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Abstract

We present a weak convergence of a discrete time process to a jump-
diffusion process as the length of sampling interval, h, goes to zero. There
is an example given for the weak convergency with using GARCH (1, 1)-
M model by Engle and Bollerslev(1986). It is shown that ARCH type
models can be used as discrete time approximations of jump-diffusion pro-
cesses. We use Exponential ARC'H with Poisson Jump component as an
example for the approximation. Therefore, we may use a discrete time
ARCH process as an approximation of a jump-diffusion process in esti-
mation and forecasting. And we may use the jump-diffusion process as
an approximation of ARC'H process when there is distributional results
available for the jump-diffusion limit of the sequence of ARC H processes.

JELl¢lassification:[C22

Key word(s): Weak Convergence, ARCH Model, Jump-Diffusion Pro-
cess

1 Introduction.

During the last couple of decades or so, many researchers have found that the
value of option prices is not continuous with probability one. Cox and Ross(1975)
assumed that the new information arriving at a market is a lump sum causing a
discrete jump in the value of options and derived the option pricing formula by
using a Poisson jump process. Merton, in his works (1976a,b) , decomposed the
total change in the stock prices into two components: 1)systematic risk which is
typically modelled by a Brownian motion, 2) nonsystematic risk which represents
the arrivals of new information, in other word, shock, to the market, which can
be modelled by a Poisson jump process, and derived the option pricing formula
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with jump-diffusion process. After these researches, as the solution to a stochas-
tic asset optimization problem, the jump-diffusion process is popularly used in
theldynamiclasset[pricing(literature(felg.,[Oldfield, Rogalski, and[Jarrow(1977)L]
Ballland[Torous(1983,1985) I Jarrow[and[ Rosenfeld(1984) T Amin(1993)[I Kiin,
Oh,[andBrooks(1994) [ IChang(1995)] aslwelllas other financial[économic(litera-
ture such as in term structure of interest rates [e.g., Ahn and Thompson(1988),
Das(1997)], foreign exchange rates [Jorion(1988), Ball and Roma(1993), Park,
Ahn and Fujihara(1993), Vlaar and Palm(1993)] and etc.

For example, Ball and Torous(1983) considered the Bernoulli process to model
the arrivals of information in a market and estimated the model with 47 NYSE(New
York Stock Exchange) listed stocks each with 500 daily return observations. They
compared estimates produced by Beckers’ cumulant method and Bernoulli cumu-
lant method, then reported maximum likelihood estimates. Beckers’ cumulant

method produced negative variances, 52 and /6\2 in 60 percent of sampled stocks,
which, respectively, denote the variances of the diffusion part and the jump size.
However, they are reduced 20 percent by Bernoulli cumulant method. As it is ex-
pected, the maximum likelihood method did not produce any negative variances.
When the cumulant method produce positive variances, the parameter estimates
were similar to those of maximum likelihood estimates. And they considered the
likelihood ratio test,

A=-=2(InL(z:v")—InL(z:v)),

where 7* and «° denote the maximum likelihood estimates of 7 in the presence and
the absence of Bernoulli jump structure, respectively. Under the null hypothesis
that security returns were consistent with a lognormal diffusion process without
Bernoulli jump components, A was asymptotically distributed y? with two degree
offfreedom. ] OnlyIfive stocks[did hot[demonstrate[the presence ofl jumpslat[the
Hpercent significant 1evel [l Moreover, lover [T8[péetrcent [of (thelstocksindicated [the
presencelof jumps(at[1[percentsignificant[1evel.[] Theltesult] therefore,[¢onfirms
thelpresencelof jumpslinlthe[majorityof[the[sampled common stock[Teturns.
And] linlanothetTwork 6fTiheitsl(1985) [ Ithey [éstimated [fhePoisson jump-diffusionl
process[with[30[daily[¢ommonstock teturns. 1 Theylalsofound[thelévidencethat
jumpléomponents[weré presentihlalmajority lof[thelstocks[éxamined.
AnotherIpoiiit we need folconsidetlis[thatlthe financidl [timel serieslislfoiind
tolbelhighlyheteroscedasticloverfime.[] Therelare[inassive amountoflliterature
docuimenting[thelheteroscedasticinatiirelof thefinancial time(seriesidata. ] With
ARCH models introduced by Engle(1983), the heteroscedastic nature of the
data is well explained by the ARC'H type models. Since, then, the ARC'H type
models are developed with many different parameterization for o2, including the
ARCH (p) model of Engle(1982), the GARCH model of Bollerslev(1986), the
GARCH — M model of Bollerslev and Engle(1986), the log —GARCH model
of Pantula(1986), and Geweke(1986), and the Exponential ARCH model of



Nelson(1989). As we cannot overview the whole of literature of ARC'H models
in this paper, I would like to introduce the couple of survey papers here. The
readerswilllfind [that[the surveyl papetilarewellloverviewed thel A ROH inodelslin)
thelvarious/typeslofl parameterization. | Thelonelislwritten by Bollérslev, [Chou,
and Kroner(1992) and the other by Bollerslev, Engle, and Nelson(1994). The
firdtl lpapér id ovemiawed 1A RC'H[ typelmodels[ specifically [ised[tolodel inhlthe
financialleconomics aréaland thelsecondonelincliiding A ROH [typelmodelgused
in the various area in Economics.

In this paper, we are trying to develop the relationship between the continuous
timelstochasticldifferential .équationusedin[theltheoretical liflerature of financial
economics and the discrete time differencelequationisedinlthelots offempirical
works.[ | Therelhas[beenldoneltelatively(little[worklonltheltelationbetween/the
continuous[time[honlinear stochastic[ differential [equation[$systems, 1sedinl so
much [oftheltheoretical literature, and[the[A ROHstochasticldifferenceléquation
systems, [favored by l[émpirical workers.Indeed, theltwolliteratures haveldeveloped)
quitelindependently, [with(little[attempt foteconciletheldiscreteland[¢ontinuous
modelSIT Thelteasohwhy [thelempiticistibeingturnedl away [from[thel¢ontiiuoiis
timelstochasticldifferential [equationsystem[isldifficulttolderive the likelihood
functionloflsuchmodels,[éspecially [when[therelareiinobservablelstate[variables
in(thelsystem.!” Bylthelcontrast, thelteasonwhylthelempiricist being|favored
the discrete time ARUHtypelmodels(islthatlallléconomicldatalarel¢ollected at
discretelfimelintervalslandlaldiscrete[fime A RC'HlikelihoodfunctionisMisually
easy [folderiveland maximize.[1Therefore, welwill[develop[c¢onditionsinder[which
ARCUHstochasticl differencel equation[systems[ convergelinldistribution[to[Ito
process[(Jump-Diffusionprocess) (as[thelengthlof(theldiscrete timelinterval goes
to zero. [What we hope to gain from this worklarefollowing:[First, it thay dasier [fo
estimateldand [forecast(theparameterswith[A RCH iodel&hwithljuinp [components!
observed [at[discretefimelintervals.1So, wemay want[foise[A ROH inodel&§lwifhl
jumplecomponentsas jump-diffusionapproximations.] Second,[ihlsomelcases[we
may [ find[thatldisttibutionallresultslarél availablel forlthel jiimp-diffusionlimit[of
a sequence of ARCH process with jump components, while the discrete time
ARCH models with jump components themselves are not available. In such
cases, we may be able to use jump-diffusion processes as ARC'H approximations
with jump components.

The structure of the paper is following. In section 2, we will sketch the
main results in weak convergence of a sequence of stochastic difference equation
to a jump-diffusion process. As an example, we use the GARCH — M model
of Bollerslev and Engle(1986). In section 3, an ARC'H jump-diffusion approx-
imation will be presented. We show that it can approximate a wide variety of
Generalized Ito process which is a jump-diffusion process. We will examine an
example based on AR(1) Exponential ARCH model of Nelson(1991). Finally,

1See Lo(1988) for deriving the likelihood function such models.



we will conclude this paper in section 4.

Somel ¢onditions for[thenon-ekplosion [{nl finitéltimel statedlinl Appendik[A.
These conditions will be useful to prove the results in weak convergence. All the
proofs of theorems are delegated to Appendix B.

2 Weak Convergence of the processes.

2.1 The Main Result in Weak Convergence

Here we want to show the weak convergence of a discrete time process to a jump-
diffusion process. The basic theoretical setup is following.

Let[ DI([0} 0o),IR™) [ bel thel $pacel ofl inappings! from[[0[60) [intol R that are
right[¢ontinuoushaving| finiteleftTlifnits andllet BI(R™)[ denote the Borel sets
on R". With introduction of an appropriate Skorohod metric, D (|0, 00), R")
becomes a complete metric space.> For each h > 0, let My, be the o-algebra
generated by kh, ,Xo, n X, nX2n, ..., hXkn, and let vy, be a probability measure
onl(R" B (R™)).1/Fotleach h > 0,landleachlk(= 0,(1,(2, ..., define IIj g, (z, ),
called a transition function on R", as follows:

i) Il (z,-) is a probability measure on (R™, B (R")) for all z € R™,
i) I pn (1) is B (R™) measurable for all I' € B (R"™) .
For each h > 0, let P, be the probability measure on D ([0, c0), R"™) such that

Py [nXo €T = vy (D) for any I' € B(R"), (2.1)
P, {hXt = thh, kh <t< (]{7 + ].) h] =1,

Py [hX(k+1)h el Mkh} = Uppn (nXpn, T)

almost surely under P, for all k > 0 and " € B(R"). (2:3)

Here, for each h > 0, we specify the distribution of the random starting point by
(2.1) and form a continuous time process , X; from the discrete time process , X,
by (2.2) making ,X; a step function with jumps at time h, 2h, 3h, and so on.
(2.8) [spetifies(thelfransition probabilities(of(n-dimensional [discrete fimeMarkov
process p Xpn.>

2See [2] Kushner (1984) Section 4.3 in Chapter 2.

3In this somewhat complicated setup, out notation must keep track of three distinct kinds
of processes:

(a) the sequence of discrete time processes {hXkn} that depend both on h and on a discrete
time index kh, £k =0,1,2, ...,

(b) the sequence of continuous time processes {p Xt} formed as step functions from the discrete
time processes in (a) using (2.2). This process also depends on h and on a continuous time
index t, t > 0,



Now, (défine]forléach h > 0,

a (v,t) = bt /| || 1(y¢—xz') (5 — ;) Unppeymy (2, dy) (2.4)
y—z||<

b (e1) = / (s — ) oo (2 dy) (2.5)
ly—=z||<1

A; (x,t) = h_l/ Hp hpesng (2, dy) - (2.6)
ly—z|>e

gn(x,u) = x4 — 34, (2.7)

where [t/h] is the integer part of t/h and x;- = lim,_; x5 for s < t.

ay, (x,t) is a measure of the truncated second moment per unit of time, by, (x,t)
is a measure of truncated drift per unit of time, Aj (z,t) is a probability that the
process/haslaljump oflmaghnitiidelgréatér(thanl e (perfunitlof timeTTWeldefinelthe
truncated first(and Second inoment [for [fhe[process i, [Sificelthe usualldonditiohal |
moments for the process may not be finite. [Hor example, ifl X;-=[éxp/[expW;},]
whetrél W;-islalWiener[process, X;-islaldiffusion[process, but[thereléxist holmo-
mentsloflany orderll Andl gy, (x,u)lneasures thelsizelof jumpperinitlof time.
Welsuppose!that(a jumploceurs with probability Ahi+[6[(h)* in[the timelinterval
[t,[t+h) [ TAs[welassumel thel process[isltight [tontinuous[Wwith finite left [limit,
there will be only discontinuity of the first kind (i.e., discrete jumps) and the
jumplsizelwilllbelfinite.

Now, we state the assumptions which are required to obtain the weak conver-
genceltesult. |Let[ST dehotelthe space of (h[X n[matrices/and(let (ST denote the
spacelof (i [X m[Symmetricmonnegativeldefinitematrices.

Assumption 1. Let a (z,t) : R" x [0,00) — S%, b(x,t) : R" x [0,00) — R"™ and
g (z,t) : R" x [0,00) — R™ be continuous measurable mappings which are
continuous in x for each ¢t > 0. We assume that, for all R > 0, 7' > 0 and

e >0,

lim  sup  |lan(z,t) —a(z,t)]] = 0 (2.8)
hi0 |iz|| <R, 0<t<T
im  sup by (2,t) —b(z,t)| = 0 (2.9)
hl0 |z <R, 0<t<T
m  sup  llgn(mt)— g (@B = 0 (2.10)
hO o) <R, 0<t<T

lim sup  Aj(z,t) = A (2.11)

hl0 |z||<R, 0<t<T

(¢) a limiting jump-diffusion process Xt to which, under conditions given below, the sequence
of processes {n Xt} weakly converges as h — 0.

To accommodate these three different processes, we indicate dependence on the length of
sampling interval, h, to lower left of X and dependence on the time index to lower right.

“Let f(h) and g (h) be functions of h. f(h) = o(g(h)), if limn_o[f (k) /g (h)] = 0 and
f () =0(g(h), if limh_o[f (h) /g (R)] is bounded.
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This assumption requires that the second moment, drift, and jumps per unit
of time converge uniformly on compact sets to well-behaved functions of time
and the state variables x. And the probability of jump of size greater then e
converges to a constant A. So, the sample paths of the limit process will have
only(discontinuity[of [the(first kihd (with [probability (one.

Assumption 2. Let o (x,t) : R" x [0,00) — S™ be a continuous measurable
mappihg(suich that, for(alllz € RTand[alll# >0,

a(z,t) =o(z,t)o(x,t). (2.12)

Thislassumption[tequires[that[thefunctionla/((k, ) the second Imoment pérf]
unit of time of the limit process, has a well-behaved matrix square root o (z,t).

Assumption 3. As h — 0, , Xy converges in distribution to a random variable
Xo with probability measure v on (R", B (R")).

This assumption requires that the probability measure v}, of the random start-
ing points ,X( tolconvergefolallimitimeasure vy aslh — 0.

Withlalllthel assiimptions[wel madelabbve|wel $pecifiedl alihitidlTprobabilify
measure vg of the limit process, an instantaneous drift function b (z,t), an in-
stantaheouis/ ¢ovariance mattiklal(x, ) [Tand A jumpamplifindel ¢((iz, #) LT] Andlwe
havelsupposed! thatlthe samplel pathl of the processlisldistontiiuous withl prob*
ability Lone. ] However,[therelis[nolguarantee that allimit[processis finite or is]
uniquel§ldefinedl ' Thetelare amumbetlofworks(¢onsideringthel¢onditiohs uhdert
which vg ral(, ) [Tand 6z, T) iniqueljlde&neld diffusion limit [process. [[Especially
Strookland Varadhan(1979)studied [éxtensively [@bout [the diffusion limit[process.
Ethietland [ Kurtz(1986) [¢onsiders[the martingale[ probleims/with[Levyieasure.
Welprovidelthe conditions for [a jump-diffusion ditnitIprocessibeing finitélin/ finité!
time in appendix A.

Assumption 4. vy, a(x,t),b(x,t), and g (x,t) uniquely specify the distribution
of a jump diffusion process X; with initial distribution v, diffusion matrix

a(xz,t), drift vector b (z,t), and jump amplitude g (z,t) .

Theorem 1 Under the assumptions 1 through 4, the sequence of ,X; processes
defined by (2.1)[to (2.3)lconverges weakly as h —[0[to the X, process defined by
the stochastic integral equation

t t
X, = Xo—l—/b(Xs,s)ds—I—/a(Xs,s)dW(s)
0

0
+ /0 / g (X,-, s) Ny (ds, dg) (2.13)



where W, is an n-dimensional standard Brownian motion, independent of Xj,
N((ds,ldu)Tis the compensated Poisson process defined as N, (ds, dis) = N{(ds, du)—
Ads[2-and where for any T' €e[BI(R™)[ P (X, € ') = w5 (I').11Such an X;-process
exists and is distributionally unique. This distribution does not depend on the
choice of o((*,-)Imade in Assumption 2. Finally, X;remains finite in finite time
intervals almost surely, i.e. for all 7" > 0,

p l sup || X[« oo] = 1.[] (2.14)
0<t<T

Now, el want [ to[makelthe[aboveltesult albit orelgeneral.[] Forleachl,
il=1,2,...,n, each 6[310,[andléachlh > 0,[definé]

%,m@ﬁ@jgm_l /R“ |(y - x)i|2+5 Hhﬁ[t/h] (IL‘, dy) ) (215)

where (y — z), islthelithlelement[ofithe¥ector([(y — () T1f, for[soine 63> [0land allT,
il=1,12,...,n, vy, s(w, E) s finite, then the following integral will belwell-defined
and [finite:

a, (2, 1)

ht /R ) (v — ) (y — &) Wy gy (2, dy)

b, (z,t) = h_l/ (y — ) Iy ppeym (2, dy) -

They are the same measures as ay (+,-), by (+,+) and gy (-, ), but integration is
taken over R™ rather than |y — x| < 1.

Assumption 1’. There exist § > 0 such that for each R > 0, each T' > 0, and
eachi,1=1,2,...,n

lim  sup 7,5 (z,t) =0. (2.16)
hlO o) <r 0<i<T
Further, let a(x,t) : R" x [0,00) — S%, b(x,t) : R" x [0,00) — R" and
g(z,t) : R" x [0,00) — R™ be continuous measurable mappings which are
continuous in x for each t > 0. We assume that for all R >0, T >0

lim  sup |a} (z,t) —a(z,t)] = 0, (2.17)
h10 |1z| <R, 0<t<T
R10 ||z||<R, O<t<T
lim sup ||gh (IL‘, t) -9 (l’, t) H = 0’ (2 19)
h10 |z||<R, 0<t<T

lim sup  Aj(x,t) = A (2.20)

hl0 iz <R, 0<t<T

5N (ds,du) is a Poisson process, and X is a constant probability of jump in the Poisson
process, and A > 0.



Theorem 2 Under Assumptions 1, and 2 through 4, the conclusion of Theorem
1 hold.

As stated in Merton (1990, Ch.3), the assumption 1’ implies that the moments
higher than two are vanishes to zero at an appropriate rate as h — 0.

2.2 Example: GARCH (1,1)-M Model.

In Engle and Bollerslev(1986) , they presented the GARCH (1,1)-M process for
the cumulative excess returns y; on a portfolio. The excess return process is

Yy = ?jtfl‘FMUf"‘UtZta
0§+1 = W+U§[6+O‘Zt2]'

where Z; ~iid. N (0,1).
Let us suppose that a stochastic process in discrete time is including the jump
process as follows;

Y = Y1+ po 4+ o2 +cn,, (2.21)
0%y = w+ol (B+aZf), (2.22)

where Z; ~ iid N (0,1) and 1, ~Bernoulli distributed with Pr(n, =0) = 1 —
Adt + o (dt) and Pr(n, =1) = Adt + o(dt). And c denote the jump size of the
process when a jump occurs.

Now, [Wwelpartition the timelinterval (imoreland more[finely[and éxamine(the
properties of the stochastic difference equation system. We allow the parameter
a, 3, and w to depend on h and make the drift term in (2.21) proportional to h.
Then we may rewrite the system of stochastic processes (2.21) and (2.22) as

hUkh =  hYk-1n T Doy haih + hY/? hOkh hZkh
+ n0n (Ch + O nZkn) 5 (2.23)
WGgen = Wnt 10 (Bn + annZiy) (2.24)
and
Pr [(hyo, ha(z)) € F] = vy, (') forany I' € B (RZ) , (2.25)

where ,Zgp, ~iid. N (0,1) and 7y, ~Bernoulli distributed with Pr [, = 0] =
1—Ah+o(h) and Pr [n, = 1] = Ah—+o0(h) . vy, satisfy the assumption 3 as h — 0
and for each h > 0, vy, ((yo,03) : 05 > 0) = 1. And we create the continuous time
process py; and haf by

WYt = RYkh and hO’f = ho_ih for kh <t< (k? + ].) h. (226)

Welwant to find out which[sequences {wy,, ap, 3,} make the {,02, 1y} process
converge in distribution an jump-diffusion mixed process as h — 0.
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Let My, is the o-algebra generated by kh, nyo, n¥n, -- -, rY@k—1)n, and hag,
no2 .., o2, TTThen, thefirst inoment [of theprocess(is

E [h7 (hykn — w¥o—nyn) IMikn] = wy noay, + Ach (2.27)
L [hil (haglﬁl)h - hgih) |Ml~ch} =htw, +h7to?, (8, + an — 1)(2.28)

Tolsatisfy [fhelAssumption 17 Iweltequire[the followihg limits(éxistand [belfinite;

; -1 —

bm A= wn, = w (2.29)
. -1 _ . _

lim 7% (1= By — o) =0 (230)

As it is stated in Bollerslev(1986), it is necessary to require that wy, ap, and
), be nonnegative because o2 should be remain positive with probability one.
Therefore, w > 0 while 6 could be of either sign.

Then,
1}%1 E [ (hyn — ny-nyn) [Min] = po® + e (2.31)
1}1{%1 FE |:h71 (ho-%k+l)h — haih) |M/€h} =W — 90’2 (232)

The second moment per unit of time is

Ent (nykn — hy(k—l)h>2 |Mkh]

= W w0ty + 1%+ A (Gt 6R) + 23 hch 1 (2.33)
E |h™t (hU%k+1)h - ho’ih>2 |Mkh1

= f-flwi +h 1t (on + By, — 1)% + 2h 102 ot

+h12w? oty (an + B, — 1), (2.34)
E [ffl (hYkh — RYG—1)1) (ha-%k+1)h - hUih) |Mkh]

= [t kOB, Wk + 1 w0, (Qn + B, — 1)

+)\h Ch Wh + )\h Cp, ho—ih (ah + ﬁh - 1) . (235)
With (2.29) and (2.30) and assuming that
. 1.2 _ 2
l}g{)l 2h™ a; = o, (2.36)

exist/and[is(finite. [JAnd o? is[always(greaterthan(0. Thenlwe have

E|h1 (hykh — hy(k_l)h)z |Mkhi| = ho—ih + A (Ci + (ﬁi) +o0 (1) , (237)
I 2

E|h1? (ho-%k+1)h — haih) |Mkh] = a2 0%, +o(l), (2.38)

B W7 G = 1) (10%eann = 105 ) M| =0(1)  (2.39)
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where if ¢ (h) = 0 (1), then limj, 01 (h) = 0. We can show that the third and
fourth moments of the process 02 exist and converge to zero as h — 0, and those
of the process ,y; exist and O (h) .6

Then, Wwe can define the coefficiéntslinlthejump-diffusion mixed[process/as

0.2
b(y,0?) = Z_;:ﬁﬂ (2.40)
2 2, 2
a(yo?) = | ° +A(0c +¢%) QZOUA] (2.41)
9(1.0%) = |, } (2.42)

and, if oy, 0, and wy, satisfy the conditions in (2.29), (2.30) and (2.36), then
Assumption 1’ holds. If we suppose that o (+,-) in Assumption 2 is the element-
by-element square root of a(y,0?), then Assumption 2 holds as well. From
(2.40) - (2.42), we can write the jump-diffusion mixed limit as

dy, = (po? + Ae)dt + [02 + X (& + ¢7)] 1z dWy s + cn, (2.43)

dafﬁl) = (w — 00?) dt + ac?dW,, (2.44)
Pl(yo,03) € T] =vo (') for any I' € B (R?) (2.45)

where W 4+, i = 1,2, are independent standard Wiener processes and are also in-
dependent of the Bernoulli process, 7,. And all those three independent processes
are independent of the initial values (yo,03).

3 Jump-Diffusion Approximation.

In this section, we will present that ARC'H models can be used as approximation
of generalized Ito process (jump-diffusion process).

3.1 ARCH Jump-Diffusion Approximation

Definelthelstochasticldifferential[équation[System

dyt = f (St7 Yt, t) dt + g (Sta Y, t) dWLt
+ {k (Sta Y, t) + dt_l/2¢ (St> Yt t) dWl,t} d77t>

dSt =F (St, Yt, t) dt + G (St, Y, t) dWZ,t7 (32)

lg%z 1 [ dWy dW}, | = “221 g;z 1 dt = Qdt, (3.3)
dn; pr_ | A O |

l 0 1 [dn, O] = l 021 O 1 dt = Adt, and (3.4)

Ydt = Qdt + Adt (3.5)

6The detailed calculations are available on request.
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whetel2land Alarel(n+ 1) X[(n[4 1) positivelsemi-de&nitematrices of[tank fwo
or(less,[0; 2,[0,,1,[0, 2 are[(n[X 1)[¢olmn[Vector, [{1X ) Tow[Vector,and(n[X 1)
matrix[of(zeros, [tespectively, [$;-is[an[n-dimensional Vector of linobservablélstate
vatiables[lylisLanlobservablelscalar process, Wi ;-isLonel dimensionall standard
Wiener process, [W> ;- islann-dimensional[standard (Wiener (process, 7;islaPoisson
process[withlintensity A, f sy yest) g (s yest)Tand k(s ys5t) farelTeal-valiied
continuous(scalarfunctions, and [ FI{s;;y;t) [and[G (s;5y5t) [arelreal , [¢continuous
nx 1land[n X 1 [valued functions,tespectively. () Thelinitial Walues[of(the[process
(Yo, So) iBlassumedltolberandom(andlindependent [0f (W7 +5 W) 45fand ny,[and Wy 44
W stand nylarelindependent [offéach other.
Definelthelmatrixland [vector functionsla, b, and ¢ by

2 2 2 /
[P +X(F+6°) gn2G
a@7@aw - GQZ,lg GQZ,ZG/ ’
b(y.st)=[f+ M F'],
c(y,s,t):[k 0’]’
where 0 is an n x 1 vector of zeros. Then, a(y, s,t) is (n+ 1) X (n + 1) matrix
and[b((ly, s, ) ‘and ¢y, s, ) [are(n[4 1) X 1[Vectbrsl]

Now, [Wweldefine asequencelof(approximatingprocesses(that ¢converge {61 (3. 1)+
(3.8)in’ disttibution ash — 0.

weh =hk—1)h T+ F hYensASkns KR) B G hYkns[ASkhs Kh) 4k
+ N (KGYrhy wSkns kR) + 0720 (1Ykn, nSkhs kR) 1Zk), (3.9)
RSG+1h = wSkh + F (hUkhs wSkhy KR) b+ G (hYkhs wSkny kR) 125, (3.10)

where

T~ iid. N(0,h), (3.11)
01 wZkn + 71 |InZkn| — (@)1/2

Wz = i : (3.12)
en thh + Tn |thh| - (%)1/2
and the coefficients {61,74,...,60,,7,} are selected so that
Zkn + *
E [ hZ]ih Tich } [ W Zin + M, 127, | = Xdt. (3.13)
hgp,

Now we can convert the discrete time process [pykn, nSky,) into a continuous time
process by defining

rYt = nYkh, hSt = hSkh for kh S t < (k? + 1) h. (314)

11



Theorem 3 If a(y, s, t), b(y, s, t) and c(y, s, t) satisfy Assumption 4, with
x = |y, §'| ,and if the joint probability measures v;, of the starting values (,yo, 15p)
converges to the measure vy as h — 0, then (i, ns}) = (v, s}) as h — 0.

The proof of this theorem is a direct application of Theorem 2. (hykh — hy(k_l)h) ,
(hS(k+1)h — hskh) and h are discrete correspondence of dy, ds, and dt, respectively.
The theorem 3.2 in Nelson (19900) shows that , Zy;, and ;,Z;), are the discrete time
counterpart of dW; and dW,.

3.2 AR(1) Exponential ARCH.

Here we consider a jump-diffusion process with conditional variance following a
continuous[timelAR(1) [process. | Let's definelalsystem[of(stochasticl differential
equations

d (ln St) = HO'tzdt + O'tdW]_’t + ktdnt (315)
d(Ino?) = =B [(Ino?) — o] dt + dW,, (3.16)
Pl(In Sy, (Ino3)) € ] =vo (') for any I' € B (R?) (3.17)

where S, is the value of portfolio at time ¢, W7, and W5, are Wiener processes
with

dW]_’t o 1 Ql,Z _
{ dWZJ [ AW, dWy, | = { Orr Do } dt = Qdt (3.18)
and (2, > Qiz, and 7, is a Poisson process with parameter A and
d A0
lont][dnt o]zlo O}dtz/\dt. (3.19)

Then, the variance matrix of the system of equation is
Ydt = Qdt + Adt. (3.20)

Welwant tofindlalsequencelofl A ROH modeldl¢converging weaklytol(3.15)+]
(3.20) by using Theorem 3. As we assume that (Ino?) in (3.16) follows a con-
tinuous time AR (1) process, (In ,02,) in the discrete counterpart of (3.16) will
also follow an AR (1) process. For each h > 0, we have

(Ing, Sen) = (Inp Sge—1yn) + hO wo%y, + 1OkR 1 ZkN

iy, (kn + 02y 0 Z0) (3.21)
(mh 0%k+1)h> = (Inp0%y,) — B (0 hoty) — alh+ Q2w Zin

+v [|thh| - (%)1/2] ; (3.22)
P[(In Sy, (Inc3)) €] =wvo (') for any I' € B (R?) , (3.23)

12



where v = [(222 — Q12) / (1 — 2/m)]*? and , Zyy, ~i.i.d. N (0,h). Then, we have

wZkh + M
1/2
Q12 nZikn + [|thh| - (%) / ]

1/2
X [ wWZih + Mo Q12 8 Zin + Y [|thh’ - (%) / } ]

I+X O
= ’ h 3.24
[ Q1o oo ] (3.24)
= Yh

which(isldisérete counterpart (of[(3.20) L1 As[before]lwel definelal¢cohtinubistime
step function

St = nSkh, hO'f = haih for kh <t< (l{? + 1) h.

And, the discrete time counterparts of d[InS], d[lno?], dWy,, dWa,, dn, and

dt are (lnh Skh) — (lnh S(kfl)h) s (hlh U%k+1)h> — (lnh O'ih), thh, Nehs and h, re-
spectively.

Theorem 4 If the distribution of random starting point, v, converges to vg as
h — 0, then {,S;, no?} = {S;, 02} as h — 0.

4 Conclusions

In this paper, we have shown that a stochastic difference equation converges
weakly to a stochastic differential equation with jump component as length
of sampling interval, h, goes to zero. = We presented that, as an example,
GARCH (1,1)-M process converges weakly to a jump-diffusion limit as h goes to
zero. That is, a ARC'H type process can be approximated by stochastic jump-
diffusion process. It may much easier to estimate and forecast with a discrete
time stochastic difference equation than with a continuous time stochastic differ-
ential equation. So, when we observe a jump-diffusion model at discrete time
intervals, we may use ARC H model to estimate and forecast as jump-diffusion
approximation.

It is shown that ARCH process is a discrete approximation of jump-diffusion
process with using Exponential ARC' H process with Poisson jump component. If
there are distributional results available for the jump-diffusion limit of a sequence
of discrete time stochastic difference equations and there is not available for the
discrete time stochastic difference process, such as ARC'H process, then we may
use jump-diffusion process as an approximation of ARC'H process.

Therefore, we may use a discrete time ARC H process as an approximation
of a jump-diffusion process in estimation and forecasting. =~ And we may use

13



the jump-diffusion process as an approximation of ARCH process when there
is distributional results available for the jump-diffusion limit of the sequence of
ARCH processes.

Whilélwelshow [fhe[weak [convergence of thoseprocesses, welfixed [fhePPoisson
jump intensity A as a constant. This may be relaxed for the jump intensity to
vary over time with a certain probability structure.
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Appendix A : Conditions for Non-Explosion.

Theorem 10.2.1 in Strook and Varadhan(1975) provides a non-explosion con-
dition for the limit process. This condition ensures that the limit process does
notexplodelin(finite time.[] In[theltheorem, thel¢onditionlislgiven for[thelcase
of diffusion process. But, we adopt this condition for the jump-diffusion process
with[teplacingthelinfinitesimalloperator[foraljump-diffusionprocess with[that
oflaldiffusion[process.

Suppose that there exist a nonnegative function ¢ (x,t) which is twice differ-
entiable with respect to x and differentiable with respect to ¢ such that for each
T >0,

Aim it @ (@,8) =00 (A-1)
and there exist positive locally bounded function M (T") such that, for each T > 0,
forall z € R*, and for all ¢, 0 <t < T,

(+L) et <Moo, (A2

where

Py (a,t)
Zb z,1t) axz Z aij ( 8@8903

-ﬁ/@@+g®w%ﬂ—¢@£
—Zgz 2,1 as‘””)]zv(h,du). (A.3)

If we assume that X; = z, (B.2) ensures the instantaneous drift of ¢ (X, t)
grows linearly with ¢ (X;,t). Therefore, it guarantees that ¢ (X;,t) does not
explodelinl finitel time.[] Algo,[(B.1)willlguaranteel thatlif 1o(1X;, t) does not
explode, neither will Xj.

Appendix B : Proofs of The Theorems.
Proof of Theorem 1
Letfhelihfinitésiinal [ operatorforthe jump-diffusion [process(he!

3f o’f
Zb (z,1) + ZQW (z,1) 8:61833]

o

N (h, du) (B.1)

fz+c(z,u)) Zgl
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then, by the Lemma 11.2.1 in Strook and Varadhan(1979), the assumption 1 is
equivalent to the condition that for each f € C§° (R™)

FAS L

wherelthelinfinitesimal (operator foraldiserete Markov process Ay -defined as

Apfilz) = / F @) — £ (@)] Wy (2. dy)

Let's[definelaltandom process M, as

M; () = f(x (1) — (2 (0)) - / Lf (x (s)) ds

If My (t) is a martingale, then there exist a Wiener process W (t) , and a Poisson
process N, (t,I') with independent increments and identically distributed jumps
which solve a jump diffusion model

t t
:c(t):x(O)—l—/b(m,s)ds—I—/ (x,8)dW (s // (z,u) Ny (ds, du) ,
0 0
N (B.2)
whetelg((w, u) is[abounded continuousfunctionand(Ny(dt, du) [isla compensated
Poisson[processdefinedas[Ny(ds, du) = Nl{ds,du) — Adswith[jumpprobability
of \.
In assumption 4, the distribution of X islspecifiedby v, a (z,E)11b (z, ), and
g (z,t). As o(x,t) only enters the equation through a (z,t) function, the distri-

bution of X; does not depend on the choice of o (x,t) as long as o (z,t) o’ (z,t) =
a(z,t). =

Proof of Theorem 2.

To prove the theorem, we need to show that the Assumption 1’ implies As-
sumption 1. Then Theorem 2 follows immediately by Theorem 1. To do so, we
only need to prove that

1
lim  sup / (y —x)? My gy (2, dy) = 0, (B.3)
h—0 |z|<R, 0<t<T h [ly—z||>1

1
lim  sup —/ ly — x|, Uy peymy (2, dy) = 0, (B.4)
h=0 |z1<R, 0<t<T P Jjy—a|>1

since the conditions for ¢ (z,u) and A} (x,t) remain same as in Assumption 1.
By Hélder’s Integral Inequality,

1
5 / ly — @|; Wp gy (2, dy)
ly—z||>1
1/(2+6 . + +
< [ynas (2, 0] YED AL (@, 1) EO@HO (B.5)
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And by (2.16), there is some § > 0 such that for all R, T' > 0, the right hand
sidelofthelihequalifly Wanighes(foZerofor(évery eldsih — [0muniformlylon(]z| <R,
0 <1 <IT, [proving[(B.4) L1 1Agaiil by Hoslder's Integral Inequality

1
7 / (y — )2 Iy pgeym (2, dy)
ly—z||>1
2/(2+6) [ A ¢ +
< [ynastle, D] 70 (AL (2, 8] (B.6)

which vanishes(in/the[samemanner(as[(B.3).'m

Proof of Theorem 3.

Toprovethiglfheorem, wemeed Tolshow the Assumption2land1[drelsatisfied.
First we can factor a(y, s, ) linto o[(y,s, ) o' (y, s, &) Which[satisfies[ Assumption
2. To show this

2 2 2 !
G(y,S,t) _ g +>\(l€ +U) ng,zG 1

GQz?lg GQZQGI

2 ng’gG, + A (kz + 1)2) 01’2
D219 GG 02,1 0,2

gaW, | (k + dt=*2vdWy,) dn,
GdWa, 0

[ gdWy dW3,G |+ ] (k+dt™Y20dWy,)dn, 0 ]}

AWy, + (k’ + dt’l/zvdWLt) dn,
AW,

gdW + (k + dt=Y20dWy,) dn,  dW3,G' ]

I
X mrm— X ;~A—er—r—
—/ QY ~T Q%

~

(B.7)

Q
Q

Now[wemustIshow [thatIAssiimption 1 is(satisfied. 1 That(is)[Wwemeed folshow

that a} (y,ls,8)) b} (y,1s, &) [Tand (¢, (y, s, E) [convergeltolal(y, s, &)1 b (y,ls, ) Land
c(y, s, t) respectively, and v, ; 5 (4, s,t) converges to zero uniformly on compacts
as h — 0. Since

X s,y,t) + Ak (y,s,t
by (s,9,t) = b(s,9,1).
. [ PR+ @+ AR+ 02 fRE + GQ oG
ap (y7 Sat) - l th + GQZ,lg GQZ,ZG/ ) (Bg)

which[willl¢onvergetolal(y, s, ) [aslh —[0, since f,[F,[§land[Garellocally
bounded.
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Finally, if we choose 6 = 1, then

Tha (% S, t) = h'E

|hf +g hlkh + Nih (k’ + h_l/zv thh) ‘3

\WF + G 25, °

_ [ VRGP AR+ ) R+ g+ A (R +0?)
VhGQ,G'\/FF'h+ G .G

= 0(n'?)

uniformly on compacts.
Therefore, welshowed [that [ Assumption(2[and[11 are(satisfied. m

Proof of Theorem 4.

Tolproofthetheorem, Wwemeed[folshow [fhe[Assumption [4[i&[satisfies, fhen[the
result follows immediately by theorem 2 and theorem 4. To do so, we need to
show that the system of stochastic differential equation has unique solution.

i) Show that the martingale problem for a(-,-), b(-,-), and c(-,-) is well
posed.

ii) Show that the limit process does not explode.

By Chapter 8, Theorem 3.3 in Ethier and Kurtz(1986) and Theorem 11.2.3
in Strook and Varadhan(1979), we can prove the statement i). To prove the
statement[ii),[definefor K > 0,

p =K+ fS)IS]+ f(V)exp([V]),

where

f(x){ Eexp(—ﬁ), if x =0,

=0, otherwise.

(V,1S)ighonneghtiite, [drbittarilyldifferentiableland Satisfies(A.1) LTTtsderiva-
tives(arellocally bounded, so that (positive Kand (M ¢anbelchoseltio/satisfy [(A.2)
on any compact set. For large values of S and V

oy (V. S) ~ sign(V)exp(|V]),
eyy (V.5) ~ exp(|V]),

ps (V,S) =~ sign(S),

pss (V. S) = 0,

so that with M > 14 af + Q22/2 + |0[F Ak, [therelexistlalfinite[ksatisfying
(A.2) [T Then,theresultfollows[by Theorem(2. m
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