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Abstract

With the availability of a rich data set, we will develop a new method of conducting

structural analysis of ascending auctions under the simplest valuation paradigm, the

symmetric IPV model. The data set allows us to adopt a nonparametric approach

and make strong interpretation of observed bids, including losing bids, while making

a few assumptions about bidding behavior of the model. Identi�cation and estimation

are based on the recent work by Song (2003) that we extend by using one more order

statistics and developing better procedure to control auction heterogeneity. We then

implement nonparametric tests by Athey and Haile (2002).

�This version is very preliminary and incomplete.
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1 Introduction

Auctions have become one of the most important research topics in both theoretical and

empirical microeconomics. Over the last decade, economic analysis of auctions has received

enormous attentions not only from game theorists and applied econometricians but also from

practitioners in government and related industries due to the important success of spectrum

auctions in many countries and the phenomena of eBay. Within empirical analysis of auc-

tions, structural analysis has received growing attentions over the last decade since Paarsch

(1992) �rst conducted a parametric test of common values and private values paradigms.

Structural analysis of auctions assume equilibrium behavior of bidders and then try to es-

timate the underlying distribution of bidders�valuations directly from observed bidding data.

After recovering the underlying data generating process (DGP), researchers can study many

interesting policy-relevant questions of auction design; for example, the optimal choice of

auction formats, reserve prices, information revelation structures, and so on. Since Paarsch

(1992)�s seminal work, there has been a burgeoning empirical literature in structural ap-

proaches developing new econometric methodologies to identify, estimate, and test using

various data sets from real-world auctions.1 2

Among the dominant formats for auctions, ascending auctions are most often used. They

1Paarsch (1992) adopted a parametric approach to distinguish between IPV (independent private values)

and PCV (pure common values) models. See Hendricks and Paarsch (1995) and La¤ont (1997) for surveys

of the early empirical works.
2We use common values (CV) as a synonym for interdependent values and, to avoid confusion, we dis-

tinctively use pure common values (PCV) whenever we need to describe models with the same, unknown

valuations for all bidders. Models of bidders�valuations can be classi�ed according to informational struc-

tures. Valuations can be either from private values (PV) paradigm or from common values (CV) paradigm.

Private values are the cases where a bidder�s valuation depends only on her own private signal. Common

values refer to all the other general cases. A special case of common values is PCV. Most of the theoretical

and empirical analyses in the literature have been done assuming one of the two extreme cases, IPV and

PCV, because of their simplicities.
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also have interesting features that distinguish itself from other formats.3 There are many

di¤erent variants of ascending auctions in the real-world. However, there is only one dom-

inating theoretical and empirical model of ascending auctions in the literature. More than

twenty years ago, while presenting a quite general modeling framework for various auctions,

Milgrom and Weber (1982) (hereafter MW) modeled ascending auctions as a button auc-

tion, an auction with full observability of bidders�actions and, most importantly, with the

irrevocable exits assumption, an assumption that a bidder is not allowed to place a bid at

any higher price once she drops out at a lower price. This assumption signi�cantly restricts

each bidder�s strategy space and makes the auction game simple enough to analyze. MW

must have put this assumption in their model because ascending auctions are not easy to

model due to its dynamic features which allows bidders to update their information (and

therefore valuations) continuously and to re-optimize themselves during an auction. After

MW, the button auction assumption was widely accepted by almost all the following works

on ascending auctions.4

However, in almost all the real-world ascending auctions, we do not really observe such ir-

revocable exits. Only recently, there was a nice attempt by Haile and Tamer (2003) (hereafter

HT) to conduct empirical research of ascending auctions without specifying such details as

irrevocable exits in the model. This project follows HT in our attempt to conduct structural

analysis of ascending auctions.

In the empirical literature of auctions, while there are quite a few works on the �rst-

price sealed-bid auctions, there are not as many works on the ascending auctions. One of

the possible reasons for this scarcity is the discrepancies between the theoretical model of

3They are Ascending (or English), Descending (or Dutch), First-price Sealed-bid and Second-price Sealed-

bid (or Vickrey) auctions. To avoid confusion, we use the term ascending auctions for the wide variety of

English auctions.
4There are few exceptions, e.g. Harstad and Rothkopf (2000) and Izmalkov (2003) in theoretical literature

and Haile and Tamer (2003) in empirical literature. Also see Bikhchandani and Riley (1991, 1993) for

extensive discussions of modeling ascending auctions.
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ascending auctions, especially the button auction, and the way real-world ascending auctions,

where the data comes from, are conducted. Another important reason preventing empirical

analyses is the di¢ culty of getting a rich and complete data set that records ascending

auctions.

This project contributes to the empirical auctions literature as follows. First, we develop

a new method of conducting structural analysis of ascending auctions with the availability

of a rich data set. In this �rst stage of our project, we will assume the simplest valuation

paradigm, i.e. the symmetric IPV model. However, we will follow the incomplete modeling

technique of HT (2003) removing the button auction assumption. As HT (2003) did in their

paper, we will also adopt a nonparametric approach while developing necessary empirical

and econometric methodologies. Our main di¤erence from HT (2003) is that we are able

to make stronger interpretation of observed bids with a few reasonable assumptions on the

bidding behavior because of the availability of the rich data set.

Our second contribution will be the implementation and the evaluation of existing meth-

ods, especially Athey and Haile (2002) (hereafter AH), with our rich data set. AH (2002)

provided quite general nonparametric identi�cation results and proposed some nonparamet-

ric tests for common values for all four standard auction formats, however, they did not

provide any exact statistics or empirical results. After we successfully conduct these two

analyses, third and the ultimate goal of this research project will be the development of a

nonparametric test to distinguish between common values and private values paradigms in

ascending auctions.

2 Literature Review

In their nonparametric analysis of ascending auctions with IPV, Haile and Tamer (2003)

adopted an incomplete model approach relaxing the button auction assumption and imposing

only two assumptions on bidding behavior. The �rst assumption of HT is that bidders do
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not bid more than they are willing to pay. And their second assumption is that bidders do

not allow an opponent to win at a price they are willing to beat. In most auctions, these

two assumptions seem very reasonable and innocuous. In their analysis, the independence

assumption is crucial and they tried to relax this and extend to a model with a¢ liated

private values (APV) in Haile and Tamer (2001), but it seems that they have not made

much progress yet in that direction.

With the two assumptions and some known statistical properties of order statistics, HT

(2003) nonparametrically estimated upper and lower bounds of the underlying distribution

function. The reason they could only estimated bounds and could not make any exact

interpretation of losing bids are because they did not impose the button auction assumption

and allow quite free forms of ascending auctions. AH (2002) noted this in a footnote saying

that �In oral �open outcry�auctions we may lack con�dence in the interpretation of losing

bids below the transaction price even when they are observed.�Actually, within ascending

auctions, there are a few variants that di¤er from each other slightly in the exact way of

conducting auctions. Among those variants, the distinction between one in which bidders

call prices and another one in which an auctioneer raises prices has very important theoretical

and empirical implications. The former is what AH called as �open outcry�auctions and

the latter is what we are going to exploit with our data. The main di¤erence is that the

former allows jumps in prices but the latter does not allow those jumps.

Our idea is that assuming IPV and a �xed discrete increments of prices raised by an

auctioneer and also assuming similar axiomatic assumptions made by HT, we are able to

make strong, exact interpretations of all the losing bids above the reserve price. That means

we are able to treat the observed bids as if they come from a button auction without actually

imposing the button auction assumption. And then we may use these information from

observed bids to estimate the exact underlying distribution.5 We can show that within the

5Actually, HT noted that if the true underlying model is the button auction, then their two bounds

collapsed to a single distribution, which is also the exact estimate.
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private values paradigm, in ascending auctions without irrevocable exits, the last price at

which each bidder shows her willingness to win, i.e. each bidder�s �nal exit price, can be

directly interpreted as her private signal, and with symmetry, to relevant order statistics

because it is weakly dominant strategy for a bidder to place a bid at the highest price she

can a¤ord.6 7 8 Basically we may get information about all the order statistics of signals

except the highest one.9 Then, using the properties of the order statistics, we can identify

the distribution of valuations. While doing this, we will utilize a recent development by

Song (2003) which enables us to identify and estimate the underlying distribution without

requiring the information on the exact number of potential bidders in each auction.

Since our approach is nonparametric, it can be also compared to the work by Guerre,

Perrigne, and Vuong (2000) (GPV) and Li, Perrigne, and Vuong (2000, 2002) (LPV) for

the �rst-price seal-bid auctions (FPSB). Within the IPV framework, GPV conducted a

complete analysis of nonparametric estimation of FPSB auctions. They developed the two-

step approach. We may have used their �rst-step in our estimation, however, the problem

is we do not observe the highest order statistic in ascending auctions.

Regarding the test of common values and private values, it is well known in the litera-

ture that it is empirically di¢ cult to distinguish between private value and common value

models with actual auction data. However, there have been a few recent attempts to de-

velop these tests. Hong and Shum (2003) estimated and tested general private values and

common values models with a certain parametric modeling assumption using a quantile esti-

6In CV model, this is not the case and the analysis is much more complicated because a bidder may try

not to press her button unless it is necessary because of strategic consideration to conceal her information.

See Riley (1988) and Bikhchandani and Riley (1991, 1993).
7We ignore any possible cost associated with each bidding action and assume it is zero or negligible. This

assumption seems reasonable for our auction where bidding is just pressing a button.
8Bikhchandani, Haile, and Riley (2002) showed there are generally multiple equilibria even with symmetry

in ascending auctions so that we have to be careful interpreting observed bidding data. However, they also

showed that with PV and weak dominance, we have uniqueness.
9See Arnold et al. (1992) and David (1981) for extensive statistical treatments on order statistics.
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mation method in ascending auctions. Hendricks, Pinkse, and Porter (2003) developed a test

based on data of the winning bids and the ex post values in �rst-price sealed-bid auctions.

Athey and Levin (2001) also used an ex post data to test the existence of common values

in �rst-price sealed-bid auctions. Most recently, Haile, Hong, and Shum (2003) developed

a nonparametric test for common value components in �rst-price sealed-bid auctions using

GPV�s two-stage estimation method.

3 The Data

The auction data comes from an o­ ine auction house located in Suwon, Korea.10 It opened

in May 2000 and has held wholesale used-car auctions weekly ever since.11 The auction

house mainly plays a role of an intermediary as many other auction houses do. While sellers

can be anyone who wants to sell her own car through the auction, only used-car dealers who

register as a member of the auction house can participate in the auctions. At the beginning,

the number of total members was around 250, and now it has grown to about 350. Actually,

this set of members can be viewed as a relatively stable panel, which makes the data from

this auction more reliable to conduct meaningful analyses than those from online auctions

in general.

Roughly, about a half of the members come to the auction each week. 600-1000 cars are

auctioned on a single auction day and 40-50 per cent of those cars are actually sold through

the auctions, which implies that a typical dealer who comes to the auction house on an

auction day gets 2-4 cars/week on average. Bidders, i.e. dealers, in the auction have resale

markets and, therefore, we can view this as if they try to win these used-cars auctioned only

10In June 2002, they started an online version of their o­ ine auctions. Even though this new format may

provide another interesting research agenda, for now we will focus on the o­ ine auctions only. Suwon is

located within an hour drive south of Seoul, the capital of Korea.
11The entire data set consists of all the auctions from a period between May 2000 and December 2002.
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to resell them to the �nal consumers or to other dealers.

The auction house�s objective should be long-term pro�t maximization. Since there exist

repeated relationships between dealers and the house, it might be important for the house to

build certain reputations.12 An original seller�s goal is to sell her car at the highest possible

price near the time she wants to sell it after considering the trade-o¤ between the price and

the possibility of being sold.

The auction itself is an interesting variant of ascending auctions. There is a reserve price

set by a seller with a consultation from the auction house. An auction starts from an opening

bid below the reserve price. The opening bid is made public on the auction house�s website

two or three days before an auction day. After an auction starts, the current price of the

auction increases by a �xed increment, which is about 30 US dollars for all price ranges,

when there is any one bidder who presses a button beneath her desk in the auction room.13

There is a big screen in front which displays pictures and key descriptions of a car auctioned

currently as well as the current price.

In front of the auction room, there are also two important devices for information disclo-

sure. One of them resembles a tra¢ c light with green, yellow, and red lights, and the other

is a sign that turns on whenever the current price is above the reserve price, which means

that the reserve price is made public once the current price reaches the level.

The tra¢ c lights indicates the number of bids at the current price. The green light

indicates three or more bids, yellow means two bids, and red indicates that there is only

one bid at the current price while the current price is above the reserve price. When the

current price is below the reserve price, they are indicating two or more, one, and zero bids

respectively. This tra¢ c light is needed because unlike the usual open ascending auctions

12There also exists a competition among three similar wholesale used-car auction houses. In this paper,

we ignore any e¤ects from the competition and view the auction house as a single monopolist for simplicity.
13When the current price is above the reserve price, of course, there should be at least two bidders to

continue. This auction might be one of the closest real-world application of MW�s button auctions except

the auctions they created.

8



the bidders in this auction do not see who are pressing their buttons and therefore do not

know how many bidders are placing their bids at the current price. With the tra¢ c light,

bidders only get somewhat incomplete information on the number of current bidders and

they never observe the identities of the current bidders.

There is a very short length of a single time period, eighty milliseconds, such that all

the bids made in the same period are considered as made at the same price. A bidder can

indicate her willingness to buy at the current price by pressing her button at any time she

wants, i.e. exit and reentry are freely allowed. The auction ends when three seconds have

passed after there is only one bid remains at the current price and no more bids at the time.

When an auction ends at the price above the reserve price, the item goes to the bidder who

presses last, but when it ends at the price below the reserve price, the item is not sold.

Available data includes the detailed bid-level (button-pressing) log data for every auc-

tions.14 Auction covariates, very detailed characteristics of cars auctioned, are also avail-

able. The covariates available includes each car�s make, model, production date, engine-size,

mileage, rating15 , transmission-type, fuel-type, color, options, purpose, body-type etc. We

also observe the starting prices and the reserve prices of all auctions. Some bidder-speci�c

covariates such as identities, locations, �members since�date are also available. And the date

of title change is available for each car sold, which may be used as a proxy for the resale date.

Last, we only observe the information on �who�come to the auction house at �what time�of

an auction day for a very rough estimate on the potential set of bidders for an auction.

Here is a descriptive snapshot of a typical auction day, September 4th, 2002, which is

randomly picked. Total 567 cars were auctioned on the day, 386 cars of which were passenger

cars and the remaining 181 were full-size vans, trucks, buses, etc. Since this auction day

14Some logs are incomplete because only last �fty scans (the server records one to several �scans�at each

price.) in each auction are recorded. Also, we do not have any data on the speed of price increase although it

may represent the intensity of competition and therefore will a¤ect bidders�valuations and their strategies.
15The auction house inspects each car and gives a 10-0 scaled rating to each car. These ratings are

important to determine the value of a used-car.
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was the �rst week of the month, there were relatively small number of cars16. 248 cars

(43 percent) were sold through the auction and, among those unsold, at least 72 cars sold

afterwards through post-auction bargaining, or re-auctioning next week, etc. The log data

shows that the �rst auction of the day started at 13:19 PM and the last auction of the day

ended at 16:19 PM. It only took 19 seconds per auction and 43 seconds per transaction.

152 ID cards (132 dealers since some dealers have multiple IDs) were recorded as entered

the house. On average each ID placed bids for 7.82 auctions during the day. There were 98

bidders who won at least one car but 40 bidders did not win a single car. On average, each

bidder won 1.8 cars and there are three bidders who won more than 10 cars. Among 386

passenger cars, there were at least one bid in 218 auctions. Among those 218 auctions, 170

cars were successfully sold through auctions and 48 were unsold.

The data we are using in this paper are from those auctions of fourteen weeks from Sep-

tember to December 2002. We only considered passenger cars for controlling heterogeneity

and there were 5965 passenger cars auctioned in this period. Among those, we only use the

data from auctions which have at least four observed bids above the reserve price and there

are 717 of those. Here are summary statistics of the sample.

Table 1. Summary Statistics (Sample Size:717)

Age Engine Mileage Rating 2nd 3rd 4th Reserve Opening

(years) Size (`) (km) (0-10) highest - - price bid

Mean 6.1219 1.7369 98,225 3.2671 397.09 391.54 384.23 355.97 324.30

S.D. 2.3995 0.3679 48,991 1.0761 313.36 313.03 312.23 503.10 299.47

Med 6.4167 1.4980 94,060 3.5 321 316 308 285 250

Max 11.4167 3.2060 326,398 6 1,933 1,930 1,921 1,900 1,870

Min 0.5 1.4390 215 0 10 7 7 5 0

The market shares of major car makers in the sample is presented in Table 2.

16The number of cars auctioned are the most in the last auctions of months.
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Table 2. Market Shares in the Sample

Hyundai Daewoo Kia Ssangyong Others

Market Share(%) 45:19 30:26 20:92 2:65 0:98

4 Model and Estimation

4.1 Model and Identi�cation

This section describes the basic set-up of an IPV model we analyze. Consider a wholesale

used-car auction[WUCA] of a single object with the number of risk-neutral potential bidders,

N � 2, drawn from pn = Pr(N = n). Each potential bidder i has the valuation V i, which

is independently drawn from the absolutely continuos distribution F (�) with support [v; �v].

Each bidder knows only his valuation but the distribution F (�) and the distribution pn are

common knowledge. By the design of WUCA, we can treat it as a button auction if we

disregard the minimum increment. Actually the minimum increment (about 30 dollars) in

WUCA is negligible relative to the average car value (around 3,000 dollars) sold in WUCA,

which is about one percent of the average car value.

Hence, in what follows, we simply disregard the existence of the minimum increment in

WUCA to make our discussion simple and the bounds estimation implied by the minimum

increment is handled in Section 4.6. Therefore, if we observe the number of potential bidders

and any ith order statistic of the valuation (identical to ith order statistic of the bids), then

we can identify the distribution of valuations from the cumulative density function (CDF)

of the ith order statistic as done in many previous literatures. De�ne the CDF as

G(i:n)(x) = H(F (x); i : n) =
n!

(i� 1)!(n� i)!

Z F (x)

0

ti�1(1� t)n�idt (1)

Then, we obtain the distribution of the valuations F (�) from

F (x) = H�1(G(i:n)(x); i : n) (2)
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However, in the auction we consider, we do not know the exact number of potential

bidders in a given auction and the number of potential bidders vary over di¤erent auctions.

Nonetheless we can still identify the distribution of valuations F (�) following the methodology

proposed by Song (2003), since we observe several order statistics in a given auction. Song

(2003) showed that an arbitrary absolutely continuous distribution F (�) is nonparametrically

identi�ed from observations of any pair of order statistics from an iid sample, even when the

sample size, n, is unknown and stochastic. The idea is that we can reinterpret the density of

the kth1 highest value Y conditional on the k
th
2 highest value X as the density of the (k2�k1)th

order statistic from a sample of (k2 � 1) following F (�). In other words, the density of Y

conditional on X, p(k2;k1)(yjX = x) can be written

p(k2;k1)(yjx) =
(k2 � 1)!

(k2 � k1 � 1)!(k1 � 1)!
(F (y)� F (x))k2�k1�1(1� F (y))k1�1f(y)

(1� F (x))k2�1 Ify�xg(3)

=
(k2 � 1)!

(k2 � k1 � 1)!(k1 � 1)!
((1� F (x))F (yjx))k2�k1�1

�((1� F (x))(1� F (yjx)))
k1�1f(yjx)(1� F (x))

(1� F (x))k2�1 � Ify�xg

=
(k2 � 1)!

(k2 � 1� k1)!(k2 � 1� (k2 � k1))!
� F (yjx)k2�1�k1(1� F (yjx))k1�1f(yjx) � Ify�xg

= g(k2�k1:k2�1)(yjx);

where f(yjx)(g(�)(yjx)) denotes the truncated density of f(�)(g(�)(�)) truncated at x and

F (yjx) denotes the truncated distribution of F (�) truncated at x. This interpretation comes

from the probability density function (PDF), g(i;n)(x) of the ith order statistic of the n sample,

where

g(i:n)(x) =
n!

(i� 1)!(n� i)! [F (x)]
i�1[1� F (x)]n�if(x) (4)

Then, the identi�cation of the distribution of valuations is straightforward by Theorem 1

in Athey and Haile (2002) saying that the parent distribution is identi�ed whenever the

distribution of any order statistic (here k2 � k1) with a known sample size (here k2 � 1) is
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identi�ed.

4.2 Auction Heterogeneity

In practice, the valuation of objects sold in WUCA (as in other auctions) varies according

to several observed characteristics, for example, car types/ makes/ mileages/ year, etc. We

want to control the e¤ect of these observables on the individual valuation to obtain the

homogeneity of the idiosyncratic factors such as idiosyncratic tastes, cost shocks, or demand

shocks). For this purpose, we assume the following nonparametric form of the valuation

V (Xi) as

lnV (Xi) =W (l
�(Xi)) + vi; (5)

where W (�) is a known link function and Xi is a vector of observable characteristics of

auction and we assume that vi is independent of Xi. Thus, we do assume the additively(or

multiplicatively) separable structure of the value function, which is preserved by equilibrium

bidding. In the auction we consider, ignoring the minimal increment, we have

lnB(Vij; Xi) =W (l
�(Xi)) +B(vij); (6)

where Vij is the valuation of a bidder j on an auction i, B(Vij; Xi) is a bidding function of

a bidder j with observed heterogeneity of an auction i and B(vij) is a bidding function of

homogeneous auctions. Under the IPV assumption, we have B(V;X) = V (X) and B(v) = v

as before.

Here we do not make any parametric assumption on either l(�) or the distribution of v, Fv(�).

In this case, we can identify both l(�) and Fv(�) up to location (see Athey and Haile (2002)).

Thus, we need a normalization. We assume

l�(0) = 0 (7)
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In what follows17, we also assume W (�) is an identity function. Thus, we have

lnV (Xi) = l
�(Xi) + vi; (8)

4.3 Estimation

4.3.1 Control on the Observed Heterogeneity

Assuming the independence of the idiosyncratic factor, vi; on the observables, Xi, we can

approximate the unknown function l(Xi) in (8) using a sieve estimation such as power series

sieve. We �rst approximate the function space L containing l�(Xi) with the following power

series sieve space LT

LT = fl(X)jl(X) = Rk1(T )(X)0� for all � satisfying klk�
1 � c1g; (9)

where Rk1(X) is a triangular array of some basis polynomials with the length of k1. The

function LT is getting dense as T ! 1 but not that fast, i.e. k1 ! 1 as T ! 1 but

k1=T ! 0. Then, according to Theorem 8, p.90 in Lorentz (1986), there exists a �k1
18 such

that for Rk1(x) on the compact set X (the support of X)

sup
x2X

jl�(x)�Rk1(x)0�k1j < c1k1�
[
1]
dx ; (10)

where [s] is the largest integer less than s and dx is the dimension of X. Thus, in what

follows, we approximate the pseudo-value vi in (8) as

vk1i = lnVi � lk1(X); (11)

where lk1(x) = R
k1(x)0�k1.

Speci�cally, we consider the following polynomial basis considered by Newey, et al (1999).

First let � = (�1; : : : ; �dx)
0 denote a vector of nonnegative integers with the norm j�j =

17The identi�cation and the estimation with a general link function and a general transformation of vi

will be a straightforward extension of what we consider here
18I will suppress the argument T in k1(T ), unless otherwise noted from now on
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Pdx
j=1 �j, and let x

� �
Qdx
j=1(xj)

�j . For a sequence f�(k)g1k=1 of distinct such vectors, we

construct a tensor-product power series sieve as

Rk1(x) = (x�(1); : : : ; x�(k1))0 (12)

Then, replacing each power x� by the product of orthonormal univariate polynomials of the

same order, we may reduce collinearity.

4.3.2 Distribution of Valuations

Here we use the semi-nonparametric (SNP) estimation procedure developed by Gallant and

Nychka (1987) and Coppejans and Gallant (2002). We implement a particular sieve esti-

mation of the unknown density function using a Hermite series. First, we approximate the

function space, H, containing the true density function with a sieve space of the Hermite

series, HT . Once we set up the objective function based on a Hermite series approximation

of the unknown density function, then the estimation procedure is just a �nite dimensional

parametric problem. In particular, we use the maximum likelihood methods. What remains

is to specify the particular rate in which a sieve space, HT , gets closer to H achieving the

consistency of the estimator. We specify several regularity conditions for this.

Since we observe at least the second-, third- and fourth-highest bids in each auction of

WUCA. We can estimate several di¤erent versions of the distributions of valuations (F (�)),

since any pair of order statistics can identify the parent distribution according to Song (2003)

under the number of potential bidders unknown or unobserved. Here, we use two pairs of

order statistics (second-, fourth-) and (third-, fourth-) highest bids and obtain two di¤erent

values of F (�), which provides us an opportunity to test the hypothesis that WUCA is the

IPV. This testable implication comes from the fact that under the IPV, value of F (v) implied

by the distributions of di¤erent order statistics must be identical for all v:19

19For detailed discussion, see Athey and Haile (2003).
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Once we show that the IPV assumption holds, then we can combine several order statistics

to identify F (�) extending Song (2003) to the case of more than three bids observed. This

version of estimator is better than the version that use a pair of order statistics in the sense

that we are using more information.

First, consider the estimation of the distribution of valuations using the second- and fourth-

highest bids in each auction. Let (Yi; Xi) denote the second- and fourth-highest pseudo-bids

for each auction i and let c = mini xi.20 Then, F (v) for v < c can not be recovered form the

data. Hence, we treat F �(�) = F (�jc) as the model primitive of interest, where F (�jc) denotes

the truncated distribution of F (�) from below at c as

F �(vjc) = F (v)� F (c)
1� F (c) (13)

Then, we obtain the density of Yi conditional on Xi, p(4;2)(yijXi = xi) from (3) as

p(4;2)(yjX = x) =
6(F �(y)� F �(x))(1� F �(y))f �(y)

(1� F �(x))3 for y � x � c: (14)

To estimate the unknown function f �(z) (hence, F �(z) =
R z
c
f �(t)dt), we �rst approximate

f �(z) with the following speci�cation of fK(z) up to the order K(T ):21

fK(z) =

�
1 +

PK
j=1 aj

�
z��
�

�j�2
�(z;�; �; c)R1

c

�
1 +

PK
j=1 aj

�
t��
�

�j�2
�(t;�; �; c)dt

; (15)

where �(�;�; �; c) is the density of N(�; �) truncated below at c. Then, we construct the

sample likelihood based on fK(�) instead of the true f(�) using (14):

L(fK) =
1

T

TX
i=1

ln
6(FK(yi)� FK(xi))(1� FK(yi))fK(yi)

(1� FK(xi))3
; (16)

20Note that c is a consistent estimator of v under no binding reserve price and a consistent estimator of

the reserve price under the binding case.
21I will suppress the argument T in K(T ) unless noted otherwise
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where FK(z) =
R1
c
fK(t)dt. Noting that (16) is a parametric estimation problem, we ap-

proximate fK(�) with f̂(�) as the maximum likelihood estimator:

f̂(z) =

�
1 +

PK
j=1 âj

�
z��̂
�̂

�j�2
�(z; �̂; �̂; c)R1

c

�
1 +

PK
j=1 âj

�
t��̂
�̂

�j�2
�(t; �̂; �̂; c)dt

; (17)

where

(â1; : : : ; âK ; �̂; �̂) = arg max
a1;:::;aK ;�;�>0

L(fK) (18)

Now note that actually a pseudo-bid z is de�ned as the residual in (8) and is approximated

as the residual in (11). Thus, we have another set of parameter (�k1) to estimate in (18) as

f̂(ẑ) =

�
1 +

PK
j=1 âj

�
ẑ��̂
�̂

�j�2
�(ẑ; �̂; �̂; c)R1

c

�
1 +

PK
j=1 âj

�
t��̂
�̂

�j�2
�(t; �̂; �̂; c)dt

; (19)

where

(�̂; â1; : : : ; âK ; �̂; �̂) = arg max
�;a1;:::;aK ;�;�>0

L(fK): (20)

Denote the estimator f̂(�) in (18) as f̂1(�) to distinguish this with other versions of estimator

addressed later.

Note that our estimator requires a rich data set, since we estimate two nonparametric func-

tions at the same time. The approximation precision depends on the choice of smoothing

parameters k1 and K. Here, we pick the optimal length of series (the dimension of the sieve

space HT ), K�, following the Coppejans and Gallant (2002)�s method, which is a cross-

validation strategy as used in a Kernel density estimation. Appendix Acontains a detailed

discussion of choosing the optimal combination of K� and k�1.

Similarly we can also identify and estimate f �(�) using the pair of third- and fourth-

highest bids from

p(4;3)(yjX = x) =
3(1� F �(y))2f �(y)
(1� F �(x))3 for y � x � c; (21)

which is again obtained from (3). Denote the estimate of f �(�) based on (21) as f̂2(�).
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4.3.3 Simple Two Step Estimation

Though the estimation procedure considered up to now is a feasible one-step method and may

be more e¢ cient, we rather use a two-step estimation method as follows so that we can avoid

the computational burden involved in estimating two unknown nonparametric functions l�(�)

and Fv(�) at the same time. First, we approximate the function l(�) = Rk1(�)0�k1 estimating

the following equation using the OLS

lnVij = D
0
ij
 +R

k1(Xi)
0� + �ij; (22)

where Dij is a vector of dummy variables indicating that j+1 highest bids. Then, construct

the residuals for each order statistics as

v̂ij = lnVij �Rk1(Xi)
0�̂ (23)

Here we are willing to assume the following regularity conditions

Assumption 4.1 (Vij; Xi); : : : (VTj; XT ) are i.i.d. for all j and Var(VjjX) is bounded for

all j.

Assumption 4.2 (i) the smallest and the largest eigenvalue of E[Rk1(X)Rk1(X)0] is bounded

away from zero uniformly in k1 and; (ii) there is a sequence of constants �0(k1) satisfying

supx2X


Rk1(x)

 � �0(k1) and k1 = k1(T ) such that �0(k1)2k1=T ! 0 as T !1, where the

matrix norm kAk =
p
trace(A0A).

Under Assumption 4.1 and 4.2, we have the consistency of l̂(�) = Rk1(�)0�̂ in the mean

squared norm or in the sup-norm from Newey (1997), since (10) implies Assumption 3 in

Newey (1997) for the polynomial series approximation. Newey (1997) also showed �0(k1) �

O(k1) for power series sieves. Hence, k1 = O(T #) with 0 < # < 1
3
satis�es Assumption 4.2.

In the second step, based on the estimated pseudo values v̂ij, we estimate fv(�) based on

(18). We pick the optimal length of series k�1 and K
� using again cross-validation strategies.
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For K�, we follow the Coppejans and Gallant (2002)�s method and for k�1, we employ a

similar cross-validation method common in a usual kernel regression but we choose k�1 as

the minimizer of the sample average mean squared error. For detailed discussion, again see

Appendix A.2.

4.3.4 Testable Restriction: Part 1

As noted in the previous section, we can test the IPV assumption, since several versions

of distribution of valuations are identi�ed under availability of three order statistics. In

particular, one is from the pairs of the second- and fourth- highest bids and the second one

is from the pairs the third- and fourth- order statistics. Therefore, by comparing f̂1(�) and

f̂2(�), we can test the following hypothesis H0 against H0

H0 : WUCA is an IPV auction (24)

HA : WUCA is not an IPV auction;

since under H0, there should be no signi�cant di¤erence between f̂1(�) and f̂2(�).

4.3.5 Test Statistics

Tests based on Means or Higher Moments We can test (24) based on the means or

higher moments implied by f1 and f2 as

Hj
0 (IPV ) : �j1 = �

j
2 (25)

Hj
A (NIPV ) : �j1 6= �

j
2; j = 1; 2; : : : ; J

where �jk =
R1
c
vjfk(v)dv, k = 1; 2, since (24) implies (25) and (24) implies (24) as J !1.

We can compare several estimates of moments implied by f̂1 and f̂2 and test the signi�cance

di¤erence of each pair by constructing a standardized test statistics. One di¢ culty is to

re�ect the fact that we used pre-estimated functions in obtaining f̂1 and f̂2 in calculating

the asymptotic variance of each moment estimate. [To be completed]

19



A Sup-Norm Test Another possible test is based on a Kolmogorov-Smmirnov-type (KS)

statistic testing equal distribution as

�T = sup
v2[v;�v]

jF̂1(v)� F̂2(v)j; (26)

where F̂k =
R1
c
f̂k(v)dv, k = 1; 2. Again the di¢ culty lies in the fact that the estimates

of F̂1 and F̂2 contain some pre-estimated functions, which may invalidate any bootstrap

based inference method without any knowledge on the �rst-order asymptotics of �T . [To be

completed]

4.3.6 Combining Several Order Statistics

Once we show the several versions of estimates for the distribution of valuations are sta-

tistically not di¤erent each other, we may obtain a better estimate by combining these.

One way to do this is to consider the joint density function of two or more order statistics

conditional on a certain order statistic. Assume that we have the kth1 , k
th
2 , and k

th
3 -highest

order statistics, which are the (n � k1 � 1)th, (n � k1 � 1)th, (n � k1 � 1)th order statistics

respectively (1 � k1 < k2 < k3 � n). Denote the joint density of these three order statistics

as ~g(k1;k2;k3:n)(�)22

~g(k1;k2;k3:n)(x; y; z) =
n!

(n� k3)!(k3 � k2 � 1)!(k2 � k1 � 1)!(k1 � 1)!
(27)

�F (x)n�k3f(x)[F (y)� F (x)]k3�k2�1f(y)[F (z)� F (y)]k2�k1�1f(z)[1� F (z)]k1�1;

where Z denotes the kth1 -, Y denotes kth2 - and X denotes kth3 -highest order statistics. Using

this joint density function with (4), we obtain the conditional joint density of the kth1 and

22We use this notation ~g(�) to distinguish it from g(�) so that ki denotes the kthi highest order statistics
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the kth2 -highest order statistics conditional on the k
th
3 -highest statistics as

p(k1;k2jk3)(z; yjx) =
(k3 � 1)!

(k3 � k2 � 1)!(k2 � k1 � 1)!(k1 � 1)!
(28)

� [F (y)� F (x)]
k3�k2�1f(y)[F (z)� F (y)]k2�k1�1f(z)[1� F (z)]k1�1

[1� F (x)]k3�1
�Ify�x;z�yg

=
(k3 � 1)!

(k3 � k2 � 1)!(k2 � k1 � 1)!(k1 � 1)!
[(1� F (x))F (yjx)]k3�k2�1

�f(yjx)(1� F (x))[(F (zjx)� F (yjx))(1� F (x))]k2�k1�1

�f(zjx)(1� F (x))[(1� F (zjx))(1� F (x))]
k1�1

[1� F (x)]k3�1 � Ify�x;z�yg

=
(k3 � 1)!

(k3 � k2 � 1)!(k2 � k1 � 1)!(k1 � 1)!
F (yjx)k3�k2�1f(yjx)

�[F (zjx)� F (yjx)](k3�k1)�(k3�k2)�1f(zjx)[1� F (zjx)](k3�1)�(k3�k1)

= g(k3�k1;k3�k2:k3�1)(z; yjx);

where F (�jx) and f(�jx)(g(�jx)) are the truncated CDF and PDF truncated at x respectively

and If�g is the indicator function whose value equals to one when f�g is true. Therefore we

can interpret p(k1;k2jk3)(�) as the joint density of (k3 � k1)th and (k3 � k2)th order statistic

from a sample of which size is (k3� 1) from F (�). When (k1; k2; k3) = (2; 3; 4), (28) becomes

p(2;3j4)(z; yjx) =
6f(y)f(z)[1� F (z)]

[1� F (x)]3 (29)

Based on (29), we can estimate the distribution of valuations, f(�), following the method

proposed in Section 4.3.2. The resulting estimator is more e¢ cient than f̂1(�) or f̂2(�) in the

sense that it uses more information than the others.

4.4 Estimation Results

4.4.1 Benchmark Monte Carlo

In this section, we perform several Monte Carlo experiments to illustrate the validity of our

estimation strategy. First, we generate arti�cial data of T = 1000 auctions as follows. The

21



number of potential bidders, fNig, are drawn from a Binomial distribution with (n; p) =

(50; 0:1) for each auction (i = 1; : : : ; T ). Ni potential bidders are assumed to value the

object according to:

lnVij = �1X1i + �2X2i + �3X3i + vij; (30)

where �1 = 1, �2 = �1, �3 = 0:5, X1i � N(0; 1), X2i � Exp(1), X3i = X1i � X2i + 1, and

vij � Gamma(9; 3)23. X�i�s represent the observed auction heterogeneity and vij is bidder

j�s private information in auction i, whose distribution is our primary interests here. To

consider the case of biding reserve prices, we also generate the reserve prices equation as

lnRi = �1X1i + �2X2i + �3X3i + �i; (31)

where �i � Gamma(9; 3)� 2. Note that by construction Vij and Ri are independent condi-

tional on X�i�s. Arti�cial actual bidders bid only when those Vij are greater than Ri. Here

we assume our imaginary researcher do not know the presence of potential bidders with

valuations below Ri. Thus, in each experiment, she has a data set of X�i�s, and the second-,

the third-, and the fourth-highest among actual bidder�s bids. Auctions with fewer than four

actual bidders are dropped. Hence, our research has the sample size less than T = 1000

on average around T = 700. Our researcher estimates �1, �2, �3 and fv(�) by varying the

smoothness (K) of the SNP estimator, from 0 to 9 without knowing the speci�cation of the

distribution of vij in (30). Figure 1 and Figure 2 illustrate the performance of the SNP esti-

mator considered here. By construction of the data generation, the two versions of estimates

for the density function of valuations should be almost identical (one is based on (2nd; 4th)

order statistics and the other is on (3rd; 4th)).

23Note that for X � Gamma(9; 3), E(X) = 3 and V ar(X) = 1.
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Figure 1. SNP Density function estimation with K = 2 for the Simulated Data
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Figure 2. SNP Density function estimation with K = 3 for the Simulated Data

Cross-Validation [To be completed]

4.4.2 Estimation Result

In the �rst stage regression obtaining the approximated function of the observed hetero-

geneity part, l̂(x). We consider the following covariates: X1 is the vector of dummy vari-

ables indicating the make such as Hyundai, Daewoo, Kia or Others; X2 is the age; X3

is the mileage; X4 is the engine size and X5 is the inspection score. We estimate l�(x)

separately for each car make and obtain the estimate of pseudo valuations as residuals im-

posing the restriction l�(0) = 0 for identi�cation. Thus, we actually use the basis func-
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tional form lH(X2; X3; X4; X5) for Hyundai and use cm + lm(X2; X3; X4; X5) for others,

m 2 fDaewoo, Kia, Othersg.

Figure 3. Benchmark SNP Density function estimation with K = 3 for the WUCA

Data

Based on the estimated pseudo valuations, in the second step, we estimate the distribution

of valuations using two pairs of order statistics (2nd; 4th) or (3rd; 4th). Figure 3 illustrates

the estimated density function of valuations using OLS estimation in the �rst stage as a

benchmark. Figure 4 shows the density function estimates based on the series estimation in

the �rst stage. Following the cross-validation strategy explained in Appendix A, we can pick

the optimal lengths of series k�1 for the �rst stage regression and K
� for the SNP estimator.
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Figure 4. SNP Density function estimation with K = 3 and k1 = 14 for the

WUCA Data

Cross-Validation [To be completed]

4.5 Optimal Reserve Price

The key policy issue for the seller is the reserve price. The seller wants to maximize the

expected pro�t by setting a minimum acceptance price so that only bidders have higher val-

uations than the reserve price attend the auction. The optimum depends on the distribution

of valuations, which is our primary interests and derived in previous sections. We are willing

to assume the following, which is implied by the standard regularity condition of Myerson
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(1981) and assumed in Haile and Tamer (2003).

Assumption 4.3 (p� vc0)[1� Fv(p)] is strictly pseudo-concave in p on (v; �v),

where vc0 is the cost associated with the auction. The pseudo-optimal reserve price

(without the observed heterogeneity) is characterized by

p� = argmax
p
(p� vc0)[1� Fv(p)]; (32)

which becomes, under Assumption 4.3

p� = vc0 +
1� F (p�)
f(p�)

(33)

One nice feature of the additively separability assumed in (5) is that the equilibrium bidding

is preserved under the observed heterogeneity as B(V (x)) = l�(x) + B(v), where B(v) is

the bidding function under being absence of the observed auction heterogeneity. Thus, the

optimal reserve price also has the simple additive form of the observed heterogeneity part

and the pseudo-optimal reserve price:

p�(X) = l�(X) + p� = l�(X) + vc0 +
1� Fv(p�)
fv(p�)

(34)

Thus, we can estimate p�(x) using the previous estimates of l̂(�), f̂v(�) and F̂v(�) as

p̂(x) = l̂(x) + p̂; (35)

where p̂ solves p = v̂c + 1�F̂v(p)
f̂v(p)

and v̂c is a consistent estimator of vc0. It will be very

interesting to compare these implied optimal reserve prices from the distribution of valuations

and the actual reserve prices recorded in each auction of WUCA, since the actual reserve

price data is readily available in our data set. If signi�cant di¤erence emerges between these

two and a particular pattern is found in there di¤erence , then it may shed lights on the

seller�s strategic behavior in WUCA, if any.
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Comparison of the Optimal Reserve Price and the Actual Reserve Price [To be

addressed later]

4.6 Bounds Estimation

Until now, we have disregarded the minimum increment of around 30 dollars in WUCA. In

this section, we discuss how to obtain the bounds of the distribution of valuations incorpo-

rating the fact that there exists the minimum increment in WUCA. The bounds considered

here is much simpler than those considered in Haile and Tamer (2003), since in WUCA, by

construction, any order statistic of valuations other than the �rst highest one is bounded as

b(i:n) � v(i:n) � b(i:n) +�; for all i = 1; : : : ; n� 1; (36)

where (i : n) denotes the ith order statistic out of the n sample. By the �rst-order stochastic

dominance, noting Gb(i:n)+�(v) = Gb(i:n)(v ��), (36) implies

Gb(i:n)(v) � Gv(i:n)(v) � Gb(i:n)(v ��); (37)

, where G�(�) is the distribution of the order statistics. Then, using the identi�cation method

discussed in previous sections, we have

Fb(v) � Fv(v) � Fb(v ��) �= Fb(v)� fb(v)�; (38)

where Fb(�)(fb(�) is the distribution (PDF) of valuations based on bids and the last weak

equality comes from the �rst-order taylor series expansion. Therefore, we can estimate the

bounds of Fv(v) as

F̂b(v) � Fv(v) � F̂b(v)� f̂b(v)�; (39)

where f̂b(�) the SNP estimator based on the certain observed order statistics of bids, F̂b(x) =R x
min(b)

f̂b(v)dv and min(b) is the minimum among the observed bids considered.
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5 Concluding Remarks

[To be added]
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Appendix

A Choosing the optimal smoothing parameters

A.1 Choosing k�1

Here we use a sample version of the Mean Squared Error criterion for the cross-validation as

SMSE(l̂) =
1

T

TX
i

[l̂(Xi)� l�(Xi)]
2; (40)

where ^l(�) = RK(�)0�̂. Instead of using the Leave-one-out method, we will partition the data

into P groups, making the size of each group as equal as possible and use the Leave-one

partition-out method. This is because it will be computationally too expensive to use the

Leave-one-out method, since the data size is so large. Namely, we estimate the function l�(�)

from the sample after deleting the pth group with the length of the series equal to k1 and

denote this as l̂p;k1(�). As a next step, we choose k�1 such that

argmin
k1
CV (k1) (41)

where fpg denotes the set of the data indices belonging to the pth group.

A.2 Choosing K�

Coppejans and Gallant (2002) employ a cross-validation method based on the ISE (Integrated

Squared Error) criteria. The ISE is de�ned for ĥ(x), a density estimate of h(x)

ISE(ĥ) =

Z
ĥ2(x)dx� 2

Z
ĥ(x)h(x)dx+

Z
h(x)2dx (42)

= M(1) � 2M(2) +M3:
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To approximate the ISE in terms of p�(yjx), we again use the cross-validation strategy with

the data partitioned into P groups. We �rst approximate M(1) with

cM(1)(K) =

Z
(p̂�K(yjx))2 (43)

=

Z  
6(F̂K(y)� F̂K(x))(1� F̂K(y))f̂K(y)

(1� F̂K(x))3

!2
;

where f̂K(�) denotes the SNP estimate with the length of the series equal to K and F̂K(z) =R z
c
f̂K(t)dt. For M(2), we consider

cM(2)(K) =
1

T

PX
p=1

X
t2fpg

p̂�p;K(ytjxt) (44)

=
1

T

PX
p=1

X
t2fpg

6(F̂p;K(yt)� F̂p;K(xt))(1� F̂p;K(yt))f̂p;K(yt)
(1� F̂p;K(xt))3

;

where f̂p;K(�) denotes the SNP estimate obtained from the sample excluding pth group with

the length of the series, K and F̂p;K(z) =
R z
c
f̂p;K(t)dt. Noting M(3) is not a function of K,

we pick K� such that

K� = argmin
K
CVK(K) (45)
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