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Abstract

Within the context of strategic interaction, we provide a unified
framework for analyzing information, knowledge, and the “sta-
ble” pattern of behavior. We first study the related interactive
epistemology and, in particular, show an equivalence theorem
between a strictly dominated strategy and a never-best reply in
terms of epistemic states. We then explore epistemic foundations
behind the fascinating idea of stability due to J. von Neumann
and O. Morgenstern. The major features of our approach are: (i)
unlike the ad hoc semantic model of knowledge, the state space
is constructed by Harsanyi’s types that are explicitly formulated
by Epstein and Wang (Econometrica 64, 1996, 1343-1373); (ii)
players may have general preferences, including subjective ex-
pected utility and non-expected utility; and (iii) players may be
boundedly rational and have non-partitional information struc-
tures. JEL Classification: C70, C72, D81.

Keywords: epistemic games; Harsanyi’s types; interactive epis-
temology; stability; non-expected utility; bounded rationality
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1 Introduction

In their classics, von Neumann and Morgenstern (1944) enthusiastically advo-
cated the idea of “stability” by introducing a fascinating solution concept of
the vN-M stable set. Ever since then the criterion of stability has been widely
applied in economics and other social sciences; see, for instance, Lucas (1994)
and Shubik (1982) for surveys. Greenberg (1990) took this line of approach
one step further by providing an integrated approach to the study of formal
models in the social and behavioral sciences. Chwe (1994), Greenberg et al.
(1996, 2002), Luo (2001), Nakanishi (1999), and Xue (1998) are some examples
of recent applications in game theory and economic theory.
While most applications have concentrated on cooperative environments,

von Neumann and Morgenstern (1944, Sections 4.6, 4.7, and 65.1) also referred
to the idea of stability as the “accepted standard of behavior” in a fairly wide
range of social organizations. Recall that a vN-M (abstract) stable set is defined
as a subset K of ordered outcomes satisfying the following two conditions:

(1) [internal stability] no y in K is dominated by an x in K;

(2) [external stability] every y not in K is dominated by some x in K.

Accordingly, the stability criterion is fully characterized by a pair of principles:
internal stability and external stability.
Within the conventional semantic framework, Luo (2002) first explored mi-

crofoundations behind the “stable” pattern of behavior. The rationale behind
stability was found to be surprisingly abundant by establishing the formal epis-
temic linkage between stability and Bayesian rationality. Among others, Luo
(2002) proved that (i) common knowledge of rationality (c.k.r.) implies an ex-
ternally stable set that, in turn, is contained in an internally stable set; and
(ii) whenever choice sets are mutually known, rationality alone implies a stable
set. A major objective of this paper is to further extend this line of research
by allowing for rather general information structures and diverse preferences.
In particular, we are interested here in seeking epistemic conditions on the
set-valued solution concept in extremely general situations.
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In this paper we adopt a decision-theoretic approach to game theory, as
suggested first by Harsanyi (1967-1968) and further developed later by Tan
and Werlang (1988), in which each player’s problem of choosing a strategy
is cast as a single agent decision problem under uncertainty. By employing
Epstein and Wang’s (1996) general construction of Harsanyi’s types (cf. also
Mertens and Zamir (1985) and Brandenburger and Dekel (1993) for construc-
tions of types in the Bayesian framework), we provide a unified framework for
analyzing information, knowledge, and the “stable” pattern of behavior. More
specifically, we provide an analytical framework in which the state space rep-
resents the exhaustive uncertainty facing each player in a strategic setting –
i.e., the primitive uncertainty about the choices of strategy by all players, as
well as the uncertainty about all players’ types (each type is homeomorphic to
an infinite regress of a hierarchy of “preferences over preferences”). This paper
is thereby closely related to Epstein’s (1997) work on the study of rationaliz-
ability and equilibrium by considerably relaxing the definition of rationality. As
emphasized above, this paper focuses on the epistemic analysis of the solution
concept of the stable set.
There are three primary reasons for pursuing the study of this paper. Firstly,

experimental evidence such as the Ellsberg Paradox contradicts some of the
tenets in the Savage model; for example, the Sure-Thing Principle. In particu-
lar, decision makers usually display an aversion to uncertainty or ambiguity (see
Epstein (2000) for a market counterpart of the Ellsberg Paradox). Under the
presumption that uncertainty is important in strategic settings, concern with
descriptive accuracy, it is hence a significant research subject to study games
where players might have general preferences, including subjective expected
utility and non-expected utility; see, e.g., Dow and Werlang (1994), Epstein
(1997), Ghirardato and Le Breton (2000), Klibanoff (1993, 1996), Lo (1996,
1999), Luo and Ma (2001), and Marinacci (2000). In the same vein, this paper
investigates epistemic foundations behind the set-valued solution concept of the
stable set in games where players might exhibit general preferences.
Secondly, much of the work on the epistemic foundations of game-theoretic

solution concepts has been done within the ad hoc semantic framework (see,
e.g., Aumann (1976, 1987, 1995, 1999), Aumann and Brandenburger (1995),
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and Brandenburger and Dekel (1987)), in which the information structure is
assumed to be partitional. However, weakening the assumptions on information
is clearly appealing since the assumption of a partitional information structure
is rather restrictive in many economic applications (see, e.g., Bacharach (1985),
Dekel and Gul (1997), Geanakoplos (1989, 1994), Luo and Ma (2003), Morris
(1996), Rubinstein (1998), Samet (1990), and Shin (1993) for discussions; in
particular, Brandenburger at al.’s (1992) work on correlated equilibrium with
generalized information structures). By making use of Epstein and Wang’s
(1996) general construction of types, the proposed framework in this paper
allows players to be boundedly rational and have a non-partitional informa-
tion structure (see Rubinstein 1998, Chapter 3); for example, players may be
“unaware of awareness,” “ignoring ignorance,” or even convinced of something
objectively incorrect – i.e., they might fail to satisfy the basic axioms of knowl-
edge: the axiom of knowledge, the axiom of transparency, and the axiom of
wisdom.
Thirdly, there is a well-known philosophical difficulty with the conventional

semantic framework used in game theory. The difficulty is that the notion of a
state of the world, or simply a state, may be self-referential since it consists of
a specification of information, knowledge, and strategy.1 Within the proposed
framework in this paper, as a type associated with a state is explicitly con-
structed from hierarchies of preferences over the constructed state space, the
comprehensive representation of a state allows for eliciting, as not being ad hoc,
all aspects of the full description of the world, including information, knowl-
edge, preferences, and the choice of strategy. Our approach, equipped with a
rich state space, therefore is immunized from this self-referential criticism. At
a conceptual level, our approach is also significant, because within the frame-
work in this paper, the assumption that the model of knowledge is commonly

1See, e.g., Aumann (1999, p. 264) and Osborne and Rubinstein (1994, p. 77). As
Fagin et al. (1999, p. 332) articulated: “The problem is that it is not a priori clear
what the relation is between a state in an Aumann structure – which is, after all, just an
element of a set – and the rather complicated reality that this state is trying to model.
...... This seems to lead to circularity, since the partitions are defined over the states, but
the states contain a description of the partitions. One particularly troubling issue, already
mentioned in Aumann’s original paper, is how the states can be used to capture knowledge
about the model itself, such as the fact that the partitions are common knowledge.”
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known can be stated formally (see 4.1), whereas this sort of assumption must
be understood informally in a meta-sense. Moreover, the proposed framework
offers a thorough set-up for thinking about the set-valued game-theoretic solu-
tion concepts, like the vN-M stable set; it suggests a novel interpretation for
the “choice set” associated with a state (see 4.2).
To conclude this introduction, we provide a perspective on the main results

of this paper. As a state constructed by Harsanyi’s notion of a type can be
viewed as the counterpart in the conventional semantic framework, we start (in
Subsection 2.3) by investigating the relationship between two different defin-
itions of knowledge. To be sure, while Aumann (1976) and much work that
followed defined “knowledge” in terms of an exogenous information structure,
the notion of knowledge used in this paper is defined endogenously as a property
of preferences over acts – roughly speaking, a known event’s complement is
required to be null in the sense of Savage. It is shown that the notion of knowl-
edge elicited from (state-type-)preferences is consistent with the one defined in
a semantic fashion (see K5 in Lemma 1). This relationship allows us to exploit
the relative familiar and simple semantic way of analysis whenever doing so
is more convenient. It is noteworthy to mention that, along the line of Sav-
age’s (1954) choice-theoretic approach, Morris (1996, 1997) offered a “similar”
framework in which the notions of information and knowledge can be deduced
from exogenously specified preferences at a state. As a by-product, we extend
Morris’ (1996) results on properties of knowledge to an infinite state space (see
K1-5 in Lemma 1).
We next relate the notion of “payoff dominance” in games to the notion of

“never-best response” in terms of epistemic states by establishing an equiva-
lence theorem (Theorem 1). As the former one is used to define the stable set
(see Definition 1) on the one hand and the latter one is referred to epistemic
rationality on the other hand, the equivalence theorem will play a “bridging”
role to link stability with rationality. The main argument for the equivalence
theorem is using Glicksberg’s Fixed Point Theorem.
We lastly turn to the study of the epistemic foundation for a stable set within

the proposed framework in this paper. In order to deal with a set-valued so-
lution concept, we define the notion of “rationality” by requiring that, in face
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of epistemic uncertainty, the set of plausible strategy choices consist of all the
best replies (see Subsection 2.4). Under rather mild conditions, it is shown that
rationality as well as c.k.r. prescribe the “stable” pattern of strategy behavior
that coincides with iterated strict dominance (Theorem 2). If, in particular,
the set of strategy choices is publicly known as a “social norm,” rationality co-
incides with stability (see (3.2) in Theorem 3). The basic logic for these results
runs as follows: As is well-known, c.k.r. leads to a set with the “best response”
property (see footnote 4) and through our equivalence theorem gives rise to
the principle of internal stability. The argument for the principle of external
stability relies heavily on Zorn’s Lemma (see Lemma 5 in Appendix II). As Ep-
stein and Wang’s (1996) general construction of types accommodate, e.g., the
ordinal expected utility (Borgers 1993), Choquet expected utility (Schmeidler
1989), and probabilistically sophisticated preferences (Machina and Schmeidler
1992), this paper thus extends Luo’s (2002) work to very general preferences
(Theorem 3). We would like to point out that there is a discrepancy between
(3.1) in Theorem 3 and the aforementioned result (i) in Luo (2002). The dis-
crepancy can be attributed mainly to the completeness of a state space (cf.
Lemma 7 in Appendix II).
The sequel of this paper is organized as follows. Section 2 offers a unified

framework for analyzing information, knowledge, and the “stable” pattern of
behavior. We set up the framework by resorting to some familiar apparatus
in the traditional game-theoretic literature so that it is easily accessible to
game theorists. Subsection 2.1 introduces the notion of stability; Subsection
2.2 models games in terms of epistemic states; Subsection 2.3 investigates the
related interactive epistemology; and Subsection 2.4 establishes a fundamental
equivalence theorem between a strictly dominated strategy and a never-best
reply in terms of epistemic states. Section 3 studies epistemic foundations for
stability. Subsection 3.1 introduces the notion of rationality; and Subsection 3.2
presents the main results about information, knowledge, and stability. Section
4 is devoted to discussions. For convenience, the precise definitions of “regular
preferences” and “marginal consistency” are summarized in Appendix I. To
facilitate reading, all the proofs are relegated to Appendix II.
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2 The Analytic Framework

In this section we provide a unified framework for analyzing strategic behav-
ior as well as its related interactive epistemology. Throughout this paper,
we consider an n-person strategic game G ≡ (N, {Xi} , {ζi}) , where Xi, for
each i ∈ N , is a compact convex metric space of player i’s strategies, and
ζi : X → [0, 1] (where X ≡ ×

i∈NXi) is a continuous payoff function that as-
signs each strategy profile x ∈ X to a number in [0, 1]. For any subset Y ⊆ X,
a strategy yi is strictly dominated given Y if there exists xi ∈ Xi such that
ζi(xi, y−i) > ζ i(yi, y−i) for all y−i ∈ Y−i, where Y−i ≡ {y−i| (xi, y−i) ∈ Y for
some xi ∈ Xi}.

2.1 Stability

For the purpose of this paper, we employ the following natural extension of the
notion of a vN-M stable set (see Luo (2001)).

Definition 1. A subset K ⊆ X is a (general) stable set if it is a vN-M stable
set with respect to ÂK, where x ÂK y iff, for some i, xi strictly dominates yi
given K.

That is, a stable set K satisfies:

(1) [internal stability] ∀x ∈ K, y ¨K x for all y ∈ K, and

(2) [external stability] ∀x /∈ K, y ÂK x for some y ∈ K.

In other words, K is free of inner contradictions – i.e., no element in K can
be dominated by an element in K, with respect to the conditional dominance
relation ÂK. Furthermore, K is free of external inconsistencies – i.e., any
element outside K is dominated by some element in K, with respect to the
conditional dominance relation ÂK. Clearly, every stable set is in Cartesian-
product form. It is worthwhile to point out that, by the equivalence theorem
in Subsection 2.4, this notion of a stable set is closely related to Basu and
Weibull’s (1991) notion of a “tight” curb.
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Example 1. Consider a two-person game G = (N, {Xi} , {ζi}), where N =

{1, 2}, X1 = X2 = [0, 1], and for all xi, xj ∈ [0, 1], i, j = 1, 2 and i 6= j,
ζi(xi, xj) = xixj + (1− xi) (1− xj). Let K1 ≡ {(0, 0)}, K2 ≡ {(0.5, 0.5)},
K3 ≡ {(1, 1)} and K4 ≡ [0, 1]× [0, 1].
Since ζ i(xi, 0) = 1 − xi, 0 strictly dominates any xi in (0, 1] given K1.

Therefore, K1 is externally stable. As every singleton is internally stable, K1 is
a stable set. Similarly, K3 is a stable set.
Since ζi(xi, 0.5) = 1, no xi in [0, 1] is strictly dominated given K2. Thus,

K2 violates external stability. As K2 ⊂ K4, every xi in [0, 1] is not strictly
dominated given K4. Therefore, K4 is internally stable. Since the set of all
strategy profiles trivially satisfies external stability, K4 is a stable set.

2.2 Games in terms of epistemic states

In game G, each player (as a decision maker) faces uncertainty not only about
the primitive uncertainty corresponding to the strategy choices, but also about
players’ types in Harsanyi’s sense. Accordingly, the state space of states of the
world is constructed as: Ω ≡ X × T1 × T2 × . . . × Tn, where Ti is the space
of player i’s types. We refer to an element ω ∈ Ω as a state and to a (Borel
measurable) subset E ⊆ Ω as an event. Denote by t

ω

i player i’s type projected
at ω, and denote by x

ω
the strategy profile at ω. Thus, a state ω can be written

as (x
ω
; t

ω

1 , t
ω

2 , ..., t
ω

n).
The objects of each player’s choice are acts; i.e., Borel measurable functions

f : Ω→ [0, 1]. Denote by F (Ω) the set of a player’s acts and by P (Ω) the set of
the preferences over F (Ω). Throughout this paper, we restrict ourselves to the
subclass of regular preferences that admit representation by utility functions –
i.e., the subclass of regular preferences that satisfy U.1-6 and U.20 in Appendix I.
Based upon Epstein and Wang’s (1996) Theorem 6.1, Ti ∼homeomorphic P (Ω),2
and let ψ : Ti → P (Ω) represent such a homeomorphism. Write the utility
function associated with t

ω

i freely as ψ ◦ tωi or uωi for convenience.
A strategy xi ∈ Xi is referred to as an act xi : X → [0, 1], satisfying xi (x0) =

ζi
¡
xi, x

0
−i
¢
for all x0 ∈ X. (The strategy xi is also referred to as an act from

2Each player’s type space is homogeneous and each player may be ignorant of his own
types (cf. 4.3).
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Ω to [0, 1], satisfying xi (ω) = ζ i
¡
xi, x

ω

−i
¢
.) Let Pi (X) denote the set of the

preferences over the set of acts f : X → [0, 1], satisfying f (xi, x−i) = f (x0i, x−i)
for all (xi, x−i) and (x0i, x−i) in X. In what follows, we assume that P (E) and
Pi (Y ) are well defined for any E ⊆ Ω and Y ⊆ X. For the sake of brevity,
we use ui (xi) to represent the utility of the restriction of xi to E (or Y ) if

ui ∈ P (E) (or ui ∈ Pi (Y )). Let X
E ≡

n
x
ω | ω ∈ E

o
. By marginal consistency

in Appendix I, P (E) and Pi

³
X

E
´
can be treated as the same provided that

preferences refer only to player i’s strategies.
Given an event E, let P(Ω|E) denote the set of i’s preferences for which the

complement of E is null in the sense of Savage; i.e., any two acts that agree on
E are ranked as indifferent. Say i knows E at ω if there exists a closed subset
E ⊆ E such that ψ ◦ tωi ∈ P(Ω|E). (Some reader may prefer the term “believes
E” rather than “knows E.”) Let KiE denote the set of all the states where i
knows E; i.e.,

KiE ≡
©
ω ∈ Ω| ψ ◦ tωi ∈ P(Ω|E) for some closed set E ⊆ E

ª
.

Thus, for a closed set E, KiE =
©
ω ∈ Ω| ψ ◦ tωi ∈ P(Ω|E)

ª
. Player i’s informa-

tion structure generated by the knowledge operator Ki is the correspondence
Pi : Ω⇒ Ω, such that for all ω ∈ Ω,

Pi(ω) =
\

{E⊆Ω| KiE3ω}
E.

The set Pi(ω) represents all aspects of uncertainty on the part of player i –
including uncertainty about all players’ strategic behavior, uncertainty about
the uncertainty of all players’ strategic behavior, and so on ad infinitum. It
constitutes the standard model for “differential” information.

Example 2. A state ω∗ is said to be a Nash state in G if, for all i,
ψ ◦ tω∗i

³
x
ω∗

i

´
≥ ψ ◦ tω∗i (xi) for all xi ∈ Xi,

where x
ω∗
−i = x

ω

−i for all ω ∈ Pi (ω
∗).3 The profile x

ω∗
is said to be a Nash

equilibrium under general preferences.

3By marginal consistency, mrgFi(X)
ψ ◦ tω∗i ∈ Pi

³
X

Pi(ω
∗)
´
. Let u∗i

³
xi, x

ω∗

−i
´
≡

mrgFi(X)
ψ ◦ tω∗i (xi). For all i, u∗i

³
x
ω∗

i , x
ω∗

−i
´
≥ u∗i

³
xi, x

ω∗

−i
´
for all xi ∈ Xi.

10



2.3 Interactive epistemology

In this subsection, we start with discussing the related interactive epistemology
within the set-up in Subsection 2.2. We first list some important properties
satisfied by the knowledge operator Ki and the information correspondence Pi.

Lemma 1. Ki and Pi satisfy the following properties:

K1: Ki∅ = ∅.
K2: KiΩ = Ω.

K3: E ⊆ F ⇒ KiE ⊆ KiF .

K4:
T

λ∈ΛKiE
λ ⊆ Ki(

T
λ∈ΛE

λ
) for a family of closed subsets {Eλ}λ∈Λ.

K5: KiE = {ω ∈ Ω| Pi(ω) ⊆ E}.
P1: Pi(ω) is nonempty and closed.

P2: Pi(ω) = Pi(ω
0) whenever t

ω

i = t
ω0
i .

Remark 1. The knowledge operatorKi may fail to satisfy the other three axioms
of knowledge: the axiom of knowledge, the axiom of transparency, and the axiom
of wisdom (i.e., KiE ⊆ E, KiE ⊆ Ki (KiE), and Ω\KiE ⊆ Ki (Ω\KiE)); in
particular, the information structure is possibly non-partitional. The property
K5 gives an alternative semantic definition of knowledge.

We next introduce the notion of “common knowledge.” Roughly speaking,
an event is common knowledge if everyone knows it, and everyone knows that
everyone knows it, and everyone knows that everyone knows that everyone
knows it, and so on ad infinitum. For any E ⊆ Ω, let KE ≡ ∩i∈NKiE and let
K

l
E ≡ K

³
K

l−1
E
´
for all l ≥ 2 (where K1

E ≡ KE). Define

CKE ≡ KE ∩K2

E ∩K3

E ∩ ....
That is, CKE is the event that E is commonly known. Say E is an self-evident
event if E ⊆ KE. Without referring to any axiom of knowledge, we have the
following useful properties about the common knowledge operator CK.

Lemma 2. CK satisfies the following properties:

CK1: CKE = K (E ∩ CKE).

CK2: ω ∈ CKE if E is a self-evident event containing ω.
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2.4 Equivalence theorem

In this subsection we formulate the notion of “best response” in terms of epis-
temic states and then establish a fundamental equivalence theorem between a
“strictly dominated strategy” and a “never-best response.”

Definition 2. A strategy xi is a best response given E ⊆ Ω if, for some
ω ∈ KiE, u

ω

i (xi) ≥ u
ω

i (yi) for all yi ∈ Xi. That is, a strategy yi is a never-best
response given E ⊆ Ω if, for every ω ∈ KiE, u

ω

i (xi) > u
ω

i (yi) for some xi ∈ Xi.

Theorem 1. Let E ⊆ Ω be nonempty and compact. Then, a strategy yi is a
never-best response given E if, and only if, it is strictly dominated given X

E
.

Similarly, a strategy yi is said to be a never-best response given Y ⊆ X
if, for every ui ∈ Pi (Y ), ui (xi) > ui (yi) for some xi ∈ Xi. An immediate
implication of Theorem 1 is the following.

Corollary 1. Let Y ⊆ X be nonempty and compact. Then, a strategy yi is a
never-best response given Y if, and only if, it is strictly dominated given Y .

Remark 2. In the case of finite games with expected utility, Pearce (1984)
first proved that a strategy is a never-best response if and only if it is strictly
dominated; see also Luo’s (2002) Lemma 1. Corollary 1 thereby extends the
result to infinite games with general preferences.

We end this section by providing an example to illustrate that, without the
compactness assumption, the equivalence theorem could not be true.

Example 3. Consider a two-person game G = (N, {Xi} , {ζi}), where N =
{1, 2}, X1 = X2 = [0, 1], and for all xi, xj ∈ [0, 1], i, j = 1, 2 and i 6= j,
ζi(xi, xj) = 1 − (xi − xj)

2. Let us consider a noncompact event E = (0, 1] ×
(0, 1]× {(t1, t2)} where ti ∈ Ti.
Let ω ∈ KiE. Then, u

ω

i ∈ P(Ω|E) for some closed E ⊆ E. Define r ≡
inf

xj∈XE
j
xj. Clearly, r > 0 and ζi(r, xj) > ζi(0, xj) for all xj ∈ XE

j . By

strong monotonicity in Appendix I and Epstein and Wang’s (1996) Theorem
4.3, u

ω

i (r) > u
ω

i (0). Therefore, 0 is a never-best response given E. However,
since for all xi ∈ (0, 1], ζi(0, xj) > ζ i(xi, xj) if xj < xi/2, 0 is not strictly
dominated given X

E
.
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3 The Epistemic Foundation of Stability

3.1 Rationality

From an epistemic perspective, at a state ω, player i knows only the set Pi(ω).
That is, he considers it possible that the true state could be any state in Pi(ω),
but not any state outside Pi(ω). In particular, at that state player i can con-
clude only that all his plausible choices of strategy are within the scope ofX

Pi(ω)

i .
We refer toX

Pi(ω)

i as i’s choice set. To do an epistemic analysis of the set-valued
solution concept, we therefore define the notion of “rationality” by requiring
that X

Pi(ω)

i consist of all the best replies in face of epistemic uncertainty Pi(ω).
Formally, let

BRi(ω) ≡ {xi ∈ Xi| xi is a best response given Pi(ω)} .
Define i is rational at ω if X

Pi(ω)

i = BRi(ω). Let Ri ≡ {ω ∈ Ω| i is rational
at ω}. Let R ≡ ∩

i∈NRi denote the event that “everyone is rational.”

3.2 Foundation of stability

Up until now, we have imposed no essential condition on regular preferences
and hence have allowed for a rather arbitrary knowledge and information struc-
ture. In conducting an epistemic analysis of a game-theoretic solution concept,
throughout this subsection we impose a weak axiom of knowledge (for each
player i) – i.e., X

KiE

i ⊆ X
E

i whenever E ⊆ R ∩ CKR. In other words,
whenever a player knows an event of “rationality” and “common knowledge
of rationality,” then this would not be false in terms of his strategy dimension.
We are now in a position to present a central result of this section.

Theorem 2. X
R∩CKR

is the largest (w.r.t. set inclusion) stable set and, more-
over, yields iterated strict dominance.

An immediate implication of Theorem 2 is the following.

Corollary 2. X
R∩CKR

is the set of all rationalizable strategy profiles.4

4We here use the correlated version of Bernheim (1984) and Pearce’s (1984) rational-
izability concept. Formally, a subset Y ⊆ X is said to have the “best response property”
if, for every y ∈ Y , every player i’s strategy yi is a best response given Y . The set of
rationalizable strategy profiles is defined as the largest set with the best response property
(cf. Epstein’s (1997) Definition 3.1).
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Next, we extend Luo’s (2002) main results to the general framework of this
paper. For this purpose, we assume the following two conditions on each player
i’s information structure:

A1. X
Pj(ω)

j ⊆ X
Pi(ω)

j for all j.

A2. ×
j∈NX

Pi(ω)

j ⊆ X
Pi(ω) .

That is, A1 states that each player has better information regarding his own
choice(s) than an opponent does; A2 states that in purely noncooperative sit-
uations, each player would be aware of the “independence” of players’ choices.
Let Ψ (ω) ≡ ×

i∈NX
Pi(ω)

i denote the Cartesian product of players’ choice sets.

Theorem 3. (3.1) Suppose ω ∈ R. Then, Ψ (ω) is an externally stable set
and, moreover, there is a stable set K ⊇ Ψ (ω) whenever ω ∈ CKR. (3.2)
Suppose that X

Pi(ω) ⊆ Ψ (ω) for all i – i.e., every player knows “choice sets”.
Then, ω ∈ R iff Ψ (ω) is a stable set. (3.3) Suppose that K is a self-evident

event satisfying K =
n
ω ∈ Ω| XPi(ω) ⊆ Ψ (ω) = K

o
. Then, K ⊆ R ∩ CKR

whenever K is a stable set. (3.4) For any compact stable set K, there is ω ∈
R ∩ CKR such that Ψ (ω) = K.

Remark 3. Following J. von Neumann and O. Morgenstern, a stable set is
viewed as a prevailing social norm in a society. Accordingly, a social norm is
“well known to the community” (see Shubik 1982, p. 261). Under this sort
of assumption of social knowledge, (3.2) states that the “stable” pattern of
behavior is sustained by rational players and moreover, the “stable” pattern
of behavior is attributed only to rational players. The following two examples
illustrate that the conditions in (3.2) are indispensable.

Example 3 Continued. In the game G of Example 3, let us consider two cases:
Case 1. Let ω ∈ Ω satisfy P1(ω) = [2/3, 1] × [2/3, 1] ×

©
t
ωª
and P2(ω) =

[0, 1] × [0, 1] × ©tωª.5 Then, Ψ (ω) = [2/3, 1] × [0, 1]. In this case, 2 does not
know Ψ (ω) since X

P2(ω) * Ψ (ω). Clearly, ω ∈ R. However, since for any
x1 ∈ [2/3, 1],

ζ2(x1, 1) ≥ 8/9 > 5/9 ≥ ζ2(x1, 0),

1 strictly dominates 0 given Ψ (ω). Therefore, Ψ (ω) violates internal stability.

5See Lemma 7 in Appendix II for existence of such a state.

14



Case 2. Let ω ∈ Ω satisfy P1(ω) = [0, 1] × [0, 1] × ©tωª and P2(ω) =
[2/3, 1]× [0, 1]× ©tωª. Then, Ψ (ω) = [0, 1]× [0, 1]. In this case, A1 is violated
since X

P1(ω)

1 * X
P2(ω)

1 . Clearly, Ψ (ω) is a stable set. However, since for each
x2 ∈ [0, 2/3),

ζ2(2/3, x1) > ζ2(x2, x1) for all x1 ∈ [2/3, 1] ,
by U.20, u2(2/3) > u2(x2) for all u2 ∈ P(Ω|P2(ω)). That is, player 2 is not
rational at ω.

Example 4. Consider a three-person game G = (N, {Xi} , {ζi}), where N =
{1, 2, 3}, Xi = [0, 1], and for all xi, xj, xk ∈ [0, 1], i, j, k = 1, 2, 3, i 6= j, i 6= k
and j < k̇, ζi(xi, xj, xk) = 1− [xi − (2xj − xk)]

2. Let ω ∈ Ω satisfy

P1(ω) = [0, 1/2]× {(x2, x3)| x2 = x3, x2 ∈ [0, 1/2]} ×
©
t
ωª
,

P2(ω) = [0, 1/2]× {(x1, x3)| x1 = x3, x3 ∈ [0, 1/2]} ×
©
t
ωª
, and

P3(ω) = [0, 1/2]× {(x1, x2)| x1 = x2, x1 ∈ [0, 1/2]} ×
©
t
ωª
.

Then, Ψ (ω) = [0, 1/2] × [0, 1/2] × [0, 1/2]. In this case, A2 is violated since
(0, 1/2, 0) /∈ X

P1(ω), for example. Clearly, ω ∈ R. However, since for x2 = 1/2
and x3 = 0,

ζ1(1, 1/2, 0) = 1 > 3/4 ≥ ζ1(x1, 1/2, 0) for all x1 ∈ [0, 1/2] ,

every x1 ∈ Ψ1 (ω) does not strictly dominate 1 given Ψ (ω). As 1 /∈ Ψ1 (ω),
Ψ (ω) violates external stability.

We end this section by providing an example of a noncompact stable set,
which illustrates that the compactness condition in (3.4) is indispensable.

Example 5. Consider a two-person game G = (N, {Xi} , {ζi}), where N =
{1, 2}, X1 = X2 = [0, 1], and for all xi, xj ∈ [0, 1], i, j = 1, 2 and i 6= j,
ζi(xi, xj) = min {xi, xj}. Let K ≡ (0, 1] × (0, 1]. Since if xi 6= 0 and xj 6= 0,
then ζi(xi, xj) > 0, 0 is strictly dominated given K. Therefore, K is externally
stable. Moreover, any xi ∈ (0, 1] is not strictly dominated given K since for
xj = xi, ζi(xi, xj) ≥ ζi(x

0
i, xj) for all x

0
i ∈ [0, 1]. Therefore, K is internally

stable. Thus, K is a noncompact stable set.
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4 Discussions

4.1 Epistemic games. Note that a strategic game G ≡ (N, {Xi} , {ζi}) does not
specify players’ preferences in the face of uncertainty; it specifies only players’
payoff functions ζi. From an epistemic perspective, a complete outcome of the
game G is summarized by a state. A “transparent” game associated with G is
determined by epistemic types. Formally, a “transparent” game at type profile
t is defined as:

(G, ψ ◦ t) ≡ ©ω ∈ Ω| ¡tω1 , tω2 , . . . , tωn¢ = t
ª
,

where ψ◦t = (ψ ◦ t1, ψ ◦ t2, . . . , ψ ◦ tn). The whole state space Ω can be viewed
as an “opaque” game in terms of

Ω =
[

t∈T1×T2×...×Tn
(G, ψ ◦ t) .

Moreover, the game associated with a collection of preference models P∗ (Ω) ≡
(P∗1 (Ω) ,P∗2 (Ω) , . . . ,P∗n (Ω)) in the sense of Epstein (1997) is given by

(G,P∗ (Ω)) =
[

(u1,u2,...,un)∈P∗1 (Ω)×P∗2 (Ω)×...×P∗n(Ω)
(G, (u1, u2, . . . , un)) .

Within our framework in this paper, the statement “a game is common knowl-
edge” is a formal statement rather than an informal “meta-sense”: A game is
common knowledge if, and only if, the game, as a subset of states, is commonly
known (see also Zamir and Vassilakis 1993, pp. 496-497). For example, the
“opaque” game is commonly known.
4.2 The rationale for associating a set with a state. To do an epistemic

analysis of the set-valued solution concept of the stable set, it is easy to see
that we have to associate a set with a state. Within the conventional semantic
framework, Luo (2002) studied epistemic foundations behind the criterion of
stability. In particular, at a state ω, player i is exogenously associated with
a nonempty subset of strategies Ψi (ω). In our framework in this paper, this
set should be viewed as endogenous since it is deduced from the information
structure Pi (ω), i.e., Ψi (ω) = X

Pi(ω)

i .
While in Savage’s framework of a single-person’s decision making, the deci-

sion maker would be well aware of his choice that affects no states, this is not
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appropriate here. In the context of strategic interaction, each player’s choice of
strategy should be included in the description of a state since each player must
take into account the choices of the other players. For example, the choice of
strategy by i should depend on the choice of strategy by j that, in turn, should
depend on the choice of strategy by i.6 Indeed, a player may not know his own
choice of strategy in games with imperfect recall (cf. Rubinstein 1998, Chapter
4).
Of course, a player can do whatever he wants, but he might not know what

it is he wants, because what a player wants to do often depends on what others
want to do (see also 4.3). Consequently, if a player unconsciously makes a
choice, then he certainly does not know his own choice; if a player consciously
makes a choice, then he perhaps does not know his own choice, because the
player might not know what it is he wants. Although a state of the world
does specify a strategy for a player, the player simply may not know his own
strategy in the face of epistemic uncertainty. What he knows is only the scope
of strategies. The correlation of strategy allowed in our framework could be
another origin for the ignorance of one’s own strategy choice.
It is easy to see that i knows his strategy x

ω

i at ω if, and only if, X
Pi(ω)

i =©
x
ω

i

ª
. From an epistemic viewpoint, the requirement that a player knows his

own using strategy seems to be rather a restrictive assumption in strategic
settings. The following example demonstrates this point.
Example 6. Consider a two-person game G. For simplicity, we consider only the
probabilistic notion of knowledge – i.e., “belief with probability 1.” Consider
four states as follows:

6J. von Neumann and O. Morgenstern offered a defensive and concealment rationale
for mixing play in zero-sum games:

Thus one important consideration for a player in such a game is to protect
himself against having his intentions found out by his opponent. Playing
several such strategies at random, so that only their probabilities are deter-
mined is a very effective way to achieve a degree of such protection: By this
device the opponent cannot possibly find out what the player’s strategy is
going to be, since the player does not know it himself (von Neumann and
Morgenstern 1944, p. 146).

Therefore, this classical rationale posits that a player may show a tendency to consciously
choose not to know his choice. See also Reny and Robson (2002).
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ω1 = (x1, x2; t1, t2)
ω2 = (x

0
1, x2; t1, t2)

ω3 = (x1, x2; t
0
1, t2)

ω4 = (x
0
1, x2; t

0
1, t2)

.

Since Ti ∼homeomorphic ∆(X ×Ti× Tj), we let µt1 = ψ ◦ t1 and µt01 = ψ ◦ t01 such
that

µt1(ωi) =

½
1/2, if i = 1, 2
0, if i = 3, 4

and µt01(ωi) = 1/4 for i = 1, 2, 3, 4.

Thus, we have

P1(ω) =

½ {ω1, ω2}, if ω = ω1, ω2
{ω1, ω2, ω3, ω4}, if ω = ω3, ω4

.

While player 1 knows his own type at ω1, he does not know his own strategy
at that state since X

Pi(ω)

1 = {x1, x01}.
4.3 Ignorance of own type. Note that Ti ∼homeomorphic P (Ω). A player with

an epistemic type is uncertain not only about the strategy profiles, but also
about the type profiles.7 In particular, the player is uncertain about his own
types or own preferences (see also Heifetz and Samet’s (1998, p. 330) Remark).
In Example 6, at ω3 player 1 does not know whether his type is t1 or t01.
In the case of a single-person decision making, this viewpoint relates to the

decision maker’s introspection – i.e., he is uncertain not only about the true
state of nature, but also about his preferences about this uncertainty, his pref-
erences about his preferences about this uncertainty, and so on. As Epstein and
Wang (1996, p. 1352) wrote, “. . . it seems natural given an agent who does not
perfectly understand the nature of the primitive state space . . . and who re-
flects on the nature and degree of his misunderstanding. . . . uncertainty about
own preferences has been shown to be useful also in modeling preference for
flexibility (Kreps (1979)) and behavior given unforeseen contingencies (Kreps
(1992)).” The viewpoint of the ignorance of one’s own type puts forward a novel
interpretation for using the notion of choice sets in orthodox choice theory.

7To expound his theory of games with incomplete information, Harsanyi (1967, p. 171)
articulated that: “Each player is assumed to know his own actual type” (cf. also Harsanyi
1995, p. 296). To make sense of the notion of a Bayesian equilibrium, each player should
also be aware of his own using strategy.
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4.4 The definition of rationality. The set-up used in the paper is a thorough
framework for analyzing a set-valued solution concept. Specifically, player i’s
choice set associated with a state ω is given by Ψi (ω) = X

Pi(ω)

i . From an
epistemic perspective, at a state ω, i knows only the set Pi(ω) – i.e., he
considers it possible that the true state could be any state in Pi(ω), but not
any state outside Pi(ω). In particular, at that state player i can conclude only
that all his plausible choices of strategy are within the scope of Ψi (ω). We
define the notion of “rationality” by requiring that the choice set Ψi (ω) consists
of all the best replies in face of epistemic uncertainty Pi(ω).8 Accordingly,
rationality requires not only that every plausible choice of strategy in Ψi (ω)

can be “justifiable,” but also that any choice of strategy outside Ψi (ω) cannot
be “justified.” The requirement for rationality reflects, at an individual level,
von Neumann and Morgenstern’s (1944, p. 41) philosophy of interpretation of
stability as stable “standard of behavior.”
The notion of “rationality” used in this paper is based upon the epistemic

aspects. To see this, let t0i and t00i be two plausible types that a rational type
ti cannot exclude. Suppose that x0i and x00i are best responses with respect to
ψ ◦ t0i and ψ ◦ t00i , respectively. The rational type ti would not preclude x0i and x00i
from ti’s disposal choices, and should preclude all the strategies that are not a
best response to any of his types that he cannot exclude.9 In contrast, Epstein
(1997) defined “player i is rational at ω” as: u

ω

i

¡
x
ω

i

¢ ≥ u
ω

i (yi) for all yi ∈ Xi.
To make sense of this sort of definition, a player would be aware of his own
true type and of his own using strategy. By P2 in Lemma 1, the information
structure is thereby partitional in the type dimension. Subsequently, this defi-
nition of rationality arises the question about its applicability in general cases
where players are boundedly rational with non-partitional information struc-
tures. From a different perspective, Morris (1996) also pointed out that there
is an intrinsic inconsistency between the non-partitional information structures
and Bayesian rationality, because using Bayes rule entails information struc-
tures to be partitional; cf. also Epstein and Le Breton (1993).

8This definition of “rationality” is the same as Luo’s (2002). Samuelson (1992) also
used a similar notion to discuss the “common knowledge of admissibility.”

9The true preferences are irrelevant to evaluating optimal choices. Only the perceivable
and conscious preferences matter for this evaluation. See also Harsanyi’s (1997) discussion
on “actual” vs. “informed” preferences.
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We would like to point out that by Theorem 2 and Corollary 2, Epstein’s
(1997) Theorem 3.2 can be improved by replacing the relation of “never-best
response” with the more conventional “payoff dominance” relation. Conse-
quently, rationality as well as c.k.r. in Epstein’s sense give the same prediction
– iterated strict dominance. As emphasized above, Theorem 2 does not rely
on the strong epistemic assumption that a player be aware of his own true type
and of his own using strategy, however.10 In fact, Theorem 2 still holds true
for a weaker version of rationality: X

Pi(ω)

i ⊆ BRi(ω).
4.5 The exogenous vs. endogenous models of knowledge. In the semantic

framework, the information structure is exogenously given. In contrast, the
information structure is endogenously determined in the framework of this pa-
per. The distinction between exogenous and endogenous models of knowledge
gives rise to some different ways of approaching epistemology. For example,
within the semantic framework it is interesting to ask a question: Is there a
model of knowledge in which a game-theoretic solution is sustained under some
appealing epistemic conditions? The question is no longer an issue within the
framework of this paper.
4.6 The completeness of a state space. In this paper a state is viewed as an

endogenous variable since a state is constructed by strategies and Harsanyi’s
types. A state specifies what every player does, and what every player thinks
about what every player does, and so on; it specifies every player’s preferences,
and every player’s preferences about every player’s preferences, and so on; it
specifies what every player knows, and what every player knows about what
every player knows, and so on. The state space includes all possible states and
is intrinsically infinite. The completeness of a state space is crucial for our main
results in this paper.
Finally, while throughout this paper we restrict attention to a subclass of

regular preferences, all results here are not confined with the restriction. As
pointed out by Epstein (1997), our analysis can be applied to other specific
models of preferences; for example, the subjective expected utility model, the
ordinal expected utility model, the probabilistic sophistication model, the Cho-
quet expected utility model, and so on.

10Aumann (1987, 1995) so clearly made the assumption that each player knows which
strategy he chooses; i.e., the so-called “measurability of strategy with respect to informa-
tion structure.”
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Appendix I: Regular Preferences and Marginal Consistency

LetFu(Ω) = {f ∈ F(Ω)| f(Ω) is finite; f−1 ([r, 1]) is closed for any r ∈ [0, 1]}.
Let F l(Ω) = {f ∈ F(Ω)| f(Ω) is finite; f−1 ((r, 1]) is open for any r ∈ [0, 1]}.
A preference is said to be regular if it has a numerical representation u : F(Ω)→
[0, 1] satisfying:

U.1. Certainty Equivalence: u(r) = r, ∀r ∈ [0, 1].
U.2. Weak Monotonicity: f 0 ≥ f ⇒ u(f 0) ≥ u(f), ∀f, f 0 ∈ F(Ω).
U.3. Inner Regularity: u(f) = sup {u(g) : g ≤ f, g ∈ Fu(Ω)} , ∀f ∈ F(Ω).
U.4. Outer Regularity: u(g) = inf

©
u(h) : h ≥ g, h ∈ F l(Ω)

ª
, ∀g ∈ Fu(Ω).

For the purpose of this paper, we add the following conditions.11

U.5. Uniform Equicontinuity: ∀ε > 0, ∃δ such that for every u ∈ P(Ω)
|u(f)− u(f 0)| < ε, whenever supω∈Ω|f(ω)− f 0(ω)| < δ.

U.6. Preference-model Closedness: For any closed subset E ⊆ Ω, P(E) is
closed.

U.20. Strong Monotonicity: For any subset E ⊆ Ω and any u ∈ P(E),
f 0 > f ⇒ u(f 0) > u(f), ∀f, f 0 ∈ F(E).

Marginal consistency is introduced as a primitive requirement in a case
where a player is endowed with an arbitrary set of preferences. For the spe-
cial case of regular preferences, the “marginal consistency” can be defined
as follows. Let Fi (X) denote the set of acts f : X → [0, 1], satisfying
f (xi, x−i) = f (x0i, x−i) for all (xi, x−i) and (x

0
i, x−i) in X. For any E ⊆ Ω and

u ∈ P(E), the “restriction of u to Fi (X)” is referred as a preference in Pi(X
E
),

denoted by mrgFi(X)u. Say u satisfies the marginal consistency if, ∀g ∈ Fi (X),
∀f ∈ F(E), mrgFi(X)u(g) = u(f) whenever g

¡
x
ω¢
= f (ω) (in particular,

mrgFi(X)u(xi) = u(xi) ∀xi ∈ Xi); hence,
n
mrgFi(X)u| u ∈ P(E)

o
= Pi(X

E
).

11We assume that F(Ω) is endowed with sup-norm topology and that P(E) is endowed
with Epstein and Wang’s (1996) topology.
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Appendix II: Proofs

Lemma 1. Ki and Pi satisfy the following properties:

K1: Ki∅ = ∅.
K2: KiΩ = Ω.

K3: E ⊆ F ⇒ KiE ⊆ KiF .

K4:
T

λ∈ΛKiE
λ ⊆ Ki(

T
λ∈ΛE

λ
) for a family of closed subsets {Eλ}λ∈Λ.

K5: KiE = {ω ∈ Ω| Pi(ω) ⊆ E}.
P1: Pi(ω) is nonempty and closed.

P2: Pi(ω) = Pi(ω
0) whenever t

ω

i = t
ω0
i .

Proof. Clearly, K1 holds by U.1; K2 and K3 hold by the definition of knowl-
edge. To prove K4, note that X satisfies the second axiom of countability –
i.e., the topology on X has a countable basis – since X is a compact metric
space (see, e.g., Aliprantis and Border 1999, Chapter 3). We divide this proof
into the following three steps.

Step 1. Ω satisfies the second axiom of countability.

By the construction of a type space, Ω ⊆ Ω0×(×∞k=0Pn(Ωk)), where Ω0 = X
and Ωk = Ωk−1×Pn(Ωk−1) for k ≥ 1. By the fact that the countable Cartesian
product of the second countable spaces is the second countable, it suffices to
show that P(X) satisfies the second axiom of countability.
Following Epstein and Wang (1996), consider the topology on P(X) gener-

ated by the subbasis consisting of:

{u : u(g) < r, g ∈ Fu(X), r ∈ [0, 1]} and {u : u(h) > r, h ∈ F l(X), r ∈ [0, 1]}.
Let Bτ be a countable basis of this topology on X, and let

B ≡ ©B| B = ∪Kk=1Bk, Bk ∈ Bτ
ª
,

where K is a positive integer, and let

C ≡ {C| C = X\B,B ∈ B} .
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Consider the following two classes of functions:

bFu(X) ≡
(
f ∈ Fu(X)| f =

KX
k=1

qk1ck; qk ∈ Q and Ck ∈ C
)
and

bF l(X) ≡
(
f ∈ F l(X)| f =

KX
k=1

qk1Bk
; qk ∈ Q and Bk ∈ B

)
,

where Q is the set of all rational numbers in [0, 1]. Clearly, bFu(X) and bF l(X)
are both countable sets. Now consider the following class of sets, denoted by
E :
{u : u(g) < q, g ∈ bFu(X), q ∈ Q} and {u : u(h) > q, h ∈ bF l(X), q ∈ Q}.

Note that h ∈ F l(X) can be expressed as h = ΣK
k=1rk1Gk

, where rk ∈ [0, 1] and
Gk is open in X (cf. Epstein and Wang 1996, p. 1366). Since Bτ is a countable
basis, Gk = ∪∞l=1Bl,k (where Bl,k ∈ Bτ). For r, rk ∈ [0, 1], we can find qm,k ↑ rk
and qk ↓ r, where qm,k, qk ∈ Q. Define hm ≡ ΣK

k=1qm,k1∪ml=1Bl,k
. Clearly, hm ≤ h

and hm(x) ↑ h(x) for each x ∈ X. Now by U.3, for any ε > 0, there exists
g ≤ h, g ∈ Fu(Ω) such that

u(h)− ε < u(g) ≤ u(h).

By U.5, without loss of generality we may assume g < h. Since g ∈ Fu(X)
can be expressed as g = ΣK0

k=1r
0
k1Fk , where r

0
k ∈ [0, 1] and Fk is closed in X (cf.

Epstein and Wang 1996, p. 1366). Therefore, hm ≥ g for sufficiently large m.
Thus, u(hm) ↑ u(h). Hence,

{u : u(h) > r} =
∞[

m=1

∞[
k=1

{u : u(hm) > qk}.

Similarly, we have

{u : u(g) < r} =
∞[

m=1

∞[
k=1

{u : u(gm) < qk}.

Thus, E generates the topology on P(X). Since E is countable, P(X) satisfies
the second axiom of countability.

Step 2. KiE ∩KiF ⊆ Ki(E ∩ F ) for any closed sets E,F ⊆ Ω.
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Let ω ∈ KiE ∩ KiF . Since E and F are closed, u
ω

i ∈ P(Ω|E) and u
ω

i ∈
P(Ω|F ). Therefore,

u
ω

i (f) = u
ω

i (1Ef) and u
ω

i (f) = u
ω

i (1Ff), ∀f ∈ F(Ω).
Thus,

u
ω

i (f) = u
ω

i (1Ef) = u
ω

i (1E∩Ff), ∀f ∈ F(Ω).
That is, ω ∈ Ki(E ∩ F ).

Step 3.
T

λ∈ΛKiE
λ ⊆ Ki(

T
λ∈ΛE

λ
).

Let ω ∈ Tλ∈ΛKiE
λ
. Let {Eλ}λ∈Λ be a family of closed subsets of Ω. Since,

by Step 1, Ω satisfies the second axiom of countability, it follows that there
exists a countable sequence of open sets

©
Ω\Ek

ª∞
k=1

such that

[
λ∈Λ

h
Ω\Eλ

i
=

∞[
k=1

£
Ω\Ek

¤
or equivalently \

λ∈Λ
E

λ

=
∞\
k=1

Ek.

Without loss of generality, ∀k > 1, Ek ⊇ E
λ0
for some λ0 ∈ Λ. Since ω ∈T

λ∈ΛKiE
λ
, ω ∈ KiE

λ0
. By K3, ω ∈ KiE

k, ∀k > 1. Now consider the sequencen
E

k
o∞
k=1

such that E
1
= E1, E

2
= E

1 ∩ E2, ..., E
k
= E

k−1 ∩ Ek, .... Clearly,

E
k ↓ ∩λ∈ΛEλ

. By Step 2, ω ∈ KiE
k
, ∀k > 1. The result therefore follows from

Epstein and Wang’s (1996) Theorem 4.4.
K5: Let ω ∈ KiE. By the definition of Pi(ω), Pi(ω) ⊆ E. Thus, KiE ⊆

{ω ∈ Ω| Pi(ω) ⊆ E}. Conversely, suppose Pi(ω) ⊆ E. By the proof of P1 in
Lemma 1, K3 and K4 jointly imply that\

{E⊆Ω| KiE3ω and E is closed}
KiE ⊆ KiE.

Therefore, ω ∈ KiE. Thus, KiE ⊇ {ω ∈ Ω| Pi(ω) ⊆ E}.
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P1: By the definition of KiE, it is easy to see that ω ∈ KiE if, and only if,
ω ∈ KiE for some closed subset E ⊆ E. It therefore follows that\

{E⊆Ω| KiE3ω}
E =

\
{E⊆Ω| KiE3ω and E is closed}

E.

Hence, Pi(ω) is closed. Assume, in negation, that Pi(ω) = ∅. By K5, ω ∈ Ki∅,
which contradicts K1.

P2: Since t
ω

i = t
ω0
i , ψ ◦ tωi = ψ ◦ tωi . Therefore, for any E ⊆ Ω, ω ∈ KiE iff

ω0 ∈ KiE. Hence, Pi(ω) = Pi(ω
0).

Lemma 2. CK satisfies the following properties:

CK1: CKE = K (E ∩ CKE).

CK2: ω ∈ CKE if E is a self-evident event containing ω.

Proof. CK1: By K5, we have

K (E ∩ CKE) = KE ∩K (CKE)

= KE ∩K2

E ∩K3

E ∩ . . .
= CKE.

CK2: Since E is self-evident, E ⊆ KE. By K3, Kl−1E ⊆ KlE for all
l ≥ 2. Since ω ∈ E, ω ∈ K lE for all l ≥ 1.
Theorem 1. Let E ⊆ Ω be nonempty and compact. Then, a strategy yi is a
never-best response given E if, and only if, it is strictly dominated given X

E
.

To prove Theorem 1, we need the following two lemmas.
Lemma 3. P(E) is convex.
Proof of Lemma 3. For any u1, u2 ∈ P(E) and α ∈ [0, 1], we proceed to
verify that αu1 + (1 − α)u2 ∈ P(E). Obviously, U.1, U.2, U.20, U.5, and U.6
hold. Let f ∈ F(E). Then,

[αu1 + (1− α)u2](f)

= αu1(f) + (1− α)u2(f)

= sup {αu1(g) : g ≤ f, g ∈ Fu(E)}+ sup {(1− α)u2(g) : g ≤ f, g ∈ Fu(E)}
≥ sup {αu1(g) + (1− α)u2(g) : g ≤ f, g ∈ Fu(E)}
= sup {[αu1 + (1− α)u2](g) : g ≤ f, g ∈ Fu(E)} .
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Moreover, for sufficiently small ε > 0, there exist g1, g2 ∈ Fu(E) such that
g1 ≤ f , g2 ≤ f , u1(g1) > u1(f) − ε, and u2(g2) > u2(f) − ε. Define g0(ω) ≡
max[g1(ω), g2(ω)]. Clearly, g0 ∈ Fu(E) and g0 ≤ f . By U.2, it follows that

sup {[αu1 + (1− α)u2](g) : g ≤ f, g ∈ Fu(E)}
≥ αu1(g

0) + (1− α)u2(g
0)

≥ αu1(g1) + (1− α)u2(g2)

≥ αu1(f) + (1− α)u2(f)− ε

= [αu1 + (1− α)u2](f)− ε.

Thus, U.3 holds. Similarly, U.4 holds.

Lemma 4. Let Y ⊆ X. Then, ui(xi) > ui(yi) for all ui ∈ Pi (Y ) if xi strictly
dominates yi given Y . Moreover, when Y is closed, xi strictly dominates yi
given Y if ui(xi) > ui(yi) for all ui ∈ Pi (Y ).
Proof of Lemma 4. Define E ≡ Y × {t} where t ∈ T1 × T2 × . . . × Tn.
Suppose that ζi(xi, y−i) > ζi(yi, y−i) for all y−i ∈ Y−i. Since X

E

−i = Y−i,
xi(ω) = ζi(xi, x

ω

−i) > ζ i(yi, x
ω

−i) = yi(ω) for all ω ∈ E. By U.20, ui(xi) > ui(yi)
for all ui ∈ P (E). By marginal consistency, ui(xi) > ui(yi) for all ui ∈ Pi (Y ).
Suppose that ui(xi) > ui(yi) for all ui ∈ Pi (Y ). By marginal consistency,

ui(xi) > ui(yi) for all ui ∈ P (E). For any ω ∈ E, ui(xi) > ui(yi) for all
ui ∈ P (E| {ω}). Since Y is closed, E is compact. By U.1 and Epstein and
Wang’s (1996) Theorem 4.3, it follows that xi(ω) = ui(xi) > ui(yi) = yi(ω) for
all ui ∈ P (E| {ω}). Therefore, ζi(xi, xω−i) > ζ i(yi, x

ω

−i) for all ω ∈ E. Since
X

E

−i = Y−i, ζi(xi, y−i) > ζi(yi, y−i) for all y−i ∈ Y−i.

We now turn to the proof of Theorem 1.
Proof of Theorem 1. “if part”: Let xi strictly dominate yi given X

E
. By

Lemma 4, ui(xi) > ui(yi) for all ui ∈ Pi

³
X

E
´
. By marginal consistency,

ui (xi) > ui (yi) for all ui ∈ P(E). By Epstein and Wang’s (1996) Theo-
rem 4.3, P(E) ∼homeomorphic P(Ω|E). Let ϕ : P(E) → P(Ω|E) be such a
homeomorphism. By the proof of Epstein and Wang’s (1996) Theorem 4.3,
ϕ ◦ ui(x0i) = ui(x

0
i) for all x

0
i ∈ Xi. Therefore, ϕ ◦ ui (xi) > ϕ ◦ ui (yi) for all

ui ∈ P(E). Thus, uωi (xi) > u
ω

i (yi) for all u
ω

i ∈ P(Ω|E). Since E is compact, it
therefore follows that u

ω

i (xi) > u
ω

i (yi) for all ω ∈ KiE.
“only if part”: Consider a zero-sum game G0 ≡ (N 0, {X 0

j}, {ζ 0j}) such that
N 0 = {i,−i}, X 0

i = Xi, and X 0
−i = P(E). Define the payoff function in G0 as

ζ 0i(xi, ui) ≡ u
ω

i (xi)− u
ω

i (yi) , for all xi ∈ X 0
i and ui ∈ P(E),
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where u
ω

i ∈ P(Ω|E) and u
ω

i = ϕ ◦ ui. By U.6 in Appendix I, P(E) is compact.
By Lemma 3, P(E) is convex. By Epstein and Wang’s (1996) Theorem 3.1,
P(E) is Hausdorff. By continuity of ϕ and by U.5 in Appendix I, ζ 0i(·, ·) is
continuous (see the verification below). Now, by Glicksberg’s (1952) Theorem,
there exists a Nash equilibrium (x∗i , u

∗
i ) in G0. However, since yi is a never-best

response given E, we have

max
xi∈X0

i

ζ 0i(xi, ui) = max
xi∈X0

i

£
u
ω

i (xi)− u
ω

i (yi)
¤
> 0

for all u
ω

i ∈ P(Ω|E). Therefore, for any ui ∈ P(E),

ζ 0i(x
∗
i , ui) ≥ ζ 0i(x

∗
i , u

∗
i ) = max

xi∈X0
i

ζ 0i(xi, u
∗
i ) > 0.

Thus, u
ω

i (x
∗
i ) > u

ω

i (yi) for all u
ω

i ∈ P(Ω|E). By the proof of Epstein and
Wang’s (1996) Theorem 4.3, u

ω

i (x
0
i) = ϕ−1 ◦ uωi (x0i) for all x0i ∈ Xi. Therefore,

ϕ−1 ◦ uωi (x∗i ) > ϕ−1 ◦ uωi (yi) for all uωi ∈ P(Ω|E). Since P(E) ∼homeomorphic

P(Ω|E), it follows that ui (x∗i ) > ui (yi) for all ui ∈ P(E). By marginal consis-
tency, ui (x∗i ) > ui (yi) for all ui ∈ Pi

³
X

E
´
. By Lemma 4, x∗i strictly dominate

yi given X
E
.

Continuity of ζ 0(·, ·): We denote the metric forXi by di and denote the metric
for X by d(x, x0) =

pPn
i=1 di(xi, x

0
i)
2 for all x, x0 ∈ X.

Step 1. If xmi → xi, supω∈Ω|xmi (ω)− xi(ω)|→ 0.

Since ζi(.) is continuous and X is compact, ζ i(.) is uniformly continuous on
X. Hence, for any ε > 0, there exists δ such that whenever di(xmi , xi) < δ, we
have |xmi (ω)− xi(ω)| = |ζi(xmi , xω−i)− ζi(xi, x

ω

−i)| < ε for all ω.

Step 2. For any continuous function f ∈ F(Ω), um (f)→ u (f) as um → u.

To prove this, it suffices to show that, for all real numbers r, {u : u(f) > r}
and {u : u(f) < r} are open. Since f is continuous, we can find fm ∈ F l(Ω)
that

fm =
1

2m

2mX
j=1

1Gmj , where Gmj = {ω : f(ω) > j2−m}.
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Clearly, fm ↑ f uniformly. By U.5,

{u : u(f) > r} =
∞[

m=1

{u : u(fm) > r}.

Thus, {u : u(f) > r} is open. Similarly, {u : u(f) < r} is open.

Step 3. ζ 0i(xi, ui) is jointly continuous.

Let (xmi , u
m
i ) → (xi, ui) be a convergent sequence in Xi × P(E). Let

ε > 0 be sufficiently small. Then, by Step 1 and U.5, for sufficiently large
m, |u0i(xmi ) − u0i(xi)| < ε/3 for all u0i ∈ P(E). Since the payoff function ζi (·)
is continuous, it therefore follows that xi is a continuous act. By Step 2, for
sufficiently large m, |umi (xi)−ui(xi)| < ε/3 and |umi (yi)−ui(yi)| < ε/3. Hence,
we have

|ζ 0i(xmi , umi )− ζ 0i(xi, ui)| ≤ |uωmi (xmi )− u
ω

i (xi) |+ |u
ωm

i (yi)− u
ω

i (yi) |
≤ |uωmi (xmi )− u

ωm

i (xi) |+ |uωmi (xi)− u
ω

i (xi) |
+|uωmi (yi)− u

ω

i (yi) |
< ε.¥

Corollary 1. Let Y ⊆ X be nonempty and compact. Then, a strategy yi is a
never-best response given Y if, and only if, it is strictly dominated given Y .
Proof. Define E ≡ Y ×{t} where t ∈ T1×T2×. . .×Tn. By the TychonoffTheo-
rem, E is nonempty and compact. Therefore, [yi is strictly dominated given Y ]
⇐⇒by Theorem 1 [yi is a never-best response given E] ⇐⇒by Definition 2 [for every
ω ∈ KiE, u

ω

i (xi) > u
ω

i (yi) for some xi ∈ Xi] ⇐⇒by the compactness of E [for every
ui ∈ P(Ω|E), ui (xi) > ui (yi) for some xi ∈ Xi]⇐⇒by Epstein and Wang’s (1996) Theorem 4.3

[for every ui ∈ P(E), ui (xi) > ui (yi) for some xi ∈ Xi] ⇐⇒by marginal consistency

[for every ui ∈ Pi(Y ), ui (xi) > ui (yi) for some xi ∈ Xi] ⇐⇒ [yi is a never-best
response given Y ].

Theorem 2. X
R∩CKR

is the largest (w.r.t. set inclusion) stable set and,
moreover, yields iterated strict dominance.
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To prove Theorem 2, we need the following three lemmas.
Lemma 5. Suppose that xi ∈ Xi is strictly dominated given Y 6= ∅. Then,
there exists x∗i ∈ Xi such that (a) x∗i strictly dominates xi given Y ; and (b) x∗i
is not strictly dominated given Y .
Proof. Consider a partial ordered set (X 0

i,<), such that

X 0
i ≡ {x0i ∈ Xi| x0i strictly dominates xi given Y } ,

and for all x0i, y
0
i ∈ X 0

i,
(a) x0i Â y0i iff x0i strictly dominates y

0
i given Y ;

(b) x0i ∼ y0i iff x0i = y0i.
Clearly, any maximal strategy in X 0

i is a strictly undominated dominator of xi.
By Zorn’s Lemma, it remains to verify that every totally-ordered subset of X 0

i

has an upper bound in X 0
i. Let X

00
i be a totally-ordered subset of X

0
i. Since Xi

is compact, X 00
i has a convergent subnet x

λ
i → x∗i in Xi. By continuity of ζi, for

any y−i ∈ Y−i, ζi
¡
xλi , y−i

¢
increasingly converges to ζi (x

∗
i , y−i). If ζi (x

∗
i , y−i) >

ζi
¡
xλi , y−i

¢
for all y−i ∈ Y−i, then x∗i Â xλi ; if ζ i (x

∗
i , y−i) = ζi

¡
xλi , y−i

¢
for some

y−i ∈ Y−i, then for all xλ
0

i < xλi , ζi
¡
xλ

0
i , y−i

¢
= ζi

¡
xλi , y−i

¢
and, hence, xλ

0
i = xλi .

Thus, x∗i ∼ xλi . Therefore, x
∗
i < xλi for all x

λ
i . Since for each x0i ∈ X 00

i , x
λ
i < x0i

for some xλi , x
∗
i < x0i for all x

0
i ∈ X 00

i . As x
λ
i Â xi, x∗i is an upper bound in X 0

i

for X 00
i .

Lemma 6. K is a stable set iff K 6= ∅ and K = ©x ∈ X| y ¨K x ∀y ∈ X
ª
.

Proof. Suppose that K is a stable set. Then, K 6= ∅. As the external sta-
bility of K implies that K ⊇ ©

x ∈ X| y ¨K x ∀y ∈ X
ª
, it suffices to verify

that K ⊆ ©
x ∈ X| y ¨K x ∀y ∈ X

ª
. Assume, in negation, that there exists

x ∈ K\©x ∈ X| y ¨K x ∀y ∈ X
ª
. Then, for some i, xi is strictly dominated

given K. By Lemma 5, there exists x∗i ∈ Xi such that (a) x∗i strictly dominates
yi given K; and (b) x∗i is not strictly dominated given K. Define y ≡ (x∗i , x−i).
Clearly, y ∈ K and y ÂK x, contradicting the internal stability of K.
Suppose that K 6= ∅ and K =

©
x ∈ X| y ¨K x ∀y ∈ X

ª
. Clearly, K is

internally stable. Let x /∈ K. Then, for some i, xi is strictly dominated given
K. By Lemma 5, there exists x∗i ∈ Xi such that (a) x∗i strictly dominates xi
given K; and (b) x∗i is not strictly dominated given K. Since K 6= ∅, there is
x0 ∈ K. Define y ≡ ¡x∗i , x0−i¢. Clearly, y ∈ K and y ÂK x. Thus, K is externally
stable.

Lemma 7. Suppose that Y ⊆ X is nonempty and closed. Then, there exists
ω such that ω ∈ Pi(ω) and Pi(ω) = Y × ©tωª for all i.

29



Proof. Let Ω0 ≡ X, and let Ωk ≡ Ωk−1 × Pn(Ωk−1) for all k ≥ 1. Since X
is a compact metric space, Y has a countable dense subset {xm}∞m=1 (see, e.g.,
Aliprantis and Border 1999, Chapter 3). Define u0i (f) ≡

P∞
m=1 2

−mf(xm) for
any f ∈ F(X). Clearly, u0i ∈ P(X). For any f ∈ F(Ωk), any k ≥ 1 and
i = 1, ..., n, define

uki (f) ≡
∞X

m=1

2−mf(xm;u01, ..., u
0
n; ...;u

k−1
1 , ..., uk−1n ).

Thus, uki ∈ P(Ωk|Y ×
©×k−1

l=0

©
(ul1, ..., u

l
n)
ªª
) and mrgF(Ωk−1)u

k
i = uk−1i . Define

ti ≡ (u0i , u1i , ...), and define ui(f) ≡
∞P

m=1

2−mf(xm; t1, ..., tn) for any f ∈ F(X ×
T 01 × . . . × T 0n), where T

0
j = ×∞k=0P(Ωk) for j = 1, ..., n. Clearly, ui ∈ P(X ×

T 01 × . . . × T 0n) and mrgF(Ωk)ui = uki ∀k. By Epstein and Wang’s Theorem
D.2, ψ ◦ ti = ui. Since ui ∈ P(X × T 01 × . . . × T 0n |Y × {(t1, ..., tn)}), ti ∈ Ti
(see Epstein and Wang’s (1996) Section 5). Define ω ≡ (y; t1, ..., tn) where
y ∈ Y . As u

ω

i = ψ ◦ ti, uωi ∈ P(Ω|Y × ©tωª). Since Y × ©tωª is closed,
ω ∈ Ki(Y ×

©
t
ωª
). Thus, Pi(ω) ⊆ Y × ©tωª. Since {xm}∞m=1 is dense in Y , for

any closed proper subset Y 0 ⊂ Y , there is some xm in (X\Y 0) ∩ Y . Therefore,
u
ω

i /∈ P(Ω|Y 0 × ©tωª) and, hence, ω /∈ Ki(Y
0 × ©tωª). Thus, Pi(ω) = Y × ©tωª

and, moreover, ω ∈ Pi(ω).

We now turn to the proof of Theorem 2.
Proof of Theorem 2. Let D0 ≡ X, and for l ≥ 1 define recursively

Dl ≡ Dl−1\
n
y ∈ Dl−1| ∃i ∃x ∈ Dl−1 s.t. xi strictly dominates yi given Dl−1

o
.

Define D ≡ ∩∞l=0Dl. We prove Theorem 2 by the following three steps.

Step 1. D is a stable set.

(1) [internal stability]. Let x ∈ D. By Dufwenberg and Stegeman’s (2002)
Theorem 1, it follows that for all y ∈ D and for all i, yi does not strictly
dominate xi given D. Thus, y ¨D x for all y ∈ D.
(2) [external stability]. Let x /∈ D. Then, x /∈ Dl for some l ≥ 1. Therefore,

for some i, xi is strictly dominated givenDl. AsD ⊆ Dl, xi is strictly dominated
given D. By Dufwenberg and Stegeman’s (2002) Lemma, for some y ∈ D, yi
strictly dominates xi given D. Thus, y ÂD x for some y ∈ D.
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Step 2. D is the largest stable set.

Let K be a stable set. By Lemma 6, K ⊆ ©x ∈ X| y ¨K x ∀y ∈ X
ª
. There-

fore, K ⊆ Dl for all l ≥ 0. Thus, K ⊆ D.

Step 3. X
R∩CKR

= D.

Let ω ∈ R ∩ CKR. Since ω ∈ Ri, X
Pi(ω)

i = BRi (ω) for all i. Since by K5

in Lemma 1, ω ∈ KiPi(ω), x
ω

i ∈ X
KiPi(ω)

i . Since by CK1 in Lemma 2, Pi(ω)

⊆ R ∩CKR, by the weak axiom of knowledge, x
ω

i ∈ X
Pi(ω)

i . Therefore, x
ω

i is a
best response given Pi(ω). By Theorem 1, x

ω

i is not strictly dominated given
X

Pi(ω) . Since again by CK1, Pi(ω) ⊆ R ∩ CKR, for all i, x
ω

i is not strictly

dominated givenX
R∩CKR

. Therefore, x
ω ∈ Dl for all l ≥ 0. Thus, XR∩CKR ⊆ D.

By Dufwenberg and Stegeman’s (2002) Theorem 1, D is nonempty and
compact. By Lemma 7, there exists ω such that ω ∈ Pi(ω) and Pi(ω) = D×{tω}
∀i. By Step 1 and Lemma 6,

D = {x ∈ X| for all i, xi is not strictly dominated given D} .

By Theorem 1, BRi(ω) = X
Pi(ω)

i for all i. Thus, ω ∈ R. Since by P1, BRi(ω
0) =

BRi(ω) = X
Pi(ω)

i = X
Pi(ω

0)
i for all ω0 ∈ Pi(ω), Pi(ω) ⊆ R. Let E ≡ D × {tω}.

As by P1, Pi(ω
0) = E for all ω0 ∈ E, E is a self-evident event containing ω. By

CK2 in Lemma 2, ω ∈ CKE. Since E ⊆ R, ω ∈ R ∩ CKR. Since by CK1,
Pi(ω) ⊆ R ∩ CKR, D ⊆ X

R∩CKR

.

Corollary 2. X
R∩CKR

is the set of all rationalizable strategy profiles.
Proof. Define

L ≡ ∪K⊆{x∈X| y¨Kx ∀y∈X}K.
Since, for all l ≥ 0, K ⊆ Dl whenever K ⊆ ©x ∈ X| y ¨K x ∀y ∈ X

ª
, L ⊆ D.

By Step 1 and Lemma 6, D ⊆ ©x ∈ X| y ¨D x ∀y ∈ X
ª
. Therefore, L = D

and L ⊆ ©
x ∈ X| y ¨L x ∀y ∈ X

ª
. By Dufwenberg and Stegeman’s (2002)

Theorem 1, D is nonempty and compact. By Corollary 1, L has the best
response property. Since by Lemma 4, every best response is a strictly undom-
inated strategy, it is easy to see that K ⊆ ©x ∈ X| y ¨K x ∀y ∈ X

ª
whenever

K has the best response property. Thus, L is the largest set with the best
response property. By Theorem 1, X

R∩CKR

= L. That is, XR∩CKR

is the set of
all rationalizable strategy profiles.
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Theorem 3. (3.1) Suppose ω ∈ R. Then, Ψ (ω) is an externally stable set
and, moreover, there is a stable set K ⊇ Ψ (ω) whenever ω ∈ CKR. (3.2)
Suppose that X

Pi(ω) ⊆ Ψ (ω) for all i – i.e., every player knows “choice sets”.
Then, ω ∈ R iff Ψ (ω) is a stable set. (3.3) Suppose that K is a self-evident

event satisfying K =
n
ω ∈ Ω| XPi(ω) ⊆ Ψ (ω) = K

o
. Then, K ⊆ R ∩ CKR

whenever K is a stable set. (3.4) For any compact stable set K, there is ω ∈
R ∩ CKR such that Ψ (ω) = K.
Proof. (3.1) Let y ∈ X\Ψ (ω). Since ω ∈ R, yi /∈ BRi(ω) for some i. By
P1 and Theorem 1, yi is strictly dominated given X

Pi(ω) . By Lemma 5, there
exists x∗i ∈ Xi such that (a) x∗i strictly dominates yi given X

Pi(ω); and (b) x∗i
is not strictly dominated given X

Pi(ω) . Since ω ∈ Ri, by Theorem 1, x∗i ∈
X

Pi(ω)

i .Thus, x∗i ∈ Ψi (ω). Since by P1, Ψ (ω) 6= ∅, there is x0 in Ψ (ω). Define
x ≡ ¡x∗i , x0−i¢. Then, x ∈ Ψ (ω). Since by A1 and A2, ×

j∈NX
Pj(ω)

j ⊆ X
Pi(ω) ,

x∗i strictly dominates yi given Ψ (ω). Therefore, x ÂΨ(ω)
y for some x ∈ Ψ (ω).

Thus, Ψ (ω) is an externally stable set.

Now, let K≡XR∩CKR

. By Theorem 2, K is a stable set. Since by CK1,
Pi(ω) ⊆ R ∩ CKR for all i, Ψ (ω) ⊆ K.
(3.2) First of all, since by A1 and A2, ×

j∈NX
Pj(ω)

j ⊆ X
Pi(ω) , Ψ (ω) ⊆ X

Pi(ω) .
As X

Pi(ω) ⊆ Ψ (ω), Ψ (ω) = X
Pi(ω) ∀i.

“if part”: Suppose that Ψ (ω) is a stable set. By Lemma 6, x ∈ Ψ (ω) iff, for
all i, xi is not strictly dominated given Ψ (ω). Since Ψ (ω) = X

Pi(ω), by P1 and
Theorem 1, x ∈ Ψ (ω) iff, for all i, xi is a best response given Pi(ω). Therefore,
X

Pi(ω)

i = BRi(ω) for all i. That is, ω ∈ R.
“only if part”: Suppose ω ∈ R. By (3.1), Ψ (ω) is externally stable. There-

fore, it remains to verify that Ψ (ω) is internally stable. Assume, in negation,
that y ÂΨ(ω)

x for some x, y ∈ Ψ (ω). Then, for some i, yi strictly dominates
xi given Ψ (ω). Since Ψ (ω) = X

Pi(ω) , by P1 and Theorem 1, xi is not a best
response given Pi(ω). Since ω ∈ Ri, xi /∈ X

Pi(ω)

i . Thus, x /∈ Ψ (ω), which is a
contradiction.
(3.3) Suppose that K is a stable set. Since XPi(ω) ⊆ Ψ (ω) for all ω ∈ K ,

by (3.2), K ⊆ R. Since K is self-evident, by CK2, K ⊆ CKR. Thus,
K ⊆ R ∩ CKR.
(3.4) The proof is totally similar to the last part of Step 3 in the proof of

Theorem 2. We therefore omit it.
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