Approximation of A Jump-Diffusion Process

Sanghoon Lee*
SungKyunKwan University

03 May 2003

Abstract

We present a weak convergence of a discrete time process to a jumpdiffusion process as the length of sampling interval, h, goes to zero. There is an example given for the weak convergency with using $\operatorname{GARCH}(1,1)$ M model by Engle and Bollerslev(1986). It is shown that ARCH type models can be used as discrete time approximations of jump-diffusion processes. We use Exponential $A R C H$ with Poisson Jump component as an example for the approximation. Therefore, we may use a discrete time $A R C H$ process as an approximation of a jump-diffusion process in estimation and forecasting. And we may use the jump-diffusion process as an approximation of $A R C H$ process when there is distributional results available for the jump-diffusion limit of the sequence of $A R C H$ processes.

JEL classification: C22

Key word(s): Weak Convergence, ARCH Model, Jump-Diffusion Process

1 Introduction.

During the last couple of decades or so, many researchers have found that the value of option prices is not continuous with probability one. Cox and Ross(1975) assumed that the new information arriving at a market is a lump sum causing a discrete jump in the value of options and derived the option pricing formula by using a Poisson jump process. Merton, in his works (1976a,b), decomposed the total change in the stock prices into two components: 1)systematic risk which is typically modelled by a Brownian motion, 2) nonsystematic risk which represents the arrivals of new information, in other word, shock, to the market, which can be modelled by a Poisson jump process, and derived the option pricing formula

[^0]with jump-diffusion process. After these researches, as the solution to a stochastic asset optimization problem, the jump-diffusion process is popularly used in

 ture such as in term structure of interest rates [e.g., Ahn and Thompson(1988), Das(1997)], foreign exchange rates [Jorion(1988), Ball and Roma(1993), Park, Ahn and Fujihara(1993), Vlaar and Palm(1993)] and etc.

For example, Ball and Torous(1983) considered the Bernoulli process to model the arrivals of information in a market and estimated the model with 47 NYSE(New York Stock Exchange) listed stocks each with 500 daily return observations. They compared estimates produced by Beckers' cumulant method and Bernoulli cumulant method, then reported maximum likelihood estimates. Beckers' cumulant method produced negative variances, $\widehat{\sigma}^{2}$ and $\widehat{\delta}^{2}$ in 60 percent of sampled stocks, which, respectively, denote the variances of the diffusion part and the jump size. However, they are reduced 20 percent by Bernoulli cumulant method. As it is expected, the maximum likelihood method did not produce any negative variances. When the cumulant method produce positive variances, the parameter estimates were similar to those of maximum likelihood estimates. And they considered the likelihood ratio test,

$$
\Lambda=-2\left(\ln L\left(\underline{x}: \gamma^{*}\right)-\ln L\left(\underline{x}: \gamma^{o}\right)\right),
$$

where γ^{*} and γ^{o} denote the maximum likelihood estimates of γ in the presence and the absence of Bernoulli jump structure, respectively. Under the null hypothesis that security returns were consistent with a lognormal diffusion process without Bernoulli jump components, Λ was asymptotically distributed χ^{2} with two degree
 5 percent/significant level.WMoreover, over 78 percent offthe Istocksindicated the

 And, inlanother|work Ofltheirsi(1985), ,they Estimated the:Poisson jump-diffusion

Anotherlpoint we Cheed to considerlisilthatlithe-financial time [serieslislfound to■elhighly heteroscedastic over time. Thereare■massive■amount of Øiterature documenting the Cheteroscedasticlnature of the-financial timeßseriesdata. \square With ARCH models introduced by Engle(1983), the heteroscedastic nature of the data is well explained by the $A R C H$ type models. Since, then, the $A R C H$ type models are developed with many different parameterization for σ^{2}, including the $A R C H$ (p) model of Engle(1982), the GARCH model of Bollerslev(1986), the GARCH - M model of Bollerslev and Engle(1986), the \log-GARCH model of Pantula(1986), and Geweke(1986), and the Exponential ARCH model of

Nelson（1989）．As we cannot overview the whole of literature of $A R C H$ models in this paper，I would like to introduce the couple of survey papers here．The readers｜willfind that the surveypaperslare wellioverviewed thelARCH■modelslin
 and Kroner（1992）and the other by Bollerslev，Engle，and Nelson（1994）．The first paper is overviewed $\backslash A R C H \square$ typelmodels specifically \square used to model in the financialleconomics area and the secondone including ARCH typelmodelslused in the various area in Economics．

In this paper，we are trying to develop the relationship between the continuous timestochastic＿differentialequation used in the theoreticalliteratureoffinancial economics and the discrete time differenceequation used inlthelotsoflempirical
 continuous time■nonlinear■stochastic■differential \sqsubset equation systems，$\square u s e d \sqcap i n /$ so much of the theoreticalliterature，and the $A R C H$ stochastic difference equation systems，favored by empiricalworkers．\square Indeed，thetwoliteraturesthave配eveloped quite independently，with little attemptđoreconcile the』discreteand＿continuous
 time』stochastic differential Cequation【system■is\｜difficult Io derive the【likelihood

 the discrete time $A R C H$ typelmodels iis\｜that alleconomicldata are Collectedat
 easy／to derive■andmaximize．\square Therefore，Wewilldevelop ©onditions under Which
 process（Jump－Diffusion process）as thelengthlof the＿discrete—ime intervalgoes to zero．What we hope to gain from this work arefollowing：First，it may easierto estimateandforecast the parameters区ith ARCHmodels｜withjump components

 may／find thatldistributionallresultslarelavailablelforltheljump－diffusion【limit of a sequence of $A R C H$ process with jump components，while the discrete time $A R C H$ models with jump components themselves are not available．In such cases，we may be able to use jump－diffusion processes as $A R C H$ approximations with jump components．

The structure of the paper is following．In section 2，we will sketch the main results in weak convergence of a sequence of stochastic difference equation to a jump－diffusion process．As an example，we use the $G A R C H-M$ model of Bollerslev and Engle（1986）．In section 3，an $A R C H$ jump－diffusion approx－ imation will be presented．We show that it can approximate a wide variety of Generalized Ito process which is a jump－diffusion process．We will examine an example based on AR（1）Exponential ARCH model of Nelson（1991）．Finally，

[^1]we will conclude this paper in section 4.
 These conditions will be useful to prove the results in weak convergence. All the proofs of theorems are delegated to Appendix B.

2 Weak Convergence of the processes.

2.1 The Main Result in Weak Convergence

Here we want to show the weak convergence of a discrete time process to a jumpdiffusion process. The basic theoretical setup is following.

 on R^{n}. With introduction of an appropriate Skorohod metric, $D\left([0, \infty), R^{n}\right)$ becomes a complete metric space. ${ }^{2}$ For each $h>0$, let $\mathbf{M}_{k h}$ be the σ-algebra generated by $k h,{ }_{h} X_{0},{ }_{h} X_{h},{ }_{h} X_{2 h}, \ldots,{ }_{h} X_{k h}$, and let ν_{h} be a probability measure on $\left(R^{n}, B\left(R^{n}\right)\right) . \square$ Forleach $h>0$, and each $\llbracket \square 0, \square, 2, \ldots$, define $\Pi_{h, k h}(x, \cdot)$, called a transition function on R^{n}, as follows:
i) $\Pi_{h, k h}(x, \cdot)$ is a probability measure on $\left(R^{n}, B\left(R^{n}\right)\right)$ for all $x \in R^{n}$,
ii) $\Pi_{h, k h}(\cdot, \Gamma)$ is $B\left(R^{n}\right)$ measurable for all $\Gamma \in B\left(R^{n}\right)$.

For each $h>0$, let P_{h} be the probability measure on $D\left([0, \infty), R^{n}\right)$ such that

$$
\begin{align*}
& P_{h}\left[{ }_{h} X_{0} \in \Gamma\right]=\nu_{h}(\Gamma) \text { for any } \Gamma \in B\left(R^{n}\right), \tag{2.1}\\
& P_{h}\left[{ }_{h} X_{t}={ }_{h} X_{k h}, k h \leq t<(k+1) h\right]=1, \tag{2.2}\\
& P_{h}\left[{ }_{h} X_{(k+1) h} \in \Gamma \mid \mathbf{M}_{k h}\right]=\Pi_{h, k h}\left({ }_{h} X_{k h}, \Gamma\right) \tag{2.3}\\
& \quad \text { almost surely under } P_{h} \text { for all } k \geq 0 \text { and } \Gamma \in B\left(R^{n}\right) .
\end{align*}
$$

Here, for each $h>0$, we specify the distribution of the random starting point by (2.1) and form a continuous time process ${ }_{h} X_{t}$ from the discrete time process ${ }_{h} X_{k h}$ by (2.2) making ${ }_{h} X_{t}$ a step function with jumps at time $h, 2 h, 3 h$, and so on.
 process ${ }_{h} X_{k h}{ }^{3}$

[^2]Now, define, Iforleach $\lceil h>0$,

$$
\begin{align*}
a_{h}^{i j}(x, t) & \equiv h^{-1} \int_{\|y-x\| \leq 1}\left(y_{i}-x_{i}\right)\left(y_{j}-x_{j}\right) \Pi_{h, h[t / h]}(x, d y) \tag{2.4}\\
b_{h}^{i}(x, t) & \equiv h^{-1} \int_{\|y-x\| \leq 1}\left(y_{i}-x_{i}\right) \Pi_{h, h[t / h]}(x, d y) \tag{2.5}\\
\Delta_{h}^{\varepsilon}(x, t) & \equiv h^{-1} \int_{\|y-x\|>\varepsilon} \Pi_{h, h[t / h]}(x, d y) \tag{2.6}\\
g_{h}(x, u) & =x_{t}-x_{t^{-}} \tag{2.7}
\end{align*}
$$

where $[t / h]$ is the integer part of t / h and $x_{t^{-}}=\lim _{s \rightarrow t} x_{s}$ for $s<t$.
$a_{h}(x, t)$ is a measure of the truncated second moment per unit of time, $b_{h}(x, t)$ is a measure of truncated drift per unit of time, $\Delta_{h}^{\varepsilon}(x, t)$ is a probability that the process hasla jump oflmagnitude greater than ε perlunitlof time. We Wefinelthe truncated firstand/secondmomentfor the process Φ, sincelthe usualiconditional moments for the process may not be finite. For example, if $X_{t}=\left\lceil\exp \left[\exp W_{t}\right]\right.$,

 there will be only discontinuity of the first kind (i.e., discrete jumps) and the jumpsize willlbelfinite.

Now, we state the assumptions which are required to obtain the weak conver-

Assumption 1. Let $a(x, t): R^{n} \times[0, \infty) \rightarrow S_{+}^{n}, b(x, t): R^{n} \times[0, \infty) \rightarrow R^{n}$ and $g(x, t): R^{n} \times[0, \infty) \rightarrow R^{n}$ be continuous measurable mappings which are continuous in x for each $t \geq 0$. We assume that, for all $R>0, T>0$ and $\varepsilon>0$,

$$
\begin{align*}
\lim _{h \downarrow 0} \sup _{\|x\| \leq R, 0 \leq t \leq T}\left\|a_{h}(x, t)-a(x, t)\right\| & =0 \tag{2.8}\\
\lim _{h \downarrow 0} \sup _{\|x\| \leq R, 0 \leq t \leq T}\left\|b_{h}(x, t)-b(x, t)\right\| & =0 \tag{2.9}\\
\lim _{h \downarrow 0} \sup _{\|x\| \leq R, 0 \leq t \leq T}\left\|g_{h}(x, t)-g(x, t)\right\| & =0 \tag{2.10}\\
\lim _{h \downarrow 0} \sup _{\|x\| \leq R, 0 \leq t \leq T} \Delta_{h}^{\varepsilon}(x, t) & =\lambda \tag{2.11}
\end{align*}
$$

[^3]This assumption requires that the second moment, drift, and jumps per unit of time converge uniformly on compact sets to well-behaved functions of time and the state variables x. And the probability of jump of size greater then ε converges to a constant λ. So, the sample paths of the limit process will have only discontinuity of the first kind with probability one.

Assumption 2. Let $\sigma(x, t): R^{n} \times[0, \infty) \rightarrow S^{n}$ be a continuous measurable mapping such that, for alllx $\in R^{n}$ and all $I t \geq 0$,

$$
\begin{equation*}
a(x, t)=\sigma(x, t) \sigma(x, t)^{\prime} . \tag{2.12}
\end{equation*}
$$

 unit of time of the limit process, has a well-behaved matrix square root $\sigma(x, t)$.

Assumption 3. As $h \rightarrow 0,{ }_{h} X_{0}$ converges in distribution to a random variable X_{0} with probability measure ν_{0} on $\left(R^{n}, B\left(R^{n}\right)\right)$.

This assumption requires that the probability measure ν_{h} of the random starting points ${ }_{h} X_{0}$ to converge đo■alimit\|measure ν_{0} as $h \rightarrow 0$.

With all measure ν_{0} of the limit process, an instantaneous drift function $b(x, t)$, an instäntaneous covariance■matrixla (x, t)), Tand have supposed thatithe sample path of the [processlisldiscontinuous withlprob-
 uniquelyldefined. \square Thereareanumberlof Lworks considering the Conditions under which $\nu_{0, a} a(x, t)$, ,and $\left.b(x, t)\right]$ uniquely/de\&neadiffusionПimitprocess. \square Especially Strook and Varadhan(1979) Studied Extensively about the diffusion limit process. Ethierland Kurtz(1986) Considers the■martingale problems■with Levy measure. We provide theconditionsfor a jump-diffusion limitlprocesslbeing finitelinfinite time in appendix A.

Assumption 4. $\nu_{0}, a(x, t), b(x, t)$, and $g(x, t)$ uniquely specify the distribution of a jump diffusion process X_{t} with initial distribution ν_{0}, diffusion matrix $a(x, t)$, drift vector $b(x, t)$, and jump amplitude $g(x, t)$.

Theorem 1 Under the assumptions 1 through 4, the sequence of ${ }_{h} X_{t}$ processes defined by (2.1) to (2.3) converges weakly as $h \rightarrow 0$ to the X_{t} process defined by the stochastic integral equation

$$
\begin{align*}
X_{t}= & X_{0}+\int_{0}^{t} b\left(X_{s}, s\right) d s+\int_{0}^{t} \sigma\left(X_{s}, s\right) d W(s) \\
& +\int_{0}^{t} \int g\left(X_{s^{-}}, s\right) \widetilde{N}_{\lambda}(d s, d g) \tag{2.13}
\end{align*}
$$

where W_{t} is an n-dimensional standard Brownian motion, independent of X_{0}, $\widetilde{N}_{\lambda}(d s, d u)$ is the compensated P oisson process defined as $\widetilde{N}_{\lambda}(d s, d \bar{u})=N(d s, d u)-$ $\lambda d s \square$ and where for any $\Gamma \in B\left(R^{n}\right), P\left(X_{0} \in \Gamma\right)=\bar{v}_{0}(\Gamma) \square$ Such an X_{t} process exists and is distributionally unique. This distribution does not depend on the choice of $\sigma(\cdot, \cdot)$ made in A ssumption 2. Finally, X_{t} remains finite in finite time intervals almost surely, i.e. for all $T>0$,

$$
\begin{equation*}
P\left[\sup _{0 \leq t \leq T} \| X_{t} \sharp \ll \infty\right]=1 . \square \tag{2.14}
\end{equation*}
$$

 $i \boxminus 1,2, \ldots, n$, each $\delta \triangleright 0$, and each $/ h>0$, define

$$
\begin{equation*}
\gamma_{h, i, \delta}(x, t) \equiv h^{-1} \int_{R^{n}}\left|(y-x)_{i}\right|^{2+\delta} \Pi_{h, h[t / h]}(x, d y), \tag{2.15}
\end{equation*}
$$

where $(y-x)_{i}$ is the \bar{i} thelementofthe vector $(y-x) \square$ If,forsome $\delta \square 0$ andalliz, $i \nexists 1,2, \ldots, n, \gamma_{h, i, \delta}(x, t)$ isffinite, then thefollowing integral will belwell-defined andffinite:

$$
\begin{aligned}
a_{h}^{*}(x, t) & \equiv h^{-1} \int_{R^{\mathrm{n}}}(y-x)(y-x)^{\prime} \Pi_{h, h[t / h]}(x, d y) \\
b_{h}^{*}(x, t) & \equiv h^{-1} \int_{R^{\mathrm{n}}}(y-x) \Pi_{h, h[t / h]}(x, d y) .
\end{aligned}
$$

They are the same measures as $a_{h}(\cdot, \cdot), b_{h}(\cdot, \cdot)$ and $g_{h}(\cdot, \cdot)$, but integration is taken over R^{n} rather than $|y-x| \leq 1$.

Assumption 1'. There exist $\delta>0$ such that for each $R>0$, each $T>0$, and each $i, i=1,2, \ldots, n$,

$$
\begin{equation*}
\lim _{h \downarrow 0} \sup _{\|x\| \leq R, 0 \leq t \leq T} \gamma_{h, i, \delta}(x, t)=0 \tag{2.16}
\end{equation*}
$$

Further, let $a(x, t): R^{n} \times[0, \infty) \rightarrow S_{+}^{n}, b(x, t): R^{n} \times[0, \infty) \rightarrow R^{n}$ and $g(x, t): R^{n} \times[0, \infty) \rightarrow R^{n}$ be continuous measurable mappings which are continuous in x for each $t \geq 0$. We assume that for all $R>0, T>0$

$$
\begin{array}{r}
\lim _{h \downarrow 0} \sup _{\|x\| \leq R, 0 \leq t \leq T}\left\|a_{h}^{*}(x, t)-a(x, t)\right\|=0, \\
\lim _{h \downarrow 0} \sup _{\|x\| \leq R, 0 \leq t \leq T}\left\|b_{h}^{*}(x, t)-b(x, t)\right\|=0, \\
\lim _{h \downarrow 0} \sup _{\|x\| \leq R, 0 \leq t \leq T}\left\|g_{h}(x, t)-g(x, t)\right\|=0, \\
\lim _{h \downarrow 0} \sup _{\|x\| \leq R, 0 \leq t \leq T} \Delta_{h}^{\varepsilon}(x, t)=\lambda \tag{2.20}
\end{array}
$$

[^4]Theorem 2 Under Assumptions 1', and 2 through 4, the conclusion of Theorem 1 hold.

As stated in Merton(1990, Ch.3), the assumption 1' implies that the moments higher than two are vanishes to zero at an appropriate rate as $h \rightarrow 0$.

2.2 Example: $\operatorname{GARCH}(1,1)$-M Model.

In Engle and Bollerslev(1986), they presented the GARCH (1, 1)-M process for the cumulative excess returns y_{t} on a portfolio. The excess return process is

$$
\begin{aligned}
y_{t} & =y_{t-1}+\mu \sigma_{t}^{2}+\sigma_{t} Z_{t}, \\
\sigma_{t+1}^{2} & =\omega+\sigma_{t}^{2}\left[\beta+\alpha Z_{t}^{2}\right] .
\end{aligned}
$$

where $Z_{t} \sim$ i.i.d. $N(0,1)$.
Let us suppose that a stochastic process in discrete time is including the jump process as follows;

$$
\begin{align*}
y_{t} & =y_{t-1}+\mu \sigma_{t}^{2}+\sigma_{t} Z_{t}+c \eta_{t} \tag{2.21}\\
\sigma_{t+1}^{2} & =\omega+\sigma_{t}^{2}\left(\beta+\alpha Z_{t}^{2}\right), \tag{2.22}
\end{align*}
$$

where $Z_{t} \sim$ iid $N(0,1)$ and $\eta_{t} \sim$ Bernoulli distributed with $\operatorname{Pr}\left(\eta_{t}=0\right)=1-$ $\lambda d t+o(d t)$ and $\operatorname{Pr}\left(\eta_{t}=1\right)=\lambda d t+o(d t)$. And c denote the jump size of the process when a jump occurs.
 properties of the stochastic difference equation system. We allow the parameter α, β, and ω to depend on h and make the drift term in (2.21) proportional to h. Then we may rewrite the system of stochastic processes (2.21) and (2.22) as

$$
\begin{align*}
{ }_{h} y_{k h}= & { }_{h} y_{(k-1) h}+h \mu_{h h} \sigma_{k h}^{2}+h^{1 / 2}{ }_{h} \sigma_{k h} Z_{k h} \\
& +{ }_{h} \eta_{k h}\left(c_{h}+\phi_{h h} Z_{k h}\right), \tag{2.23}\\
{ }_{h} \sigma_{(k+1) h}^{2}= & \omega_{h}+{ }_{h} \sigma_{k h}^{2}\left(\beta_{h}+\alpha_{h h} Z_{k h}^{2}\right), \tag{2.24}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Pr}\left[\left({ }_{h} y_{0},{ }_{h} \sigma_{0}^{2}\right) \in \Gamma\right]=v_{h}(\Gamma) \quad \text { for any } \Gamma \in B\left(R^{2}\right), \tag{2.25}
\end{equation*}
$$

where ${ }_{h} Z_{k h} \sim$ i.i.d. $N(0,1)$ and ${ }_{h} \eta_{k h} \sim$ Bernoulli distributed with $\operatorname{Pr}\left[{ }_{h} \eta_{k h}=0\right]=$ $1-\lambda h+o(h)$ and $\operatorname{Pr}\left[{ }_{h} \eta_{k h}=1\right]=\lambda h+o(h) . v_{h}$ satisfy the assumption 3 as $h \rightarrow 0$ and for each $h \geq 0, v_{h}\left(\left(y_{0}, \sigma_{0}^{2}\right): \sigma_{0}^{2}>0\right)=1$. And we create the continuous time process ${ }_{h} y_{t}$ and ${ }_{h} \sigma_{t}^{2}$ by

$$
\begin{equation*}
{ }_{h} y_{t} \equiv{ }_{h} y_{k h} \text { and }{ }_{h} \sigma_{t}^{2} \equiv{ }_{h} \sigma_{k h}^{2} \text { for } k h \leq t<(k+1) h . \tag{2.26}
\end{equation*}
$$

We want|tofind outwhich sequences $\left\{\omega_{h}, \alpha_{h}, \beta_{h}\right\}$ make the $\left\{{ }_{h} \sigma_{t}^{2},{ }_{h} y_{t}\right\}$ process converge in distribution an jump-diffusion mixed process as $h \rightarrow 0$.

Let $\mathbf{M}_{k h}$ is the σ-algebra generated by $k h,{ }_{h} y_{0},{ }_{h} y_{h}, \ldots,{ }_{h} y_{(k-1) h}$, and ${ }_{h} \sigma_{0}^{2}$, ${ }_{h} \sigma_{h}^{2}, \square . .,{ }_{\hbar} \sigma_{k h}^{2} . \square$ Then, the firstmoment of the process is

$$
\begin{align*}
& E\left[h^{-1}\left({ }_{h} y_{k h}-{ }_{h} y_{(k-1) h}\right) \mid \mathbf{M}_{k h}\right]=\mu_{h h} \sigma_{k h}^{2}+\lambda c_{h} \tag{2.27}\\
& E\left[h^{-1}\left({ }_{h} \sigma_{(k+1) h}^{2}-{ }_{h} \sigma_{k h}^{2}\right) \mid \mathbf{M}_{k h}\right]=h^{-1} \omega_{h}+h^{-1} \sigma_{k h}^{2}\left(\beta_{h}+\alpha_{h}-1\right) \tag{2.28}
\end{align*}
$$

Tosatisfy the Assumption

$$
\begin{align*}
& \lim _{h \downarrow 0} h^{-1} \omega_{h}=\omega \tag{2.29}\\
& \lim _{h \downarrow 0} h^{-1}\left(1-\beta_{h}-\alpha_{h}\right)=\theta \tag{2.30}
\end{align*}
$$

As it is stated in Bollerslev(1986), it is necessary to require that ω_{h}, α_{h}, and β_{h} be nonnegative because σ_{t}^{2} should be remain positive with probability one. Therefore, $\omega \geq 0$ while θ could be of either sign.

Then,

$$
\begin{align*}
& \lim _{h \downarrow 0} E\left[h^{-1}\left({ }_{h} y_{k h}-{ }_{h} y_{(k-1) h}\right) \mid \mathbf{M}_{k h}\right]=\mu \sigma^{2}+\lambda c \tag{2.31}\\
& \lim _{h \downarrow 0} E\left[h^{-1}\left({ }_{h} \sigma_{(k+1) h}^{2}-{ }_{h} \sigma_{k h}^{2}\right) \mid \mathbf{M}_{k h}\right]=\omega-\theta \sigma^{2} \tag{2.32}
\end{align*}
$$

The second moment per unit of time is

$$
\begin{align*}
& E\left[h^{-1}\left({ }_{h} y_{k h}-{ }_{h} y_{(k-1) h}\right)^{2} \mid \mathbf{M}_{k h}\right] \\
& =h \mu_{h h}^{2} \sigma_{k h}^{4}+{ }_{h} \sigma_{k h}^{2}+\lambda\left(c_{h}^{2}+\phi_{h}^{2}\right)+2 \lambda h c_{h} \mu_{h} \sigma_{k h}^{2}, \tag{2.33}\\
& E\left[h^{-1}\left({ }_{h} \sigma_{(k+1) h}^{2}-{ }_{h} \sigma_{k h}^{2}\right)^{2} \mid \mathbf{M}_{k h}\right] \\
& =h^{-1} \omega_{h}^{2}+h^{-1}{ }_{h} \sigma_{k h}^{4}\left(\alpha_{h}+\beta_{h}-1\right)^{2}+2 h^{-1} \alpha_{h h}^{2} \sigma_{k h}^{4} \\
& +h^{-1} \omega_{h h}^{2} \sigma_{k h}^{4}\left(\alpha_{h}+\beta_{h}-1\right), \tag{2.34}\\
& E\left[h^{-1}\left({ }_{h} y_{k h}-{ }_{h} y_{(k-1) h}\right)\left({ }_{h} \sigma_{(k+1) h}^{2}-{ }_{h} \sigma_{k h}^{2}\right) \mid \mathbf{M}_{k h}\right] \\
& =\mu_{h} \sigma_{k h}^{2} \omega_{h}+\mu_{h h} \sigma_{k h}^{4}\left(\alpha_{h}+\beta_{h}-1\right) \\
& +\lambda_{h} c_{h} \omega_{h}+\lambda_{h} c_{h h} \sigma_{k h}^{2}\left(\alpha_{h}+\beta_{h}-1\right) . \tag{2.35}
\end{align*}
$$

With (2.29) and (2.30) and assuming that

$$
\begin{equation*}
\lim _{h \downarrow 0} 2 h^{-1} \alpha_{h}^{2}=\alpha^{2}, \tag{2.36}
\end{equation*}
$$

existand isfinite. \square And α^{2} is always greater than 0 . \square Thenlwe have

$$
\begin{align*}
& E\left[h^{-1}\left({ }_{h} y_{k h}-{ }_{h} y_{(k-1) h}\right)^{2} \mid \mathbf{M}_{k h}\right]={ }_{h} \sigma_{k h}^{2}+\lambda\left(c_{h}^{2}+\phi_{h}^{2}\right)+o(1), \tag{2.37}\\
& E\left[h^{-1}\left({ }_{h} \sigma_{(k+1) h}^{2}-{ }_{h} \sigma_{k h}^{2}\right)^{2} \mid \mathbf{M}_{k h}\right]=\alpha_{h h}^{2} \sigma_{k h}^{4}+o(1), \tag{2.38}\\
& E\left[h^{-1}\left({ }_{h} y_{k h}-{ }_{h} y_{(k-1) h}\right)\left({ }_{h} \sigma_{(k+1) h}^{2}-{ }_{h} \sigma_{k h}^{2}\right) \mid \mathbf{M}_{k h}\right]=o(1) \tag{2.39}
\end{align*}
$$

where if $\psi(h)=o(1)$, then $\lim _{h \rightarrow 0} \psi(h)=0$. We can show that the third and fourth moments of the process ${ }_{h} \sigma_{t}^{2}$ exist and converge to zero as $h \rightarrow 0$, and those of the process ${ }_{h} y_{t}$ exist and $O(h) .{ }^{6}$

Then, we can define the coefficientslinlthe-jump-diffusion■mixedprocessas

$$
\begin{align*}
b\left(y, \sigma^{2}\right) & \equiv\left[\begin{array}{l}
\mu \sigma^{2}+\lambda c \\
\omega-\theta \sigma^{2}
\end{array}\right] \tag{2.40}\\
a\left(y, \sigma^{2}\right) & \equiv\left[\begin{array}{cc}
\sigma^{2}+\lambda\left(c^{2}+\phi^{2}\right) & 0 \\
0 & \alpha^{2} \sigma^{4}
\end{array}\right] \tag{2.41}\\
g\left(y, \sigma^{2}\right) & \equiv\left[\begin{array}{l}
c \\
0
\end{array}\right] \tag{2.42}
\end{align*}
$$

and, if α_{h}, β_{h} and ω_{h} satisfy the conditions in (2.29), (2.30) and (2.36), then Assumption 1^{\prime} holds. If we suppose that $\sigma(\cdot, \cdot)$ in Assumption 2 is the element-by-element square root of $a\left(y, \sigma^{2}\right)$, then Assumption 2 holds as well. From (2.40) - (2.42), we can write the jump-diffusion mixed limit as

$$
\begin{align*}
& d y_{t}=\left(\mu \sigma^{2}+\lambda c\right) d t+\left[\sigma^{2}+\lambda\left(c^{2}+\phi^{2}\right)\right]^{1 / 2} d W_{1, t}+c \eta_{t} \tag{2.43}\\
& d \sigma_{(t+1)}^{2}=\left(\omega-\theta \sigma^{2}\right) d t+\alpha \sigma^{2} d W_{2, t} \tag{2.44}\\
& P\left[\left(y_{0}, \sigma_{0}^{2}\right) \in \Gamma\right]=\nu_{0}(\Gamma) \quad \text { for any } \Gamma \in B\left(R^{2}\right) \tag{2.45}
\end{align*}
$$

where $W_{i, t}, i=1,2$, are independent standard Wiener processes and are also independent of the Bernoulli process, η_{t}. And all those three independent processes are independent of the initial values $\left(y_{0}, \sigma_{0}^{2}\right)$.

3 Jump-Diffusion Approximation.

In this section, we will present that $A R C H$ models can be used as approximation of generalized Ito process (jump-diffusion process).

3.1 ARCH Jump-Diffusion Approximation

Define the stochastic_differentialequationlsystem

$$
\begin{align*}
& d y_{t}=f\left(s_{t}, y_{t}, t\right) d t+g\left(s_{t}, y_{t}, t\right) d W_{1, t} \tag{3.1}\\
& \quad+\left\{k\left(s_{t}, y_{t}, t\right)+d t^{-1 / 2} \phi\left(s_{t}, y_{t}, t\right) d W_{1, t}\right\} d \eta_{t}, \\
& d s_{t}
\end{align*}=F\left(s_{t}, y_{t}, t\right) d t+G\left(s_{t}, y_{t}, t\right) d W_{2, t}, ~\left(\begin{array}{ll}
d W_{1, t} \tag{3.2}\\
d W_{2, t}
\end{array}\right]\left[\begin{array}{ll}
d W_{1 t} & d W_{2, t}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & \Omega_{1,2} \tag{3.3}\\
\Omega_{2,1} & \Omega_{2,2}
\end{array}\right] d t=\Omega d t, \quad \begin{array}{ll}
\lambda & 0_{1,2} \tag{3.4}\\
{\left[\begin{array}{l}
d \eta_{t} \\
0
\end{array}\right]\left[\begin{array}{ll}
d \eta_{t} & 0^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
\lambda & \\
0_{2,1} & 0_{2,2}
\end{array}\right] d t, \text { and }} \tag{3.5}\\
\Sigma d t=\Omega d t+\Lambda d t
\end{array}
$$

[^5]

 Wiener process, $W_{2, t}$ is $\mathrm{an} \bar{n}$-dimensionalstandardWiener $\overline{\text { process }}$, η_{t} isla Poisson

 $n \mathbb{x} 1 \boxed{a n d} \pi \mathbb{X} \square$ valuedfunctions, respectively. \square The initial values of the process $\left(y_{0}, s_{0}\right)$ islassumeditolbelrandomand independent of $\left[W_{1, t \boxminus} W_{2, t_{2}}\right.$ and $\eta_{t_{2}}$ and $W_{1, t}$, $W_{2, t-}$ and $\eta_{t t_{2}}$ are independent offeach other.

\[

$$
\begin{align*}
& a(y, s, t)=\left[\begin{array}{cc}
g^{2}+\lambda\left(k^{2}+\phi^{2}\right) & g \Omega_{1,2} G^{\prime} \\
G \Omega_{2,1} g & G \Omega_{2,2} G^{\prime}
\end{array}\right], \tag{3.6}\\
& b(y, s, t)=\left[\begin{array}{ll}
f+\lambda k & F^{\prime}
\end{array}\right]^{\prime}, \tag{3.7}\\
& c(y, s, t)=\left[\begin{array}{ll}
k & 0^{\prime}
\end{array}\right]^{\prime} \tag{3.8}
\end{align*}
$$
\]

where 0 is an $n \times 1$ vector of zeros. Then, $a(y, s, t)$ is $(n+1) \times(n+1)$ matrix and $b(y, s, t)$ and $c(y, s, t)$ are $(n$ \& 1) $\boxtimes \square$ vectors.

Now, wedefinealsequence of approximating processesthatconvergetol(3.1) \square (3.3) indistribution as $h \rightarrow 0$.

$$
\begin{align*}
& +\eta_{k h}\left(k\left({ }_{h} y_{k h},{ }_{h} s_{k h}, k h\right)+h^{-1 / 2} \phi\left({ }_{h} y_{k h},{ }_{h} s_{k h}, k h\right){ }_{h} Z_{k h}\right), \tag{3.9}\\
& { }_{h} s_{(k+1) h}={ }_{h} s_{k h}+F\left({ }_{h} y_{k h},{ }_{h} s_{k h}, k h\right) h+G\left({ }_{h} y_{k h},{ }_{h} s_{k h}, k h\right){ }_{h} Z_{k h}^{*}, \tag{3.10}
\end{align*}
$$

where

$$
\begin{align*}
{ }_{h} Z_{k h} & \sim \text { i.i.d. } N(0, h) \tag{3.11}\\
{ }_{h} Z_{k h}^{*} & =\left[\begin{array}{l}
\theta_{1 h} Z_{k h}+\gamma_{1}\left[{ }_{h} Z_{k h} \left\lvert\,-\left(\frac{2 h}{\pi}\right)^{1 / 2}\right.\right] \\
\theta_{n h} Z_{k h}+\gamma_{n}\left[{ }_{h} Z_{k h} \left\lvert\,-\left(\frac{2 h}{\pi}\right)^{1 / 2}\right.\right]
\end{array}\right], \tag{3.12}
\end{align*}
$$

and the coefficients $\left\{\theta_{1}, \gamma_{1}, \ldots, \theta_{n}, \gamma_{n}\right\}$ are selected so that

$$
E\left[\begin{array}{l}
{ }_{h} Z_{k h}+\eta_{k h} \tag{3.13}\\
{ }_{h} Z_{k h}^{*}
\end{array}\right]\left[\begin{array}{ll}
{ }_{h} Z_{k h}+\eta_{k h} & \left.{ }_{h} Z_{k h}^{*}\right]=\Sigma d t .
\end{array}\right.
$$

Now we can convert the discrete time process $\left[{ }_{h} y_{k h},{ }_{h} s_{k h}^{\prime}\right]$ into a continuous time process by defining

$$
\begin{equation*}
{ }_{h} y_{t} \equiv{ }_{h} y_{k h},{ }_{h} s_{t} \equiv{ }_{h} s_{k h} \quad \text { for } k h \leq t<(k+1) h . \tag{3.14}
\end{equation*}
$$

Theorem 3 If $a(y, s, t), b(y, s, t)$ and $c(y, s, t)$ satisfy A ssumption 4, with $x \equiv\left[y, s^{\prime}\right]$, and if the joint probability measures v_{h} of the starting values (${ }_{h} y_{0},{ }_{h} s_{0}^{\prime}$) converges to the measure v_{0} as $h \rightarrow 0$, then $\left({ }_{h} y_{t},{ }_{h} s_{t}^{\prime}\right) \Rightarrow\left(y_{t}, s_{t}^{\prime}\right)$ as $h \rightarrow 0$.

The proof of this theorem is a direct application of Theorem 2. $\left({ }_{h} y_{k h}-{ }_{h} y_{(k-1) h}\right)$, $\left({ }_{h} s_{(k+1) h}-{ }_{h} s_{k h}\right)$ and h are discrete correspondence of $d y, d s$, and $d t$, respectively. The theorem 3.2 in Nelson (1990b) shows that ${ }_{h} Z_{k h}$ and ${ }_{h} Z_{k h}^{*}$ are the discrete time counterpart of $d W_{1}$ and $d W_{2}$.

3.2 AR(1) Exponential ARCH.

Here we consider a jump-diffusion process with conditional variance following a
 equations

$$
\begin{align*}
& d\left(\ln S_{t}\right)=\theta \sigma_{t}^{2} d t+\sigma_{t} d W_{1, t}+k_{t} d \eta_{t} \tag{3.15}\\
& d\left(\ln \sigma_{t}^{2}\right)=-\beta\left[\left(\ln \sigma_{t}^{2}\right)-\alpha\right] d t+d W_{2, t} \tag{3.16}\\
& P\left[\left(\ln S_{0},\left(\ln \sigma_{0}^{2}\right)\right) \in \Gamma\right]=v_{0}(\Gamma) \quad \text { for any } \Gamma \in B\left(R^{2}\right) \tag{3.17}
\end{align*}
$$

where S_{t} is the value of portfolio at time $t, W_{1, t}$ and $W_{2, t}$ are Wiener processes with

$$
\left[\begin{array}{l}
d W_{1, t} \tag{3.18}\\
d W_{2, t}
\end{array}\right]\left[\begin{array}{ll}
d W_{1, t} & d W_{2, t}
\end{array}\right]=\left[\begin{array}{ll}
1 & \Omega_{1,2} \\
\Omega_{1,2} & \Omega_{2,2}
\end{array}\right] d t \equiv \Omega d t
$$

and $\Omega_{2,2} \geq \Omega_{1,2}^{2}$, and η_{t} is a Poisson process with parameter λ and

$$
\left[\begin{array}{l}
d \eta_{t} \tag{3.19}\\
0
\end{array}\right]\left[\begin{array}{cc}
d \eta_{t} & 0
\end{array}\right]=\left[\begin{array}{cc}
\lambda & 0 \\
0 & 0
\end{array}\right] d t \equiv \Lambda d t .
$$

Then, the variance matrix of the system of equation is

$$
\begin{equation*}
\Sigma d t=\Omega d t+\Lambda d t \tag{3.20}
\end{equation*}
$$

 (3.20) by using Theorem 3. As we assume that $\left(\ln \sigma_{t}^{2}\right)$ in (3.16) follows a continuous time $A R(1)$ process, $\left(\ln _{h} \sigma_{k h}^{2}\right)$ in the discrete counterpart of (3.16) will also follow an $A R(1)$ process. For each $h>0$, we have

$$
\left.\begin{array}{l}
\left(\ln _{h} S_{k h}\right)=\left(\ln _{h} S_{(k-1) h}\right)+h \theta_{h} \sigma_{k h}^{2}+{ }_{h} \sigma_{k h h} Z_{k h} \\
\quad+\eta_{k h}\left(k_{h}+h^{-1 / 2} \phi_{h h} Z_{k h}\right), \\
\left(\ln _{h} \sigma_{(k+1) h}^{2}\right)=\left(\ln _{h} \sigma_{k h}^{2}\right)-\beta\left[\left(\ln _{h} \sigma_{k h}^{2}\right)-\alpha\right] h+\Omega_{1,2 h} Z_{k h} \\
\quad+\gamma\left[{ }_{h} Z_{k h} \left\lvert\,-\left(\frac{2 h}{\pi}\right)^{1 / 2}\right.\right],
\end{array}\right\}
$$

where $\gamma=\left[\left(\Omega_{2,2}-\Omega_{1,2}\right) /(1-2 / \pi)\right]^{1 / 2}$ and ${ }_{h} Z_{k h} \sim$ i.i.d. $N(0, h)$. Then, we have

$$
\begin{align*}
& E\left[\begin{array}{l}
{ }_{h} Z_{k h}+\eta_{k h} \\
\Omega_{1,2} Z_{k h}+\gamma\left[{ }_{h} Z_{k h} \left\lvert\,-\left(\frac{2 h}{\pi}\right)^{1 / 2}\right.\right]
\end{array}\right] \\
& \times\left[\begin{array}{ll}
{ }_{h} Z_{k h}+\eta_{k h} & \Omega_{1,2} Z_{k h}+\gamma\left[{ }_{h} Z_{k h} \left\lvert\,-\left(\frac{2 h}{\pi}\right)^{1 / 2}\right.\right]
\end{array}\right] \\
= & {\left[\begin{array}{ll}
1+\lambda & \Omega_{1,2} \\
\Omega_{1,2} & \Omega_{2,2}
\end{array}\right] h } \tag{3.24}\\
\equiv & \Sigma h
\end{align*}
$$

which is $\|$ discrete Counterpart■f(3.20). \square As before, $\|$ we definelacontinuous\|time step function

$$
{ }_{h} S_{t} \equiv{ }_{h} S_{k h},{ }_{h} \sigma_{t}^{2} \equiv{ }_{h} \sigma_{k h}^{2} \quad \text { for } k h \leq t<(k+1) h
$$

And, the discrete time counterparts of $d[\ln S], d\left[\ln \sigma^{2}\right], d W_{1, t}, d W_{2, t}, d \eta_{t}$ and $d t$ are $\left(\ln _{h} S_{k h}\right)-\left(\ln _{h} S_{(k-1) h}\right),\left(\ln _{h} \sigma_{(k+1) h}^{2}\right)-\left(\ln _{h} \sigma_{k h}^{2}\right),{ }_{h} Z_{k h}, \eta_{k h}$, and h, respectively.

Theorem 4 If the distribution of random starting point, v_{h}, converges to v_{0} as $h \rightarrow 0$, then $\left\{{ }_{h} S_{t},{ }_{h} \sigma_{t}^{2}\right\} \Rightarrow\left\{S_{t}, \sigma_{t}^{2}\right\}$ as $h \rightarrow 0$.

4 Conclusions

In this paper, we have shown that a stochastic difference equation converges weakly to a stochastic differential equation with jump component as length of sampling interval, h, goes to zero. We presented that, as an example, $\operatorname{GARCH}(1,1)-M$ process converges weakly to a jump-diffusion limit as h goes to zero. That is, a $A R C H$ type process can be approximated by stochastic jumpdiffusion process. It may much easier to estimate and forecast with a discrete time stochastic difference equation than with a continuous time stochastic differential equation. So, when we observe a jump-diffusion model at discrete time intervals, we may use $A R C H$ model to estimate and forecast as jump-diffusion approximation.

It is shown that $A R C H$ process is a discrete approximation of jump-diffusion process with using Exponential $A R C H$ process with Poisson jump component. If there are distributional results available for the jump-diffusion limit of a sequence of discrete time stochastic difference equations and there is not available for the discrete time stochastic difference process, such as $A R C H$ process, then we may use jump-diffusion process as an approximation of $A R C H$ process.

Therefore, we may use a discrete time $A R C H$ process as an approximation of a jump-diffusion process in estimation and forecasting. And we may use
the jump-diffusion process as an approximation of $A R C H$ process when there is distributional results available for the jump-diffusion limit of the sequence of $A R C H$ processes.

Whilelweshow the weak convergence of those processes, welfixed the Poisson jump intensity λ as a constant. This may be relaxed for the jump intensity to vary over time with a certain probability structure.

A ppendix A : Conditions for Non-Explosion.

Theorem 10.2.1 in Strook and Varadhan(1975) provides a non-explosion condition for the limit process. This condition ensures that the limit process does not explode in finite time. \square In the theorem, the Condition「isigiven for the case of diffusion process. But, we adopt this condition for the jump-diffusion process with replacing the infinitesimalDoperator for ajump-diffusion processwith that of a diffusion process.

Suppose that there exist a nonnegative function $\varphi(x, t)$ which is twice differentiable with respect to x and differentiable with respect to t such that for each $T>0$,

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} \inf _{0 \leq t \leq T} \varphi(x, t)=\infty \tag{A.1}
\end{equation*}
$$

and there exist positive locally bounded function $M(T)$ such that, for each $T>0$, for all $x \in R^{n}$, and for all $t, 0 \leq t \leq T$,

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+\mathrm{L}_{t}\right) \varphi(x, t) \leq M(T) \varphi(x, t) \tag{A.2}
\end{equation*}
$$

where

$$
\begin{align*}
\mathrm{L} \varphi(x, t)= & \sum_{i=1}^{n} b_{i}(x, t) \frac{\partial \varphi(x, t)}{\partial x_{i}}+\frac{1}{2} \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial^{2} \varphi(x, t)}{\partial x_{i} \partial x_{j}} \\
& +\int[\varphi(x+g(x, u), t)-\varphi(x, t) \\
& \left.\quad-\sum_{i=1}^{n} g_{i}(x, u) \frac{\partial \varphi(x, t)}{\partial x_{i}}\right] N(h, d u) . \tag{A.3}
\end{align*}
$$

If we assume that $X_{t}=x,(B .2)$ ensures the instantaneous drift of $\varphi\left(X_{t}, t\right)$ grows linearly with $\varphi\left(X_{t}, t\right)$. Therefore, it guarantees that $\varphi\left(X_{t}, t\right)$ does not
 explode, neither will X_{t}.

A ppendix B: Proofs of The Theorems.

Proof of Theorem 1
Let the infinitesimal operator for the jump-diffusion process be

$$
\begin{align*}
\mathrm{L} f(x)= & \sum_{i=1}^{n} b_{i}(x, t) \frac{\partial f}{\partial x_{i}}+\frac{1}{2} \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \\
& +\int\left[f(x+c(x, u))-f(x)-\sum_{i=1}^{n} g_{i}(x, t) \frac{\partial f}{\partial x_{i}}\right] N(h, d u),
\end{align*}
$$

then, by the Lemma 11.2.1 in Strook and Varadhan(1979), the assumption 1 is equivalent to the condition that for each $f \in C_{0}^{\infty}\left(R^{n}\right)$

$$
\frac{1}{h} A_{h} f \rightarrow \mathbf{L} f
$$

where the infinitesimal operator for a discrete Markov process $\sqsubset A_{h}$ definedas

$$
A_{h} f(x)=\int[f(y)-f(x)] \Pi_{h, h[t / h]}(x, d y) .
$$

Let's definearandomゆrocess M_{f} as

$$
M_{f}(t)=f(x(t))-f(x(0))-\int_{0}^{t} \mathrm{~L} f(x(s)) d s
$$

If $M_{f}(t)$ is a martingale, then there exist a Wiener process $W(t)$, and a Poisson process $N_{\lambda}(t, \Gamma)$ with independent increments and identically distributed jumps which solve a jump diffusion model

$$
\begin{equation*}
x(t)=x(0)+\int_{0}^{t} b(x, s) d s+\int_{0}^{t} \sigma(x, s) d W(s)+\int_{0}^{t} \int g(x, u) \widetilde{N}_{\lambda}(d s, d u), \tag{B.2}
\end{equation*}
$$

wherelg (x, u) is a bounded continuousfunctionand $\widetilde{N}_{\lambda}(d t, \| u)$ isla compensated Poissonゆrocess defined■as $\widetilde{N}_{\lambda}(d s, \| u)=N(d s, d \bar{u})-\lambda d s$ with jump probability of λ.

In assumption 4, the distribution of X_{t} isspecified by $v_{0}, a(x, t), b b(x, t)$, and $g(x, t)$. As $\sigma(x, t)$ only enters the equation through $a(x, t)$ function, the distribution of X_{t} does not depend on the choice of $\sigma(x, t)$ as long as $\sigma(x, t) \sigma^{\prime}(x, t)=$ $a(x, t)$.

Proof of Theorem 2.

To prove the theorem, we need to show that the Assumption 1^{\prime} implies Assumption 1. Then Theorem 2 follows immediately by Theorem 1. To do so, we only need to prove that

$$
\begin{align*}
& \lim _{h \rightarrow 0} \sup _{|x| \leq R, 0 \leq t \leq T} \frac{1}{h} \int_{\|y-x\|>1}(y-x)_{i}^{2} \Pi_{h, h[t / h]}(x, d y)=0 \tag{B.3}\\
& \lim _{h \rightarrow 0} \sup _{|x| \leq R, 0 \leq t \leq T} \frac{1}{h} \int_{\|y-x\|>1}|y-x|_{i} \Pi_{h, h[t / h]}(x, d y)=0 \tag{B.4}
\end{align*}
$$

since the conditions for $c(x, u)$ and $\Delta_{h}^{\varepsilon}(x, t)$ remain same as in Assumption 1.
By Hőlder's Integral Inequality,

$$
\begin{align*}
& \frac{1}{h} \int_{\|y-x\|>1}|y-x|_{i} \Pi_{h, h[t / h]}(x, d y) \\
\leq & {\left[\gamma_{h, i, \delta}(x, t)\right]^{1 /(2+\delta)}\left[\Delta_{h}^{\varepsilon}(x, t)\right]^{(1+\delta) /(2+\delta)} . } \tag{B.5}
\end{align*}
$$

And by (2.16), there is some $\delta>0$ such that for all $R, T>0$, the right hand side of the inequality vanishestozerofor Every ε as $冖 h \rightarrow 0$ uniformlylon $\|x\| \leq R$, $0 \leq t \leq T$, proving (B.4) \square Again, Tby H Holder'SIIntegral Inequality

$$
\begin{align*}
& \frac{1}{h} \int_{\|y-x\|>1}(y-x)_{i}^{2} \Pi_{h, h[t / h]}(x, d y) \\
\leq & {\left.\left[\gamma_{h, i, \delta}(x, t)\right]^{2 /(2+\delta)}\left[\Delta_{h}^{\varepsilon}(x, t)\right)\right]^{\delta /(2+\delta)} } \tag{B.6}
\end{align*}
$$

which vanishesinlthersamemanneraş(B.3).

Proof of Theorem 3.

Toprove thisitheorem, we need tolshow the Assumption 2andalaresatisfied. First we can factor $a(y, s, t)$ into $\sigma(y, s, t) \sigma \bullet(y, s, t)$ which \mathbb{s} satisfies Assumption 2. To show this

$$
\begin{align*}
a(y, s, t)= & {\left[\begin{array}{cc}
g^{2}+\lambda\left(k^{2}+v^{2}\right) & g \Omega_{1,2} G^{\prime} \\
G \Omega_{2,1} g & G \Omega_{2,2} G^{\prime}
\end{array}\right] } \\
= & {\left[\begin{array}{lll}
g^{2} & g \Omega_{1,2} G^{\prime} \\
G \Omega_{2,1} g & G \Omega_{2,2} G^{\prime}
\end{array}\right]+\left[\begin{array}{cc}
\lambda\left(k^{2}+v^{2}\right) & 0_{1,2} \\
0_{2,1} & 0_{2,2}
\end{array}\right] } \\
= & \left\{\left[\begin{array}{l}
g d W_{1, t} \\
G d W_{2, t}
\end{array}\right]+\left[\begin{array}{cc}
\left(k+d t^{-1 / 2} v d W_{1, t}\right) d \eta_{t} \\
0
\end{array}\right]\right\} \\
& \times\left\{\left[g d W_{1 t}\right.\right. \\
\left.d W_{2, t}^{\prime} G^{\prime}\right]+\left[\left(k+d t^{-1 / 2} v d W_{1, t}\right) d \eta_{t}\right. & \left.\left.0^{\prime}\right]\right\} \\
= & {\left[\begin{array}{ll}
g d W_{1, t}+\left(k+d t^{-1 / 2} v d W_{1, t}\right) d \eta_{t} \\
G d W_{2, t}
\end{array}\right] } \\
& \times\left[\begin{array}{ll}
g d W_{1 t}+\left(k+d t^{-1 / 2} v d W_{1, t}\right) d \eta_{t} & d W_{2, t}^{\prime} G^{\prime}
\end{array}\right] \tag{B.7}
\end{align*}
$$

Now wemustlshow thatiAssumptionllis/satisfied. \square Thatis, we need to show
 $c(y, s, t)$ respectively, and $\gamma_{h, i, \delta}(y, s, t)$ converges to zero uniformly on compacts as $h \rightarrow 0$. Since

$$
b_{h}^{*}(y, s, t)=\left[\begin{array}{l}
f(s, y, t)+\lambda k(y, s, t) \tag{B.8}\\
F(s, y, t)
\end{array}\right],
$$

$b_{h}^{*}(s, y, t)=b(s, y, t)$.

$$
a_{h}^{*}(y, s, t)=\left[\begin{array}{ll}
f^{2} h+g^{2}+\lambda\left(k^{2}+v^{2}\right) & f h F^{\prime}+G \Omega_{1,2} G^{\prime} \tag{B.9}\\
F f h+G \Omega_{2,1} g & G \Omega_{2,2} G^{\prime}
\end{array}\right],
$$

 bounded.

Finally, if we choose $\delta=1$, then

$$
\begin{aligned}
\gamma_{h, 1}(y, s, t) & =h^{-1} E\left[\begin{array}{l}
\left|h f+g_{h} Z_{k h}+\eta_{k h}\left(k+h^{-1 / 2} v_{h} Z_{k h}\right)\right|^{3} \\
\left|h F+G_{h} Z_{k h}^{*}\right|^{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\sqrt{h}\left(g^{2}+\lambda\left(k^{2}+v^{2}\right)\right) \sqrt{f h+g^{2}+\lambda\left(k^{2}+v^{2}\right)} \\
\sqrt{h} G \Omega_{2,2} G^{\prime} \sqrt{F F^{\prime} h+G \Omega_{2,2} G^{\prime}}
\end{array}\right] \\
& =O\left(h^{1 / 2}\right)
\end{aligned}
$$

uniformly on compacts.
Therefore, we showed that Assumption2 2 and 1 aresatisfied.

Proof of Theorem 4.

Toproof the theorem, weneed toshowthe[Assumption4islsatisfies, then the result follows immediately by theorem 2 and theorem 4 . To do so, we need to show that the system of stochastic differential equation has unique solution.
i) Show that the martingale problem for $a(\cdot, \cdot), b(\cdot, \cdot)$, and $c(\cdot, \cdot)$ is well posed.
ii) Show that the limit process does not explode.

By Chapter 8, Theorem 3.3 in Ethier and $\operatorname{Kurtz(1986)~and~Theorem~11.2.3~}$ in Strook and Varadhan(1979), we can prove the statement i). To prove the statement iii), define for $K>0$,

$$
\varphi \equiv K+f(S)|S|+f(V) \exp (|V|),
$$

where

$$
f(x)\left\{\begin{array}{lr}
\equiv \exp \left(-\frac{1}{|x|}\right), & \text { if } x=0 \\
\equiv 0, & \text { otherwise }
\end{array}\right.
$$

$\varphi(V, S)$ lis|nonnegative, arbitrarilydifferentiableandsatisfiesi(A.1).Itsderiva-
 on any compact set. For large values of S and V

$$
\begin{aligned}
\varphi_{V}(V, S) & \approx \operatorname{sign}(V) \exp (|V|), \\
\varphi_{V V}(V, S) & \approx \exp (|V|) \\
\varphi_{S}(V, S) & \approx \operatorname{sign}(S) \\
\varphi_{S S}(V, S) & \approx 0
\end{aligned}
$$

so that with $M>1+\alpha \beta+\Omega_{2,2} / 2+|\theta| \mathbb{H}+\lambda k$, there®exist■afinite k satisfying (A.2)..Then, theresultfollows■yTheorem®2.

References

[1] Ahn, C. M. and H. E. Thompson (1988), "Jump-Diffusion Processes and the Term Structure of Interest Rates," Journal of Finance, 43, 155-174.
[2] Amin, K. I.(1993), "Jump Diffusion Option Valuation in Discrete Time," Journal of Finance, 48, 1833-1863.
[3] Arnold, L. (1974), Stochastic Differential Equations: Theory and Applications, John Wiley \& Son, New York, NY.
[4] Ball, C. A. and A. Roma (1993), "A Jump Diffusion Model for the European Monetary System," Journal of International Money and Finance, 12, 475492.
[5] Ball, C. $_$A. and W. ${ }^{\text {N. Torous (1983), T"A Simplified Jump Processfor Com- }}$
 53-65.

 40,155-173.
[7] Bhattacharya, R. N. and E. C. Waymire (1990), Stochastic Processes with Applications, John Wiley \& Son, New York, NY.
[8] Bollerslev, T. (1986), "Generalized Autoregressive Conditional Heteroscedasticity, \uparrow "Journallof Econometrics, $, 31,1307-327$.
[9] Bollerslev, T, R. Y. Chou, and K. F. Kroner (1992), "ARCH modelling in Finance: A Review of Theory and Empirical Evidence," Journal of Econometrics, 52, 5-59.
[10] Bollerslev, T., R. F. Engle, and D. B. Nelson(1994), "ARCH Models," in Handbook of Econometrics, Vol IV, eds. R.F. Engle and D. McFadden, Amsterdam, North-Holland, 2959-3038.
[11] Chang, C. W.(1995), "A No-Arbitrage Martingale Analysis for JumpDiffusion Valuation," Journal of Financial Research, 18, 351-381.
[12] Cox, J. C. and S. A. Ross (1975), "The Pricing of Option for Jump Processes," Rodney L. White Centre Working Paper Series, No. 2-75, University of Pennsylvania, Philadelphia, Penn.
[13] Das, S. R. (1997), "An Efficient Generalized Discrete Time Approach to Poisson-Gaussian Bond Option Pricing in the Heath-Jarrow-Morton Model," NBER Technical Working Paper, No. 212, Cambridge, MA.
[14] Engle, F. and T. Bollerslev, (1986), "Modelling the Persistence of Conditional Variances," Econometrics Reviews, 5, 1-50.
[15] Ethier, S. N. and T. G. Kurtz (1986), Markov Process : Characterization and Convergence, John Wiley \& Son, New York, NY,
[16] Gihman, I. I. and A. V. Skorohod (1972), Stochastic Differential Equation, Springer-Verlag, Berlin, Heidelberg.
[17] Jarrow, R. A. and E. R. Rosenfeld (1984), "Jump Risks and the Intertemporal Capital Asset Pricing Model," Journal of Business, 57, 337-351.
[18] Jorion, P. (1989), "On Jump Processes in the Foreign Exchange and Stock Markets," Review of Financial Studies, 1, 427-445.
[19] Kim, M-J, Y-H Oh, and R. Brooks (1994), "Are Jumps in Stock Returns
 Financial and Quantitative Analysis, 29, 609-631
[20] Kushner, H. J. (1984), Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory, MIT Press, Cambridge, MA.
[21] Merton, R. C. (1976a), "Option Pricing When Underlying Stock Returns are Discontinuous," Journal of Financial Economics, 3, 125-144.
[22] \square \qquad $\square(1976 b),{ }^{*} T h e$ ImpactIon Option|Pricing of Sopecification Error in the Underlying Stock Returns," Journal of Finance, 31, 333-350.
[23] _-_-_-_-_- (1990), Continuous Time Finance, Cambridge, MA: Basil Blackwell.
[24] Nelson, D. B.(1990) , "ARCH Models as Diffusion Approximations," Journal of Econometrics, 45, 7-38.
[25] ______(1991), "Conditional Heteroscedasticity in Asset Returns: New Approach," Econometrica, 59, 347-390.
 Jump Processfor CommonStockReturns, "JournalofFinancialEconomics, 5,389-418.

 Finance, 12, 493-510.
[28] Protter, P. (1990), Stochastic Integration and Differential Equations: A New Approach, Springer-Verlag, Berlin, Heidelberg.
[29] Strook, D. W. and S. R. S. Varadhan (1979), Multidimensional Diffusion Processes, Springer-Verlag, New York.
[30] Vlaar, P. J. G. and F. C. Palm (1993), "The Message in Weekly Exchange Rates in the European Monetary System: Mean Reversion, Conditional Heteroscedasticity and Jumps, „ヤJournal■of Business and EconomiclStatistics, 11, 351-360.

[^0]: *Sanghoon Lee, Department of Economics, SungKyunKwan University, 53 MyungnyunDong 3-Ga, Chonghno-Gu, Seoul, Korea. Tel: +82-2-760-1294, Fax: +82-2-744-5717, e-mail: sanghoon_l@hotmail.com

[^1]: ${ }^{1}$ See Lo（1988）for deriving the likelihood function such models．

[^2]: ${ }^{2}$ See [2] Kushner (1984) Section 4.3 in Chapter 2.
 ${ }^{3}$ In this somewhat complicated setup, out notation must keep track of three distinct kinds of processes:
 (a) the sequence of discrete time processes $\left\{\mathrm{h} X_{\mathrm{kh}}\right\}$ that depend both on h and on a discrete time index $k h, k=0,1,2, \ldots$,
 (b) the sequence of continuous time processes $\left\{{ }_{h} X_{\mathrm{t}}\right\}$ formed as step functions from the discrete time processes in (a) using (2.2). This process also depends on h and on a continuous time index $t, t \geq 0$,

[^3]: (c) a limiting jump-diffusion process X_{t} to which, under conditions given below, the sequence of processes $\left\{\mathrm{h} X_{\mathrm{t}}\right\}$ weakly converges as $h \rightarrow 0$.

 To accommodate these three different processes, we indicate dependence on the length of sampling interval, h, to lower left of X and dependence on the time index to lower right.
 ${ }^{4}$ Let $f(h)$ and $g(h)$ be functions of $h . \quad f(h)=o(g(h))$, if $\lim _{h \rightarrow 0}[f(h) / g(h)]=0$ and $f(h)=O(g(h))$, if $\lim _{h \rightarrow 0}[f(h) / g(h)]$ is bounded.

[^4]: ${ }^{5} N(d s, d u)$ is a Poisson process, and λ is a constant probability of jump in the Poisson process, and $\lambda>0$.

[^5]: ${ }^{6}$ The detailed calculations are available on request.

