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Abstract

The Stock–Watson coincident index and its subsequent extensions assume

a static linear one-factor model for the component indicators. Such assump-

tion is restrictive in practice, however, with as few as four indicators. In fact,

such assumption is unnecessary if one poses the index construction problem as

optimal prediction of latent monthly real GDP. This paper estimates a VAR

model for latent monthly real GDP and other indicators using the observable

mixed-frequency series. The EM algorithm is useful for overcoming the com-

putational difficulty, especially in model selection. The smoothed estimate of

latent monthly real GDP is the proposed index.

∗School of Economics and Social Sciences, Singapore Management University, The Federal

Building, 469 Bukit Timah Road, Singapore 259756; E-mail: rsmariano@smu.edu.sg
†College of Economics, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531,

Japan; E-mail: murasawa@eco.osakafu-u.ac.jp

1



1 Introduction

Since the seminal work by Stock and Watson (1989, 1991), it has been standard in
the literature on business cycle indices to assume a static linear one-factor model for
coincident indicators, and use the estimated “common factor” as a coincident index;
e.g., Kim and Yoo (1995), Diebold and Rudebusch (1996), Chauvet (1998), Kim
and Nelson (1998), and Mariano and Murasawa (2003). This one-factor structure
assumption is restrictive in practice, however. Indeed, Murasawa (2003) tests the
covariance structure of the four US coincident indicators used in these works, and
finds a strong evidence against the one-factor structure assumption.

This paper proposes a method for constructing a coincident index without as-
suming a one-factor model. The idea is simple. Many, if not all, will agree that if
we observe real GDP promptly on monthly basis, then we do not need a coincident
index. If so, then it suffices to predict the current monthly real GDP, which does
not require a one-factor model. Moreover, as Mariano and Murasawa (2003) point
out, an index must have an economic interpretation, because the heights of the
peaks and the depths of the troughs depend on the choice of an index. While that
paper includes real GDP in the one-factor model to relate the common factor to
monthly real GDP, this paper estimates monthly real GDP directly.

We use a VAR model for prediction; thus we estimate a VAR model for monthly
real GDP and other indicators using the observable mixed-frequency series. As in
Mariano and Murasawa (2003), we derive a state-space model for the observable
mixed-frequency series, and treat the mixed-frequency series as monthly series with
missing observations. ML estimation of a linear Gaussian state-space model with
missing observations is standard. The smoothed estimate of monthly real GDP is
the proposed index. Note that this is a “composite” index, because the smoothing
algorithm combines the component indicators.

In practice, quasi-Newton methods may fail because VAR models often involve
too many parameters. An alternative method is the EM algorithm. Shumway and
Stoffer (1982) derive the EM algorithm for estimating a linear Gaussian state-space
model with missing observations. Since the EM algorithm slows down significantly
near the optimum, Watson and Engle (1983) suggest using the EM algorithm to
obtain a good initial value for a quasi-Newton method; see also Demos and Sentana
(1998).

Our approach relates index construction to interpolation of quarterly real GDP,
for which one also uses a state-space model; e.g., Bernanke, Gertler, and Watson
(1997), Cuche and Hess (1999, 2000), and Liu and Hall (2001). One usually esti-
mates a single equation for interpolation, however, which may be less efficient but
more tractable than estimating the whole VAR model. Also, one often interpolates
the components of real GDP first, and then add them up.

One can extend our framework in several ways. First, one can predict monthly
real GDP, say, six months ahead and behind, and use them as leading and lagging
indices. Second, one can use a factor model instead of a VAR model, not to extract
the common factor but to reduce the number of the parameters (hence it can be
a multi-factor model). Third, one can set up a VAR model for monthly real GDP
and principal components extracted from many indicators, or “diffusion indices”;
see Stock and Watson (2002). Fourth, one can introduce Markov-switching into a
VAR model; see Krolzig (1997). Fifth, one can predict the components of monthly
real GDP first, and then add them up.

The plan of the paper is as follows. Section 2 sets up a VAR model for monthly
series, some of which are latent, and derives a state-space model for the observable
mixed-frequency series. Section 3 summarizes the Kalman filtering and smoothing
algorithm, and Section 4 explains the EM algorithm for estimating the state-space
model. Section 5 applies the method to the US quarterly real GDP and monthly

2



coincident indicators to obtain a new coincident index, and compares it with other
indices. Section 6 discusses remaining issues.

2 Mixed-Frequency VAR Model

2.1 VAR Model

Let {Yt} be an N -variate random sequence. Assume that {ln Yt} is integrated of
order 1. Write Yt := (Y ′

t,1, Y
′
t,2)

′, where {Yt,1} is an N1-variate quarterly sequence
(observable every third period) and {Yt,2} is an N2-variate monthly sequence.

Let {Y ∗
t,1} be a latent sequence underlying {Yt,1} such that for all t,

lnYt,1 =
1

3

(

lnY ∗
t,1 + lnY ∗

t−1,1 + lnY ∗
t−2,1

)

, (1)

i.e., Yt,1 is the geometric mean of Y ∗
t,1, Y ∗

t−1,1, and Y ∗
t−2,1. Taking the three-period

differences, for all t,

lnYt,1 − lnYt−3,1 =
1

3

(

lnY ∗
t,1 − lnY ∗

t−3,1

)

+
1

3

(

lnY ∗
t−1,1 − lnY ∗

t−4,1

)

+
1

3

(

lnY ∗
t−2,1 − lnY ∗

t−5,1

)

,

or

yt,1 =
1

3

(

y∗
t,1 + y∗

t−1,1 + y∗
t−2,1

)

+
1

3

(

y∗
t−1,1 + y∗

t−2,1 + y∗
t−3,1

)

+
1

3

(

y∗
t−2,1 + y∗

t−3,1 + y∗
t−4,1

)

=
1

3
y∗

t,1 +
2

3
y∗

t−1,1 + y∗
t−2,1 +

2

3
y∗

t−3,1 +
1

3
y∗

t−4,1,

where yt,1 := ∆3 lnYt,1 and y∗
t,1 := ∆ lnY ∗

t,1. We observe yt,1 every third period,
and never observe y∗

t,1.
Let for all t,

yt :=

(

yt,1

yt,2

)

, y∗
t :=

(

y∗
t,1

yt,2

)

,

where yt,2 := ∆ lnYt,2. Let

H(L) :=

[

(1/3)IN1
0

0 IN2

]

+

[

(2/3)IN1
0

0 0

]

L +

[

IN1
0

0 0

]

L2

+

[

(2/3)IN1
0

0 0

]

L3 +

[

(1/3)IN1
0

0 IN2

]

L4.

Then for all t,
yt = H(L)y∗

t . (2)

Assume a VAR(p) model for {y∗
t } such that for all t,

Φ(L)(y∗
t − µ∗) = wt, (3)

wt ∼ NID(0,Σ). (4)
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2.2 A State-Space Representation

If p ≤ 5, then define the state vector as for all t,

st :=







y∗
t − µ∗

...
y∗

t−4 − µ∗






.

We can write for all t,

y∗
t − µ∗ = [ Φ1 . . . Φp ON×(5−p)N ]







y∗
t−1 − µ∗

...
y∗

t−4 − µ∗






+ wt

= [ Φ ON×(5−p)N ] st−1 + wt

=







φ′
1 o′(5−p)N

...
...

φ′
N o′(5−p)N






st−1 + wt

=













s′t−1

(

φ1

o(5−p)N

)

...

s′t−1

(

φN

o(5−p)N

)













+ wt

=







s′t−1 0
. . .

0 s′t−1



















(

φ1

o(5−p)N

)

...
(

φN

o(5−p)N

)













+ wt

=
(

IN ⊗ s′t−1

)

Fφ + wt,

where

F :=















IpN 0
O(5−p)N×N

. . .

IpN

0 O(5−p)N×N















.

A state-space representation is for all t,

st+1 = Ast + Bzt, (5)

yt = µ + Cst + Dzt, (6)

zt ∼ NID(0, IN ), (7)

where

A :=

[

Φ1 . . . Φp ON×(5−p)N

I4N O4N×N

]

,

B :=

[

Σ1/2

O4N×N

]

,

C := [ H0 . . . H4 ] ,

D := ON×N .
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If p ≥ 5, then define the state vector as for all t,

st :=







y∗
t − µ∗

...
y∗

t−p+1 − µ∗






.

We can write for all t,

y∗
t − µ∗ =

(

IN ⊗ s′t−1

)

φ + wt.

We have the same state-space representation except that

A :=

[

Φ1 . . . Φp−1 Φp

I(p−1)N O(p−1)N×N

]

,

B :=

[

Σ1/2

O(p−1)N×N

]

,

C := [ H0 . . . H4 ON×(p−5)N ] .

2.3 Missing Observations

Let for all t,

y+
t,1 :=

{

yt,1 if yt,1 is observable
vt otherwise

.

Write for all t,
(

yt,1

yt,2

)

=

(

µ1

µ2

)

+

[

C1

C2

]

st.

Then for all t,
(

y+
t,1

yt,2

)

=

(

µt,1

µ2

)

+

[

Ct,1

C2

]

st +

(

Dt,1

0

)

vt,

where

µt,1 =
{

µ1 if yt,1 is observable
0 otherwise

,

Ct,1 =
{

C1 if yt,1 is observable
0 otherwise

,

Dt,1 =

{

0 if yt,1 is observable
IN1

otherwise
.

Thus we have a state-space model for
{

y+
t

}

s.th. for all t,

st+1 = Ast + Bzt, (8)

y+
t = µt + Ctst + Dtvt, (9)

zt ∼ NID(0, IN ). (10)

3 Kalman Filtering and Smoothing

3.1 Updating

Let for all t,

St := (s1, . . . , st),

Y +
t :=

(

y+
1 , . . . , y+

t

)

.
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Let for all t, s,

st|s := E
(

st|Y
+
s

)

,

Pt|s := V
(

st|Y
+
s

)

.

We have for all t,
(

st

y+
t

)

|Y +
t−1 ∼ N

((

st|t−1

µt + Ctst|t−1

)

,

[

Pt|t−1 Pt|t−1C
′
t

CtPt|t−1 CtPt|t−1C
′
t + DtD

′
t

])

.

Hence the updating equations are for all t,

st|t = st|t−1 + Pt|t−1C
′
t

(

CtPt|t−1C
′
t + DtD

′
t

)−1 (
yt − µt − Ctst|t−1

)

= st|t−1 + Ktet,

Pt|t = Pt|t−1 − Pt|t−1C
′
t

(

CtPt|t−1C
′
t + DtD

′
t

)−1
CtPt|t−1

= (IM − KtCt)Pt|t−1,

where

Kt := Pt|t−1C
′
t

(

CtPt|t−1C
′
t + DtD

′
t

)−1
,

et := y+
t − µt − Ctst|t−1.

3.2 Prediction

The prediction equations are for all t,

st+1|t = Ast|t,

Pt+1|t = APt|tA
′ + BB′.

3.3 Fixed-Interval Smoothing

The following algorithm proposed by de Jong (1989) avoids inversion of large ma-
trices, and hence is more efficient than the standard one; see Durbin and Koopman
(2001, sec. 4.3). Let rT+1 := 0, RT+1 := 0, and for t = T, . . . , 1,

rt = C′
t

(

CtPt|t−1C
′
t + DtD

′
t

)−1
et + L′

trt+1, (11)

Rt = C′
t

(

CtPt|t−1C
′
t + DtD

′
t

)−1
Ct + L′

tRt+1Lt, (12)

where
Lt := A(IM − KtCt).

The smoothing equations are for all t,

st|T = st|t−1 + Pt|t−1rt, (13)

Pt|T = Pt|t−1 − Pt|t−1RtPt|t−1. (14)

The EM algorithm for estimating the state-space model requires the smoothed
autocovariance matrices as well. Let for all t, s, r,

Pt,s|r := Cov
(

st, ss|Y
+
r

)

.

De Jong and MacKinnon (1988) show that for all t, for s ≥ 1,

Pt+s,t|T =
(

IM − Pt+s|t+s−1Rt+s

)

Lt+s−1 · · ·LtPt|t−1. (15)

In particular, for all t,

Pt+1,t|T =
(

IM − Pt+1|tRt+1

)

LtPt|t−1. (16)

6



4 Parameter Estimation

4.1 Likelihood Function

Assume that p ≤ 5 (the derivation is easier when p ≥ 5). Assume for simplicity that
µ∗ is known to be 0. Let θ := (vec(Φ)′, vech(Σ)′)′. We consider an approximate
ML estimator of θ, taking s0 as given. Let Ω ⊂ {1, . . . , T} be the set of periods for
which yt,1 is missing. By the prediction error decomposition,

f
(

Y +
T , ST ; θ

)

=

T
∏

t=1

f
(

y+
t,1, yt,2|st, Y

+
t−1, St−1; θ

)

f
(

st|Y
+
t−1, St−1; θ

)

=
T
∏

t=1

f
(

y+
t,1|st; θ

)

f (st|st−1; θ)

=
∏

t∈Ω

f(vt)

T
∏

t=1

f(y∗
t |st−1; θ).

Let

G := [ IN ON×4N ] ,

Φ0 := [Φ ON×(5−p)N ] ,

so that for all t, Gst = y∗
t = Φ0st−1 + wt. Then the log-likelihood function of θ

given
(

Y +
T , ST

)

is

lnL
(

θ; Y +
T , ST

)

=
∑

t∈Ω

ln f(vt) −
NT

2
ln 2π −

T

2
ln det(Σ)

−
1

2

T
∑

t=1

(y∗
t − Φ0st−1)

′Σ−1(y∗
t − Φ0st−1)

=
∑

t∈Ω

ln f(vt) −
NT

2
ln 2π −

T

2
ln det(Σ)

−
1

2

T
∑

t=1

[

Gst −
(

IN ⊗ s′t−1

)

Fφ
]′

Σ−1

4.2 Score Function

The score functions are

∂ lnL
(

θ; Y +
T , ST

)

∂φ

=

T
∑

t=1

F ′
(

IN ⊗ s′t−1

)′
Σ−1

[

Gst −
(

IN ⊗ s′t−1

)

Fφ
]

= F ′
(

Σ−1 ⊗ IM

)

vec

(

T
∑

t=1

st−1s
′
tG

′

)

− F ′

(

Σ−1 ⊗

T
∑

t=1

st−1s
′
t−1

)

Fφ,

∂ lnL(θ; YT , ST )

∂Σ−1

=
T

2
Σ −

1

2

T
∑

t=1

(Gst − Φ0st−1)(Gst − Φ0st−1)
′

=
T

2
Σ −

1

2

T
∑

t=1

(

Gsts
′
tG

′ − Gsts
′
t−1Φ

′
0 − Φ0st−1s

′
tG

′ + Φ0st−1s
′
t−1Φ

′
0

)

.
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4.3 EM Algorithm

Let for all t, s,

Mt|s := E
(

sts
′
t|Y

+
s

)

= Pt|s + st|ss
′
t|s.

Let for all t, s, r,

Mt,s|r := E
(

sts
′
s|Y

+
r

)

= Pt,s|r + st|rs
′
s|r.

Let

M̄ :=
1

T

T
∑

t=1

Mt|T ,

M̄1 :=
1

T

T
∑

t=1

Mt,t−1|T ,

LM̄ :=
1

T

T
∑

t=1

Mt−1|T .

Taking the conditional expectations of the first-order conditions given Y +
T ,

F ′
(

Σ−1 ⊗ IM

)

vec
(

M̄ ′
1G

′
)

− F ′
(

Σ−1 ⊗ LM̄
)

Fφ = 0,

Σ −
(

GM̄G′ − GM̄1Φ
′
0 − Φ0M̄

′
1G

′ + Φ0LM̄Φ′
0

)

= 0,

or

φ =
[

F ′
(

Σ−1 ⊗ LM̄
)

F
]−1

F ′
(

Σ−1 ⊗ IM

)

vec
(

M̄ ′
1G

′
)

, (17)

Σ = GM̄G′ − GM̄1Φ
′
0 − Φ0M̄

′
1G

′ + Φ0LM̄Φ′
0. (18)

One can solve this system of equations by the Gauss–Seidel method. When p ≥ 5,
the equations simplifies to

φ =
(

IN ⊗ LM̄−1
)

vec
(

M̄ ′
1G

′
)

, (19)

Σ = GM̄G′ − GM̄1Φ
′ − ΦM̄ ′

1G
′ + ΦLM̄Φ′. (20)

The EM algorithm proceeds as follows:

1. Pick an initial value θ(0).

2. (E step) Compute
{

st|T

}

,
{

Pt|T

}

, and
{

Pt,t−1|T

}

.

3. (M step) Compute Φ and Σ, and use it as θ(1).

4. Repeat until convergence.

5 Application

5.1 Data

We apply the method to US business cycle indicators to construct a new coincident
index, i.e., we predict latent monthly real GDP using quarterly real GDP and the
four monthly coincident indicators that currently make up the composite index (CI)
released by The Conference Board. Table 1 describes the indicators. The sample
period is from January 1959 to December 2002. We take the first difference of the
log of the series and multiply it by 100, which is essentially the percentage growth
rate series (quarterly or monthly). Table 2 summarizes descriptive statistics of this
growth rate series.
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Table 1: US Coincident Indicators

Indicator Description
Quarterly

GDP Real GDP (billions of chained 2000 dollars, SA, AR)
Monthly

EMP Employees on nonagricultural payrolls (thousands, SA)
INC Personal income less transfer payments (billions of chained 1996

dollars, SA, AR)
IIP Index of industrial production (1997 = 100, SA)
SLS Manufacturing and trade sales (millions of chained 1996 dollars,

SA)

Note: SA means “seasonally-adjusted” and AR means “annual rate.”

Table 2: Descriptive Statistics of the Indicators

Indicator Mean S.D. Min. Max.
Quarterly

GDP 0.84 0.88 −2.04 3.86
Monthly

EMP 0.17 0.23 −0.88 1.23
INC 0.27 0.56 −4.95 3.70
IIP 0.26 0.83 −3.66 6.00
SLS 0.27 1.05 −3.21 3.54

Note: Statistics are for the first difference of the log times 100.
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Table 3: Model Selection

p Log-likelihood AIC SBIC
1 −1825.3 −3.5111 −3.6123
2 −1766.7 −3.4472 −3.6496
3 −1723.9 −3.4134 −3.7171
4 −1697.2 −3.4102 −3.8150
5 −1673.4 −3.4126 −3.9187
6 −1639.0 −3.3946 −4.0019
7 −1607.6 −3.3825 −4.0910
8 −1570.1 −3.3589 −4.1686
9 −1553.5 −3.3748 −4.2857
10 −1516.8 −3.3526 −4.3648
11 −1513.8 −3.3943 −4.5077
12 −1476.4 −3.3709 −4.5854

5.2 Model Selection

We take two shortcuts in estimation. First, to reduce the number of the parameters,
we demean the series, and delete the constant term from the model. Second, we use
the approximate ML estimator instead of the exact one regarding the initial state
for the Kalman filter. Recall that we often estimate a VAR model without missing
observations by applying OLS to the demeaned series. We take the same shortcuts
here.

We must determine p, the order of the VAR model used for prediction. One
usually checks Akaike’s information criterion (AIC) and Schwartz’s Bayesian infor-
mation criterion (SBIC) for that purpose. For our model,

AIC := −
1

T

{

lnL
(

θ̂
)

−

[

pN2 +
N(N + 1)

2

]}

,

SBIC := −
1

T

{

lnL
(

θ̂
)

−
lnT

2

[

pN2 +
N(N + 1)

2

]}

,

where θ̂ is the (approximate) ML estimator of θ.
To compute the AIC and SBIC for various p, we estimate each VAR model. We

use Ox 3.3 by Doornik (2001) for computation. Since the quasi-Newton method in
Ox fails when p is large, we use the EM algorithm. Our criterion for convergence
of the log-likelihood divided by T is 10−8.

We try up to p = 12, and find that AIC selects p = 10 while SBIC selects p = 1.
One usually follows AIC for optimal prediction and SBIC for consistent model
selection. It is not clear which criterion one should follow when one is interested in
smoothing the state vector. We follow SBIC here, preferring the simpler model for
illustration of our method.

5.3 VAR Coincident Index

A by-product of the EM algorithm is the smoothed estimate of monthly real GDP.
If the selected model is small, then it is also possible to reestimate the model by a
quasi-Newton method. We use SsfPack 2.2 on Ox for this as well as smoothing; see
Koopman, Shephard, and Doornik (1999). We call a coincident index based on a
VAR(p) model as a VAR(p) coincident index. Figure 1 plots the VAR(1) coincident
index. Although it captures the NBER business cycle reference dates, it is rather
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1960:1 1970:1 1980:1 1990:1 2000:1

Figure 1: Historical Plot of the New Coincident Index (1959:1=1). The vertical
lines are the NBER business cycle reference dates.

volatile. Perhaps we need further smoothing, e.g., by taking moving averages, to
determine the turning points by a VAR coincident index.

Table 4 compares turning points determined by alternative indices with the
NBER reference dates. The CI captures the NBER reference dates better than the
VAR(1) index. It is possible to say, however, that the NBER reference dates do not
coincides with the turning points determined by monthly real GDP. Harding and
Pagan (2002) discuss how to determine the turning points.

Figure 2 plots the CI and the VAR(1) index from 1979 to 1983, during which
there are two peaks and two troughs. The VAR(1) index is clearly more volatile than
the CI. In particular, it picks a small “dip” in January 1982 as the trough instead
of the official trough in November 1982, and gives a “false” signal. Again, whether
it is false or not depends on how to define the turning points. The result simply
implies that the trough of monthly real GDP was in fact January 1982 instead of
November 1982.

6 Discussion

This paper is still preliminary. We will address the following issues in future revi-
sions. First, we will consider VARMA models instead of restricting to VAR models,
although there are some identification issues with VARMA models. Second, we
will compare the VAR index with the index proposed by Mariano and Murasawa
(2003). Their index relies on a misspecified model, but it is related to monthly
real GDP, and it is less volatile than the VAR index. Thus imposing one-factor
structure assumption has the effect of smoothing monthly real GDP. Third, we will
discuss more about determining turning points.
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Table 4: Business Cycle Turning Points Determined by Alternative Indices

NBER CI VAR(1)
no MA MA

Peaks
1960/4 0 −1 +2
1969/12 −2 −3 −4
1973/11 0 0 0
1980/1 0 +1 0
1981/7 +1 +1 +1
1990/7 −1 +1 0
2001/3 −6 −3 −2

Troughs
1961/2 0 −3 −2
1970/11 0 0 0
1975/3 +1 0 +1
1980/7 0 +1 0
1982/11 +1 −10 −2
1991/3 0 0 −1
2001/11 0 0 −1

Note: MA means “moving average” (3 months). The numbers are lags from the
NBER business cycle reference dates.

0.9

0.95

1

1.05

1.1

1979:1 1980:1 1981:1 1982:1 1983:1

CI
VAR

Figure 2: Comparison of Alternative Indices from 1979 to 1983 (1980:1=1). The
vertical lines are the NBER business cycle reference dates.
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