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Abstract

We present a weak convergence of a discrete time process to a jump-
diffusion process as the length of sampling interval, h, goes to zero. There
is an example given for the weak convergency with using GARCH (1, 1)-
M model by Engle and Bollerslev(1986). It is shown that ARCH type
models can be used as discrete time approximations of jump-diffusion pro-
cesses. We use Exponential ARCH with Poisson Jump component as an
example for the approximation. Therefore, we may use a discrete time
ARCH process as an approximation of a jump-diffusion process in esti-
mation and forecasting. And we may use the jump-diffusion process as
an approximation of ARCH process when there is distributional results
available for the jump-diffusion limit of the sequence of ARCH processes.
JEL classification: C22
Key word(s): Weak Convergence, ARCH Model, Jump-Diffusion Pro-

cess

1 Introduction.

During the last couple of decades or so, many researchers have found that the
value of option prices is not continuous with probability one. Cox and Ross(1975)
assumed that the new information arriving at a market is a lump sum causing a
discrete jump in the value of options and derived the option pricing formula by
using a Poisson jump process. Merton, in his works (1976a, b) , decomposed the
total change in the stock prices into two components: 1)systematic risk which is
typically modelled by a Brownian motion, 2) nonsystematic risk which represents
the arrivals of new information, in other word, shock, to the market, which can
be modelled by a Poisson jump process, and derived the option pricing formula
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with jump-diffusion process. After these researches, as the solution to a stochas-
tic asset optimization problem, the jump-diffusion process is popularly used in
the dynamic asset prici ng literature [ e.g., Oldfield, Rogalski, and Jarrow(1977) ,
Ball and Torous(1983, 1985) , Jarrow and Rosenfeld(1984) , Ami n (1993) , Ki m,
Oh, a n d Br o o k s (1994) , Ch an g (1995)] as well as other financial economic litera-
ture such as in term structure of interest rates [e.g., Ahn and Thompson(1988),
Das(1997)], foreign exchange rates [Jorion(1988), Ball and Roma(1993) , Park,
Ahn and Fujihara(1993) , Vlaar and Palm(1993)] and etc.
For example, Ball and Torous(1983) considered the Bernoulli process to model

the arrivals of information in a market and estimated the model with 47 NYSE(New
York Stock Exchange) listed stocks each with 500 daily return observations. They
compared estimates produced by Beckers0 cumulant method and Bernoulli cumu-
lant method, then reported maximum likelihood estimates. Beckers0 cumulant
method produced negative variances, bσ2 and bδ2

in 60 percent of sampled stocks,
which, respectively, denote the variances of the diffusion part and the jump size.
However, they are reduced 20 percent by Bernoulli cumulant method. As it is ex-
pected, the maximum likelihood method did not produce any negative variances.
When the cumulant method produce positive variances, the parameter estimates
were similar to those of maximum likelihood estimates. And they considered the
likelihood ratio test,

Λ = −2 (lnL (x : γ∗)− lnL (x : γo)) ,

where γ∗ and γo denote the maximum likelihood estimates of γ in the presence and
the absence of Bernoulli jump structure, respectively. Under the null hypothesis
that security returns were consistent with a lognormal diffusion process without
Bernoulli jump components, Λ was asymptotically distributed χ2 with two degree
of freedom. Onl y five s to cks did not demonstrate the presence of jumps at t he
5 p ercent s igni ficant l evel . Moreover, over 78 p e rcent of t he sto cks indi cated t he
presence of jumps at 1 p ercent significant l evel. The resul t, therefore, confirms
the presence of jumps i n the ma jority of the sampled common sto ck returns.
An d, i n ano t he r work o f t he i r s (1985) , they esti mated the Poi sson j ump- diffus i o n
pro cess with 30 dai ly common sto ck returns. They a lso f ound the evidence t hat
jump comp onents we re present i n a ma jority of the s to cks e xami ned.
Ano t he r p o i nt we ne ed to co ns i d e r i s t ha t t he fina nc i al ti me s eri e s i s f o und

to b e hi ghly heteroscedastic over time. There are massive amount of literature
do cume nti ng t he heteroscedasti c nat ure of t he financi al time series data. With
ARCH models introduced by Engle(1983) , the heteroscedastic nature of the
data is well explained by the ARCH type models. Since, then, the ARCH type
models are developed with many different parameterization for σ2, including the
ARCH (p) model of Engle(1982) , the GARCH model of Bollerslev(1986) , the
GARCH −M model of Bollerslev and Engle(1986) , the log−GARCH model
of Pantula(1986) , and Geweke(1986) , and the Exponential ARCH model of
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Nelson(1989) . As we cannot overview the whole of literature of ARCH models
in this paper, I would like to introduce the couple of survey papers here. The
re ade r s wi l l find that t he s urve y p ap e r s a re we l l ove rvi ewed t h e AR C H mo de l s i n
the various typ es of parameterization. The one i s wri tten by Boll erslev, Chou,
and Kroner(1992) and the other by Bollerslev, Engle, and Nelson(1994) . The
firs t p a p e r i s o v e r v i e w e d ARC H typ e mo dels sp ecifically used to mo del i n the
fin anci a l e c ono mi cs a r ea and t he s ec o nd o ne i nc l u di ng AR C H ty p e mo de l s us e d
in the various area in Economics.
In this paper, we are trying to develop the relationship between the continuous

time sto chastic differenti al equation used in the t heoretical l i terature of financial
economics and the discrete time difference equati on used i n the l ots o f empi ri cal
works. There has b een done relatively little work on the relati on b etween the
continuous time nonlinear sto chastic differential equation systems, used i n so
much of the t heoretical literature, and t he AR C H sto chastic difference equati on
systems, favored by e mpirical workers. Indeed, t he two l iteratures have devel op e d
quite indep endently, with l ittle attempt to reconcile the discrete and continuous
mo de l s . The re as o n why t he empi ri c i s t b e i n g t urne d away f rom t he co nt i nuo us
time sto chastic differential equation system i s difficult to derive the l ikeliho o d
function of such mo dels, esp ecially when there are unobservable state variables
in the system.1 By the contrast, the reason why the empi ri ci st b eing favored
the discrete time AR C H typ e mo dels i s that al l economi c data are collected at
di screte time interval s and a discrete time ARC H likeliho o d function is usually
easy to derive and maximize. Therefore, we will develop conditions under which
AR C H sto chastic difference equation systems converge in di stribution to Ito
pro cess (Jump-Diffus ion pro cess) as the l engt h of t he discrete time interval go es
to zero.  What we hope to gain from this work are following: First, it may easier to
esti mate and forecast the parameters with AR C H mo de l s wi t h j u mp c o mp on e nt s
observed at discrete time intervals. So, we may want to use AR C H mo d e l s w i t h
jump comp onents as jump-diffusion approximations. Second, i n some cases we
may find t ha t di s t ri but i ona l r es ul t s a r e ava i l a bl e f o r t h e j ump- diffusion limit of
a sequence of ARCH process with jump components, while the discrete time
ARCH models with jump components themselves are not available. In such
cases, we may be able to use jump-diffusion processes as ARCH approximations
with jump components.
The structure of the paper is following. In section 2, we will sketch the

main results in weak convergence of a sequence of stochastic difference equation
to a jump-diffusion process. As an example, we use the GARCH −M model
of Bollerslev and Engle(1986) . In section 3, an ARCH jump-diffusion approx-
imation will be presented. We show that it can approximate a wide variety of
Generalized Ito process which is a jump-diffusion process. We will examine an
example based on AR(1) Exponential ARCH model of Nelson(1991) . Finally,

1See Lo(1988) for deriving the likelihood function such models.
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we will conclude this paper in section 4.
Some c o ndi ti ons f or t he non- e xpl o si on i n fini t e t i me s t at e d i n App e ndi x A.

These conditions will be useful to prove the results in weak convergence. All the
proofs of theorems are delegated to Appendix B.

2 Weak Convergence of the processes.

2.1 The Main Result in Weak Convergence

Here we want to show the weak convergence of a discrete time process to a jump-
diffusion process. The basic theoretical setup is following.
Let D ([ 0,∞) , Rn ) b e the s pac e of ma ppi ngs f rom [0 ,∞) into R n t h at are

right c ontinuous having fini te lef t l i mi ts and l et B (R n ) denote the Borel sets
on Rn. With introduction of an appropriate Skorohod metric, D ([0,∞) , Rn)
becomes a complete metric space.2 For each h > 0, let Mkh be the σ-algebra
generated by kh, hX0, hXh, hX2h, . . . , hXkh, and let νh be a probability measure
on (R n , B  (R n )) . Fo r e a c h h > 0, and e ach k = 0, 1, 2, . . . , de fine Πh,kh (x, ·) ,
called a transition function on Rn, as follows:

i) Πh,kh (x, ·) is a probability measure on (Rn, B (Rn)) for all x ∈ Rn,
ii) Πh,kh (·,Γ) is B (Rn) measurable for all Γ ∈ B (Rn) .

For each h > 0, let Ph be the probability measure on D ([0,∞) , Rn) such that

Ph [hX0 ∈ Γ] = νh (Γ) for any Γ ∈ B (Rn) , (2.1)

Ph [hXt = hXkh, kh ≤ t < (k + 1)h] = 1, (2.2)

Ph
£
hX(k+1)h ∈ Γ | Mkh

¤
= Πh,kh (hXkh,Γ)

almost surely under Ph for all k ≥ 0 and Γ ∈ B (Rn) . (2.3)

Here, for each h > 0, we specify the distribution of the random starting point by
(2.1) and form a continuous time process hXt from the discrete time process hXkh
by (2.2) making hXt a step function with jumps at time h, 2h, 3h, and so on.
(2. 3) sp ecifies the transition probabilities of n-dimensional discrete time Markov
process hXkh.3

2See [2] Kushner (1984) Section 4.3 in Chapter 2.
3In this somewhat complicated setup, out notation must keep track of three distinct kinds

of processes:
(a) the sequence of discrete time processes {hXkh} that depend both on h and on a discrete

time index kh, k = 0,1,2, ...,
(b) the sequence of continuous time processes {hXt} formed as step functions from the discrete

time processes in (a) using (2.2). This process also depends on h and on a continuous time
index t, t ≥ 0,
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Now, d e fin e , f o r e a ch h > 0,

aijh (x, t) ≡ h−1

Z
ky−xk≤1

(yi − xi) (yj − xj)Πh,h[t/h] (x, dy) , (2.4)

bih (x, t) ≡ h−1

Z
ky−xk≤1

(yi − xi)Πh,h[t/h] (x, dy) , (2.5)

∆ε
h (x, t) ≡ h−1

Z
ky−xk>ε

Πh,h[t/h] (x, dy) . (2.6)

gh (x, u) = xt − xt−, (2.7)

where [t/h] is the integer part of t/h and xt− = lims→t xs for s < t.
ah (x, t) is a measure of the truncated second moment per unit of time, bh (x, t)

is a measure of truncated drift per unit of time, ∆ε
h (x, t) is a probability that the

pro c e ss ha s a j ump o f mag ni t ude g r ea t er t ha n ε p e r u ni t of t i me . We de fin e t he
trunc ated first and second moment f or the pro cess x, s i nc e t he us ua l c ondi t i o na l
moments for the process  may not be finite.  For example,  if  Xt = e xp [ exp Wt ] ,
whe r e Wt i s a Wiener pro cess, Xt is a diffusi on pro cess, but there exist no mo-
m e nt s o f a ny o r d e r . A n d gh (x, u ) measures the si ze of jump p er unit of ti me.
We supp ose that a jump o ccurs wi th probability λh + o (h)4 in the time interval
[t, t + h) . As we assume the pro cess i s right continuous wi th finite l eft limit,
there will be only discontinuity of  the first kind (i.e.,  discrete jumps) and the
jump size wil l b e finite.
Now, we state the assumptions which are required to obtain the weak conver-

gence result. Let S n de not e t he s pa ce of n × n matri ces and l et S n+ denote the
space of n × n symmetric nonnegative definite matrices.
Assumption 1. Let a (x, t) : Rn× [0,∞)→ Sn+, b (x, t) : R

n× [0,∞)→ Rn and
g (x, t) : Rn × [0,∞) → Rn be continuous measurable mappings which are
continuous in x for each t ≥ 0. We assume that, for all R > 0, T > 0 and
ε > 0,

lim
h↓0

sup
kxk≤R, 0≤t≤T

kah (x, t)− a (x, t)k = 0 (2.8)

lim
h↓0

sup
kxk≤R, 0≤t≤T

kbh (x, t)− b (x, t)k = 0 (2.9)

lim
h↓0

sup
kxk≤R, 0≤t≤T

kgh (x, t)− g (x, t)k = 0 (2.10)

lim
h↓0

sup
kxk≤R, 0≤t≤T

∆ε
h (x, t) = λ (2.11)

(c) a limiting jump-diffusion process Xt to which, under conditions given below, the sequence
of processes {hXt} weakly converges as h→ 0.
To accommodate these three different processes, we indicate dependence on the length of

sampling interval, h, to lower left of X and dependence on the time index to lower right.
4Let f (h) and g (h) be functions of h. f (h) = o (g (h)), if limh→0 [f (h) /g (h)] = 0 and

f (h) = O (g (h)), if limh→0 [f (h) /g (h)] is bounded.
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This assumption requires that the second moment, drift, and jumps per unit
of time converge uniformly on compact sets to well-behaved functions of time
and the state variables x. And the probability of jump of size greater then ε
converges to a constant λ. So, the sample paths of the limit process will have
only di scontinuity of the first ki nd wi th probability one.

Assumption 2. Let σ (x, t) : Rn × [0,∞) → Sn be a continuous measurable
ma ppi ng s uch that, f or a l l x ∈ R n and al l t ≥ 0,

a (x, t) = σ (x, t)σ (x, t)0 . (2.12)

This assumption requires that the f uncti on a (x, t ), the second mome nt p e r
unit of time of the limit process, has a well-behaved matrix square root σ (x, t).

Assumption 3. As h → 0, hX0 converges in distribution to a random variable
X0 with probability measure ν0 on (Rn, B (Rn)) .

This assumption requires that the probability measure νh of the random start-
ing points h X0 to converge to a limi t measure ν 0 as h→ 0.
Wi t h al l t he as s u mp ti ons we made a b ove , we s p e c i fie d a i ni t i a l probabi l i ty

measure ν0 of the limit process, an instantaneous drift function b (x, t) , an in-
s t ant a ne ous c ovari ance mat ri x a (x, t ) , and a j ump ampl i t ude g (x, t) . An d we
have s upp o s e d t ha t t he s a mpl e pat h of t he pro ce s s i s di s c ont i nuo us wi t h pro b-
ability one. However, there is no guarantee that a limit pro cess is finite or i s
uni que l y define d. The re are a numb e r of works c ons i de ri ng t he c ondi t i o ns u nde r
whi ch ν0, a (x, t) , and b (x, t ) uni que l y d e &ne a d iffusion limit pro cess. Esp ecially
St ro ok and Varadhan(1979) studied extensively ab out the diffusion limit pro cess.
Et hi e r and Kurt z (1986) consi ders the martingale probl ems wi th Levy measure.
We provi de t he c o ndi t i o ns f or a j ump- diffus i on l i mi t pro c es s b ei ng fini t e i n fini t e
time in appendix A.

Assumption 4. ν0, a (x, t) , b (x, t), and g (x, t) uniquely specify the distribution
of a jump diffusion process Xt with initial distribution ν0, diffusion matrix
a (x, t) , drift vector b (x, t) , and jump amplitude g (x, t) .

Theorem 1 Under the assumptions 1 through 4, the sequence of hXt processes
defined by (2.1) to (2.3) co nverges wea kl y a s h → 0 to the Xt process defined by
the stochastic integral equation

Xt = X0 +

Z t

0

b (Xs, s) ds+

Z t

0

σ (Xs, s) dW (s)

+

Z t

0

Z
g (Xs−, s) eNλ (ds, dg) (2.13)
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where Wt is an n-dimensional standard Brownian motion, independent of X0,eNλ (ds, du) is t he compe ns ated Poi s son p roce ss defined as eNλ (ds, d u) = N (ds, du)−
λds 5 and where f or any Γ ∈ B (R n ) , P (X0 ∈ Γ) =  v0 (Γ) . Such an Xt proce s s
exists and i s distribut ional l y uni que. This di st ri bution does not depend on the
choi ce of σ (·, ·) made in Assumption 2. Final ly, Xt remains finite in finite time
interval s almost surely, i.e. for al l T > 0,

P

·
sup

0≤t≤T
kXt k <∞

¸
= 1. (2.14)

Now, we want to make the ab ove result a bit more general. For each i,
i = 1, 2, . . . , n,  each δ > 0, and e ach h > 0, de fin e

γh, i,δ  (x, t ) ≡ h−1

Z
Rn

|(y − x)i|2+δ Πh,h[t/h] (x, dy) , (2.15)

where (y − x)i is the ith element of the vector (y − x) . If, for s ome δ > 0 and al l i,
i = 1, 2, . . . , n, γh,i,δ  (x, t ) is finite, then the following integral will b e well-defined
and fini te:

a∗h (x, t) ≡ h−1

Z
Rn

(y − x) (y − x)0Πh,h[t/h] (x, dy) ,

b∗h (x, t) ≡ h−1

Z
Rn

(y − x)Πh,h[t/h] (x, dy) .

They are the same measures as ah (·, ·) , bh (·, ·) and gh (·, ·), but integration is
taken over Rn rather than |y − x| ≤ 1.
Assumption 10. There exist δ > 0 such that for each R > 0, each T > 0, and

each i, i = 1, 2, . . . , n,

lim
h↓0

sup
kxk≤R, 0≤t≤T

γh,i,δ (x, t) = 0. (2.16)

Further, let a (x, t) : Rn × [0,∞) → Sn+, b (x, t) : R
n × [0,∞) → Rn and

g (x, t) : Rn × [0,∞) → Rn be continuous measurable mappings which are
continuous in x for each t ≥ 0. We assume that for all R > 0, T > 0

lim
h↓0

sup
kxk≤R, 0≤t≤T

ka∗h (x, t)− a (x, t)k = 0, (2.17)

lim
h↓0

sup
kxk≤R, 0≤t≤T

kb∗h (x, t)− b (x, t)k = 0, (2.18)

lim
h↓0

sup
kxk≤R, 0≤t≤T

kgh (x, t)− g (x, t)k = 0, (2.19)

lim
h↓0

sup
kxk≤R, 0≤t≤T

∆ε
h (x, t) = λ (2.20)

5N (ds, du) is a Poisson process, and λ is a constant probability of jump in the Poisson
process, and λ > 0.
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Theorem 2 Under Assumptions 10, and 2 through 4, the conclusion of Theorem
1 hold.

As stated in Merton(1990, Ch.3), the assumption 10 implies that the moments
higher than two are vanishes to zero at an appropriate rate as h→ 0.

2.2 Example: GARCH (1, 1)-M Model.

In Engle and Bollerslev(1986) , they presented the GARCH (1, 1)-M process for
the cumulative excess returns yt on a portfolio. The excess return process is

yt = yt−1 + µσ
2
t + σtZt,

σ2
t+1 = ω + σ2

t

£
β + αZ2

t

¤
.

where Zt ∼i.i.d. N (0, 1) .
Let us suppose that a stochastic process in discrete time is including the jump

process as follows;

yt = yt−1 + µσ
2
t + σtZt + cηt, (2.21)

σ2
t+1 = ω + σ2

t

¡
β + αZ2

t

¢
, (2.22)

where Zt ∼ iid N (0, 1) and ηt ∼Bernoulli distributed with Pr (ηt = 0) = 1 −
λdt + o (dt) and Pr (ηt = 1) = λdt + o (dt) . And c denote the jump size of the
process when a jump occurs.
Now, we partition the time interval more and more finely and exami ne the

properties of the stochastic difference equation system. We allow the parameter
α, β, and ω to depend on h and make the drift term in (2.21) proportional to h.
Then we may rewrite the system of stochastic processes (2.21) and (2.22) as

hykh = hy(k−1)h + hµh hσ
2
kh + h1/2

hσkh hZkh

+ hηkh (ch + φh hZkh) , (2.23)

hσ
2
(k+1)h = ωh + hσ

2
kh

¡
βh + αh hZ

2
kh

¢
, (2.24)

and
Pr
£¡
hy0, hσ

2
0

¢ ∈ Γ
¤
= υh (Γ) for any Γ ∈ B ¡R2

¢
, (2.25)

where hZkh ∼i.i.d. N (0, 1) and hηkh ∼Bernoulli distributed with Pr [hηkh = 0] =
1−λh+o (h) and Pr [hηkh = 1] = λh+o (h) . υh satisfy the assumption 3 as h→ 0
and for each h ≥ 0, υh ((y0,σ

2
0) : σ

2
0 > 0) = 1. And we create the continuous time

process hyt and hσ
2
t by

hyt ≡ hykh and hσ
2
t ≡ hσ

2
kh for kh ≤ t < (k + 1)h. (2.26)

We want to find out whi ch s equences {ωh, αh, βh} make the {hσ2
t , hyt} process

converge in distribution an jump-diffusion mixed process as h→ 0.

8



Let Mkh is the σ-algebra generated by kh, hy0, hyh, . . . , hy(k−1)h, and hσ
2
0,

hσ 
2
h ,  . . . ,  hσ  

2
kh . Then, the first moment of the pro cess is

E
£
h−1

¡
hykh − hy(k−1)h

¢ |Mkh

¤
= µh hσ

2
kh + λch (2.27)

E
h
h−1

³
hσ

2
(k+1)h − hσ

2
kh

´
|Mkh

i
= h−1 ωh + h

−1 σ2
kh (βh + αh − 1)(2.28)

To sati sfy t he Assumption 1 0 , we require the f ollowi ng limits exi st and b e fini te;

lim
h↓0

h−1ωh = ω (2.29)

lim
h↓0

h−1 (1− βh − αh) = θ (2.30)

As it is stated in Bollerslev(1986) , it is necessary to require that ωh, αh, and
βh be nonnegative because σ2

t should be remain positive with probability one.
Therefore, ω ≥ 0 while θ could be of either sign.
Then,

lim
h↓0

E
£
h−1

¡
hykh − hy(k−1)h

¢ |Mkh

¤
= µσ2 + λc (2.31)

lim
h↓0

E
h
h−1

³
hσ

2
(k+1)h − hσ

2
kh

´
|Mkh

i
= ω − θσ2 (2.32)

The second moment per unit of time is

E
h
h−1

¡
hykh − hy(k−1)h

¢2 |Mkh

i
= hµ2

h hσ
4
kh + hσ

2
kh + λ

¡
c2h + φ2

h

¢
+ 2λh ch µh hσ

2
kh, (2.33)

E

·
h−1

³
hσ

2
(k+1)h − hσ

2
kh

´2

|Mkh

¸
= h−1ω2

h + h
−1

hσ
4
kh (αh + βh − 1)2 + 2h−1α2

h hσ
4
kh

+h−12ω2
h hσ

4
kh (αh + βh − 1) , (2.34)

E
h
h−1

¡
hykh − hy(k−1)h

¢ ³
hσ

2
(k+1)h − hσ

2
kh

´
|Mkh

i
= µh hσ

2
kh ωh + µh hσ

4
kh (αh + βh − 1)

+λh ch ωh + λh ch hσ
2
kh (αh + βh − 1) . (2.35)

With (2.29) and (2.30) and assuming that

lim
h↓0
2h−1α2

h = α2, (2.36)

exist and is finite. And α2 is always greater t han 0. The n we have

E
h
h−1

¡
hykh − hy(k−1)h

¢2 |Mkh

i
= hσ

2
kh + λ

¡
c2h + φ2

h

¢
+ o (1) , (2.37)

E

·
h−1

³
hσ

2
(k+1)h − hσ

2
kh

´2

|Mkh

¸
= α2

h hσ
4
kh + o (1) , (2.38)

E
h
h−1

¡
hykh − hy(k−1)h

¢ ³
hσ

2
(k+1)h − hσ

2
kh

´
|Mkh

i
= o (1) (2.39)
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where if ψ (h) = o (1) , then limh→0 ψ (h) = 0. We can show that the third and
fourth moments of the process hσ2

t exist and converge to zero as h→ 0, and those
of the process hyt exist and O (h) .6

Then,  we can define the coeffic i e nt s i n t he j ump- diffusion mixed pro cess as

b
¡
y,σ2

¢ ≡ ·
µσ2 + λc
ω − θσ2

¸
(2.40)

a
¡
y,σ2

¢ ≡ ·
σ2 + λ

¡
c2 + φ2

¢
0

0 α2σ4

¸
(2.41)

g
¡
y,σ2

¢ ≡ ·
c
0

¸
(2.42)

and, if αh, βh and ωh satisfy the conditions in (2.29), (2.30) and (2.36) , then
Assumption 10 holds. If we suppose that σ (·, ·) in Assumption 2 is the element-
by-element square root of a (y,σ2) , then Assumption 2 holds as well. From
(2.40) - (2.42) , we can write the jump-diffusion mixed limit as

dyt = (µσ
2 + λc) dt+

£
σ2 + λ

¡
c2 + φ2

¢¤1/2
dW1,t + cηt (2.43)

dσ2
(t+1) = (ω − θσ2) dt+ ασ2dW2,t (2.44)

P [(y0,σ
2
0) ∈ Γ] = ν0 (Γ) for any Γ ∈ B (R2) (2.45)

where Wi, t, i = 1, 2, are independent standard Wiener processes and are also in-
dependent of the Bernoulli process, ηt. And all those three independent processes
are independent of the initial values (y0,σ

2
0) .

3 Jump-Diffusion Approximation.

In this section, we will present that ARCH models can be used as approximation
of generalized Ito process (jump-diffusion process).

3.1 ARCH Jump-Diffusion Approximation

Define the sto chastic differential equation system

dyt = f (st, yt, t) dt+ g (st, yt, t) dW1,t

+
©
k (st, yt, t) + dt

−1/2φ (st, yt, t) dW1,t

ª
dηt,

(3.1)

dst = F (st, yt, t) dt+G (st, yt, t) dW2,t, (3.2)·
dW1,t

dW2,t

¸ £
dW1t dW 0

2,t

¤
=

·
1 Ω1,2

Ω2,1 Ω2,2

¸
dt = Ωdt, (3.3)·

dηt
0

¸ £
dηt 00

¤
=

·
λ 01,2

02,1 02,2

¸
dt = Λdt, and (3.4)

Σdt = Ωdt+ Λdt (3.5)

6The detailed calculations are available on request.
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whe r e Ω and Λ are (n + 1)  × (n + 1)  p ositive semi-de&nite matri ces of rank two
or less, 01,2 , 02,1 , 02,2 are (n × 1) col umn vector, (1 × n) row vector, and (n × n)
matrix of zeros, resp ectively, st is an n-dimensional vector of unobservabl e state
va r i a b l e s , y is an observable scalar pro cess, W1,t is one dimensional standard
Wi ener pro cess, W2,t is an n-dimensional standard Wi ener pro cess, η t i s a Poi sson
pro cess with i ntensi ty λ, f (st , yt , t) , g (st , yt , t) , and k (st , yt , t) are real-val ued
continuous scalar functions, and F (st , yt , t) and G (st , yt , t) are real, continuous
n × 1 and n × n valued functions, resp ecti vely. The initial values of the pro cess
(y0 , s0 ) i s assume d t o b e random a nd indep e ndent of W1,t , W2,t , and η t , and W1,t ,
W2,t , and η t , are i ndep e nde nt o f e ach o ther.
Define the matri x and vector functions a, b, and c by

a (y, s, t) =

·
g2 + λ

¡
k2 + φ2

¢
gΩ1,2G

0

GΩ2,1g GΩ2,2G
0

¸
, (3.6)

b (y, s, t) =
£
f + λk F 0

¤0
, (3.7)

c (y, s, t) =
£
k 00

¤0 (3.8)

where 0 is an n× 1 vector of zeros. Then, a (y, s, t) is (n+ 1)× (n+ 1) matrix
and b (y, s, t) and c (y, s, t) are (n + 1)  × 1 ve c t o r s .
Now, we de fine a sequence of approximat ing pro cesses that conve rge t o (3. 1) -

(3. 3) i n di s t ri but i on as h→ 0.

h ykh = h y(k−1)h + f (h ykh , h skh , kh) h + g (h ykh , h skh , kh) h Zkh

+ ηkh
¡
k (hykh, hskh, kh) + h

−1/2φ (hykh, hskh, kh) hZkh
¢
, (3.9)

hs(k+1)h = hskh + F (hykh, hskh, kh)h+G (hykh, hskh, kh) hZ
∗
kh, (3.10)

where

hZkh ∼ i.i.d. N (0, h) , (3.11)

hZ
∗
kh =

 θ1 hZkh + γ1

h
|hZkh|−

¡
2h
π

¢1/2
i

θn hZkh + γn

h
|hZkh|−

¡
2h
π

¢1/2
i  , (3.12)

and the coefficients {θ1, γ1, . . . , θn, γn} are selected so that

E

·
hZkh + ηkh
hZ

∗
kh

¸ £
hZkh + ηkh hZ

∗
kh

¤
= Σdt. (3.13)

Now we can convert the discrete time process [hykh, hs0kh] into a continuous time
pro c e ss by d efini ng

hyt ≡ hykh, hst ≡ hskh for kh ≤ t < (k + 1)h. (3.14)
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Theorem 3 If a (y, s, t) , b (y, s, t) and c (y, s, t) satisfy Assumption 4, with
x ≡ [y, s0] ,and if the joint probability measures υh of the starting values (hy0, hs

0
0)

converges to the measure υ0 as h→ 0, then (hyt, hs0t)⇒ (yt, s
0
t) as h→ 0.

The proof of this theorem is a direct application of Theorem 2.
¡
hykh − hy(k−1)h

¢
,¡

hs(k+1)h − hskh
¢
and h are discrete correspondence of dy, ds, and dt, respectively.

The theorem 3.2 in Nelson (1990b) shows that hZkh and hZ∗kh are the discrete time
counterpart of dW1 and dW2.

3.2 AR(1) Exponential ARCH.

Here we consider a jump-diffusion process with conditional variance following a
continuous time AR(1) pro cess. Let0 s define a system of sto chastic differential
equations

d (lnSt) = θσ2
tdt+ σtdW1,t + ktdηt (3.15)

d (lnσ2
t ) = −β [(lnσ2

t )− α] dt+ dW2,t (3.16)

P [(lnS0, (lnσ
2
0)) ∈ Γ] = υ0 (Γ) for any Γ ∈ B (R2) (3.17)

where St is the value of portfolio at time t, W1,t and W2,t are Wiener processes
with ·

dW1,t

dW2,t

¸ £
dW1,t dW2,t

¤
=

·
1 Ω1,2

Ω1,2 Ω2,2

¸
dt ≡ Ωdt (3.18)

and Ω2,2 ≥ Ω2
1,2, and ηt is a Poisson process with parameter λ and·

dηt
0

¸ £
dηt 0

¤
=

·
λ 0
0 0

¸
dt ≡ Λdt. (3.19)

Then, the variance matrix of the system of equation is

Σdt = Ωdt+ Λdt. (3.20)

We wa nt to find a sequence of AR C H mo de l s conve r gi ng we akl y t o (3.15) -
(3.20) by using Theorem 3. As we assume that (lnσ2

t ) in (3.16) follows a con-
tinuous time AR (1) process, (ln hσ

2
kh) in the discrete counterpart of (3.16) will

also follow an AR (1) process. For each h > 0, we have

(lnh Skh) =
¡
lnh S(k−1)h

¢
+ hθ hσ

2
kh + hσkh hZkh

+ηkh
¡
kh + h

−1/2φh hZkh
¢
, (3.21)³

lnh σ
2
(k+1)h

´
= (lnh σ

2
kh)− β [(ln hσ

2
kh)− α]h+ Ω1,2 hZkh

+γ
h
|hZkh|−

¡
2h
π

¢1/2
i
, (3.22)

P [(lnS0, (lnσ
2
0)) ∈ Γ] = υ0 (Γ) for any Γ ∈ B (R2) , (3.23)
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where γ = [(Ω2,2 − Ω1,2) / (1− 2/π)]1/2 and hZkh ∼i.i.d. N (0, h) . Then, we have

E

"
hZkh + ηkh

Ω1,2 hZkh + γ
h
|hZkh|−

¡
2h
π

¢1/2
i #

×
h
hZkh + ηkh Ω1,2 hZkh + γ

h
|hZkh|−

¡
2h
π

¢1/2
i i

=

·
1 + λ Ω1,2

Ω1,2 Ω2,2

¸
h (3.24)

≡ Σh

whi ch i s di s crete c ount erpart of (3.20) . As b e f o r e , we d e fin e a c o nt i nu o u s t i me
step function

hSt ≡ hSkh, hσ
2
t ≡ hσ

2
kh for kh ≤ t < (k + 1)h.

And, the discrete time counterparts of d [lnS] , d [lnσ2] , dW1,t, dW2,t, dηt and

dt are (lnh Skh) −
¡
lnh S(k−1)h

¢
,
³
lnh σ

2
(k+1)h

´
− (lnh σ2

kh) , hZkh, ηkh, and h, re-
spectively.

Theorem 4 If the distribution of random starting point, υh, converges to υ0 as
h→ 0, then {hSt, hσ2

t}⇒ {St, σ2
t} as h→ 0.

4 Conclusions

In this paper, we have shown that a stochastic difference equation converges
weakly to a stochastic differential equation with jump component as length
of sampling interval, h, goes to zero. We presented that, as an example,
GARCH (1, 1)-M process converges weakly to a jump-diffusion limit as h goes to
zero. That is, a ARCH type process can be approximated by stochastic jump-
diffusion process. It may much easier to estimate and forecast with a discrete
time stochastic difference equation than with a continuous time stochastic differ-
ential equation. So, when we observe a jump-diffusion model at discrete time
intervals, we may use ARCH model to estimate and forecast as jump-diffusion
approximation.
It is shown that ARCH process is a discrete approximation of jump-diffusion

process with using Exponential ARCH process with Poisson jump component. If
there are distributional results available for the jump-diffusion limit of a sequence
of discrete time stochastic difference equations and there is not available for the
discrete time stochastic difference process, such as ARCH process, then we may
use jump-diffusion process as an approximation of ARCH process.
Therefore, we may use a discrete time ARCH process as an approximation

of a jump-diffusion process in estimation and forecasting. And we may use

13



the jump-diffusion process as an approximation of ARCH process when there
is distributional results available for the jump-diffusion limit of the sequence of
ARCH processes.
Whi l e we show the weak convergence of those pro cesses, we fixed the Poi sson

jump intensity λ as a constant. This may be relaxed for the jump intensity to
vary over time with a certain probability structure.
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Appendix A : Conditions for Non-Explosion.
Theorem 10.2.1 in Strook and Varadhan(1975) provides a non-explosion con-

dition for the limit process. This condition ensures that the limit process does
not explo de in finite time. In the theorem, the condition i s given for the case
of diffusion process. But, we adopt this condition for the jump-diffusion process
wi th repl acing the infinitesimal op erator f or a jump-diffus ion pro cess wi th that
of a diffus ion pro cess.
Suppose that there exist a nonnegative function ϕ (x, t) which is twice differ-

entiable with respect to x and differentiable with respect to t such that for each
T > 0,

lim
|x|→∞

inf
0≤t≤T

ϕ (x, t) =∞ (A.1)

and there exist positive locally bounded functionM (T ) such that, for each T > 0,
for all x ∈ Rn, and for all t, 0 ≤ t ≤ T ,µ

∂

∂t
+ Lt

¶
ϕ (x, t) ≤M (T )ϕ (x, t) , (A.2)

where

Lϕ (x, t) =
nX
i=1

bi (x, t)
∂ϕ (x, t)

∂xi
+
1

2

nX
i,j=1

aij (x, t)
∂2ϕ (x, t)

∂xi∂xj

+

Z
[ϕ (x+ g (x, u) , t)− ϕ (x, t)

−
nX
i=1

gi (x, u)
∂ϕ (x, t)

∂xi

#
N (h, du) . (A.3)

If we assume that Xt = x, (B.2) ensures the instantaneous drift of ϕ (Xt, t)
grows linearly with ϕ (Xt, t) . Therefore, it guarantees that ϕ (Xt, t) does not
expl o de i n finite time. Al so, (B.1) wi l l guarantee t ha t i f ϕ (Xt, t) does not
explode, neither will Xt.

Appendix B : Proofs of The Theorems.
Proof of Theorem 1
Let t he i n fini t e s i mal o p era t or f or t he j ump- diffusi on pro cess b e

Lf (x) =
nX
i=1

bi (x, t)
∂f

∂xi
+
1

2

nX
i,j=1

aij (x, t)
∂2f

∂xi∂xj

+

Z "
f (x+ c (x, u))− f (x)−

nX
i=1

gi (x, t)
∂f

∂xi

#
N (h, du) ,(B.1)
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then, by the Lemma 11.2.1 in Strook and Varadhan(1979) , the assumption 1 is
equivalent to the condition that for each f ∈ C∞0 (Rn)

1

h
Ahf → Lf,

where t he i nfinitesi mal op erat or for a di screte Markov pro cess Ah defined as

Ah f (x) =

Z
[f (y)− f (x)]Πh,h[t/h] (x, dy) .

Let 0 s define a random pro cess Mf as

Mf (t) = f (x (t))− f (x (0))−
Z t

0

Lf (x (s)) ds.

If Mf (t) is a martingale, then there exist a Wiener process W (t) , and a Poisson
process Nλ (t,Γ) with independent increments and identically distributed jumps
which solve a jump diffusion model

x (t) = x (0) +

Z t

0

b (x, s) ds+

Z t

0

σ (x, s) dW (s) +

Z t

0

Z
g (x, u) eNλ (ds, du) ,

(B.2)
whe r e g (x, u) is a b ounded cont inuous function and eNλ (dt, du) i s a c omp ens at e d
Poisson pro cess defined as eNλ (ds, du) = N (ds, d u)− λds wi th jump probabili ty
of λ.
In assumption 4, the distribution of Xt is sp ecified by v0 , a (x, t ) , b (x, t ), and

g (x, t). As σ (x, t) only enters the equation through a (x, t) function, the distri-
bution of Xt does not depend on the choice of σ (x, t) as long as σ (x, t)σ0 (x, t) =
a (x, t).

Proof of Theorem 2.
To prove the theorem, we need to show that the Assumption 10 implies As-

sumption 1. Then Theorem 2 follows immediately by Theorem 1. To do so, we
only need to prove that

lim
h→0

sup
|x|≤R, 0≤t≤T

1

h

Z
ky−xk>1

(y − x)2i Πh,h[t/h] (x, dy) = 0, (B.3)

lim
h→0

sup
|x|≤R, 0≤t≤T

1

h

Z
ky−xk>1

|y − x|iΠh,h[t/h] (x, dy) = 0, (B.4)

since the conditions for c (x, u) and ∆ε
h (x, t) remain same as in Assumption 1.

By Hőlder0s Integral Inequality,

1

h

Z
ky−xk>1

|y − x|iΠh,h[t/h] (x, dy)

≤ £
γh,i,δ (x, t)

¤1/(2+δ)
[∆ε

h (x, t)]
(1+δ)/(2+δ) . (B.5)
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And by (2.16) , there is some δ > 0 such that for all R, T > 0, the right hand
side of the i nequal ity vani shes to zero for every ε as h→ 0 uni f o rml y on kxk ≤ R,
0 ≤ t ≤ T,  provi ng (B.4) . Ag a i n , by Hől der 0 s Integral Inequality

1

h

Z
ky−xk>1

(y − x)2i Πh,h[t/h] (x, dy)

≤ £
γh, i,δ  (x, t)

¤2/(2+δ ) 
[∆ε

h (x, t )]
δ /(2+δ ) (B. 6)

which vanishes i n the same manner as (B.3) .

Proof of Theorem 3.
To prove t hi s t heorem, we need t o s how t he Assumption 2 and 1 are satisfied.

First we can factor a (y, s, t) into σ (y, s, t)σ 0 (y, s, t) which satisfies Assumption
2. To show this

a (y, s, t) =

·
g2 + λ (k2 + v2) gΩ1,2G

0

GΩ2,1g GΩ2,2G
0

¸
=

·
g2 gΩ1,2G

0

GΩ2,1g GΩ2,2G
0

¸
+

·
λ (k2 + v2) 01,2

02,1 02,2

¸
=

½·
gdW1,t

GdW2,t

¸
+

· ¡
k + dt−1/2vdW1,t

¢
dηt

0

¸¾
×©£ gdW1t dW 0

2,tG
0 ¤+ £ ¡k + dt−1/2vdW1,t

¢
dηt 00

¤ª
=

·
gdW1,t +

¡
k + dt−1/2vdW1,t

¢
dηt

GdW2,t

¸
× £ gdW1t +

¡
k + dt−1/2vdW1,t

¢
dηt dW 0

2,tG
0 ¤

= σσ0 (B.7)

Now we mus t s how t ha t As s umpt i o n 1 0 is satisfied. That i s, we need to show
that a∗h (y, s, t) , b

∗
h (y, s, t) , and ch (y, s, t) converge to a (y, s, t) , b (y, s, t) and

c (y, s, t) respectively, and γh,i,δ (y, s, t) converges to zero uniformly on compacts
as h→ 0. Since

b∗h (y, s, t) =
·
f (s, y, t) + λk (y, s, t)
F (s, y, t)

¸
, (B.8)

b∗h (s, y, t) = b (s, y, t).

a∗h (y, s, t) =
·
f2h+ g2 + λ (k2 + v2) fhF 0 +GΩ1,2G

0

Ffh+GΩ2,1g GΩ2,2G
0

¸
, (B.9)

which will converge to a (y, s, t) as h → 0, since f, F, g and G are l o cally
bounded.

17



Finally, if we choose δ = 1, then

γh,1 (y, s, t) = h−1E

" ¯̄
hf + g hZkh + ηkh

¡
k + h−1/2v hZkh

¢¯̄3
|hF +G hZ

∗
kh|3

#

=

· √
h (g2 + λ (k2 + v2))

p
fh+ g2 + λ (k2 + v2)√

hGΩ2,2G
0pFF 0h+GΩ2,2G0

¸
= O

¡
h1/2

¢
uniformly on compacts.
Therefore, we showed that Assumption 2 and 1 0 are s ati sfie d.

Proof of Theorem 4.
To pro of the theorem, we need to show the Assumpti on 4 i s satisfies, then the

result follows immediately by theorem 2 and theorem 4. To do so, we need to
show that the system of stochastic differential equation has unique solution.
i) Show that the martingale problem for a (·, ·) , b (·, ·) , and c (·, ·) is well

posed.
ii) Show that the limit process does not explode.
By Chapter 8, Theorem 3.3 in Ethier and Kurtz(1986) and Theorem 11.2.3

in Strook and Varadhan(1979), we can prove the statement i). To prove the
statement ii), define for K > 0,

ϕ ≡ K + f (S) |S|+ f (V ) exp (|V |) ,

where

f (x)

(
≡ exp

³
− 1
|x|
´
, if x = 0,

≡ 0, otherwise.

ϕ (V, S ) i s no nne g at i ve, a rbi t rari l y differentiabl e and s atisfie s (A.1) . Its deriva-
tives are lo cally b ounded, so that p ositive K and M can b e chose to satisfy (A.2)
on any compact set. For large values of S and V

ϕV (V, S) ≈ sign (V ) exp (|V |) ,
ϕV V (V, S) ≈ exp (|V |) ,
ϕS (V, S) ≈ sign (S) ,

ϕSS (V, S) ≈ 0,

so that with M > 1 + αβ + Ω2, 2 /2 + |θ | + λk, there exist a fini te k satisfying
(A.2) . Then, the result follows by Theorem 2.
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