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Abstract
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of random variables relative each other. This is obtain done by simulate a number functions of
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1 Introduction

Many statistical models involve functional transformations of random variables. Regression

models with stochastic regressors are the most common example, involving a linear

transformation of random variables. Likewise, mixture models involve multiplicative

transformations. In the linear model with Gaussian regressors and errors the dependent

variable is also Gaussian. However, in general, when regressors and/or errors are non-

Gaussian we do not know the distribution of the dependent variable. For mixture models

we do not even know the distribution in the Gaussian case. In many circumstances, one is

interested in the distribution of the dependent variable. In this paper we provide methods

to approximate linear and multiplicative transformations of independent random variables.

The results are driven by adopting a flexible class of probability laws that allows us to

approximate the density of interest. Historically there have been at least three different

ways of approximating an algebraic function of random variables. They are (1) the Pearson

family, (2) Gram-Charlier and Edgeworth expansions and (3) the method of transformations.

Pearson (1895) established a family of frequency curves to represent empirical distributions.

The so called Pearson family of distributions has proven to be useful in approximating a

theoretical distribution via moment matching. However, this feature is mostly valid for the

Pearson type I and type III density (known as the Beta and Gamma densities respectively).

The most significant shortcoming of the Pearson type and I and type III densities is the

limitation to represent densities only via two parameters. This implies that one only matches

two moments.

The Gram-Charlier expansion (Charlier (1905)) and the Edgeworth expansion (Edgeworth

(1896), Edgeworth (1907)) were established in the beginning of the 20th century. Both

have been the most successful, and notably been linked to the bootstrap (see for example

Hall (1995)). The approximation methods build on the expansion of the Gaussian density

function in terms of Hermite polynomials. However, a potential drawback of such expansions

is that (1) they do not always result in unimodal approximations and (2) more seriously,

they do not always imply positive definiteness of the density (see Barton and Dennis (1952)

and Draper and Tierny (1972)).

The main building block of the method of transformation to achieve a flexible distribution is

the use of a monotonic transform to a known and well behaved distribution. The transformed

random variable has a distribution that matches the characteristics of the data, such as

skewness, excess kurtosis etc. This method has its drawbacks too. Johnson (1949) provided
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examples of classes of densities for real-valued random variables where the moment structure

is too complicated to make moment matching feasible.

Following the tradition of adopting flexible functional forms for densities combined with

moment matching we exploit the class of normal inverse Gaussian densities (Barndorff-

Nielsen (1978)) to provide approximations to functional transformations of real-valued

independent random variables. The family of normal inverse Gaussian (henceforth NIG)

densities is a special case of the generalized hyperbolic distribution(GH), which is defined as

a Gaussian-generalized inverse Gaussian mixing distribution. The family of NIG densities has

many interesting features that are of interest for applications in areas such as turbulence and

finance, among others (see Barndorff-Nielsen (1997)). Under certain regularity conditions,

the class is closed under convolution, and the structure of the cumulants is particularly

appealing for the purpose of moment matching.

The versatility of the class of NIG densities allows us to revisit the approximation of unknown

densities via moment matching. Although we focus primarily on linear and multiplicative

transformations, it should be noted that the approach proposed in this paper applies to

nonlinear transformations as well. Our approximations are shown to improve upon Gram-

Charlier and Edgeworth expansions for various skewed and fat-tailed distributions. The class

of NIG distributions used in our approximations is a four parameter family that allows for

mean, variance, skewness and kurtosis matching while maintaining the unimodal character

of a distribution. For the purpose of distribution approximations, there are two main

advantages to the NIG class, namely: (1) the general flexibility of the distribution and

(2) the property that the parameters can be explicitly solved for in terms of the cumulants

of the distribution. The latter property is appealing as it facilitates moment matching with

the first four moments of an approximate NIG density.

The remainder of the paper is organized as follows. In section 2 we provide a brief discussion

of the NIG class of distributions and the resulting approximation method. In section 3

we compare the NIG approximation with Edgeworth and Gram-Charlier expansions. The

comparison focuses on the tail behavior for a random coeffcient model under different

distributional assumptions appears in section 4. Section 5 concludes the paper.
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2 Approximations and the class of normal inverse

Gaussian distributions

The purpose of this section is to present the main results of the paper. In a first subsection

we briefly review the NIG class of densities, and in a second subsection we present the main

results regarding the approximation principle using the NIG class.

2.1 A brief review of NIG distributions

The normal inverse Gaussian distribution is characterized via a normal inverse Gaussian

mixing distribution. Formally stated, let Y be a random variable that follows an inverse

Gaussian law (IG) (see Sheshardi (1993)):

L (Y ) = IG
(
δ,

√
α2 − β2

)

Furthermore, if X conditional on Y is normally distributed with mean µ + βY and variance

Y, namely: L (X|Y ) = N (µ + βY, Y ) , then the unconditional density X is normal inverse

Gaussian:

L (X) = NIG (α, β, µ, δ) .

The density function for the NIG family is defined as follows:

fNIG (x; α, β, µ, δ) =
α

πδ
exp

(
δ
√

α2 − β2 − βµ
) K1

(
αδ

√
1 +

(
x−µ

δ

)2
)

√
1 +

(
x−µ

δ

)2
exp(βx) (2.1)

where x ∈ R, α > 0 δ > 0, µ ∈ R, 0 < |β| < α, and K1 (.) is the modified Bessel function of

the third kind with index 1 (see Abramowitz and Stegun (1972)). The Gaussian distribution

is obtained as a limiting case, namely when α → ∞. Moreover, the Fourier transform for

the NIG density is given by:

ϕX (t) = exp

(
δ

(√
α2 − β2 −

√(
α2 − (β + t)2)

)
+ tµ

)
. (2.2)

The NIG class of densities has the following two properties,namely (1) a scaling property:

LNIG (X) = NIG (α, β, µ, δ) ⇔ LNIG (cX) = NIG (α/c, β/c, cµ, cδ) , (2.3)
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and (2) a closure under convolution property:

NIG (α, β, µ1, δ) ∗NIG (α, β, µ2, ω) = NIG (α, β, µ1 + µ2, δ + ω) . (2.4)

A more convenient parameterization used throughout this paper is obtained by setting

ᾱ = δα and β̄ = δβ. This representation is a scale-invariant parameterization denoted

NIG
(
ᾱ, β̄, µ, δ

)
, with density:

fNIG

(
x; ᾱ, β̄, µ, δ

)
=

ᾱ

πδ
exp

(√
ᾱ2 − β̄2 − β̄µ

δ

) K1

(
ᾱ
√

1 +
(

x−µ
δ

)2
)

√
1 +

(
x−µ

δ

)2
exp

(
β̄

δ
x

)
(2.5)

and the Fourier transform for the scale-invariant parameterization of the NIG-law is given

by

ϕX (t) = exp

((√
ᾱ2 − β̄2 −

√(
ᾱ2 − (

β̄ + δ2t
)2

))
+ tµ

)
. (2.6)

A common reparametrization is κ̄ = β̄/ᾱ this simplifies the expression for the cumulants

throughout the paper we will use this kind of parametrization when dealing with cumulants.

2.2 Approximations using the NIG class of densities

The principle of approximation applied to the NIG class consists of constructing a non-

linear system of equations for the four parameters in the NIG distribution. In particular,

one sets the first and second cumulant, the skewness and the kurtosis equal to the same

measures associated with the functional transformation. We present the approximation first

and defer the discussion of the regularity conditions until later. It is worth noting at this

stage, however, that one must assume that the relevant moments of the transformed random

variable exist. Moreover, it is also assumed that one knows the first four cumulants of the

function one wishes to approximate, a standard requirement in approximation theory. One

of the main advantages of the NIG class, when solving the non-linear system of equations

to match moments, is that one obtains explicit functions for each parameter in terms of the

cumulants of the distribution to approximate.

More specifically, consider Y = f (X1, ..., Xn) where Xi are random variables and assume

the expression for the first four cumulants for Y is known. Furthermore, assume that we can
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approximate the distribution Y with some distribution X∗

L (X∗) = NIG
(
ᾱ∗, β̄∗, µ∗, δ∗

)
,

with the expected value, variance skewness and kurtosis:

E [X∗] = µ∗ +
κ̄∗δ∗

(1− κ̄2∗)
1/2

(2.7)

V [X∗] =
δ2
∗

ᾱ∗ (1− κ̄2∗)
3/2

(2.8)

S [X∗] =
3κ̄∗

ᾱ
1/2
∗ (1− κ̄2∗)

1/4
(2.9)

K [X∗] = 3
4κ̄2

∗ + 1

ᾱ∗ (1− κ̄2∗)
1/2

. (2.10)

where κ̄∗ = β̄∗/ᾱ∗. In order to approximate the distribution Y we must solve for the different

parameters in X∗. Therefore, let the first four cumulants for the distribution Y, denoted as

κY
1 , κY

2 κY
3 and κY

4 . We need to solve a non-linear systems of equations, a system that has an

explicit solution, as shown in Appendix B.

Before we state the theoretical result, we need to discuss the regularity conditions. The

first two assumptions are related to the fact that we are approximating with a unimodal

distribution with the information set restricted to only four cumulants.

Assumption 2.1 The function of random variables that you approximate should be

distributed on R, f (X) ∈ R.

Assumption 2.2 The cumulants of f (X) are assumed to exist up to order 4 and are known

or have been estimated.

Finally, following relation for the cumulants must be fulfilled in order to for the

approximation to work properly:

Assumption 2.3 Let ρ =
(
3κY

4

(
κY

2

)
/
(
κY

3

)2 − 4
)

. It is assumed that ρ > 0 and

(1− ρ−1) > 0 ⇔ ρ−1 < 1.

The following Lemma clarifies the restrictions imposed by Assumption 2.3:
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Lemma 2.1 Let Assumption 2.3 hold, then 3κY
4 κY

2 /
(
κY

3

)2
= 3

(
KF S−2

F

)
> 5, where

KF = κY
4 /

(
κY

2

)2
SF = κY

3 /
(
κY

2

) 3
2 and is the Fisherian shape coefficient of excess kurtosis

and SF is the Fisherian coefficient of skewness:

Proof: See Appendix A

Given the above assumptions, the following theorem yields the parameters in the

approximation distribution as functions of the cumulants of the distribution Y :

Theorem 2.1 (NIG approximation) Let Assumptions 2.1 through 2.3 hold. Given the

first four cumulants of the unknown distribution Y we can express the parameters generating

a NIG probability distribution with the same four cumulants as Y :

α∗ = 3 (4/ρ + 1)
(
1− ρ−1

)−1/2
((

κY
2

)2
/κY

4

)
(2.11)

β∗ = signum
(
κY

3

)
/
√

ρ3 (4/ρ + 1)
(
1− ρ−1

)−1/2
((

κY
2

)2
/κY

4

)
(2.12)

µ∗ = κY
1 − signum

(
κY

3

)
/
√

ρ
(
(12/ρ + 3)

(
κY

2

)3
/κY

4

)1/2

(2.13)

δ∗ =
(
3
(
κY

2

)3
(4/ρ + 1)

(
1− ρ−1

)
/κY

4

)1/2

(2.14)

where ρ =
(
3κY

4

(
κY

2

)
/
(
κY

3

)2 − 4
)

Proof: See Appendix B

To conclude this section we provide an illustrative example. We do not discuss the

accuracy of this approximation, see however section 3 for a simulation study regarding this

approximation. The example only serves the purpose of illustrating the mechanism of the

method. In particular, consider the following function of student t random variables.

Y = γ1X1 + γ2X2 where L(Xi) = t(υi) i=1,2 (2.15)
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We know that the second and fourth cumulant equals

κY
2 = γ2

1v1/ (v1 − 2) + γ2
2v2/ (v2 − 2) (2.16)

κY
4 = 3γ4

1v
2
1/ (v1 − 4) (v1 − 2) + 3γ4

2v
2
2/ (v2 − 4) (v2 − 2) (2.17)

The first and third cumulant is zero, this fact implies the following limits of 2.11 and 2.14

lim
κY
3 →0

ᾱ∗ = 3
(
κY

2

)2
/κY

4 (2.18)

lim
κY
3 →0

δ∗ =
√

3(κY
2 )3/κY

4 (2.19)

These limits imply

δ∗ =

√√√√√√

(
γ2

1
v1

v1−2
+ γ2

2
v2

v2−2

)3

3
[
γ4

1
v2
1

(v1−4)(v1−2)
+ γ4

2
v2
2

(v2−4)(v2−2)

]

and

ᾱ∗ =

(
γ2

1
v1

v1−2
+ γ2

2
v2

v2−2

)2

3
[
γ4

1
v2
1

(v1−4)(v1−2)
+ γ4

2
v2
2

(v2−4)(v2−2)

]

The approximate probability law can then be stated as:

NIG∗(ᾱ∗, 0, 0, δ∗)

Thus we can use the NIG approximation to approximate the probability law for the sum of

two unequally weighted student t random variables.
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3 NIG approximation and its relation to Gram-

Charlier and Edgeworth expansions

Here we discuss the NIG aproximation and how well it approximates a function of

random variables compared to the Edgeworth and Gram-Charlier expansion. We do this

by considering the regions for which Edgeworth and Gram-Charlier expansions produce

unimodal and positive definite distributions and compare it with the similar region produced

by the normal inverse Gaussian distribution. Furthermore, we also look at the tail behavior

of the NIG approximation for some functions of random variables and compare them with the

corresponding behavior for the Edgeworth and Gram-Charlier expansions. A first subsection

is devoted to the regions of unimodality and positive definiteness whereas a second subsection

covers the tail behavior comparison.

3.1 Regions of Unimodality and Positive Definiteness

In this subsection we derive the regions of unimodality and positive definiteness for the

Edgeworth and Gram-Charlier expansions with the region of positive definiteness we mean

the region where we are sure not to encounter negative probabilities. The region of

unimodality is the region where the approximation density have one unique global maximum.

Figure 1 such regions and was obtained via the dialytic method of Sylvester (see for

instance Wang (2001)) for finding the common zeros for the Edgeworth and Gram-Charlier

expansions.1 Similar computations are reported in Barton and Dennis (1952) and Draper

and Tierny (1972). Our results differ slightly from the results obtained in the earlier papers,

due to nowadays’ higher numerical accuracy compared to the earlier calculations.

[Insert Figure 1 somewhere here]

The region in Figure 1 are displayed in terms of the excess kurtosis and skewness coefficients

for which the Gram-Charlier and Edgeworth and curves are unimodal and positive definite.

Observe that we cut the expansion after reaching the fourth cumulant, which is the case

in many applications (see for instance Johnson, Kotz, and Balakrishnan (1996)). Figure

1 also shows the regions in terms of skewness and kurtosis for which the normal inverse

1The computations and plot were generated with Maple software.

8



Gaussian law is defined. One immediately realizes that if one is interested in using the first

four cumulants to approximate the probability distribution of a function of random variables

under the assumption of unimodality one is better off using the NIG approximation. The

NIG class covers a larger region with a valid probability measure as an approximation.

3.2 Tail behavior comparison in terms of fractiles- a comparison

between NIG approximation, Gram-Charlier and Edgeworth

expansion

In this subsection we focus on the comparison of how well the different approximation

methods considered in this paper perform in terms of tail probabilities. The outline of

this investigation is as follows: We start by simulating the one, fifth and tenth fractile from

a function of random variables, with 5000 000 random draws. This is repeated 500 times,

which yields an estimate of the true fractile. Next, we calculate the corresponding probability

from the distribution functions implied by each approximation method. Finally, we compute

the difference between the implied tail probability and the true one. We allow the Edgeworth

and Gram-Charlier densities to have negative values however a negative tail probability or a

tail probability above one is interpreted as a failure to approximate the function in question.

Some of the details of the design are as follows:

1. The function to approximate is based on a random coefficient model with an error

term. The random coefficient model yields Y, which is standardized for the purpose of

comparison. The standard random variable is denoted Y ∗. More specifically,

Y = (X1X2 + X3)

Y ∗ =
1√
κY

2

(
X1X2 + X3 − κY

1

)

2. Next we need to assume the probability law for the random variables that enter the

function. We choose three different random variables: (a) Gaussian, (b) student t and

(c) a normal log normal mixing distribution (NLN) which is a skewed and leptokurtic

distribution defined on R.2

2The NLN(µ̃, σ̃, δ) distribution is constructed as follows δV +
√

V Z where L(V )=LN(µ̃, σ̃) and
L(Z)=N(0, 1)
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3. The final issue pertains to the choice of parameter space for the probability laws. We

choose parameter spaces that imply fairly moderate excess kurtosis with and without

skewness, and spaces that generate very large excess kurtosis. This is the case for

model III and can be regarded as a test for how well the approximation works in a

setting with extreme excess kurtosis.

The design of the comparison study is summarized in Table 1. One observation to note is

that a small change in the parameter space can induce a very large change in the excess

kurtosis and skewness. This is due to the fact that the excess kurtosis and skewness are

nonlinear functions of the parameters we select. This effect is amplified when we consider

more complicated distributional assumptions.

Table 1: Design of simulation study

Model L(Xi) Case θ1 θ2 θ3 κY
2 SY

F KY
F

IA N(θi) A [1,1] [1,1] [0,1
4
] 3.07 1.12 3.20

IB B [1,1] [1
5
,1] [0,1

4
] 2.10 0.40 4.18

IIA t(θi) A [6] [10] [8] 3.21 0 7.43

IIB B [6] [7] [6] 3.60 0 9.71

IIIA NLN(θi) A [- 1
10

,1,-1
8
] [1

8
,1
4
,-1] [1

9
,3
2
,- 1

300
] 8.78 1.65 22.45

IIIB B [- 1
10

,1,-1
8
] [1

8
,1
4
,-1] [1

9
,2,- 1

300
] 13.64 0.083 182.17

Note that for the Gaussian probability law θi = (µi, σi) for the student t law θi = (υi) and for the
NLN law θi = (σ̃i, µ̃i, δi).

The results are summarized in Table 2, where P denotes the true percentile whereas GC, E

and NIG denote the corresponding percentile for the Gram-Charlier expansion, Edgeworth

expansion and NIG approximation. The table also includes the differences between the true

percentile and the percentile for each approximation method. The estimated fractiles and the

associated standard error is also reported. The overall picture emerging from the Table are

quite clear: when the distributional assumptions become more complicated, the performance

of the Gram-Charlier and the Edgeworth expansion deteriorate more than that of the NIG

approximation. Note also that for the Gram-Charlier and Edgeworth expansions the tail

probabilities cease to exist for some of the fractiles. This is due to the fact that we are

outside the boundaries for positive definiteness described in the previous section. Namely,

tail probabilities less than zero or greater than one are obtained outside the feasible regions.
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Table 2: Results comparison simulation study

Model IA

P GC E NIG P-GC P-E P-NIG SE(Fractile) Fractile

0.01 -0.010 0.007 0.003 0.020 0.003 0.007 0.002 -2.031

0.05 0.049 0.042 0.049 0.001 0.008 0.001 0.001 -1.253

0.1 0.137 0.108 0.116 -0.037 -0.008 -0.016 0.001 -0.950

Model IB

0.01 0.020 0.020 0.012 -0.010 -0.010 -0.002 0.003 -2.690

0.05 0.029 0.031 0.058 0.021 0.019 -0.008 0.001 -1.516

0.1 0.072 0.069 0.120 0.028 0.031 -0.020 0.001 -1.031

Model IIA

0.01 0.0425 0.0425 0.0233 -0.0325 -0.0325 -0.0133 0.0109 -2.667

0.05 0.0246 0.0246 0.0670 0.0254 0.0254 -0.017 0.0037 -1.533

0.1 0.0027 0.0027 0.1088 0.0973 0.0973 -0.0088 0.0027 -1.105

Model IIB

0.010 0.053 0.053 0.025 -0.043 -0.043 -0.015 0.011 -2.693

0.050 0.011 0.011 0.068 0.039 0.039 -0.018 0.004 -1.520

0.100 -0.038 -0.038 0.108 NA NA -0.008 0.003 -1.085

Model IIIA

0.010 0.097 0.118 0.029 -0.087 -0.108 -0.019 0.003 -2.374

0.050 -0.198 -0.204 0.070 NA NA -0.020 0.001 -1.311

0.100 -0.229 -0.295 0.110 NA NA -0.010 0.001 -0.924

Model IIIA

0.010 1.050 1.050 0.015 NA NA -0.005 0.005 -2.544

0.050 -2.548 -2.548 0.033 NA NA 0.017 0.001 -1.216

0.100 -3.907 -3.907 0.049 NA NA 0.051 0.001 -0.811

4 The tail behavior of the NIG approximation

We continue our investigation of the NIG approximation by examining how well it fits the

tails of the various functions introduced in the previous section. This is done by simulating

the true density (denoted Y above) and simulating the approximating NIG density and

finally compute a Quantile to Quantile plot for the 10% most extreme values for both tails
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i.e. a Quantile to Quantile plot only for the tails. The simulations were done with five

million random draws so the Quantile to Quantile plots for the each tail consists of 500 000

observations. The results appear in Figure 2.

[Insert Figure 2 somewhere here]

The plots in Figure 2 confirm the pattern obtained in the fractile comparison with the

Edgeworth and the Gram-Charlier discussed in the previous section. In particular, the tail

behavior worsens when we impose assumptions regarding the random variables in the random

coefficient model that imply more excess kurtosis and skewness. This is not surprising since

the role of the higher moments for the behavior of the function of random variables increases

in importance.

5 Concluding remarks

We introduced an approximation to unknown distributions via the NIG class and showed it

to be a powerful tool to improve the calculations of tail probabilities when the information

set is restricted to the first four cumulants. Using NIG approximations generates lesser

approximation errors than using Gram-Charlier and Edgeworth expansions, especially when

approximating a function with exhibits combinations of skewness and kurtosis that falls

outside the region of positive definiteness of the Gram-Charlier and Edgeworth expansions.
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A Proof of Lemma 2.1

Proof.

The implied domain for 3κY
4

(
κY

2

)
/
(
κY

3

)2
for each case follows below:

i) ρ > 0

This implies that
(
3κY

4

(
κY

2

)
/
(
κY

3

)2 − 4
)

> 0. This is fullfilled when the following is

inequality is obtained:

3κY
4

(
κY

2

)
/
(
κY

3

)2
> 4

⇔
3
(
KF S−2

F

)
> 4

ii) ρ−1 < 1

This implies that
(
3κY

4

(
κY

2

)
/
(
κY

3

)2 − 4
)−1

< 1. This is fulfilled when the following is

inequality is obtained:

3κY
4

(
κY

2

)
/
(
κY

3

)2
< 4 ∨ 3κY

4

(
κY

2

)
/
(
κY

3

)2
> 5

⇔
3
(
KF S−2

F

)
< 4 ∨ 3

(
KF S−2

F

)
> 5

In order to ρ > 0 ∧ ρ−1 < −1 then 3
(
KF S−2

F

)
> 5

B Derivation of the approximation formulas

Proof. The problem can be described as finding a unique set of parameters that generates a

particular set of the first four cumulants for the function of random variables, here denoted

Y . This problem narrows down to solving a system of nonlinear equations.

State the system of nonlinear equations to solve as:
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µ∗ +
κ̄∗δ∗

(1− κ̄2∗)
1
2

= κY
1 (B.20)

δ2
∗

ᾱ∗ (1− κ̄2∗)
3
2

= κY
2 (B.21)

3κ̄∗
ᾱ

1
2∗ (1− κ̄2∗)

1
4

=
κY

3

(κY
2 )

3
2

(B.22)

4κ̄2
∗ + 1

ᾱ∗ (1− κ̄2∗)
1
2

=
κY

4

(κY
2 )

2 (B.23)

B.23 yields:

3
4κ̄2

∗ + 1

ᾱ∗ (1− κ̄2∗)
1
2

=
κY

4

(κY
2 )

2 ⇔

ᾱ∗ = 3
4κ̄2

∗ + 1

(1− κ̄2∗)
1
2

(
κY

2

)2

κY
4

(B.24)

and B.24 in the square of B.22 yields

32κ̄2
∗

3 4κ̄2∗+1

(1−κ̄2∗)
1
2

(κY
2 )

2

κY
4

(1− κ̄2∗)
1
2

=

(
κY

3

)2

(κY
2 )

3 ⇔

3κ̄2
∗

(4κ̄2∗ + 1)
=

(
κY

3

)2

κY
4 (κY

2 )
⇔

4

3
+

1

3κ̄2∗
=

κY
4

(
κY

2

)

(κY
3 )

2 ⇔

κ̄2
∗ =

1

%
⇔ (B.25)

κ̄∗ =
signum

(
κY

3

)
√

%
(B.26)

where :% =
(
3κY

4

(
κY

2

)
/
(
κY

3

)2 − 4
)
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B.25 in B.24 yields:

ᾱ∗ = 3
4/% + 1√
(1− %−1)

(
κY

2

)2

κY
4

(B.27)

B.27 and B.25 in B.21 yields:

δ2
∗

3 4/%+1

(1−%−1)
1
2

(κY
2 )

2

κY
4

(1− %−1)
3
2

= κY
2 ⇔

3 (4/% + 1)
(
1− %−1

) (
κY

2

)3

κY
4

= δ2
∗ ⇔

√
3 (4/% + 1) (1− %−1)

(κY
2 )

3

κY
4

= δ∗ (B.28)

B.26 and B.28 in B.20 yields:

µ∗ +

signum(κY
3 )√

%

√
3 (4/% + 1) (1− %−1)

(κY
2 )

3

κY
4√

(1− %−1)
= κY

1 ⇔

κY
1 −

signum
(
κY

3

)
√

%

√
(12/% + 3)

(κY
2 )

3

κY
4

= µ∗ (B.29)
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C Figures

’

Figure 1: Regions of positive definiteness and unimodality
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Figure 2: Result tail behavior of the NIG approximation
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(a) Tail behavior Model IA
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(b) Tail behavior Model IB
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(c) Tail behavior Model IIA
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(d) Tail behavior Model IIB
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(e) Tail behavior Model IIIA
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(f) Tail behavior Model IIIB
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