00 
 3 5 0.192 0.327 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

5 0 0 0.205 0.348 0.98 0.01 0.01 0.00 0.00 0.00 0.00 
 0 5 0.190 0.331 0.00 0.00 0.00 0.00 0.00 1.00 0.00 
 3 0 0.189 0.327 0.01 0.00 0.00 0.00 0.00 0.99 0.00 
 3 5 0.188 0.326 0.00 0.00 0.00 0.00 0.00 1.00 0.00 
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(c) T = 500, β = 1 
 

DGP 5% 10% Relative frequency of the selected values of k 

k a1 a2 Rej. rate Rej. rate Linear* 1 2 3 4 5 6 ≥ 
1 0 0 0.072 0.131 0.95 0.04 0.01 0.00 0.00 0.00 0.00 
 0 5 0.062 0.110 0.93 0.06 0.01 0.00 0.00 0.00 0.00 
 3 0 0.072 0.129 0.94 0.05 0.01 0.00 0.00 0.00 0.00 
 3 5 0.062 0.106 0.90 0.09 0.01 0.00 0.00 0.00 0.00 

2 0 0 0.074 0.128 0.95 0.04 0.01 0.00 0.00 0.00 0.00 
 0 5 0.040 0.074 0.89 0.01 0.10 0.00 0.00 0.00 0.00 
 3 0 0.062 0.111 0.93 0.03 0.04 0.00 0.00 0.00 0.00 
 3 5 0.042 0.073 0.83 0.01 0.17 0.00 0.00 0.00 0.00 

3 0 0 0.076 0.132 0.95 0.04 0.01 0.00 0.00 0.00 0.00 
 0 5 0.040 0.072 0.75 0.01 0.00 0.24 0.00 0.00 0.00 
 3 0 0.048 0.089 0.93 0.02 0.01 0.05 0.00 0.00 0.00 
 3 5 0.041 0.076 0.59 0.00 0.00 0.40 0.00 0.00 0.00 

4 0 0 0.075 0.133 0.95 0.04 0.01 0.00 0.00 0.00 0.00 
 0 5 0.044 0.087 0.46 0.01 0.00 0.00 0.53 0.00 0.00 
 3 0 0.041 0.076 0.89 0.02 0.00 0.00 0.09 0.00 0.00 
 3 5 0.048 0.093 0.23 0.00 0.00 0.00 0.77 0.00 0.00 

5 0 0 0.073 0.130 0.95 0.04 0.01 0.00 0.00 0.00 0.00 
 0 5 0.048 0.096 0.16 0.00 0.00 0.00 0.00 0.84 0.00 
 3 0 0.036 0.070 0.80 0.01 0.00 0.00 0.00 0.19 0.00 
 3 5 0.048 0.099 0.04 0.00 0.00 0.00 0.00 0.96 0.00 

 
(d) T = 500, β = 0.9 

 
DGP 5% 10% Relative frequency of the selected values of k 

k a1 a2 Rej. rate Rej. rate Linear* 1 2 3 4 5 6 ≥ 
1 0 0 1.000 1.000 0.99 0.00 0.00 0.00 0.00 0.00 0.00 
 0 5 0.861 0.880 0.15 0.86 0.00 0.00 0.00 0.00 0.00 
 3 0 0.992 0.999 0.90 0.10 0.00 0.00 0.00 0.00 0.00 
 3 5 0.940 0.941 0.06 0.94 0.00 0.00 0.00 0.00 0.00 

2 0 0 1.000 1.000 0.99 0.00 0.00 0.00 0.00 0.00 0.00 
 0 5 0.943 0.953 0.06 0.00 0.94 0.00 0.00 0.00 0.00 
 3 0 0.953 0.993 0.60 0.00 0.40 0.00 0.00 0.00 0.00 
 3 5 0.990 0.990 0.01 0.00 0.99 0.00 0.00 0.00 0.00 

3 0 0 1.000 1.000 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
 0 5 0.992 0.994 0.01 0.00 0.00 0.99 0.00 0.00 0.00 
 3 0 0.966 0.994 0.44 0.00 0.00 0.56 0.00 0.00 0.00 
 3 5 0.999 1.000 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

4 0 0 1.000 1.000 0.99 0.00 0.00 0.00 0.00 0.00 0.00 
 0 5 1.000 1.000 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
 3 0 0.982 0.998 0.31 0.00 0.00 0.00 0.69 0.00 0.00 
 3 5 1.000 1.000 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

5 0 0 1.000 1.000 0.99 0.00 0.00 0.00 0.00 0.00 0.00 
 0 5 1.000 1.000 0.00 0.00 0.00 0.00 0.00 1.00 0.00 
 3 0 0.994 0.999 0.18 0.00 0.00 0.00 0.00 0.82 0.00 
 3 5 1.000 1.000 0.00 0.00 0.00 0.00 0.00 1.00 0.00 
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Table 6: Effects of Ignoring Nonlinear Trends (DF Tests)  
 

(a) T = 100 
 

DGP β = 1.0 β = 0.9 
k a1 a2 5% 

rej. 
rate 

10% 
rej. 
rate 

5% 
crit. 

value 

10% 
crit. 

value 

5% 
 rej.  
rate 

10% 
rej. 
rate 

5% 
crit. 

value 

10% 
crit. 

value 
1 3 3 0.013 0.025 -2.83 -2.46 0.002 0.004 -2.24 -1.98 
 3 5 0.002 0.004 -2.10 -1.74 0.000 0.000 -1.41 -1.23 
 5 3 0.006 0.013 -2.50 -2.09 0.000 0.000 -1.69 -1.45 
 5 5 0.001 0.002 -1.69 -1.29 0.000 0.000 -0.96 -0.79 
2 3 3 0.000 0.001 -2.05 -1.84 0.000 0.001 -2.03 -1.86 
 3 5 0.000 0.000 -1.69 -1.52 0.000 0.000 -1.58 -1.46 
 5 3 0.000 0.000 -1.57 -1.43 0.000 0.000 -1.48 -1.38 
 5 5 0.000 0.000 -1.33 -1.20 0.000 0.000 -1.22 -1.14 
3 3 3 0.000 0.000 -2.04 -1.88 0.000 0.000 -2.05 -1.93 
 3 5 0.000 0.000 -1.85 -1.68 0.000 0.000 -1.75 -1.65 
 5 3 0.000 0.000 -1.63 -1.52 0.000 0.000 -1.61 -1.53 
 5 5 0.000 0.000 -1.55 -1.44 0.000 0.000 -1.48 -1.41 
4 3 3 0.000 0.000 -2.17 -2.01 0.000 0.000 -2.16 -2.06 
 3 5 0.000 0.000 -2.02 -1.87 0.000 0.000 -1.93 -1.85 
 5 3 0.000 0.000 -1.82 -1.73 0.000 0.000 -1.79 -1.74 
 5 5 0.000 0.000 -1.79 -1.68 0.000 0.000 -1.72 -1.66 
5 3 3 0.000 0.000 -2.31 -2.17 0.000 0.000 -2.32 -2.24 
 3 5 0.000 0.000 -2.21 -2.08 0.000 0.000 -2.14 -2.06 
 5 3 0.000 0.000 -2.05 -1.95 0.000 0.000 -2.02 -1.97 
 5 5 0.000 0.000 -2.04 -1.93 0.000 0.000 -1.97 -1.92 

 
 Table 6a: Effects of Ignoring Nonlinear Trends (LM Tests) 

 
(a) T = 100 

 
DGP β = 1.0 β = 0.9 

k a1 a2 5% 
rej. 
rate 

10% 
rej. 
rate 

5% 
crit. 

value 

10% 
crit. 

value 

5% 
 rej.  
rate 

10% 
rej. 
rate 

5% 
crit. 

value 

10% 
crit. 

value 
1 3 3 0.010 0.023 -2.43 -2.10 0.003 0.009 -2.24 -2.03 
 3 5 0.002 0.005 -1.91 -1.64 0.000 0.000 -1.61 -1.49 
 5 3 0.003 0.006 -1.91 -1.65 0.000 0.001 -1.69 -1.54 
 5 5 0.001 0.002 -1.56 -1.36 0.000 0.000 -1.35 -1.26 
2 3 3 0.000 0.001 -1.86 -1.70 0.000 0.002 -2.03 -1.89 
 3 5 0.000 0.000 -1.46 -1.37 0.000 0.000 -1.55 -1.47 
 5 3 0.000 0.000 -1.47 -1.37 0.000 0.000 -1.56 -1.49 
 5 5 0.000 0.000 -1.27 -1.20 0.000 0.000 -1.32 -1.27 
3 3 3 0.000 0.000 -1.80 -1.70 0.000 0.000 -1.99 -1.89 
 3 5 0.000 0.000 -1.51 -1.45 0.000 0.000 -1.61 -1.56 
 5 3 0.000 0.000 -1.50 -1.45 0.000 0.000 -1.62 -1.56 
 5 5 0.000 0.000 -1.36 -1.32 0.000 0.000 -1.44 -1.40 
4 3 3 0.000 0.000 -1.88 -1.81 0.000 0.000 -2.06 -1.99 
 3 5 0.000 0.000 -1.65 -1.61 0.000 0.000 -1.76 -1.72 
 5 3 0.000 0.000 -1.66 -1.62 0.000 0.000 -1.76 -1.72 
 5 5 0.000 0.000 -1.55 -1.52 0.000 0.000 -1.62 -1.59 
5 3 3 0.000 0.000 -2.04 -1.97 0.000 0.000 -2.19 -2.13 
 3 5 0.000 0.000 -1.86 -1.83 0.000 0.000 -1.95 -1.92 
 5 3 0.000 0.000 -1.86 -1.83 0.000 0.000 -1.95 -1.92 
 5 5 0.000 0.000 -1.78 -1.76 0.000 0.000 -1.85 -1.82 
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Table 7: Effects of Non-nesting Testing Regressions 
 

(a) T = 100, β = 1 
 

DGP 5% 10% Relative frequency of the selected values of k 

k a1 a2 Rej. rate Rej. rate Linear* 1 2 3 4 5 6 ≥ 
1 0 0 0.056 0.104 0.99 0.01 0.00 0.00 0.00 0.00 0.00 
 0 3 0.041 0.068 0.98 0.02 0.00 0.00 0.00 0.00 0.00 
 0 5 0.042 0.059 0.95 0.05 0.00 0.00 0.00 0.00 0.00 

2 0 0 0.059 0.111 0.99 0.01 0.00 0.00 0.00 0.00 0.00 
 0 3 0.055 0.066 0.95 0.00 0.05 0.00 0.00 0.00 0.00 
 0 5 0.183 0.187 0.81 0.00 0.19 0.00 0.00 0.00 0.00 

3 0 0 0.062 0.114 0.99 0.01 0.00 0.00 0.00 0.00 0.00 
 0 3 0.086 0.095 0.92 0.00 0.00 0.08 0.00 0.00 0.00 
 0 5 0.253 0.255 0.75 0.00 0.00 0.25 0.00 0.00 0.00 

4 0 0 0.059 0.111 0.99 0.01 0.00 0.00 0.00 0.00 0.00 
 0 3 0.132 0.138 0.87 0.00 0.00 0.00 0.13 0.00 0.00 
 0 5 0.392 0.394 0.61 0.00 0.00 0.00 0.39 0.00 0.00 

5 0 0 0.053 0.103 0.99 0.01 0.00 0.00 0.00 0.00 0.00 
 0 3 0.173 0.181 0.83 0.00 0.00 0.00 0.00 0.17 0.00 
 0 5 0.573 0.573 0.43 0.00 0.00 0.00 0.00 0.57 0.00 

 
(b) T = 100, β = 0.9 

 
DGP 5% 10% Relative frequency of the selected values of k 

k a1 a2 Rej. rate Rej. rate Linear* 1 2 3 4 5 6 ≥ 
1 0 0 0.197 0.339 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
 0 3 0.039 0.062 0.98 0.02 0.00 0.00 0.00 0.00 0.00 
 0 5 0.062 0.066 0.94 0.07 0.00 0.00 0.00 0.00 0.00 

2 0 0 0.197 0.335 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
 0 3 0.105 0.116 0.90 0.00 0.10 0.00 0.00 0.00 0.00 
 0 5 0.323 0.323 0.68 0.00 0.32 0.00 0.00 0.00 0.00 

3 0 0 0.186 0.326 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
 0 3 0.181 0.184 0.82 0.00 0.00 0.18 0.00 0.00 0.00 
 0 5 0.489 0.489 0.51 0.00 0.00 0.49 0.00 0.00 0.00 

4 0 0 0.180 0.316 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
 0 3 0.263 0.266 0.74 0.00 0.00 0.00 0.26 0.00 0.00 
 0 5 0.663 0.664 0.34 0.00 0.00 0.00 0.66 0.00 0.00 

5 0 0 0.194 0.342 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
 0 3 0.390 0.393 0.61 0.00 0.00 0.00 0.00 0.39 0.00 
 0 5 0.829 0.829 0.17 0.00 0.00 0.00 0.00 0.83 0.00 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The figures were generated using:  
Panel 1:  yt = 1•(t ≤ 40) + 1.5•(t > 40) ;    Panel 2:   yt = 1•(t ≤ 50) + 1.5•(t > 50) ;  
Panel 3:    yt = 1•(20 ≤ t or t  > 40) + 1.5•(20 < t ≤ 40) ;  Panel 4:   yt = 1•(40 ≤ t or t  > 55) + 1.5•(40 < t ≤ 55) ;  
Panel 5:  yt = 1•(t ≤ 20) + 1.5•(20 < t ≤ 40)  + 0.5•(t > 40) ;  Panel 6:  yt = 1•(t ≤ 40) + 1.5•(40 < t ≤ 55)  + 0.5•(t > 55) 

Figure 1: Level Breaks and a Fourier Approximation
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The figures were generated using:  
Panel 1: yt = 0.75•(t ≤ 10) + 1.0•(10 < t < 40) + 1.6•(t ≥ 40) ;    Panel 2:  yt = 0.5t•(t ≤ 40) + (1.0 + 0.2t)•(t > 40) 
Panel 3: yt = 0.03t•(t ≤ 20) + (0.4 + 0.1t)•(t > 20) ;         Panel 4:  yt = 0.3t•(t≤ 20) + (0.8+0.1t)•(20 < t < 45) + 0.8•(t ≤ 45)  

Figure 2: Trend Breaks and a Fourier Approximation

y Integer Fractional
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Figure 3: A Structual Break in U.S. GDP Growth
Log of Real U.S. GDP
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3-year 1-year T-bill

Figure 4: The Three Interest Rates
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 SPREAD Fourier Bai-Perron

Figure 5: The R3 - R1 Spread and the Two Intercepts
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APPENDIX 
Proof of Lemma 1  

We start by examining the distribution of the estimated coefficients from the first step 

regression in (6).   Denoting δ = (δ0, δ1, δ2)′, and ∆Zt = [1, ∆sin(2πkt/T), ∆cos(2πkt/T)]′, and DT 

= diag[ T, 1/ T, 1/ T ], we can have 

DT (δ∼ - δ) = DT(∆Ζ′∆Ζ)-1∆Ζ′u = [DT
-1(∆Ζ′∆Ζ)DT

-1]-1⋅DT
-1∆Ζ′u   (A.1) 

where ∆Z = (∆Z2, .., ∆ZT)′ and u = (u2, .., uT)′.    

First, it is easy to show that  

DT
-1(∆Ζ′∆Ζ)DT

-1  = diag[ T-1 
 T , T ∑

t=2

T

 ∆sin2(2πkt/T), T ∑
t=2

T

 ∆cos2(2πkt/T)],   (A.2) 

for which all off-diagonal terms are zero due to the orthogonality property that  

∑
t=2

T

 ∆sin(2πkt/T)∆cos (2πkt/T) = 0, and  ∑
t=2

T

 ∆sin(2πkt/T) = ∑
t=2

T

 ∆cos(2πkt/T) = 0.   Since 

∆sin(2πkt/T)= (2πk/T)cos(2πkt/T), and ∆cos(2πkt/T) = – (2πk/T)sin(2πkt/T), we can show 

 T ∑
t=2

T

 ∆sin2(2πkt/T) → (2πk)2

⌡⌠0
1 cos2(2πkr)dr       (A.3) 

 T ∑
t=2

T

 ∆cos2(2πkt/T) → (2πk)2

⌡⌠0
1 sin2(2πkr)dr       (A.4) 

 
Second, we have 

DT
-1∆Ζ′u = [  1 

 T ∑t=2

T

 ut, T ∑
t=2

T

 ut∆sin(2πkt/T), T ∑
t=2

T

 ut∆cos(2πkt/T)]′. 

We note that 
 1 

 T ∑t=2

T

 ut → σ W(1), which is a standard result.  For the second and third terms, we 

need to utilize the following asymptotics in Proposition 1.  Then, combining the above results in 

(A.2) ~ (A.4), we can obtain the results in Lemma 1. � 
 
 
Proposition 1 
 

T ∑
t=2

T

 ut∆sin(2πkt/T) → σ (2πk)[W(1) + (2πk)
⌡⌠0

1 sin(2πkr)W(r)dr]   (A.5) 

T ∑
t=2

T

 ut∆cos(2πkt/T) → σ (2πk)2[
⌡⌠0

1 cos(2πkr)W(r)dr]    (A.6) 

Proof:  We employ the result in Bierens (1994, Lemma 9.6.3):  ∑
t=2

T

 F(t/T)ut = F(1)ST(1) –  
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⌡⌠0
1 f(r)ST(r)dr, where f(r) is F′(r).  For (A.5), we choose F(x) = cos(2πkt/T).  Then, we can show 

F(1)ST(1) – 
⌡⌠0

1 f(r)ST(r)dr = σ[W(1)+ (2πk)
⌡⌠0

1 sin(2πkr)W(r)dr].  For (A.6), we choose F(x) = 

sin(2πkt/T), and follow the similar procedure to obtain the desired result.  � 
 

 
Proof of Theorem 1  

We let St = ∑j=2
t  εj  and [rT] be the integer part of rT, r ∈ [0,1].  Then, it is easy to show 

that the expression St
∼  in (8) can be given as follows: 

 
 1 

 T 
S∼[rT] = 

 1 
 T 

S[rT] – 
 1 

 T 
 (δ∼0-δ0) rT – 

 1 
 T 

 (δ∼1-δ1) sin(2πkrT/T) 

 – 
 1 

 T 
 (δ∼2-δ2) cos(2πkrT/T)  

 → σ V(r) = σ {W(r) – rW(1) – [(2πk)
⌡⌠0

1 cos2(2πkr)dr]-1[W(1) 

    + (2πk)
⌡⌠0

1 sin(2πkr)W(r)dr]·sin(2πkr) – [
⌡⌠0

1 sin2(2πkr)dr]-1 

      [
⌡⌠0

1 cos(2πkr)W(r)dr]·cos(2πkr)}    (A.7)  

Now, from the second step regression (8), we obtain: 
 
φ∼ = (S∼1′Μ∆Z S∼1)-1 (S∼1′Μ∆Z ∆y),    (A.8) 

where S∼1= (S∼1,.., S
∼

T-1)′, ∆Z=(∆Z2,..,∆ZT )′,  ∆y= (∆y2,..,∆yT)′, and Μ∆Z = I - ∆Z(∆Z′∆Z)-1∆Z′.   

From the results in (A.7), we have: 
 

T -2 S∼1′Μ∆Z S∼1 → σ2

⌡⌠0
1 V_(r) 2dr,      (A.9) 

where V_(r) is the projection of the process V(r) on the orthogonal complement of the space 

spanned by dz = (1, d sin(2πkr), d cos(2πkr))′ where r∈[0, 1].  That is, 
  

V_(r) = V(r) – δ∼′dz,    
 
with 

δ∼ = argmin
 δ

 
⌡⌠0

1 (V(r) – δ′dz)2dr  . 

Following SP, we can similarly show that for the second term in (A.8): 
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 1 
 T S

∼
1′Μ∆Z∆y = 

 1 
 T S

∼
1′Μ∆Z ε = 

 1 
 T S

∼
1′ ε_  →  – 0.5σε

2  ,     (A.10) 

where ε_ = Μ∆Z ε.  Theorem 1 is thus proved by combining the results in (A.9) - (A.10). � 
 

Proof of Lemma 2  

We now obtain the asymptotic distribution of the F-test in (13) that is based on the testing 

regression for the LM type statistic.  First, we examine SSR0 which is obtained from the 

(restricted) regression with a linear trend for the usual LM statistic.   

 ∆yt = φ^  Ŝt-1 + d^0 + u^ t, 

where Ŝt-1 = (yt – y1) - γ^ (t-1) and γ^  = (1/T) ∑
t=2

T

 ∆yt, and where φ^  and d^0 are the OLS estimates in 

this regression.  Then, when a unit root assumption is imposed, we get: 

SSR0 = ∑
t=2

T

 u^ t
2 = ∑

t=2

T

 (εt −  d^0 − φ
^

 Ŝt-1)2   

which can be expressed as  

∑
t=2

T

 [(εt − ε
_
) −  φ^  (Ŝt-1 – S

_
1)]2   

= ∑
t=2

T

 (εt− ε
_
)2 + φ^ 2 ∑

t=2

T

 (Ŝt-1 – S
_

1)2 – 2φ^  ∑
t=2

T

 (Ŝt-1– S
_

1)(εt−ε
_
)    (A.11) 

where ε
_
 =  

 1 
 T ∑t=1

T

 εt , and S
_

1 = 
 1 

 T-1  ∑t=2

T

 Ŝt-1.  The first term in (A.11) will be cancelled with the same 

term that appears in SSR1 under the null of linearity.  The second term in the above expression 

can be written as  

(Tφ̂)2Τ−2 ∑
t=2

T

 (Ŝt-1–S
_

1)2 → [- 
 1 
 2 (σε

2/σ2) (
⌡⌠0

1 V_0(r)2dr)-1]2(σ2

⌡⌠0
1 V_0(r)2dr) 

        =  
 1 
 4 (σε

4/σ2) (
⌡⌠0

1 V_0(r)2dr)-1       (A.12) 

where V_0(r) is the demeaned Brownian bridge.  The third term in (A.11) is shown to follow 

- 2(Tφ̂ )⋅(/Τ) ∑
t=2

T

 (Ŝt-1– S
_

1)(εt−ε
_
) →  – 2 [- 

 1 
 2 (σε

2/σ2) (
⌡⌠0

1 V_0(r)2dr)-1](− 
 1 
 2 σε

2) 

        =  − 
 1 
 2 (σε

4/σ2) (
⌡⌠0

1 V_0(r)2dr)-1       (A.13) 

Next, SSR1 is similarly obtained from the unrestricted regression (8).   

∆yt = φ∼ S∼t-1 + d∼0 + d∼1 ∆sin(2πkt/T) + d∼2 ∆cos(2πkt/T) + u~t.  
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where S∼t-1 is defined in (7), and where d∼0, d
∼

1, and d
∼

2 are the OLS estimates in this regression.  

Then, we get under the null of a unit root: 

SSR1 = ∑
t=2

T

 u~t
2 = ∑

t=2

T

 (εt −  d∼0 − d∼1 ∆sin(2πkt/T) − d∼2 ∆cos(2πkt/T) − φ∼ S∼t-1)2  

which can be expressed as 

∑
t=2

T

 (ε_t −  φ∼ S_∼t-1)2  

= ∑
t=2

T

 ε_t 
2 + φ∼ 2 ∑

t=2

T

 S_∼t-1
2 – 2φ∼ ∑

t=2

T

 S_∼t-1ε_t        (A.14)  

where ε_t  is the element of ε_ = Μ∆Z ε, which is given in (A.10), and S_∼t-1  is the element of  S_∼1 = 

Μ∆Z S∼1 with S∼1= (S∼1,.., S
∼

T-1)′.   The first term in (A.14) is cancelled with the similar term in SSR0 

under the null of the absence of the nonlinear terms.  The second and third terms in (A.14) follow 

the same asymptotics as in (A.12) and (A.13), except that V_0(r) is replaced with V_(r)¸which is 

defined in (A.9).   

Finally, the denominator of the F-statistic is given as  
 1 

 T-q  ∑t=2

T

 u~t
2 + 

 1 
 T-q  Op(1) → σε

2       (A.15) 

where the Op(1) terms of the above expression are the same terms in (A.14).   The asymptotic 

distribution of the F-statistic is given by collecting terms in (A.12) through (A.17). 

 F(k) →  
 1 
 8 (σε

2/σ2)[(
⌡⌠0

1 V_(r)2dr)-1 –  (
⌡⌠0

1 V_0(r)2dr)-1]  � 

Proof of Lemma 3 

 The DGP implies (5), which includes the nonlinear trigonometric terms, but they are 

ignored in the testing regressions.  Thus, the first step regression is  

 ∆yt = δ0 + ut  

Then, we can show that the OLS estimate of δ0 follows: 

δ̂ 0 = mean of ∆y = δ0 + 
 1 
 T  ∑t=2

T

 δ1∆sin(2πkt/T) + 
 1 
 T  ∑t=2

T

 δ2∆cos(2πkt/T) + 
 1 
 T  ∑t=2

T

 ∆et 

     = δ0 + 0 + 0 + ∆e
__

          (A.16)  

We construct a detrended series using δ̂ 0  as:  

 Ŝt = yt – y1  - δ
∼

0 (t-1) = yt – y1  – δ0 (t-1) - (δ∼0-δ0)(t-1) 
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    = (et - e1) + a1 sin(2πkt/T) + a2 cos(2πkt/T) - a1 sin(2πk/T) – a2 cos(2πk/T)    

       - (t-1) ∆e
__

 . 
 
The second step regression involves 

  ∆yt = φ Ŝt-1+ c + ut 

For simplicity, we ignore the constant term, which is 0 in the population.  Then, for the 

denominator of φ^ , we have: 

 
 1 
 T ∑t=2

T

 Ŝt-1
2  ≈ 

 1 
 T ∑t=2

T

 Ŝt
2 

 = 
 1 
 T ∑t=2

T

 [(et - e1) + a1sin(2πkt/T) + a2 cos(2πkt/T) - a1sin(2πk/T) – a2 cos(2πk/T)    

       – (t-1) ∆e
__

 ]2 

This can be expressed as: 

 
 1 
 T ∑t=2

T

 [(et - e1)- (t-1) ∆e
__

]2 + 
 1 
 T ∑t=2

T

 [a1 sin(2πkt/T) + a2 cos(2πkt/T)]2  

+ 
 1 
 T ∑t=2

T

 [- a1 sin(2πk/T) – a2 cos(2πk/T)]2 + 2
 1 
 T ∑t=2

T

 [(et - e1)- (t-1) ∆e
__

] [a1 sin(2πkt/T)  

+  a2 cos(2πkt/T)] + 2
 1 
 T ∑t=2

T

 [(et - e1) – (t-1) ∆e
__

] [-a1 sin(2πk/T) – a2 cos(2πk/T)]  

  + 2
 1 
 T ∑t=2

T

 [ a1 sin(2πkt/T) + a2 cos(2πkt/T)][-a1 sin(2πk/T) – a2 cos(2πk/T)]               (A.17) 

For each term, we can show: 

 
 1 
 T ∑t=2

T

 [(et - e1)- (t-1) ∆e
__

]2 → σε
2 + (1/3)(ε∞

2+ε1ε∞+ε1
2)  (A.18a)  

 
 1 
 T ∑t=2

T

 [a1 sin(2πkt/T) + a2 cos(2πkt/T)]2  

  → a1
2

⌡⌠0
1 sin2(2πkr)dr + a2

2

⌡⌠0
1 cos2(2πkr)dr  (A.18b) 

 
 1 
 T ∑t=2

T

 [- a1 sin(2πk/T) – a2 cos(2πk/T)]2 → a2
2  (A.18c) 

  2
 1 
 T ∑t=2

T

 [(et - e1)- (t-1) ∆e
__

] [a1 sin(2πkt/T) + a2 cos(2πkt/T)]  

  = 2
 1 
 T ∑t=2

T

 (et - e1)a1 sin(2πkt/T) + 2
 1 
 T ∑t=2

T

 (et - e1) a2 cos(2πkt/T) 

   – 2
 1 
 T ∑t=2

T

 (t-1)∆e
__

⋅a1 sin(2πkt/T) - 2
 1 
 T ∑t=2

T

 (t-1) ∆e
__

⋅a2 cos(2πkt/T) 

→ 0 + 0 - 2σW(1)a1⌡⌠0
1 r⋅sin(2πkr)dr - 2σW(1)a2⌡⌠0

1 r⋅cos(2πkr)dr           (A.18d) 
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In the above, the first and the second terms in (A.20d) are degenerate since 
 1 

 T ∑t=2

T

 et sin(2πkt/T) 

→ σ
⌡⌠0

1 cos(2πkr)W(r)dr, and 
 1 

 T ∑t=2

T

 et cos(2πkt/T) → σW(1) + σ(2πk)
⌡⌠0

1 sin(2πkr)W(r)dr.  The 

results for the third and fourth terms follow as given in the above since  T∆e
__

 → σW(1), 
 1 
 T ∑t=2

T

 

(t/T)sin(2πkt/T) → σ
⌡⌠0

1 r sin(2πkr)dr, and 
 1 
 T ∑t=2

T

 (t/T)cos(2πkt/T) → σ
⌡⌠0

1 r cos(2πkr)dr.  Thus, the 

asymptotic distribution of the numerator of φ^  is given by collecting the terms in (A.18a) -

(A.18d). 

 Next, we examine the numerator of φ^ .  Since ∆Ŝt = ∆et - ∆e
__

 + a1∆sin(2πkt/T) + 

a2∆cos(2πkt/T), we have: 

 
 1 
 T ∑t=2

T

 ∆ŜtŜt-1 = 
 1 
 T ∑t=2

T

 [(∆et - ∆e
__
 + a1∆ sin(2πkt/T) + a2∆ cos(2πkt/T)][(et - e1) 

  + a1 sin(2πkt/T) + a2 cos(2πkt/T) - a1 sin(2πk/T) – a2 cos(2πk/T) – (t-1) ∆e
__

] 
 =  1 

 T ∑t=2

T

 ∆et - ∆e
__

) [(et-1 - e1)- (t-2) ∆e
__

]  

 + 
 1 
 T ∑t=2

T

 (∆et - ∆e
__

) [a1 sin(2πkt/T) + a2 cos(2πkt/T) - a1 sin(2πk/T) – a2 cos(2πk/T)]   

 + 
 1 
 T ∑t=2

T

 [a1∆ sin(2πkt/T) + a2∆cos(2πkt/T)][ a1 sin(2πkt/T) + a2 cos(2πkt/T)  

 – a1 sin(2πk/T) – a2 cos(2πk/T)] 
 + 

 1 
 T ∑t=2

T

 [a1∆sin(2πkt/T) + a2∆cos(2πkt/T)][(et-1 - e1)- (t-2) ∆e
__

]            (A.19) 

The first term in the last equation in (A.19) follows: 

 
 1 
 T ∑t=2

T

 (∆et - ∆e
__

) [(et-1 - e1)- (t-2) ∆e
__

] = 
 1 
 T ∑t=2

T

 ∆et(et-1 - e1) – 
 1 
 T ∑t=2

T

 ∆e
__

 (et-1 - e1) 

    + 
 1 
 T ∑t=2

T

 ∆et (t-2) ∆e
__

 + 
 1 
 T ∑t=2

T

 ∆e
__

 (t-2) ∆e
__

 

 → σε
2(β-1) + op (1) 

For the above result, we note 
 1 
 T ∑t=2

T

 ∆et(et-1 - e1) ≈ 
 1 
 T ∑t=2

T

 (et-1 - e1)et-1 since e1
 1 
 T ∑t=2

T

 ∆et = e1∆e
__

 → 0.  Also, 
 1 
 T ∑t=2

T

 (et-1 - e1)et-1 → γ1  - σε
2 = σε

2(β-1) where β is the AR coefficient in the DGP 

(5).  It can be easily seen that all remaining terms are degenerate.  The second term in the last 
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equation in (A.19) can be shown as op(1) by employing the results that  
 1 

 T ∑t=2

T

 et sin(2πkt/T) → 

σ
⌡⌠0

1 cos(2πkr)W(r)dr, and 
 1 

 T ∑t=2

T

 et sin(2πkt/T)→ σ[W(1)+(2πk)
⌡⌠0

1⋅sin(2πkr)W(r)dr.  The third 

and fourth terms in the last equation in (A.19) can be shown as op(1) by utilizing these results.   

Thus, 

 
 1 
 T ∑t=2

T

 ∆ŜtŜt-1  → σε
2(β - 1)            (A.20) 

The result in Lemma 3 follows by combining the results in (A.18) and (A.20). 


