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Abstract

We employ a regime-switching approach to the identification of banking crises. This

approach reduces the arbitrariness in crisis identification by endogenizing the choices of crisis

threshold and crisis duration. Using a sample of 47 countries, we show that this approach also

subject to several same problems as the common procedures. The method is

sample-dependent, tends to invent much more crises, and is less robust to different model

specifications. We conclude that a bind application of regime switching model to crisis

identification is questionable.
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1. Introduction

Financial crises in the last decade have stimulated research on the determinants financial

crises. International institutions such as IMF and World Bank also sponsor research on

financial crises. One approach to the systematic investigation of banking crises is to employ

logit or probit model. Specifically, researchers estimate a logit or probit regression. On the

left hand side of the regression is a binary variable that takes a value of one when there is a

crisis and takes a value of zero when no crisis occurs. On the right hand side of the regression

are explanatory variables such as domestic macro disturbances, external shocks, and

institutional factors. For such exercise to be meaningful and useful for policy implication, one

has to make sure that the left hand side variable, that is, the dependent binary variable, is

correctly specified.

Existing literature uses market events to identify banking crises, that is, the dependent

variable of the logit regression. The events method, however, has several shortcomings. For

instance, it tends to identify crises too late, cannot identify the crises that are successfully fend

off by the government measures, and most importantly, the crises dates are subject to

arbitrariness (von Hagen and Ho, 2003). Recognizing these shortcomings, von Hagen and Ho

(2003) develop a quantitative approach to the identification of banking crises. They define

banking a crisis as situations in which there is excess demand for central bank reserves in the

money markets. They construct an index of money market pressure that is able to reflect this

excess demand. Periods in which the index exceeds a predetermined threshold are defined as

banking crises. Similar research strategy along this line includes Kibritcioglu (2002) and

Hawkins and Klau (2000).

A difficult problem remains: the choice of crisis threshold. Literature in the currency

crises, following Eichengreen, Rose, and Wyplosz (1994, 1995, 1996), construct an index of

speculative pressure to identify periods of currency attacks. Crisis threshold is defined as 2

standard deviations above the mean. For such practice to be meaningful, one has to assume

that the index is normally distributed so that the criterion classifies the 2.5% upper-tail of the

index distribution as crises. However, the index of speculative pressure, like most financial

return data, is more likely to be fat-tailed and has the characteristics of volatility cluster.

Therefore the assumption of normality is rarely met. Furthermore, the index differs from

country to country so that a same threshold (2 standard deviations above the mean) actually

classifies different proportion of distribution as crisis periods in different countries. In

practice, different researchers choose different thresholds, with no justification for their
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choices. To avoid this problem, von Hagen and Ho (2003) pool the index and choose the 98.5

percentile as the crisis threshold. Caramazza, Ricci, and Salgado (2000) use a similar method

in the context of currency crises and define a set of percentage (5 percent) of all observations

as crises. This method is also ad hoc, and the percentage does not have a correspondent

statistic meaning such as p-value because the method involves no inference of the true

distribution. Since the crisis threshold depends on the sample moments, adding new data or

changing periods covered that changes the sample moments can affect the identification of

crises. Edison (2003), for instance, has documented such case of disappearing crises.

Since much crisis episodes tend to bunch together, researchers usually define a window

of time of fixed length such that all episodes in which the indices across the threshold within

that window are said to belong to the same crises. The purpose is to avoid counting the same

crisis more than once if the subsequent crises are simply the continuations of the previous one.

In the context of currency crises, such window implied that only one currency crisis is

allowed within the window interval. In the context of banking crises, the window width

implicitly defines the duration of a banking crisis. Demirgüc-Kunt and Detragiache (1998)

impose a similar window on their logit regression to eliminate observations following a crisis

in order to avoid the endogenous problem. Since probit/ logit models assume independence

across observations, imposing a window actually introduces an artificial serial correlation as

clearly pointed out in Abiad (2003).

One possibility to avoid the above-mentioned shortcomings in crisis identification is to

endogenize the choice of crisis threshold, and let the data tell us the evolution of the states.

That is what we try to do in this paper. We do this by using Markov switching model (MSM).

MSM has advantages over the previous procedure. First, MSM endogenizes the choice of

both crisis threshold and crisis duration and thus reduces the arbitrariness in crisis

identification. Second, is allows each endogenously determined crisis duration to vary. This is

an improvement over the ad hoc choice of window width, which implicitly imposes a same

duration for all crises. We assume that there are two states in the financial market: a tranquil

state and a crisis state. The two states differ in that the crisis state has higher and more volatile

index value than the tranquil state. The economy transits from one state to the other according

to a constant or time-varying transition probability. MSM has been extensively applied to the

identification of business cycle turning points (Hamilton 1989, Hamilton and Raj 2002). A

growing literature employs MSM to identify currency crises. For instance, Martinez-Peria

(2002) uses MSM to identify speculative attacks on European Monetary System (EMS)

during the period of 1979-1993, and to assess factors contributing to EMS vulnerability.



3

Abiad (2003) conducts similar exercises for five Asian countries. So far the author knows

MSM has not been applied to the research on banking crises.

We structure the paper as follows. We begin with a brief discussion of the index of

money market pressure and the data sources employed. This is followed up by the application

of regime switching models in banking crises identification. We point out several problems

with this method, and report a comparison of different rules for classifying crises. The final

section represents several conditional logit estimates and discusses the factors contributing to

banking crises.

2. An Index of Money Market Pressure and Data Sources

Our approach to the identification of banking crises is different from existing literature,

which relies mainly on market events to determine the crisis dates. We build an index of

money market pressure (IMMP) that reflects excess demand for liquidity in the money

market.1 We define the reserves to bank deposits ratio as the ratio of total reserves held by

the banking system to total deposits. The index of money market pressure is calculated as the

weighted average of changes in this ratio  and changes in the real short-term interest

rates r . In a banking crisis, this index should increase either because the central bank

injects additional reserves to the banking system, or because there are runs on deposits, or

because excess demand for bank reserves bids up the interest rates. The index is expressed as

   rr  IMMP

In von Hagen and Ho (2003), we define banking crises as periods in which the index

exceeds its country-specific 98.5 percentile. A window width of 8 quarters is imposed to

avoid counting the same crisis more than once. In this paper, we discard such practice and let

the regime-switching model to determine the crisis periods as well as crisis duration.

To compute the index, we use quarterly data provided by the IMF International Financial

Statistics CD-ROM. Our sample covers 47 countries over the period 1980-2001.2 Total

deposits of non-banks with deposit money banks are calculated as the sum of demand deposits

(line 24), time and saving deposits (line 25), and foreign liabilities (line 26c). We use

borrowed reserves, defined as credit from monetary authorities to financial institutions (line

26g), as a proxy for reserves aggregate. Nominal interest rates are taken from money market

1 For details of the index of money market pressure, please refer to von Hagen and Ho (2003).
2 Countries included in the sample are Austria, Burundi, Chile, Cyprus, Denmark, Ecuador, Egypt, El Salvador,
Finland, France, Germany, Greece, Guatemala, Honduras, India, Indonesia, Ireland, Israel, Italy, Jamaica, Japan,
Kenya, Korea, Mexico, Nepal, Netherlands, New Zealand, Niger, Nigeria, Papua New Guinea, Peru, Portugal,
Senegal, Seychelles, South Africa, Spain, Sri Lanka, Swaziland, Sweden, Switzerland, Thailand, Togo, Turkey,
Uganda, United States, Uruguay, and Venezuela.
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rates (line 60b). Inflation rates are calculated from consumer price index (line 64). Figure 1

reports the index of money market pressure for the 47 countries.

3. Markov-switching Models

We present two types of Markov switching models. The first one is a simple MSM as

follows:
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The two regimes differ in their means and variances. We expect that crisis periods may

have a larger mean and a larger variance than the tranquil periods. The simple MSM is rather

restricted because it assumes constant mean and constant variance in each regime. It serves

only as a benchmark here. A more realistic setup should allow autocorrelation in IMMP,

varying conditional mean and variance, and takes volatility cluster commonly found in most

financial data into consideration. Therefore, our second specification is a GARCH (1,1)

regime-switching model. We choose a GARCH (1,1) specification because literature finds

that an order of (1,1) suffices to describe most financial data (Gray, 1996).
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We follow the procedure of Kim and Nelson (2000) to estimate the model parameters.3

Kim’s smoothing algorithm is employed to calculate the smoothed probability. We use grid

search to start the estimation. The final estimate is the one with highest likelihood value.

Martinez-Peria (2002) and Abiad (2003) have employed a time-varying transition

probability. This has the advantage that factors contributing to the transition from tranquil to

crisis period can be simultaneously determined in a consistent framework. We do not adopt

this approach due to several reasons. Unlike currency crises, factors determining the

probability of banking crises are mostly of low (annual) frequency. Accommodating these

variables in the model would greatly reduce the number of observations available for

estimate.4 Besides, it is well known that estimates of regime switching model become

unstable when more variables are included. Failure of convergence and singularity problem

would prevail. This is not good for a large sample study like ours. Our approach here assumes

a constant transition probability, and uses the MSM simply to identify the dates of banking

crises. We then use conditional logit regression in the following-up step to investigate the

factors determining the transition from tranquil to crisis state.

4. Empirical Results

4.1. First Impression

Figure 2 represents the smoothed probability of crisis state for the 47 countries. We

follow the common practice and define periods in which the smoothed probability exceeds

one half as crisis periods. Table 1 reports the crisis dates identified by the simple MSM.

Smoothed probability of the crisis state and the crisis periods identified by the GARCH MSM

are represented in Figure 3 and Table 2, respectively.

Before going further, it is worth a while to take a clear look at what the regime-switching

model has identified. We compare the MSM with five other rules for classifying crises. Table

4 reports the comparison. The 2 STDEV approach refers to the practice of Eichengreen, Rose,

and Wyplosz (1994, 1995, 1996), which defines the crisis threshold as two standard

deviations above the mean. The Pooled approach refers to the practice of von Hagen and Ho

(2003), which simply sorts the index and defines a set of percentage of all observations as

crises. The Bootstrap method uses 5000 resample to find the critical p-value. For instance,

Bootstrap 1.5% means that crisis threshold is defined as the 98.5 percentile of the

3 The procedure is sometimes called quasi-maximum likelihood estimates (QMLE). The programs are written in
EVIEWS language and can be requested from the author.
4 In other words, that would leave us with only 22 annual observations (1980-2001) to estimate 12 parameters
in GARCH (1,1) MSM.
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bootstrapped distribution. Crises identified by the events method are compiled from Caprio

and Klingebiel (2002, 2003). The last classifying rule for comparison is Hadi’s method for

outlier detection. Outliers refer to observations that do not conform to the majority pattern.

They are more distant from the sample center than the non-outliers. In practice, outliers can

greatly twist the metric of distance due to the masking and swamping problems. Hadi (1992,

1994) proposes a procedure that involves using robust distance metric that is less

contaminated by the outliers themselves. The implementation is easy and is readily available

in STATA program. Engel and Hakkio (1996) have employed this method in the context of

EMS exchange rates distribution. Since outliers could be above the mean or below the mean,

we restrict outliers to only those above the mean. Table 3 represents the banking crises

identified by Hadi’s method.

Table 4 tells us several things. First, the simple MSM can replicate the majority of crisis

quarters identified by the 2-standard-deviation method and the pooled method. For instance,

100 of the 114 crisis quarters identified by the 2-standard-deviation method coincide with the

simple MSM. A similar degree of coincidence also happens to the pooled method. Second,

regime-switching model tends to identify much more crises than the common procedures. The

simple MSM identifies 1364 crisis quarters, while the 2-standard-deviation method identifies

only 114 crisis quarters, and the pooled 2.5% method identifies only 94 crisis quarters. Third,

the bootstrap method identifies as many as crisis periods as MSM method, and the crisis

periods of the two methods has only roughly 50 percent coincidence. Fourth, GARCH MSM

identifies less crisis periods (585 quarters) than the simple MSM (1364 quarters). Only

roughly 40 percent of the crisis quarters identified by the GARCH MSM has a

correspondence in the simple MSM. An analogous signal-to-noise ratio has a value of only

1.4, indicating that the two sets of crisis dates are quite different. This implies that the

specification of MSM significantly influences the results of crisis identification.

Like common procedures, crises identification of the regime-switching model is

sample-dependent, too. Hsu and Kuan (2001) employ a bivariate regime-switching model to

study Taiwan’s business cycles. They find that when confined to a sub-sample of 1990-1999,

the model is successful in identifying the business cycles turning points in the 1990s.

However, Markov switching model based on the full sample from 1979 to 1999 fails to

identify any cycle in the 1990s. This is because that Taiwan’s economy grew rapidly before

1990 but much slower afterwards. The Markov switching model classifies all the growth rates

in 1990s into the low growth state when the full sample is considered, even though Taiwan’s
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economy still experienced some ups and downs during this period. This is similar to the case

of disappearing crises that Edison (2003) has documented.

A more serious problem of MSM is the case of inventing crises. Figure 4 illustrates two

contrasting examples: Austria and Italy. In terms of money market pressure, Austria has a

sound banking system, and the index never exceeds a value of 3. Study using events method

also classifies Austria as a country that has never experienced any banking crisis. In contrast,

Italian banking system was under great tension during the 1992 EMS crisis. The money

market pressure surges up to a scale of 7. The MSM has successfully identifies this tension, in

which the smoothed probability of the crisis state is over one half during 1992Q1-1993Q4.

But when applying the MSM to Austria, we find many crises that are simply counterfactual.

The smoothed probability of crisis state exceeds one half in almost half of the sample, and it

identifies six banking crises in the Austria. This happens because the intrinsic built-in

mechanism in the Markov switching models classifies each sample point into different states

based on the relative level of the index. For country like Austria that has small index value,

but whose index has up and down pattern, the regime-switching model will perform badly in

crisis identification. In such case, the high (low) mean state dose not necessarily corresponds

to what we mean about crisis (tranquil) period. The above discussion implies that a blind

application of regime-switching model to crisis identification is dangerous. The approach is

suitable only for countries whose index has obvious outliers, such as Italy. This may be a

reason why in currency crisis literature, regime switching model has been applied to only a

limited countries such as the Asian countries subject to the 1997 Asian financial crisis, and

the European countries subject to the 1992 EMS crisis.

4.2. Eliminate Inadequate Sample Countries

Therefore, we discard those sample countries for which the Hadi’s method detects no

outliers. This leaves us with 19 sample countries: Chile, Denmark, Ireland, Israel, Italy,

Jamaica, Kenya, Korea, Mexico, Niger, Peru, Seychelles, Sri Lanka, Swaziland, Sweden,

Turkey, Uganda, United States, and Uruguay.

Table 6 reports the estimated results of GARCH (1,1) switching model for selected

countries. The transition probabilities from crisis to crisis state are extremely low. This is

because the number of crisis periods is far less than the tranquil periods. For instance, the

transition probability (P; Q) for France is (0.98; 0.11), meaning that the expected duration of

crisis and tranquil state are 50 and 1.1 quarters, respectively. Except for Italy, the crisis state

has a higher conditional mean than the tranquil state, and IMMP in crisis state is more
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persistent than the tranquil state ( 12   and 12  ). However, the GARCH effects are

not obvious, because coefficients of conditional volatility ( ba,, ) are not significant and are

near zero. A more complete analysis should include Hansen’s specification test and

independent switching test, which are not conducted in this paper.

4.3. A Brief Literature Review

Caprio and Klingebiel (1996) examine the causes of systematic banking crises using a

database covering 86 episodes of insolvency in 69 countries. They define systematic banking

problems as the cases in which the net worth of the banking system has been almost

eliminated. They find that crisis countries have experienced greater volatility in output,

inflation, and terms of trade. In 75 percent of the crisis countries the terms of trade fell by

more than 10 percent in the years preceding the crisis. They do not find strong link between

credit growth and bank insolvency, but they agree that excessive credit growth might be a

primary factor behind the Latin American crises as Gavin and Hausman (1996) claim. As for

microeconomic factors, they find that deficient bank management, poor supervision, and

political interference are the primary causes of bank insolvency.

Honohan (1997) discusses three patterns of systematic financial failures: those due to

endogenous macroeconomic boom and bust cycle, those due to poor management and other

microeconomic deficiencies, and those due to government permeation. In a sample of 24

mostly developing countries, He finds that those countries having macroeconomic epidemics

tend to have higher loan-to-deposit ratio, foreign borrowing to deposits ratio, and growth rate

of real bank credit than the control group. Countries having experienced banking crises due to

government permeation tend to have higher share of reserves to deposits (indicating bank has

less discretion over the use of fund), government share of lending, and central bank

refinancing of bank lending than the control group.

The above papers provide a first screen of the possible causes of systematic banking

crises. A common deficient of these papers is that they involve little econometric work, and

their conclusions are drawn from limited observations. Demirgüc-Kunt and Detragiache

(1998) is the first econometric analysis on the determinants of systematic banking crises.

Using a sample of 45-65 countries that include 31 crisis episodes, they find that low GDP

growth, high real interest rate, and high inflation significantly increase the probability of a

banking crisis. The presence of explicit deposits insurance increases bank fragility. Countries

having better quality of law enforcement tend to experience less banking problems. They find

that terms of trade shocks and rapid credit growth have only weak effects on the probability of
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a banking crisis. Government fiscal deficit and depreciation of the nominal exchange rate do

not have an independent effect.

A shortage of Demirgüc-Kunt and Detragiache (1998) is that they use almost exclusively

contemporaneous explanatory variables, and therefore, makes the direction of causality

subject to ambiguity. To remedy this problem, Hardy and Pazarbasioglu (1999) employ both

coincident and leading indicators in their econometric analysis. They control for regional

differences and differentiate between full-fledged banking crises and banking distress.

Likewise, they find banking crises to be strongly associated with a contemporaneous fall in

real GDP growth and a rises in real interest rate. In additional, variables such as inflation,

credit growth, real effective exchange rate, and banks’gross foreign liabilities display a

“boom and bust”pattern, with a large positive coefficient two years before the crisis and a

large negative coefficient in the crisis or pre-crisis year. Explanatory variables such as real

gross fixed capital formation, the current account balance, reserve money, credit from

monetary authorities, banks’reserves, banks’net foreign assets, and foreign exchange

reserves relative to imports or deposits are not significant.

4.4. Conditional Logit Regression

Research on financial crises using panel binary choice model rarely controls for

country-fixed effects. In logit regression, controlling for fixed effects would require omitting

the sample countries that have experienced no crises during the sample period. This would

imply a loss of a large amount of available information (Demirgüc-Kunt and Detragiache,

1998). However, neglecting the fixed effects implies disregarding the possibility that the

dependent variable may change cross-country independently of the explanatory variables.

Simply adding country dummies in the panel logit is not an adequate method to control for

country-fixed effects. For a fixed number of observation T , the number of country dummies

increases with the number of cross-sectional units N , so that the country-intercept terms

cannot be consistently estimated for a fixed number of observations. This is known as the

incidental parameters problem (Baltagi, 1995). The usual solution to this incidental

parameters problem is to find a sufficient statistics for country-intercept terms that does not

depends on the slope terms. For the logit model, a minimum sufficient statistics for

country-intercept terms is 

T
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the unconditional likelihood function   
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(1980) and estimate a conditional logit model for banking crises.

4.5. Determinants of Banking Crises

In this section, we estimate two regressions, one with smoothed probability of crisis state

as dependent variable, and one with binary crisis dummy as dependent variable. Our choice of

explanatory variables is guided by existing literature and data availability. For a detailed

discussion, see Demirgüc-Kunt and Detragiache (1998) and von Hagen and Ho (2003). Table

7 lists the variables and their sources.

Table 8 reports the estimated results when using smoothed probability as dependent

variable. This is simply a fixed-effect OLS regression with a continuous dependent variable.

A problem with such panel regression is that the predicted value is not confined between zero

and one. Also as showed in Figure 3, smoothed probabilities tend to have low value in most

periods, and we may be more interested in periods with high crisis probabilities. Table 9

reports the estimated results for conditional logit model, where the binary dependent variable

is obtained by a dichotomy of the smoothed probability. This help to focus on periods with

high crisis probabilities. The following discussion will focus on Table 9.

The sample consists of 305 quarterly observations, including 100 crisis quarters. Thus

the rate of incidences of banking crises in the sample is about 30 percent. Table 9 presents six

specifications of the model. The first specification includes only macroeconomic variables as

explanatory variables. The second specification includes macroeconomic and financial

variables. The third specification includes additional institutional variables. The fourth

specification adds the events crisis dummy. The fifth specification includes interaction effects.

The last specification retains only those significant variables.

Only two of the ten macroeconomic factors are significant: real exchange rate

overvaluation and the ratio of budget surplus to GDP. A decline in real GDP growth and

nominal depreciation increase the probability of banking crises, but the effects are not

significant. Crises are strongly associated with over-valued exchange rates. The coefficients

on real interest rate and inflation rate have a positive sign as expected, but in no case are they

significant. Government budget deficits increase the probability of banking crises. The effects

of monetary base growth and domestic credit growth are negligible.

Turning to financial variables, we find that coefficient on ratio of domestic credit to GDP

is not significant. Liquidity of a banking system, approximated by ratio of bank cash and
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reserves to bank assets, is significant and reduces the probability of banking crisis. This

implies that liquidity in banking system can serve as buffer against external shocks. As for

institutional variables, we find that the coefficient on GDP per capita is negative and

significant, indicating less developed countries in our sample tend to experience more crises.

Financial liberalization and existence of explicit deposits insurance scheme have only

negligible effects. The coefficient on Freedom House country rating is negative and

significant, meaning that countries having good governance and institutional quality tend to

have fewer crises. The OECD dummy indicates that the introduction of Basle capital

requirement starting in 1993 did cause money market tensions in OECD countries. Finally,

the events crisis dummy and all the interactive terms are not significant.

Table 11 compares our results with other research. The discrepancy is large. Factors

identified by existing literature to have significant effects on banking crises, such as GDP

slowdown, high interest rate, high inflation and credit boom, are not found to be important in

this paper. The only common finding is that over-values exchange rate increases the

likelihood of banking crises. To see where the discrepancy comes from, we estimate another

conditional logit regression, but with the set of dependent variable identified by using the

Hadi’s outlier detection method. Table 10 represents the results. Now the results are more

similar to the existing literature. For instance, variables such as decline in GDP, overvaluation,

high inflation, domestic credit to GDP ratio, and existence of deposits insurance scheme are

strongly associated with banking crises. We conclude that different crises periods identified

by the regime-switching model accounts for a large proportion of this discrepancy.

5. Conclusion

Summed up, using regime-switching models to the identification of banking crises is not

very promising. MSM endogenizes the crisis threshold and thus reduces the arbitrariness

involved in setting crisis threshold and exclusion window. However, crisis identification of

MSM is sample-dependent and has the problem of inventing far more crises than it actually

has. The specification of the model significantly influences the crisis identification, and so far

there is no commonly accepted criterion for selecting competing specifications. In a strict

sense, the method does not allow the data to tell us freely what they are. In fact, the built-in

mechanism already instructs what the data should tell us. More importantly, the MSM are

specified to characterize regime means. The approach implicitly assumes that the observations

are distributed surrounding two different means. However, crises are more like outliers

(extreme values) of a given distribution. This also means that the high mean-value state does
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not necessarily correspond to what we mean by crisis state, and the low-value mean state does

not correspond to what we mean by tranquil state. An increasing literature employs GARCH

switching model to the identification of currency crises (Brunetti, Mariano, Scotti and Tan,

2003). However, whether there are really GARCH effects in the speculative pressure index

(or money market pressure in our case) is questionable. Furthermore, even with a cautious

application, we suspect the crises identified by the MSM are not reliable. This can explain

why factors contributing to banking crises in our sample have a great discrepancy with

existing research. We call for cautions in applying the regime-switching method to crisis

identification.
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Figure 1: Index of money market pressure for 47 sample countries
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Figure 2: Smoothed probability, simple Markov-switching model
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Figure 3: Smoothed probability, GARCH (1,1) Markov-switching model
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Figure 4: An illustration, Austria and Italy, Simple Markov-switching model
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Table 1: Banking crisis dates, simple Markov-switching model

Country Identified Banking Crisis
Austria 1981Q3~1983Q4; 1985Q1~1987Q1; 1988Q4~1991Q1; 1994Q4~1995Q3;

1996Q2~2000Q2; 2000Q4~2001Q1
Burundi 1980Q2~1980Q2; 1998Q2~1999Q2
Chile 1980Q2~1988Q4; 1991Q1~1991Q4
Cyprus 1981Q2~1983Q2; 1985Q2~1986Q4; 1995Q3~1996Q2
Denmark 1980Q2~1980Q3; 1982Q1~1983Q1; 1984Q2~1986Q4; 1989Q2~1990Q3;

1992Q1~1993Q4; 1998Q2~1999Q1; 2000Q2~2001Q4
Ecuador 1980Q2~1983Q3; 1990Q3~1996Q3; 1998Q1~1999Q3
Egypt 1980Q4~1981Q3; 1982Q4~1988Q1; 1989Q1~2001Q4
El Salvador 1986Q4~1991Q2; 1993Q4~2000Q4
Finland 1980Q2~1980Q3; 1982Q2~1984Q1; 1986Q2~1986Q4; 1989Q1~1990Q2;

1992Q2~1992Q3; 2001Q2~2001Q2
France 1981Q2~1982Q1; 1982Q4~1983Q1; 1992Q3~1993Q1
Germany 1980Q2~1982Q1; 1983Q4~1985Q2; 1988Q3~1991Q4
Greece 1981Q1~1985Q2; 1986Q4~1988Q4; 1991Q2~1994Q2; 1997Q4~2000Q2
Guatemala 1980Q2~1981Q3; 1983Q3~1984Q2; 1987Q1~1988Q1; 1991Q3~1992Q2;

1999Q1~2000Q2; 2001Q1~2001Q4
Honduras 1985Q1~1985Q4; 1992Q1~1992Q2
India 1982Q1~1982Q4; 1984Q2~1985Q1; 1989Q1~1989Q4; 1992Q3~1993Q2;

1994Q4~1995Q4; 1999Q2~2000Q1
Indonesia 1980Q3~1985Q4; 1997Q2~2000Q1
Ireland 1989Q3~1991Q1; 1992Q3~1994Q1
Israel 1981Q1~1986Q3; 1995Q1~1995Q4
Italy 1981Q3~1982Q2; 1992Q2~1993Q4
Jamaica 1991Q2~1993Q4; 1995Q3~1999Q1
Japan 1980Q2~1980Q3; 1982Q1~1987Q2; 1988Q4~1992Q2; 1994Q3~1994Q3;

1998Q1~2001Q4
Kenya 1986Q1~1986Q2; 1987Q2~1987Q2; 1992Q4~1995Q3
Korea 1981Q4~1982Q3; 1997Q4~1998Q2
Mexico 1989Q1~1989Q3; 1994Q4~1995Q3
Nepal 1981Q1~1981Q4; 1984Q2~1985Q1; 1992Q4~1993Q2; 1999Q4~1999Q4
Netherlands 1980Q2~1980Q2; 1981Q2~1982Q1; 1983Q1~1987Q3; 1989Q1~1991Q3;

1992Q3~1993Q2; 1994Q4~2001Q1
New Zealand 1981Q3~1982Q4; 1991Q3~1999Q1
Niger 1985Q2~1987Q2; 1987Q4~1993Q4; 1996Q2~2001Q4
Nigeria 1985Q1~1986Q1; 1989Q3~1990Q3; 1994Q2~1996Q4
Papua New Guinea 1981Q1~1982Q3; 1984Q4~1986Q1; 1987Q2~1987Q4; 1989Q3~1990Q2;

1991Q2~1994Q4; 2001Q1~2001Q2
Peru 1980Q2~1981Q2; 1987Q2~1987Q3; 1989Q1~1992Q1
Portugal 1980Q3~1981Q1; 1982Q3~1983Q3; 1984Q4~1988Q1; 1989Q4~1995Q4;

1997Q2~1998Q1; 1998Q4~2001Q4
Senegal 1985Q2~1993Q4; 1996Q1~2001Q4
Seychelles 1981Q4~1982Q3
South Africa 1981Q3~1982Q4; 1983Q4~1984Q4; 1987Q4~1990Q3; 1992Q3~1993Q2;

1995Q3~1997Q1; 1998Q2~1998Q3
Spain 1982Q4~1983Q3; 1987Q3~1987Q4; 1989Q3~1990Q1; 1992Q4~1993Q3;

1995Q2~1995Q3
Sri Lanka 1985Q2~1990Q4; 1991Q3~1995Q2; 1997Q1~2001Q4
Swaziland 1980Q2~1984Q2; 1989Q1~1990Q1; 1991Q2~1991Q3; 1995Q2~1996Q4;

2001Q2~2001Q3
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Sweden 1992Q2~1994Q2
Switzerland 1983Q3~1983Q4; 1989Q1~1989Q3
Thailand 1981Q2~1982Q1; 1997Q1~1998Q2
Togo 1980Q2~1981Q2; 1982Q1~1993Q4; 1995Q2~2001Q4
Turkey 2000Q4~2001Q4
Uganda 1988Q4~1990Q4
United States 1983Q4~1984Q1; 1985Q4~1986Q1; 1989Q3~1989Q3; 1991Q4~1991Q4
Uruguay 1982Q3~1983Q2; 1998Q4~1999Q3
Venezuela 1982Q4~1983Q1; 1988Q3~1989Q2; 1990Q3~1991Q1; 1997Q3~1998Q2
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Table 2: Banking crisis dates, GARCH (1,1) Markov-switching model

Country Identified Banking Crisis
Austria 1981Q3~1981Q3; 1983Q2~1983Q2; 1984Q1~1984Q1; 1985Q1~1985Q1;

1994Q4~1994Q4; 1997Q1~1997Q1; 1997Q4~1997Q4; 1999Q3~2000Q4
Burundi 1998Q2~1998Q4
Chile 1980Q3~1980Q4; 1982Q1~1982Q2; 1983Q2~1983Q3; 1985Q1~1985Q2;

1987Q1~1987Q2; 1988Q2~1990Q4; 1991Q3~1991Q4; 1992Q3~2001Q4
Cyprus 1983Q1~1983Q1; 1983Q3~1984Q4; 1986Q4~1987Q2; 1988Q1~1988Q1;

1988Q4~1989Q3; 1991Q1~1991Q1; 1991Q4~1992Q3; 1993Q4~1995Q1;
1996Q2~1997Q1; 1997Q3~1997Q4; 1999Q1~1999Q1; 1999Q4~2000Q3;
2001Q3~2001Q4

Denmark 1989Q4~1989Q4; 1992Q2~1993Q1; 2000Q2~2000Q3
Ecuador 1983Q4~1983Q4; 1984Q4~1984Q4; 1996Q4~1996Q4; 2000Q1~2000Q1;

2001Q1~2001Q1
Egypt 1998Q3~1998Q3
El Salvador 1984Q3~1984Q3; 1985Q3~1985Q3; 1987Q1~1987Q1; 1987Q3~1987Q3;

1991Q1~1991Q1; 1991Q3~1991Q3; 1993Q4~1993Q4; 1999Q2~1999Q2
Finland 1980Q3~1980Q3; 1982Q2~1982Q3; 1983Q1~1983Q4; 1986Q1~1986Q3;

1988Q2~1990Q1; 1991Q2~1991Q4; 1992Q3~1992Q3; 1995Q2~1995Q4;
1997Q1~1997Q1; 1998Q4~1999Q1; 1999Q4~1999Q4; 2001Q1~2001Q1

France 1992Q1~1992Q4
Germany 1981Q3~1981Q3; 1982Q1~1982Q1; 1984Q3~1984Q3; 1986Q1~1986Q1;

1995Q2~1995Q2; 1996Q3~1996Q3
Greece 1981Q1~1981Q1; 1981Q4~1981Q4; 1986Q4~1986Q4; 1994Q3~1994Q3
Guatemala 1980Q3~1981Q1; 1983Q3~1983Q4; 1986Q3~1987Q2; 1991Q2~1991Q4;

2001Q1~2001Q2
Honduras
India 1984Q1~1984Q2; 1991Q2~1991Q2; 1992Q3~1992Q4; 1994Q4~1994Q4;

1999Q3~1999Q3
Indonesia 1981Q1~1981Q3; 1982Q4~1985Q4; 1988Q3~1991Q4; 1997Q3~2000Q1
Ireland 1986Q1~1986Q1; 1989Q2~1989Q2; 1989Q4~1989Q4; 1992Q3~1992Q3
Israel 1981Q1~1981Q4; 1984Q1~1986Q4; 1988Q4~1988Q4; 1990Q1~1993Q3
Italy 1992Q2~1992Q2
Jamaica 1992Q2~1993Q2; 1995Q3~1998Q2
Japan 1982Q2~1982Q2; 1985Q4~1985Q4; 1990Q2~1990Q2; 1998Q2~1998Q3;

1999Q4~1999Q4; 2001Q1~2001Q2
Kenya 1980Q3~1980Q3; 1981Q1~1981Q1; 1981Q4~1981Q4; 1982Q2~1982Q2;

1983Q2~1983Q2; 1983Q4~1983Q4; 1985Q3~1985Q3; 1986Q2~1986Q2;
1988Q2~1988Q2; 1988Q4~1988Q4; 1989Q4~1989Q4; 1990Q2~1990Q2;
1991Q1~1991Q1; 1991Q3~1991Q3; 1993Q1~1993Q1; 1994Q1~1994Q1;
1995Q1~1995Q1; 1995Q4~1995Q4; 1998Q2~1998Q2; 1998Q4~1998Q4;
1999Q3~1999Q3; 2000Q2~2000Q2; 2001Q1~2001Q1; 2001Q3~2001Q3

Korea 1980Q3~1981Q4; 1986Q4~1987Q1; 1989Q4~1990Q1; 1997Q3~1999Q1
Mexico 1988Q2~1988Q2; 1989Q1~1989Q1; 1994Q4~1994Q4; 1995Q2~1995Q2;

1999Q1~1999Q1; 1999Q4~1999Q4; 2001Q2~2001Q2
Nepal 1981Q1~1981Q1; 1982Q1~1982Q1
Netherlands 1983Q1~1983Q1; 1985Q2~1985Q2; 1986Q4~1986Q4; 1989Q2~1989Q2;

1991Q2~1991Q2
New Zealand 1983Q1~1983Q1; 1985Q1~1985Q1; 1986Q2~1986Q2; 1987Q4~1987Q4;

1990Q3~1990Q3; 1999Q2~1999Q2; 2000Q2~2000Q2
Niger 1982Q3~1982Q3; 1984Q2~1984Q3; 1987Q3~1987Q3; 1994Q1~1994Q3
Nigeria 1981Q3~1982Q4; 1984Q3~1986Q1; 1987Q2~1987Q4; 1988Q4~1990Q3;
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1993Q1~1996Q3; 1999Q1~2000Q1; 2001Q3~2001Q4
Papua New Guinea 1981Q1~1981Q2; 1981Q4~1981Q4; 1984Q3~1985Q1; 1987Q2~1987Q3;

1988Q4~1988Q4; 1989Q3~1989Q3; 1991Q2~1991Q2; 1991Q4~1991Q4;
1992Q3~1992Q3; 1993Q4~1993Q4; 1994Q2~1994Q3; 1999Q4~1999Q4;
2001Q1~2001Q2

Peru 1981Q1~1981Q1; 1981Q3~1981Q3; 1982Q1~1982Q1; 1982Q3~1982Q3;
1983Q1~1983Q1; 1984Q2~1984Q2; 1985Q2~1985Q2; 1987Q4~1987Q4;
1988Q3~1988Q3; 1989Q1~1989Q2; 1989Q4~1990Q1; 1990Q3~1990Q3;
1991Q1~1991Q1; 1991Q3~1991Q3; 1992Q3~1992Q3

Portugal 1981Q2~1981Q2; 1990Q4~1990Q4; 1992Q4~1992Q4; 1996Q4~1996Q4
Senegal 1980Q3~1980Q3; 1982Q1~1982Q1; 1983Q1~1983Q1; 1987Q1~1987Q1;

1994Q1~1994Q1; 1995Q3~1995Q3
Seychelles 1981Q3~1982Q2; 1984Q3~1985Q1
South Africa 1983Q4~1983Q4; 1998Q2~1998Q2
Spain 1980Q3~1983Q3; 1984Q4~1986Q2; 1986Q4~1988Q1; 1989Q1~1991Q1;

1991Q3~1994Q1; 1994Q4~1996Q1; 1997Q2~1997Q2; 1998Q1~1998Q4;
1999Q4~2001Q4

Sri Lanka 1983Q2~1983Q3; 1984Q3~1984Q3; 1991Q1~1991Q1; 1994Q2~1994Q2;
1995Q3~1995Q4; 2001Q4~2001Q4

Swaziland 1989Q1~1989Q2; 2001Q2~2001Q4
Sweden 1981Q1~1981Q1; 1982Q3~1982Q3; 1983Q3~1983Q3; 1986Q1~1986Q2;

1991Q4~1992Q3; 1993Q3~1993Q3
Switzerland 1983Q2~1983Q2; 1986Q1~1986Q1; 1989Q4~1989Q4; 1998Q2~1998Q2
Thailand
Togo 1981Q3~1981Q4; 1994Q1~1994Q4
Turkey 1984Q4~1984Q4; 2000Q4~2001Q1
Uganda 1985Q1~1985Q1; 1989Q3~1989Q3
United States 1981Q2~1981Q2; 1982Q3~1982Q3; 1984Q3~1984Q3; 1985Q2~1985Q2;

1987Q1~1987Q1; 1988Q1~1988Q1; 1993Q3~1993Q3; 1996Q4~1996Q4;
1998Q1~1998Q1

Uruguay 1980Q3~1981Q1; 1982Q2~1983Q1; 1998Q4~1999Q1
Venezuela 1982Q4~1982Q4
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Table 3: Banking crisis dates, Hadi’s outlier detection method

5% significance level 10% significance level
Country Date of Banking Crisis Date of Banking Crisis
Chile 1984Q4~1984Q4 1984Q4~1984Q4
Denmark 1993Q1~1993Q1
Ireland 1989Q4~1989Q4

1992Q3~1993Q1
1992Q3~1992Q4

Israel 1984Q2~1984Q4 1984Q2~1984Q4
Italy 1992Q3~1992Q3 1992Q3~1992Q3
Jamaica 1993Q1~1993Q2

1997Q1~1997Q1
1993Q1~1993Q1
1997Q1~1997Q1

Kenya 1986Q2~1986Q2
1993Q1~1993Q2
1995Q1~1995Q2

Korea 1981Q4~1982Q1
1982Q3~1982Q3
1997Q4~1998Q2

1981Q4~1982Q1
1982Q3~1982Q3
1997Q4~1998Q2

Mexico 1989Q2~1989Q2
1995Q2~1995Q2

Niger 1982Q3~1982Q3
Peru 1987Q3~1987Q3

1990Q1~1990Q2
1991Q3~1992Q1

1987Q3~1987Q3
1990Q1~1990Q2
1991Q3~1992Q1

Seychelles 1981Q4~1982Q3 1981Q4~1982Q3
Sri Lanka 1983Q3~1983Q3

1995Q4~1995Q4
1983Q3~1983Q3
1995Q4~1995Q4

Swaziland 1982Q1~1982Q1 1982Q1~1982Q1
Sweden 1992Q3~1992Q4 1992Q3~1992Q3
Turkey 2001Q1~2001Q1 2001Q1~2001Q1
Uganda 1989Q3~1989Q3 1989Q3~1989Q3
United States 1981Q2~1981Q3

1987Q1~1987Q1
1981Q3~1981Q3

Uruguay 1983Q1~1983Q1
19 countries 14 countries
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Table 4: Comparison of rules for classifying crises

2 STDEV Pooled 1.5% Pooled 2.5% Bootstrap
1.5%

Bootstrap
2.5%

Events

N Y N Y N Y N Y N Y N Y
N 2647 14 2654 7 2648 13 2067 594 2040 621 2004 657MSM-

linear Y 1264 100 1324 40 1283 81 511 853 495 869 945 419
Signal to
noise ratio

2.7 2.6 2.6 3.0 3.0 1.2

2 STDEV Pooled 1.5% Pooled 2.5% Bootstrap
1.5%

Bootstrap
2.5%

Events

N Y N Y N Y N Y N Y N Y
N 3339 54 3368 25 3345 48 2274 1119 2233 1160 2491 902MSM-

GARCH Y 526 59 563 22 539 46 272 313 270 315 415 170
Signal to noise
ratio

3.8 3.3 3.5 2.0 2.0 1.1

Hadi 5% Hadi 10%
N Y N Y

N 2658 3 2655 6MSM-
linear Y 1335 29 1322 42
Signal to noise
ratio

2.7 2.6

Hadi 5% Hadi 10%
N Y N Y

N 3381 12 3376 17MSM-
GARCH Y 565 20 554 31
Signal to noise
ratio

4.4 4.6

MSM-GARCH
N Y

N 2297 329MSM-
linear Y 1096 256
Signal to noise
ratio

1.4

Hadi 5% Hadi 10%
N Y N Y

N 4007 18 3996 29Pooled
1.5% Y 33 14 28 19
Signal to noise
ratio

5.3 56.89

N 3967 11 3960 18Pooled
2.5% Y 73 21 64 30
Signal to noise
ratio

36.3 39.3
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Table 5: Comparison of rules for classifying crises, adjusted sample

2 STDEV Pooled 1.5% Pooled 2.5% Bootstrap
1.5%

Bootstrap
2.5%

Events

N Y N Y N Y N Y N Y N Y
N 1213 9 1219 3 1216 6 910 312 895 327 922 300MSM-

linear Y 352 47 383 16 367 32 193 206 189 210 208 191
Signal to
noise ratio

3.7 3.5 3.6 2.3 2.2 2.1

2 STDEV Pooled 1.5% Pooled 2.5% Bootstrap
1.5%

Bootstrap
2.5%

Events

N Y N Y N Y N Y N Y N Y
N 1348 20 1360 8 1354 14 972 396 953 415 959 409MSM-

GARCH Y 198 36 223 11 210 24 117 117 117 117 153 81
Signal to noise
ratio

5.0 4.1 4.7 2.1 2.0 1.2

Hadi 5% Hadi 10%
N Y N Y

N 1219 3 1216 6MSM-
linear Y 370 29 357 42
Signal to noise
ratio

3.9 3.9

Hadi 5% Hadi 10%
N Y N Y

N 1356 12 1351 17MSM-
GARCH Y 214 20 203 31
Signal to noise
ratio

4.6 4.9

MSM-GARCH
N Y

N 1069 138MSM-
linear Y 299 96
Signal to noise
ratio

1.9

Hadi 5% Hadi 10%
N Y N Y

N 1603 18 1592 29Pooled
1.5% Y 5 14 0 19
Signal to noise
ratio

140.7 Infinity

N 1591 11 1584 18Pooled
2.5% Y 17 21 8 30
Signal to noise
ratio

62.1 124.4
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Table 6: Estimated results of GARCH (1,1) switching model for selected countries

France Ireland Italy Mexico
Parameters Estimate p-value Estimate p-value Estimate p-value Estimate p-value

1 -0.01 0.96 0.05 0.59 0.06 0.72 -0.01 0.92

2 3.84 0.00*** 1.59 0.22 0.02 0.64 0.27 0.63

1 0.57 0.00*** 0.57 0.00*** 1.06 0.00*** 0.76 0.00***

2 1.71 0.30 1.48 0.12 0.41 0.00*** 1.73 0.01***

1 0.00 0.99 0.00 1.00 0.63 0.89 0.02 0.99

2 0.00 0.99 1.00 1.00 0.01 0.21 0.94 0.93

1a 0.18 0.82 0.24 0.98 0.16 0.52 0.41 0.97

2a 0.39 0.99 0.66 0.97 0.15 0.17 0.38 0.98

1b 0.56 0.84 0.42 0.98 0.54 0.96 0.24 0.96

2b 0.08 0.89 0.19 0.92 0.00 0.99 0.64 0.91

P 0.98 0.00*** 0.92 0.00*** 0.77 0.00*** 0.83 0.00***
Q 0.11 0.74 0.00 0.92 0.58 0.58 0.04 0.69
Log
likelihood

-130.22 -94.27 -115.46 -100.93

GARCH (1,1) Switching Model
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Table 7: Explanatory variables and data sources

Variable Name Definition Sources
MACROECONOMIC VARIABLES

GROWTH (%) Growth rate of real GDP IFS line 99bvp or 99b.p
DEPRECIATION (%) Changes of nominal exchange rates IFS line RF
OVERRER (%) Overvaluation of real exchange rate (An

increase in number means a real
depreciation)

Deviation from H-P filter
(smoothing parameter=6.25)

RLINTEREST (%) Real interest rates Nominal interest rates are from
IFS line 60b; Inflation rates are
from IFS line 64

INFLATION (%) Inflation rates IFS line 64
SURPLUS/GDP (%) Ratio of budget surplus to GDP Surplus from IFS line 80; GDP

from line 99b
DGROWTH (dummy) Dummy for severe recession GROWTH<-5%
DDGROWTH (dummy) Dummy for severe recession DGROWTH×GROWTH
DINFLATION (dummy) Dummy for high inflation INFLATION>20%
MBGRO (%) Growth rate of monetary base IFS line 14
CREDITGRO (%) Growth rate of real domestic credit IFS line 32d ÷ line 64

FINANCIAL VARIABLES
PRIVATE/GDP Ratio of domestic credit to private sector

to GDP
Domestic credit to private sector
from IFS line 32d

CASH/BANK (%) Ratio of bank liquid reserves to bank
assets

Bank liquid reserves from IFS
line 20; Bank assets from IFS
line 21 plus lines 22a to 22f

INSTITUTIONAL VARIABLES
GDP/CAP (1000
dollars/person)

Real GDP per capita Population is IFS line 99z

FL (dummy) Dummy variable for financial
liberalization

Demirgüc-Kunt and Detragiache
(1998), Glick and Hutchison
(2001)

DEPOSITEX (dummy) Dummy variable for existence of explicit
deposit insurance

Garcia (1999), Demirgüc-Kunt
and Detragiache (2000)

FH Indicator for governance and institutional
quality

Freedom House country ratings
for political freedoms and civil
liberty

OECD (dummy) Dummy variable that takes the value of
one only in OECD countries and only in
1991-92.

OECD countries introduced the
Basle capital requirements that
were binding starting in 1993

DEVENT (dummy) Crises identified by events method Caprio and Klingebiel (2002,
2003)
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Table 8: Fixed-effects panel regression, smoothed probability as dependent variable

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
MACROECONOMIC VARIABLES

GROWTH (-1) -0.0002 -0.0002 -0.0003 -0.0002 -0.0003
(-0.49) (-0.48) (-0.57) (-0.45) (-0.54)

DEPRECIATION (-1) 0.0009** 0.0009** 0.0008* 0.0008* 0.0005 0.0005***
(2.13) (2.07) (1.83) (1.89) (0.70) (2.75)

OVERRER (-1) -0.001 -0.001 -0.001 -0.001 -0.0005 -0.001*
(-1.24) (-1.19) (-1.28) (-1.17) (-0.46) (-1.79)

RLINTEREST (-1) 0.0002 0.0002 0.0001 0.0001 0.0002
(1.34) (1.35) (0.72) (0.68) (1.29)

INFLATION (-1) -0.00002 -0.00002 -0.00008 -0.00008 0.0004
(-0.11) (-0.08) (-0.36) (-0.38) (0.60)

SURPLUS/GDP (-1) -0.00001 -0.00001 -0.00001 -0.00001 -0.00
(-0.82) (-0.82) (-0.85) (-0.65) (-0.56)

DDGROWTH (-1) 0.008 0.009 0.002 0.005 0.002
(1.24) (1.24) (0.23) (0.66) (0.28)

DINFLATION (-1) -0.03 -0.03 -0.02 -0.02 -0.03
(-1.15) (-0.98) (-0.57) (-0.70) (-0.96)

MBGRO (-1) -0.0006** -0.0006** -0.0005** -0.0005** -0.0006* -0.0004***
(-2.39) (-2.32) (-2.01) (-2.09) (-1.93) (-2.60)

CREDITGRO (-1) 0.00002 0.00002 0.00003 0.0001 0.00003
(0.05) (0.05) (0.06) (0.23) (0.06)
FINANCIAL VARIABLES

PRIVATE/GDP (-1) 0.0001 -0.0002 -0.00008 -0.0002
(0.21) (-0.34) (-0.15) (-0.30)

CASH/BANK (-1) -0.0001 0.00008 0.00001 -0.0001
(-0.14) (0.08) (0.01) (-0.11)

INSTITUTIONAL VARIABLES
GDP/CAP (-1) -0.006** -0.006** -0.006** -0.007***

(-2.58) (-2.51) (-2.46) (-3.11)
FL (-1) -0.03 -0.03 -0.03 -0.009

(-0.97) (-0.90) (-0.94) (-0.31)
DEPOSITEX (-1) 0.12*** 0.11*** 0.12*** 0.11***

(4.01) (3.78) (3.80) (3.98)
FH (-1) -0.02** -0.03** -0.03** -0.02**

(-2.20) (-2.43) (-2.58) (-2.27)
OECD dummy
OECD 0.009 -0.01 -0.01

(0.20) (-0.22) (-0.26)
Events dummy
DEVENT 0.05** 0.06** -0.003

(2.25) (2.33) (-1.07)
Interaction effect
DEVENT*GROWTH -0.005

(-1.47)
DEVENT*DEPRECIATION -0.00

(-0.02)
DEVENT*OVERRER 0.001

(0.75)
DEVENT*RLINTEREST 0.00

(0.02)
DEVENT*INFLATION -0.00007

(-0.25)
Number of observations 305 305 305 305 299 348
Number of countries 17 17 17 17 17 19
AIC -331.14 -327.21 -340.76 -344.43 -331.10 -373.94
Note: The sign “*”, “**”, and “***” indicate significance levels of 10, 5, and 1 percent respectively.
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Table 9: Conditional Logit regression, crisis dummy as dependent variable

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
MACROECONOMIC VARIABLES

GROWTH (-1) -0.04 -0.04 -0.04 -0.04 -0.06 -0.06
(-0.86) (-0.72) (-0.60) (-0.72) (-1.00) (-1.21)

DEPRECIATION (-1) 0.0005 0.005 0.009 0.01 0.004
(0.04) (0.34) (0.57) (0.73) (0.25)

OVERRER (-1) -0.06** -0.06** -0.06** -0.06** -0.04 -0.05**
(-2.28) (-2.29) (-2.41) (-2.48) (-1.45) (-2.53)

RLINTEREST (-1) 0.009 0.01 0.004 0.001 0.008
(0.79) (0.82) (0.35) (0.17) (0.59)

INFLATION (-1) 0.02 0.02 0.009 0.007 0.01
(1.52) (1.36) (0.56) (0.44) (0.74)

SURPLUS/GDP (-1) -0.001* -0.0008 -0.0009 -0.0007 -0.001 -0.001*
(-1.75) (-0.66) (-0.72) (-0.63) (-0.68) (-1.88)

DDGROWTH (-1) -0.08 -0.06 -0.09 -0.02 0.04
(-0.45) (-0.31) (-0.48) (-0.08) (0.17)

DINFLATION (-1) -0.91 -0.82 -0.59 -0.75 -0.60
(-1.56) (-1.35) (-0.95) (-1.27) (-0.93)

MBGRO (-1) -0.01 -0.01 -0.006 -0.006 -0.007
(-1.55) (-1.41) (-0.77) (-0.79) (-0.84)

CREDITGRO (-1) -0.007 -0.01 -0.009 -0.006 -0.008
(-0.78) (-1.08) (-0.88) (-0.63) (-0.68)
FINANCIAL VARIABLES

PRIVATE/GDP (-1) -0.08 -0.07 -0.08 -0.09
(-0.92) (-0.91) (-1.03) (-1.00)

CASH/BANK (-1) -0.05* -0.05* -0.05* -0.04* -0.03*
(-1.78) (-1.72) (-1.83) (-1.65) (-1.70)

INSTITUTIONAL VARIABLES
GDP/CAP (-1) 0.07* -0.07 -0.08 -0.08**

(1.68) (-1.61) (-1.64) (-2.09)
FL (-1) -0.59 -0.63 -0.79

(-1.00) (-1.10) (-1.32)
DEPOSITEX (-1) 0.83 0.74 0.77

(1.45) (1.28) (1.29)
FH (-1) -0.25 -0.31 -0.34 -0.34*

(-1.18) (-1.44) (-1.47) (-1.69)
OECD dummy
OECD 0.91 0.68 0.69 1.21*

(1.31) (0.96) (0.92) (1.70)
Events dummy
DEVENT 0.85** 1.20**

(2.16) (2.23)
Interaction effect
DEVENT*GROWTH -0.07 -0.02

(-0.99) (-0.41)
DEVENT*DEPRECIATION 0.02

(0.81)
DEVENT*OVERRER -0.01

(-0.23)
DEVENT*RLINTEREST -0.01

(-0.97)
DEVENT*INFLATION -0.02

(-1.05)

Number of crises 100 100 100 100 97 98
Number of observations 305 305 305 305 299 307
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LR statistic 38.75*** 46.01*** 52.78*** 57.56*** 59.94*** 36.02***
AIC 239.05 235.79 239.01 236.24 236.03 236.14

PREDICTION CLASSIFICATION (CUTOFF=50%)
% Total correct 68 68 68 67 68 68
% Crises correct 2 2 2 1 3 1
% Non-crisis correct 100 100 100 100 100 100

PREDICTION CLASSIFICATION (CUTOFF=30%)
% Total correct 68 68 68 68 68 68
% Crises correct 3 2 2 3 4 1
% Non-crisis correct 100 100 100 99 99 100
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Table 10: Conditional Logit mode, crisis dummy as dependent variable, Hadi’s method

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
MACROECONOMIC VARIABLES

GROWTH (-1) -0.08 -0.05 -0.04 -0.04 -0.12 -0.12*
(-0.92) (-0.58) (-0.44) (-0.47) (-0.93) (-1.95)

DEPRECIATION (-1) -0.007 0.01 0.02 0.03 0.007
(-0.32) (0.53) (0.87) (1.13) (0.19)

OVERRER (-1) -0.08** -0.11** -0.15*** -0.14*** -0.10 -0.09**
(-2.08) (-2.50) (-2.66) (-2.92) (-1.51) (-2.56)

RLINTEREST (-1) -0.02 -0.02 -0.03 -0.03 -0.01
(-0.91) (-0.97) (-0.97) (-0.82) (-1.63)

INFLATION (-1) 0.01 0.005 -0.004 -0.01 0.005
(0.46) (0.21) (-0.16) (-0.48) (0.15)

SURPLUS/GDP (-1) 0.0004 0.01 0.01 0.01** -0.003 -0.0001
(0.80) (1.55) (1.34) (2.29) (-0.62) (-0.29)

DDGROWTH (-1) -0.17 -0.21 -0.24 -0.14 0.18
(-0.89) (-1.02) (-1.07) (-0.65) (0.58)

DINFLATION (-1) 1.25* 1.18 1.23 1.14 1.97** 1.60**
(1.70) (1.51) (1.42) (1.31) (2.24) (2.39)

MBGRO (-1) 0.0008 0.0007 0.004 0.007 0.007
(0.08) (0.07) (0.37) (0.63) (0.63)

CREDITGRO (-1) -0.001 -0.002 -0.001 -0.0007 -0.01
(-0.06) (-0.10) (-0.06) (-0.04) (-0.51)
FINANCIAL VARIABLES

PRIVATE/GDP (-1) -2.66 -2.97 -2.73** -0.50* -0.15*
(-1.44) (-1.21) (-1.97) (-1.94) (-1.66)

CASH/BANK (-1) -0.06 -0.04 -0.04 -0.09
(-1.50) (-0.90) (-0.95) (-1.50)

INSTITUTIONAL VARIABLES
GDP/CAP (-1) -0.02 -0.03 -0.08

(-0.24) (-0.37) (-0.85)
FL (-1) -0.13 -0.34 -0.28

(-0.13) (-0.33) (-0.27)
DEPOSITEX (-1) 2.12** 1.90* 2.24** 1.44**

(2.05) (1.73) (2.04) (1.96)
FH (-1) 0.34 0.30 0.21

(0.94) (0.77) (0.47)
OECD dummy
OECD 1.50 1.21 1.09 0.93

(1.64) (1.36) (1.12) (1.18)
Events dummy
DEVENT 1.29** 1.33* 0.78

(2.04) (1.70) (1.41)
Interaction effect
DEVENT*GROWTH 0.02 0.05

(0.13) (0.78)
DEVENT*DEPRECIATION 0.11**

(2.08)
DEVENT*OVERRER -0.15

(-1.43)
DEVENT*RLINTEREST -0.03

(-1.49)
DEVENT*INFLATION -0.14**

(-2.51)

Number of crises 27 27 27 27 26 27
Number of observations 306 306 306 306 300 308
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LR statistic 30.23*** 37.07*** 47.36*** 52.10*** 65.29*** 36.60***
AIC 123.85 121.00 120.72 117.98 108.68 113.68
PREDICTION CLASSIFICATION (CUTOFF=50%)
% Total correct 91 92 92 92 92 92
% Crises correct 4 7 7 7 15 4
% Non-crisis correct 99 99 100 100 99 100
PREDICTION CLASSIFICATION (CUTOFF=30%)
% Total correct 90 91 92 91 92 91
% Crises correct 4 7 19 15 27 11
% Non-crisis correct 99 99 98 98 99 99
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Table 11: A summary of the existing results on the determinants of systematic banking crises

Study Sample Coverage Significant Variables Non-significant Variables
Macroeconomic factors Microeconomic factors Macroeconomic factors

Caprio and Klingebiel
(1996)

86 crisis episodes (1) Terms of trade drop
(2) Recession
(3) Inflation

(1) Deficient management
(2) Poor supervision
(3) Government intervention
(4) Connected lending

(1) Credit growth

Goldstein and Turner
(1996)

Literature review (1) Terms of trade volatility
(2) International interest rate volatility
(3) Real exchange rates volatility
(4) Fall in GDP Growth
(5) Inflation

(1) Currency mismatch
(2) Maturity mismatch
(3) Financial liberalization
(4) Government involvement
(5) Weak accounting, disclosure
and legal framework

Honohan (1997) 24 countries, 18 crisis
episodes

(1) High loan to deposit ratio
(2) High foreign borrowing to deposits ratio
(3) Credit growth

(1) High share of reserves to
deposits
(2) Central bank refinancing of
bank lending

Demirgüc-Kunt and
Detragiache (1998)

45-65 countries, 31
crisis episodes

(1) Low GDP growth
(2) High real interest rate
(3) Inflation
(4) Terms of trade shocks
(5) Credit growth

(1) Deposit insurance
(2) Rule of law

(1) Fiscal deficit
(2) Exchange rate depreciation

Hardy and Pazarbasioglu
(1999)

50 countries, 43 crisis
episodes

(1) Fall in GDP growth
(2) Inflation
(3) Credit growth
(4) Real exchange rate

(1) Gross fixed capital formation
(2) Current account balance
(3) Reserve money
(4) Banks’reserves

This paper 19 countries (1) Real exchange rate overvaluation
(2) Ratio of budget surplus to GDP
(3) Ratio of bank liquid reserves to bank assets
(4) Real GDP per capita
(5) Governance and institutional quality

(1) Real GDP growth
(2) Nominal depreciation
(3) Real interest rate
(4) Inlfation
(5) Monetary base growth
(6) Real domestic credit growth


