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Abstract

This paper considers testing for the presence of nonlinear adjustment in the smooth

transition vector error correction model. The direct tests for smooth transition nonlinear

adjustment, based on the exact specification of smooth transition and calculated under the

linear error correction model, are proposed. This paper particularly focuses on the optimality

issue in smooth transition models, which has not been explicitly explored. The transition

parameters cannot be identified under the null hypothesis, and therefore this paper develops

the optimal tests for smooth transition nonlinearity, the associated asymptotic theory, and

the bootstrap inference. Simulation evidence shows that the bootstrap inference generates

moderate size and power of the tests.

Key words: Nonlinear Adjustment; Optimal Tests; Smooth Transition

JEL classification: C12; C32
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1 Introduction

The smooth transition autoregressive (STAR) model was proposed by Chan and Tong (1986)

as a generalization of the threshold autoregressive (TAR) model, and since then it has at-

tracted wide attention in the recent literature on the business cycles and the equilibrium

parity relationships of commodity prices, exchange rates, and equity prices. Economic be-

havior is affected by asymmetric transaction costs and institutional rigidities, and thus a

large number of studies - for example, Neftci (1984), Terasvirta and Anderson (1992), and

Michael, Nobay, and Peel (1997) - have shown that many economic variables and relations

display asymmetry and nonlinear adjustment.

One of the most crucial issues in models of this kind is testing for the presence of nonlinear

adjustment with the null of linearity. Luukkonen, Saikkonen, and Terasvirta (1988) expanded

the transition function and proposed the variable addition tests as the tests of linearity

against smooth transition nonlinearity, and the tests have been used in many empirical

studies. However, the test statistics are based on the polynomial approximation, and the

approximation errors may affect statistical inference depending on the parameter values of

transition rate and location. Furthermore, the tests are not directly related to the smooth

transition model, and thus we cannot retrace what causes the rejection of linearity. This

paper considers the direct tests for nonlinear adjustment, which are based on the exact

specification of smooth transition.

The smooth transition model entails transition parameters, which cannot be identified

under the null hypothesis. However, the optimality issue in the smooth transition model

has not been treated extensively. The optimality issue regarding unidentified parameters

has been developed by Davies (1987), Andrews (1993), and Hansen (1996). Hansen (1996)

particularly considered the optimality issue in threshold models. The threshold parameter

cannot be identified under the null hypothesis, and as a result the likelihood ratio statistic

has the nonstandard distribution. The smooth transition model generalizes the threshold

model, and thus this paper develops the appropriate tests and the associated distribution

theory based on the optimality argument.
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Many empirical studies have found evidence on the presence of stochastic nonlinear de-

pendence in equilibrium relations such as purchasing power parity. For example, Michael,

Nobay, and Peel (1997), considering the equilibrium model of real exchange rate in the pres-

ence of transaction costs, found strong evidence of nonlinear adjustment, which conforms to

the exponential smooth transition model. There exists a huge literature, and it is growing

in this area. However, the econometric methods and the formal theory have been limited.

This paper proposes the tests for nonlinear adjustment in the smooth transition vector error

correction models, and thereby fills the deficiency in the literature.

One technical difficulty is to estimate the smooth transition model. As noted by Haggan

and Ozaki (1981) and Terasvirta (1994), it is difficult to estimate the smooth transition

parameters jointly with the other slope parameters. The gradient of the transition parameter

forces its estimate to blow up to infinity; thus, we cannot depend on the standard estimation

algorithm. Our tests are based on the Lagrange multiplier statistic, which can be calculated

under the null hypothesis. Therefore, our tests are easy to implement and thus useful.

This paper finds that our tests have the asymptotic distribution, which is based on the

Gaussian process. However, the asymptotic distribution depends on the nuisance parameters

and the covariances are data-dependent; thus, the tabulation of asymptotic distribution

is not feasible. This paper suggests the bootstrap inference to approximate the sampling

distribution of the test statistics. Simulation evidence shows that the bootstrap inference

generates moderate size and power performances.

There are other related papers by Caner and Hansen (2001), Kapetanios, Shin, and

Snell (2003), Saikkonen and Choi (2004), and Hansen and Seo (2002). Caner and Hansen

(2001) considered the unit root tests in the TAR model. Kapetanios, Shin, and Snell (2003)

considered the unit root tests in the STAR model. Saikkonen and Choi (2004) considered

cointegration tests in the STAR model. This paper does not consider the tests of unit root

or cointegration because it is difficult to deal directly with the nonstationary variable in the

transition function. Hansen and Seo (2002) considered the tests for threshold nonlinearity

in vector error correction model. This paper extends Hansen and Seo (2002) to the smooth

transition vector error correction model.
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We denote ⇒ as weak convergence with respect to the uniform metric and →p as conver-

gence in probability. The expression |·| represents the matrix norm; that is, |A| = (trA
′
A)1/2,

and ||X||p = (E|X|p)1/p. Also, vec(·) is the vectorization operator.

This paper is organized as follows. Section 2 introduces the smooth transition vector

error correction model and develops the optimal tests for nonlinear stochastic dependence.

Section 3 explores the asymptotic distribution of the proposed tests. Section 4 provides the

simulation evidence on the size and power of the tests. An economic application on the S&P

index future arbitrage is illustrated in Section 5.

2 Model

Consider a p-dimensional nonstationary time series xt generated by a smooth transition

vector error correction model as follows:

∆xt = A
′
zt(β) + D

′
zt(β)F (qt; λ) + ut, (1)

where zt(β) = (1, wt−1(β), ∆x
′
t−1, ∆x

′
t−2, . . . , ∆x

′
t−l)

′
.

We assume that the cointegration space is known and equals 1. Thus, the normalized

cointegrating relationship wt(β) = x1t+β
′
x2t is stationary, where the cointegrating coefficient

β and the corresponding variable x2t are (p − 1)-dimensional. The regressor zt is a k-

dimensional vector, where k = pl + 2, and the coefficient matrices A and D are k × p.

We define the σ-field Ft generated by xt−i for i = 1, 2, . . . We assume that the error ut is

a vector-valued Martingale difference sequence with a finite variance Σ = E(utu
′
t) < ∞.

The transition function F (qt; λ) depends on the transition variable qt and the associated

parameter vector λ. The functional form can be specified in several ways, depending on the

characteristics of nonlinear adjustment. As in Luukkonen and Terasvirta (1991), this paper

considers the exponential and logistic transition functions as follows:

F (qt; λ1, λ2) = 1− exp[−λ1(qt − λ2)
2], λ1 > 0, (2)

and

F (qt; λ1, λ2) =
1

1 + exp[−λ1(qt − λ2)]
, λ1 > 0. (3)
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The exponential specification (2) allows for a smooth transition based on the inverted

normal density function, while the logistic specification (3) models a smooth transition based

on the cumulative logistic distribution. The exponential specification (2) implies a symmetric

three-regime transition, where the short-run dynamics are explained by the coefficient matrix

A in the mid regime, and the coefficient A+D corresponds to the tail regimes. The transition

rate parameter λ1 determines the speed of transition. As λ1 increases, the transition from

the mid regime to both tail regimes, and its reverse, can be made quickly. If λ1 = 0, there

is no transition and only the mid regime is prevalent. If λ1 approaches ∞, the mid regime

disappears and our model reduces to the linear error correction model. Both cases lead to

the linear error correction model. Thus, smooth transition has meaning only if 0 < λ1 < ∞.

The location parameter λ2 determines the average location of transition. We assume that

λ2 lies inside the support of the transition variable. That is, min(qt) < λ2 < max(qt).

The logistic specification (3) models a two-regime transition, where the short-run dynam-

ics are explained by the coefficient matrix A in the first regime, and the coefficient A + D

corresponds to the second regime. As in the exponential specification, the transition rate

parameter λ1 determines the speed of transition, and the location parameter λ2 determines

the average location of transition. As λ1 increases, the transition from the first regime to

the second regime, and its reverse, can be made quickly. If λ1 = 0, there is no transition

and only the first regime remains. This case leads to the linear error correction model, and

thus we assume that λ1 > 0. As λ1 approaches ∞, the logistic transition converges to the

threshold transition such that limλ1→∞F (qt; λ1, λ2) = 1(qt ≥ λ2), where 1(·) is the indicator

function. Then, our model is the same as the threshold vector error correction model, which

was considered in Hansen and Seo (2002). As in the exponential transition, we assume that

λ2 lies inside the support of the transition variable. That is, min(qt) < λ2 < max(qt).

The transition variable qt is a stationary transformation of the predetermined variables;

for example, qt = wt−1 and qt = |wt−1|. To simplify analysis, we focus on qt = wt−1. Main

results do not change when other predetermined variables are used as the transition variable

if the variable is stationary.

The smooth transition error correction model has continuously varying coefficients de-
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pending on the current state wt−1. The nonlinear dynamics can be explained by the coeffi-

cient matrices A and D. Our model (1) allows all short-run coefficients to vary. However,

the parsimonious specification may relieve computational cost if it does not affect the va-

lidity condition. In this respect, we may allow the coefficient on the error correction term

or the coefficients on the error correction term and intercept to vary while setting the other

coefficients to be constant.

Our model can be reduced to linear error correction model (4) when the coefficient matrix

D is zero.

∆xt = A
′
zt(β) + ut = µ + αwt−1(β) +

l∑
i=1

Γi∆xt−i + ut. (4)

Hence, the null and alternative hypotheses for testing linearity in adjustment dynamics

can be postulated as follows:

H0 : D = 0 against H1 : D 6= 0.

We define the parameter vector

θ = vec(D,A, β, Σ) ∈ Θ.

The true parameter value is denoted as θ0. The log-likelihood function, with the auxiliary

condition that ut is normally distributed, is given by

Ln(θ, λ) = −1

2

n∑
t=1

[log|Σ|+ u
′
t(λ, θ)Σ−1ut(λ, θ)], (5)

where ut(λ, θ) is defined in (1).

We denote θ̂(λ) as the maximum likelihood estimator (MLE) of θ for known λ. As

noted by Haggan and Ozaki (1981) and Terasvirta (1994), technical difficulty arises when the

transition parameters λ are jointly estimated with the other slope parameters θ. Particularly,

the estimate of the transition rate parameter tends to be inflated and the convergence cannot

be made easily. In a practical sense, the estimation of the transition rate requires a large

number of observations because, depending on the parameter values of the transition rate,

the convergence becomes slower. To estimate the transition rate, Haggan and Ozaki (1981)

suggested a conditional least squares with a grid search on the transition rate. However, our
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tests do not require the estimation of the smooth transition parameters, and therefore we

treat λ as fixed until we define optimal tests for unknown λ.

Under the null hypothesis of linearity, the cointegrating vector can be estimated by

reduced rank regression, and the short-run parameters can be estimated by least squares. We

denote β̃ and Ã as the linear estimates of the cointegrating vector and short-run parameters,

respectively.

Once β is known, the smooth transition error correction model (1) is linear in parameters

A and D for fixed λ. We denote Â(β, λ) and D̂(β, λ) as the MLE for given β and λ. Thus,

the MLE D̂(β, λ) is given by

D̂(β, λ) = (
n∑

t=1

z∗2t(β, λ)z∗
′

2t(β, λ))−1

n∑
t=1

z∗2t(β, λ)∆x
′
t, (6)

where

z∗2t(β, λ) = z2t(β, λ)−
n∑

t=1

z2t(β, λ)z
′
t(β)(

n∑
t=1

zt(β)z
′
t(β))−1zt(β), and

z2t(β, λ) = zt(β)F (wt−1(β); λ).

For the null hypothesis H0 : D = 0, we define the score function gn(λ) as follows:

gn(λ) =
1√
n

vec(
n∑

t=1

z∗2t(β̃, λ)∆x
′
t) (7)

where β̃ is the linear cointegrating vector estimator.

We define ũt = ∆xt − Ã
′
zt(β̃) and ṽt(λ) = ũtF (wt−1(β̃); λ). To allow for time-varying

conditional variances, we define the heteroskedasticity-robust covariance estimator of the

score function as follows:

Vn(λ) = Ω22n(λ)−Q21n(λ)Q−1
11nΩ12n(λ)− Ω21n(λ)Q−1

11nQ12n(λ) +

Q21n(λ)Q−1
11nΩ11nQ−1

11nQ12n(λ),

where

Ω11n =
1

n

n∑
t=1

(ũtũ
′
t ⊗ zt(β̃)z

′
t(β̃))
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Ω12n(λ) =
1

n

n∑
t=1

(ũtṽ
′
t(λ)⊗ zt(β̃)z

′
t(β̃))

Ω22n(λ) =
1

n

n∑
t=1

(ṽt(λ)ṽ
′
t(λ)⊗ zt(β̃)z

′
t(β̃))

Q11n =
1

n

n∑
t=1

(I ⊗ zt(β̃)z
′
t(β̃))

Q12n(λ) =
1

n

n∑
t=1

(I ⊗ zt(β̃)z
′
2t(β̃, λ)), and

Ω21n(λ) = Ω
′
12n(λ) and Q21n(λ) = Q

′
12n(λ).

Thus, the tests for nonlinear adjustment can be based on the following LM statistic:

LMn(λ) = gn(λ)
′
V −1

n (λ)gn(λ). (8)

The LM statistic can be calculated if we have the linear cointegrating vector estimator

β̃, the residual ũt, and the data. We do not need to estimate the smooth transition error

correction model, and we can avoid the difficulty of estimating the transition parameters.

The transition parameter λ cannot be identified under the null hypothesis. The opti-

mality argument regarding the unidentified parameter has been raised by Davies (1987),

Andrews (1993), and Hansen (1996). Hansen (1996) particularly considered the optimality

issue in threshold models. Because the smooth transition generalizes the threshold transition,

the optimality argument should be considered in the smooth transition models.

Compared to the threshold transition, the exponential and logistic transition models

entail the transition rate as well as the location parameters. Because the support of the

transition rate parameter λ1 is unbounded, we assume a monotonic transformation h(·),
which leads to λ1 = h−1(ν1) for ν1 ⊂ (0, 1).

Although the smooth transition specification allows for the linear and threshold models,

identification may fail when the transition rate approaches 0 or ∞. Thus, we impose this

restriction by assuming that ν1 ∈ [ν1L, ν1U ] ⊂ (0, 1) or λ1 ∈ [λ1L, λ1U ] ⊂ R+.

Also, the smooth transition has meaning only if 0 < P (wt ≤ λ2) < 1. Using the

monotonic transformation ν2 = P (wt ≤ λ2), we impose this constraint by assuming that

ν2 ∈ [ν2L, ν2U ] ⊂ (0, 1) or λ2 ∈ [λ2L, λ2U ], where ν2L = P (wt ≤ λ2L) and ν2U = P (wt ≤ λ2U).
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The simulation and empirical results are based on ν1L = 1− ν1U = 0.05 and ν2L = 1− ν2U =

0.10.

The LM statistic has been defined for fixed λ. This is appropriate only when λ is known.

If λ is unknown, the testing procedure is nonstandard because the nuisance parameter ap-

pears only under the alternative hypothesis, and the likelihood function is flat under the null

hypothesis. This paper extends the optimality treatment of Hansen (1996) to the tests for

nonlinear adjustment in smooth transition error correction models.

If we assume that λ lies in Λ = [λ1L, λ1U ]× [λ2L, λ2U ] ⊂ R2, then the optimal test statistic

can be defined as follows:

SupLM = Supλ∈ΛLMn(λ). (9)

3 Main Results

First, we use the representation theorem by Engle and Granger (1987). The linear error

correction model (4) has the following representation:

∆xt = C(L)ut (10)

xt = C(1)
t∑

i=1

ui + C∗(L)ut (11)

wt = B
′
C∗(L)ut, (12)

where C∗(L) = C(L)−C(1)
1−L

and B = (1, β
′
)
′
.

Therefore, xt can be decomposed into stochastic trends and a stationary component. The

cointegrating vector eliminates the stochastic trends, and thus the cointegrating relationship

wt(β) = (1, β
′
)xt is stationary as defined in Engle and Granger (1987).

Let θ0 be the true parameter value. We denote wt = wt(β0) and zt = zt(β0). By

reparametrization, we define ν = (ν1, ν2), where ν1 = h(λ1) and ν2 = P (wt ≤ λ2). We

denote ut(ν) = ut(θ0, ν), Ft(ν) = F (wt−1(β0); ν), and vt(ν) = Ft(ν)ut(ν). Note that the

error ut does not depend on ν under the null hypothesis.

Assumption 1
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1. ν ∈ N ⊂ (0, 1)2.

2. {ut,Ft} is a vector-valued Martingale difference sequence with supt||ut||4 < ∞.

3.
∑∞

k=1 k|Ck| < ∞, where ∆xt = C(L)ut =
∑∞

k=0 Ckut−k.

4. supθ∈Θ |θ| < ∞.

5. Ft(ν) is continuously differentiable and supt||supν∈N |F ′
t (ν)| ||2 < ∞, where F

′
t (ν) =

∂Ft(ν)
∂ν

.

We use Assumption 1.5 to show the stochastic equicontinuity of the sum 1√
n

∑n
t=1 vt(ν),

where vt(ν) = utFt(ν). The exponential and logistic transition functions satisfy this condition

if Assumptions 1.1-1.4 hold.

We need to define weak convergence of the sum 1√
n

∑n
t=1 vt(ν) . Thus, we denote ⇒ as

weak convergence on N with respect to the uniform metric ρ(·), where

ρ(g, h) = supν∈N |g(ν)− h(ν)|,

where | · | is the matrix norm.

Lemma 1 Under Assumption 1,




1√
n

∑n
t=1 ut

1√
n

∑n
t=1 vt(ν)


 ⇒


 U1

U2(ν)


 ∼ N(0,


 Σ11 Σ12(ν)

Σ21(ν) Σ22(ν)


), (13)

where U1 and U2(ν) are Gaussian processes , Σ11 = E(utu
′
t), Σ12(ν) = E(utv

′
t(ν)), Σ21(ν) =

Σ
′
12(ν), and Σ22(ν) = E(vt(ν)v

′
t(ν)).

We use the following lemmas to show the main results.

Lemma 2 Under the null hypothesis and Assumption 1,




1√
n

∑n
t=1(ut ⊗ zt)

1√
n

∑n
t=1(vt(ν)⊗ zt)


 ⇒


 W1

W2(ν)


 ∼ N(0,


 Ω11 Ω12(ν)

Ω21(ν) Ω22(ν)


), (14)

where Ω11 = E(utu
′
t ⊗ ztz

′
t), Ω12(ν) = E(utv

′
t(ν) ⊗ ztz

′
t), Ω21(ν) = Ω

′
12(ν), and Ω22(ν) =

E(vt(ν)v
′
t(ν)⊗ ztz

′
t).
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Lemma 3 Under the null hypothesis and Assumption 1,

gn(λ) ⇒ W2(ν)−Q21(ν)Q−1
11 W1

Vn(λ) →p Ω22(ν)−Q21(ν)Q−1
11 Ω12(ν)− Ω21(ν)Q−1

11 Q12(ν) +

Q21(ν)Q−1
11 Ω11Q

−1
11 Q12(ν) ≡ V (ν),

where Q11 = E(I ⊗ ztz
′
t), Q12(ν) = E(I ⊗ ztv

′
t(ν)), and Q21(ν) = Q

′
12(ν).

Theorem 1 Under the null hypothesis and Assumption 1,

LMn(λ) ⇒ Bb(ν)
′
Bb(ν) ≡ LM(ν), (15)

where Bb(ν) = V −1/2(ν)[W2(ν)−Q21(ν)Q−1
11 W1].

Therefore,

Supλ∈Λ LMn(λ) ⇒ Supν∈N LM(ν). (16)

Note that Bb(ν) is a Gaussian process for each ν. The LM statistic has the chi-squared

distribution for each known ν. However, the process depends on unknown parameters and the

covariances are data-dependent, which prevent the tabulation of the asymptotic distribution.

Davies (1987) suggested calculating the upper bound of the distribution, but this method

inevitably generates approximation errors, as noted by Caner and Hansen (2002).

The asymptotic distribution is similar to that of Hansen and Seo (2002), especially when

the parameter ν1 approaches 1 for the case of the logistic transition. In Hansen and Seo

(2002), uniform convergence hinges on the known cointegrating vector because the threshold

transition function is not continuous. However, uniform convergence follows directly because

this paper assumes smooth transition.

As in Hansen and Seo (2002), this paper suggests the bootstrap inference as the asymp-

totic theory is nonstandard and the tabulation is not feasible. There are many bootstrap

algorithms, and it is hard to tell which algorithm performs suitably in our model in terms of

consistency and refinement. This paper considers the standard residual bootstrap algorithm.

We assume the error ut is independent. The residual bootstrap approximates the sampling
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distribution of the test statistic using the null model and the parameter estimates obtained

under the null hypothesis.

The resampled residuals ub
t are randomly drawn from the sample residuals, and then xb

t

can be constructed using the parameter estimates and the resampled residuals. The SupLM b

statistic can be calculated for each resampled data, and then we obtain the bootstrap p-value,

which is the probability that the simulated statistic exceeds the sample SupLM statistic. If

the p-value is less than the size chosen, then we reject the null hypothesis in favor of the

alternative of nonlinear stochastic dependence.

Typically, the standard residual bootstrap assumes i.i.d. condition. However, the ac-

tual data in general show volatile movement and time-varying conditional variances. For a

complete specification we should consider conditional heteroskedasticity, but it is difficult to

specify the volatility structure each time we have a different dataset. Instead, we allow for

conditional heteroskedasticity and make the tests robust to heteroskedasticity by using the

White heteroskedasticity-consistent covariance estimator.

4 Simulation Evidence

We have shown that the optimal tests for nonlinear adjustment have nonstandard distri-

butions. Because the asymptotic distributions are data-dependent, this paper suggests the

bootstrap inference. In this section, we examine the finite sample performance of the optimal

tests using the Monte Carlo simulation study.

First, we design the experiments on the null distribution using a bivariate error correction

model with one lagged variable (l = 1).

∆xt = µ +


 α1

α2





 1

β




′

xt−1 + Γ∆xt−1 + ut, (17)

where xt = (x1t, x2t)
′
and ut = (u1t, u2t)

′
.

The alternative hypothesis allows for smooth transition, and hence the short-run coef-

ficients vary smoothly depending on the transition variable wt−1 and its weight F (wt−1; λ).

We consider the exponential and logistic transitions as defined in (2) and (3), respectively.
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In the experiment, our tests are based on (17), allowing the coefficients on the intercept and

the error correction to switch smoothly.

The experiments on size are based on a sample size of 250 and 1000 simulation replica-

tions, and for each replication 200 bootstrap replications are made to calculate the bootstrap

p-values. The optimal test statistics are calculated using λ1 = ν1

1−ν1
, ν1L = 1 − ν1U = 0.05

and ν2L = ν2U = 0.10, and using 50 grid points on each [λ1L, λ1U ] and [λ2L, λ2U ].

For simplicity, we fix µ = 0, β = −1, and α1 = −1. We vary α2 among (0,−0.5, 0.5),

and Γ among

Γ0 =


 0 0

0 0


 , Γ1 =


 −0.2 0

−0.1 −0.2


 , and Γ2 =


 −0.2 −0.1

−0.1 −0.2


 .

The errors u1t and u2t are generated under homoskedastic and conditional heteroskedastic

specifications. The homoskedastic case assumes that the errors are independently N(0, 1)-

distributed. The heteroskedastic case assumes that the errors u1t and u2t follow independent

GARCH(1,1) processes, with uit ∼ N(0, σ2
it) and σ2

it = 1 + 0.2u2
it−1 + φσ2

it−1 for i = 1, 2.

Table 1 reports the rejection frequencies of the optimal tests with exponential and logistic

transitions at the nominal sizes 5%, 10%, 25%, and 50%. The random sample is simulated

from a linear error correction model, which is consistent with the null hypothesis. For each

simulated data, the SupLM statistics and the bootstrap p-values are calculated. Table 1

shows the percentage of the simulated p-values which are smaller than the nominal size.

For the homoskedastic case, the errors u1t and u2t are generated from the independent

N(0, 1) distribution. The rejection frequencies are calculated with different parameters of α2

and Γ. The simulated null distribution appears to be close to the nominal size and similar

across the various parameter specifications, as in Table 1. The results do not vary greatly

between the exponential and logistic transition specifications.

For the heteroskedastic case, u1t and u2t are generated from the independent GARCH(1,1)

processes. The other parameters are the same as the baseline specification. Our test statis-

tics use the heteroskedasticity-robust covariance, and the simulated null distribution does

not appear to be affected seriously by conditional heteroskedasticity. However, if the stan-

dard covariance estimator is used, the rejection rates tend to be affected seriously by het-
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eroskedasticity as the magnitude of heteroskedasticity increases. Hence, we do not report

the size performance of the tests with standard covariance estimator.

Table 1. Size of SupLM Tests

Parameters Exponential Logistic

α2 Γ φ 5% 10% 25% 50% 5% 10% 25% 50%

Homoskedastic

0 Γ0 0 0.046 0.092 0.249 0.517 0.059 0.103 0.231 0.479

-0.5 Γ0 0 0.051 0.098 0.271 0.514 0.058 0.107 0.261 0.505

0.5 Γ0 0 0.047 0.097 0.213 0.460 0.036 0.082 0.231 0.513

0 Γ1 0 0.049 0.109 0.253 0.521 0.051 0.106 0.234 0.495

0 Γ2 0 0.047 0.093 0.250 0.514 0.060 0.097 0.243 0.492

Heteroskedastic

0 Γ0 0.25 0.039 0.090 0.251 0.504 0.057 0.100 0.235 0.496

0 Γ0 0.50 0.048 0.095 0.236 0.501 0.051 0.109 0.254 0.495

0 Γ0 0.75 0.060 0.109 0.229 0.479 0.048 0.097 0.260 0.492

Next, we consider the experiment on the power of the optimal tests for smooth transi-

tion nonlinear adjustment. For simplicity, we allow the parameters on intercept and error

correction to switch smoothly. We generate the data from the following model:

∆xt = µ1 +


 α1

0


 wt−1(β) + [µ2 +


 −δ

0


 wt−1(β)]F (wt−1(β); λ) + Γ∆xt−1 + ut,

where wt(β) = x1t + βx2t, and F (wt−1(β); λ) is defined as (2) or (3).

We fix µ1 = µ2 = 0, α1 = −0.2, Γ = 0, and β = −1. The transition parameter λ2 is set at

zero for both exponential and logistic transitions. We vary the parameter λ1 = ν1

1−ν1
to take

on several values. If δ = 0, then the null hypothesis is maintained and there is no transition

effect in the error correction process. However, if δ > 0, then the alternative hypothesis

holds and nonlinear smooth transition appears.

15



Table 2 shows the rejection frequency of the SupLM tests for smooth transition at the

5% size. The experiments on power are based on the sample sizes 250 and 500, and 1000

replications. Other parameters are set at the same values as in the experiments on size, but

we use 25 grid points on each [λ1L, λ1U ] and [λ2L, λ2U ] to reduce the computational costs.

Table 2. Power of SupLM Tests

SupLM Test LM(λ0) Test

ν1\δ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Exponential 0.10 0.110 0.293 0.561 0.783 0.192 0.526 0.799 0.938

n = 250 0.25 0.099 0.285 0.609 0.869 0.165 0.486 0.835 0.969

0.50 0.069 0.126 0.284 0.459 0.086 0.188 0.406 0.692

0.75 0.047 0.077 0.103 0.124 0.048 0.070 0.103 0.177

0.90 0.047 0.057 0.049 0.057 0.043 0.068 0.079 0.115

Logistic 0.10 0.049 0.070 0.082 0.097 0.052 0.070 0.091 0.095

n = 250 0.25 0.094 0.212 0.358 0.520 0.116 0.256 0.454 0.631

0.50 0.203 0.619 0.900 0.984 0.243 0.708 0.944 0.989

0.75 0.203 0.596 0.884 0.966 0.261 0.730 0.940 0.992

0.90 0.197 0.554 0.844 0.953 0.229 0.676 0.908 0.969

Exponential 0.10 0.188 0.663 0.931 0.992 0.375 0.865 0.986 1.000

n = 500 0.25 0.145 0.609 0.943 0.999 0.285 0.792 0.986 1.000

0.50 0.080 0.226 0.521 0.837 0.145 0.389 0.749 0.959

0.75 0.051 0.065 0.118 0.229 0.056 0.094 0.185 0.344

0.90 0.044 0.045 0.058 0.053 0.049 0.057 0.061 0.085

Logistic 0.10 0.051 0.077 0.107 0.158 0.070 0.109 0.144 0.195

n = 500 0.25 0.165 0.466 0.718 0.889 0.227 0.551 0.837 0.950

0.50 0.458 0.943 0.997 1.000 0.528 0.979 1.000 1.000

0.75 0.454 0.941 0.999 1.000 0.532 0.981 1.000 1.000

0.90 0.427 0.917 0.995 1.000 0.495 0.966 0.999 0.999
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As Table 2 shows, the rejection frequency of the tests increases as the shift parameter δ

deviates from the null hypothesis. Table 2 also shows the standard LM test for nonlinearity,

which assumes that the transition parameters (ν1, ν2) are known. For example, the SupLM

test with logistic transition rejects 62% of the null hypothesis at δ = 0.4, ν1 = 0.50, and

n = 250. The LM test, which is based on the true transition parameters, rejects 71% of the

null hypothesis.

As the parameter ν1 approaches 0 or 1, the smooth transition model reduces to the

linear model, and we cannot identify the transition effect unless we have a sufficiently large

sample size. For the exponential transition, the slope of transition becomes steep as the

transition rate ν1 increases, which requires a large number of observations to identify the

smooth transition effect. Thus, the SupLM and the LM tests for exponential transition do not

provide significant power performance when the parameter ν1 is large. On the other hand, the

logistic transition function becomes flat as the transition rate ν1 decreases. In this respect,

the tests for logistic transition do not provide significant power when the parameter ν1 is

small. The smooth transition effect is likely to be identified as the sample size increases, and

therefore the power function depends on the parameter values of transition and a sufficient

sample size.

5 Application: Index Futures Arbitrage

The optimal tests are applied to the index futures arbitrage. The arbitrage relationship

between stock-index futures price and spot price can be formulated by the cost of carry

model.

Ht = St exp((rt − qt)(T − t)),

where Ht and St are the theoretical futures price and the stock-index spot price, respectively.

Also, rt is the risk-free interest rate, qt is the dividend yield on the stock index, and T − t is

the time to maturity of the futures contract.
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We allow for pricing error wt, which is the deviation of the actual futures price in loga-

rithm ft from the theoretical price in logarithm ht as follows:

ft = ht + wt.

If the pricing error is stationary, then the arbitrage relation forms a cointegrating rela-

tionship. The empirical work uses the intraday S&P 500 index and futures market data for

the month of May 1993.1 The sample size used in the application is 7060.

Let xt = (ft, ht). All variables are written in logarithms and multiplied by 100. The

ADF unit root test shows that the futures prices and theoretical prices are integrated of

order 1. Johansen’s cointegration test shows that ft and ht are cointegrated. That is, the

pricing error wt is stationary. The VAR lag length picked by BIC is 5; that is, l = 5. These

results are based on the linear error correction model as follows:

∆xt = µ + αwt−1(β) +
l∑

i=1

Γi∆xt−i + ut,

where wt−1(β) = ft−1 + βht−1.

In the financial market, there exist transaction costs such as brokerage fees, bid-ask

spread, price impact, and regulations, which affect the volume and frequency of trading.

The transaction costs prevent the arbitrage opportunity from being realized as long as the

arbitrage does not produce a net gain. There are many indirect costs such as index tracking

error and execution risk, which are not easily measurable. In particular, the financial market

is composed of heterogenous agents, and the actual transaction costs are different between

investors.

Thus, we consider smooth transition nonlinear adjustment as a possibility of better em-

pirical description.

∆xt = A
′
zt + D

′
z∗t F (wt−1(β); λ) + ut,

where zt = (1, wt−1(β), ∆x
′
t−1, . . . , ∆x

′
t−l)

′
.

1The dataset was provided by Forbes, et al. (1999), and it can be extracted from the data archive:

www.econ.queensu.ca/jae/1998-v13.3.
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We define three models depending on the variables included in smooth transition z∗t .

Model 1 includes the error correction term only, and Model 2 includes the error correction

term and the constant. Model 3 includes all short-run variables. In the application, we

consider two transition specifications: exponential and logistic transitions.

FE(wt−1(β); λ) = 1− exp[−λ1(wt−1 − λ2)
2]

FL(wt−1(β); λ) =
1

1 + exp[−λ1(wt−1 − λ2)]

Table 3 shows the SupLM statistics, the associated p-values, and the 5% critical values.

We consider three specifications: the coefficients on error correction only, the error correction

and constant, and all short-run variables to switch. In each case, we find a strong evidence

of smooth transition nonlinear adjustment toward the arbitrage relation. For example, the

SupLM statistics for exponential transition have p-values less than 0.001, and thus the null

hypothesis of linearity can be rejected in favor of nonlinear adjustment at the 5% size. The

p-values are calculated from 1,000 bootstrap replications of the SupLM statistic under the

null hypothesis.

Table 3. Tests for Nonlinear Adjustment

Model SupLMn P-value 5% C-value

Exponential 1 : z∗t = wt−1 18.630 0.001 6.500

2: z∗t = (wt−1, 1) 44.455 0.000 10.082

3: z∗t = zt 64.918 0.000 39.781

Logistic 1: z∗t = wt−1 52.369 0.000 8.684

2 : z∗t = (wt−1, 1) 52.881 0.000 10.624

3 : z∗t = zt 64.618 0.000 38.454

Table 4 provides the estimates of the smooth transition error correction model. As

noted by Haggan and Ozaki (1981) and Terasvirta (1994), it is difficult to estimate the

transition parameters jointly with the other slope parameters. The joint MLE tends to
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produce the gradients which force the transition rate estimate to deviate from the true value

to infinity. Haggan and Ozaki (1981) have suggested the conditional least squares method

with a grid on the transition parameter. Because our model contains the cointegrating

vector, we propose using an algorithm of conditional maximum likelihood with a grid search

of transition parameters as follows:

Minλ∈ΛMinθ∈Θ − Ln(θ, λ),

where Ln(θ, λ) is defined in (5).

First, we set a grid on λ ∈ Λ, where λ corresponds to ν ∈ N ⊂ (0, 1)2. Second, for each

fixed λ, we estimate the model parameters and the likelihood. Then, we find the MLE (λ̂, θ̂)

that maximizes the likelihood function.

Table 4 shows the estimates of the smooth transition models. We allow the coefficients

on the constant and the error correction term to switch between regimes. The cointegrating

coefficient is set at -1. The estimation results with an unknown cointegrating vector, which

are not reported here, are similar to Table 4.

The exponential transition specification shows that the actual future prices do not re-

spond to the pricing error in the mid regime. The future prices respond to the pricing error

negatively in tail regimes, but its response is not significant. On the other hand, the theo-

retical prices respond to the pricing error significantly in the mid regime, and the response

gets stronger in the direction of both tail regimes. Thus, the transition effect is significant.

The logistic specification also reveals regime-dependent smooth transition. The theoret-

ical futures prices respond significantly to the pricing error, and this response gets stronger

in the regime of backwardation.

Figure 1 shows the short-run dynamics of actual futures price, and Figure 2 shows non-

linear dynamics of theoretical futures price. In the mid regime, the arbitrage opportunity

may not be realized because the opportunity is dominated by the transaction costs, and thus

the pricing error is persistent. However, in the tail regimes, the arbitrage is profitable and

this stimulates mean-reverting behavior. However, the linear model cannot explain nonlinear

stochastic dependence, and its likelihood is lower than that of the exponential and logistic
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smooth transition models.

Table 4. Estimation of Smooth Transition Error Correction Model

Equation ft Equation ht

coefficient s.e. coefficient s.e.

Exponential wt−1 0.00046892 0.01024871 0.02694313 0.00625216

1 0.00012835 0.00049261 0.00062831 0.00028422

wt−1Ft -0.01370542 0.06637785 0.32411154 0.04050376

Ft 0.00433195 0.00829190 -0.03503646 0.00554685

λ̂1 = 10.579 λ̂2 = −0.025

Log-likelihood = 53154.483

Logistic wt−1 -0.04654683 0.14360252 0.79515054 0.09090497

1 -0.01014776 0.03780484 0.18793993 0.02350037

wt−1Ft 0.02191674 0.04256329 -0.17173913 0.02887034

Ft 0.01962562 0.07187855 -0.35673112 0.04465265

λ̂1 = 7.800 λ̂2 = −0.013

Log-likelihood = 53154.204

Linear wt−1 0.00143875 0.00650160 0.05266889 0.00471494

1 0.00032464 0.00037670 -0.00038843 0.00021882

Log-likelihood = 52942.736

6 Concluding Remarks

This paper develops the optimal tests for nonlinear adjustment in smooth transition error

correction models. Our tests do not use polynomial approximation and there is no missing

link between the model and the tests. This paper particularly focuses on the optimality issue

in the smooth transition model; therefore, this paper is necessary and required.
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One of the most important extensions of this paper would be the analysis of cointegration

with smooth transition. We expect to develop a formal test and the associated distribution

theory, which does not depend on approximation. The estimation of the smooth transition

error correction model and the distribution theory of the estimators are also left to future

research.
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Appendix: Mathematical Proofs

Proof of Lemma 1: Since ut is a square integrable Martingale difference sequence (MDS), the central

limit theorem can be applied to show U1n = 1√
n

∑n
t=1 ut ⇒ U1.

We need to show that U2n(ν) = 1√
n

∑n
t=1 vt(ν) ⇒ U2(ν), where vt(ν) = utFt(ν). Since vt(ν) is a square

integrable Martingale difference sequence (MDS) for each ν ∈ N , the central limit theorem can be applied.

Thus, Assumption 1.2 implies the finite dimensional distributional convergence.

Next, we show stochastic equicontinuity.

P ( sup
|ν−ν′ |≤δ

|U2n(ν)− U2n(ν
′
)| > ε) ≤ 1

ε
E sup
|ν−ν′ |≤δ

|U2n(ν)− U2n(ν
′
)|

=
1
ε
E sup
|ν−ν′ |≤δ

| 1√
n

n∑
t=1

ut(Ft(ν)− Ft(ν
′
))|

=
1
ε
E sup
|ν−ν′ |≤δ

| 1√
n

n∑
t=1

utF
′
t (ν

∗)(ν − ν
′
)|

≤ δ

ε
E sup

ν∈N

1√
n

n∑
t=1

|ut||F
′
t (ν)|

≤ δ

ε
sup

t
|| sup

ν∈N
|F ′

t (ν)|||2 1√
n

n∑
t=1

||ut||2,

where ν∗ ∈ [ν, ν
′
].

Using Burkholder’s inequality, we can show that 1√
n

∑n
t=1 ||ut||2 ≤ c1 supt ||ut||2, where c1 = 36

√
2.

Therefore, P (sup|ν−ν′ |≤δ |Vn(ν)− Vn(ν
′
)| > ε) → 0 as n →∞ by picking δ sufficiently small.

Therefore, the pointwise central limit theorem and stochastic equicontinuity imply weak convergence

U2n(ν) ⇒ U2(ν).

Proof of Lemma 2: Since (ut⊗ zt) is a square integrable MDS, we can show W1n = 1√
n

∑n
t=1(ut⊗ zt) ⇒

W1.

Now, we need to show that W2n(ν) = 1√
n

∑n
t=1(vt(ν) ⊗ zt) ⇒ W2(ν). Since (vt(ν) ⊗ zt) is a square

integrable Martingale difference sequence (MDS) for each ν ∈ N , the central limit theorem can be applied.

Assumption 1.2 implies the finite dimensional distributional convergence.

We use the following to show stochastic equicontinuity.

P ( sup
|ν−ν′ |≤δ

|W2n(ν)−W2n(ν
′
)| > ε) ≤ 1

ε
E sup
|ν−ν′ |≤δ

| 1√
n

n∑
t=1

(ut(Ft(ν)− Ft(ν
′
))⊗ zt)|

≤ δ

ε
sup

t
|| sup

ν∈N
|F ′

t (ν)|||2 1√
n

n∑
t=1

||ut||24 sup
t
||zt||24.

Using Burkholder’s inequality, we can show that 1√
n

∑n
t=1 ||ut||4 ≤ c2 supt ||ut||4, where c2 = 144/

√
3.

Therefore, P (sup|ν−ν′ |≤δ |W2n(ν)−W2n(ν
′
)| > ε) → 0 as n →∞ by picking δ sufficiently small.
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Therefore, the pointwise central limit theorem and stochastic equicontinuity imply W2n(ν) ⇒ W2(ν).

Proof of Lemma 3: We want to show gn(λ) ⇒ W2(ν)−Q21(ν)Q−1
11 W1, where

gn(λ) = vec(
1√
n

n∑
t=1

z∗2t(β̃, λ)∆x
′
t).

We note that under the null hypothesis H0 : D = 0

1√
n

n∑
t=1

z∗2t(β, λ)∆x
′
t =

1√
n

n∑
t=1

z∗2t(β, λ)u
′
t

=
1√
n

n∑
t=1

z2t(β, λ)u
′
t −

1
n

n∑
t=1

z2t(β, λ)z
′
t(β)(

1
n

n∑
t=1

zt(β)z
′
t(β))−1 1√

n

n∑
t=1

zt(β)u
′
t.

We show 1
n

∑n
t=1 z2t(ν)z

′
t →p E(z2t(ν)z

′
t) uniformly in ν ∈ N .

To prove uniform convergence, we first show stochastic equicontinuity.

P ( sup
|ν−ν′ |≤δ

| 1
n

n∑
t=1

(ztz
′
tFt(ν)− ztz

′
tFt(ν

′
))| > ε) ≤ 1

ε
E sup
|ν−ν′ |≤δ

| 1
n

n∑
t=1

ztz
′
t(Ft(ν)− Ft(ν

′
))|

≤ 1
ε
E sup
|ν−ν′ |≤δ

1
n

n∑
t=1

|ztz
′
t||F

′
t (ν

∗)||ν − ν
′ |

≤ δ

ε

1
n

n∑
t=1

||ztz
′
t||2|| sup

ν∈N
|F ′

t (ν)|||2

≤ δ

ε
sup

t
|| sup

ν∈N
|F ′

t (ν)|||2 sup
t
||zt||24,

where ν∗ ∈ [ν, ν
′
].

Assumptions 1.2-1.3 imply that supt ||zt||4 < ∞. We also note that supt E|ztz
′
tFt(ν)|r ≤ supt E|ztz

′
t|r ≤

supt ||zt||22r < ∞ for all ν ∈ N and for some r > 1. Therefore, pointwise convergence and stochastic

equicontinuity imply that 1
n

∑n
t=1 z2t(ν)z

′
t →p E(z2t(ν)z

′
t) uniformly in ν ∈ N .

We can also show 1
n

∑n
t=1 ztz

′
t →p E(ztz

′
t) because supt E|ztz

′
t|r ≤ supt ||zt||22r < ∞ for some r > 1.

Next, we use the asymptotic result n(β̃ − β0) = Op(1). The proof is given in Johansen (1988) and Seo

(1998).

Therefore,

gn(λ) = vec(
1√
n

n∑
t=1

z∗2t(β̃, λ)∆x
′
t)

= vec(
1√
n

n∑
t=1

z∗2t(λ)∆x
′
t) + op(1)

=
1√
n

n∑
t=1

(vt(ν)⊗ zt)− 1
n

n∑
t=1

(I ⊗ z2t(ν)z
′
t)(

1
n

n∑
t=1

(I ⊗ ztz
′
t))

−1 1√
n

n∑
t=1

(ut ⊗ zt) + op(1)

⇒ W2(ν)−Q21(ν)Q−1
11 W1.
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Proof of Theorem 1: Using Lemma 3, we can show that

LMn(λ) ⇒ (W2(ν)−Q21(ν)Q−1
11 W1)

′
V −1(W2(ν)−Q21(ν)Q−1

11 W1)

= Bb(ν)
′
Bb(ν),

where Bb(ν) = V −1/2(ν)[W2(ν)−Q21(ν)Q−1
11 W1].

The continuous mapping theorem implies that

Supλ∈Λ LMn(λ) ⇒ Supν∈N LM(ν),

where LM(ν) = Bb(ν)
′
Bb(ν).
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