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ABSTRACT

A new class of specification tests is proposed to detect for neglected nonlinearity and dynamic
misspecification in panel models. The tests can detect a wide range of model misspecifications while
being robust to conditional heteroskedasticity and higher order time-varying moments of unknown form.
They check a large number of lags so that they can capture dynamic misspecification at any lag order.
The large number of lag orders does not cause loss of degrees of freedom because our tests naturally
discount higher order lags, which is consistent with the stylized fact that economic behaviors are more
affected by recent past events than by remote past events. No specific estimation method is required, and
the tests have the appealing “nuisance parameter free” property that parameter estimation uncertainty
has no impact on the limit distribution of the test. Simulations show the proposed tests have good
finite sample properties. It is important to take into account conditional heteroskedasticity; failure to
do so will cause overrejection of a correct linear panel model. Our tests have omnibus and robust power
against a variety of alternatives relative to some existing tests for linearity in panel models.

Key Words: Conditional heteroskedasticity, Dynamic panel Model, Generalized spectral derivative,
Hausman’s test, Joint limit asymptotics, Linearity, Martingale.



1. Introduction

Panel/longitudinal data have been widely used in biology, economics and finance. They often pro-
vide insights not available in pure time-series or cross-sectional data. For example, panel data have
the ability for control for unobservable individual/time effects which could be correlated with other
regressors. There is relatively well-established econometric theory for the linear panel mode. For recent
developments in the linear panel models, see Diggle et al. (2002), Baltagi (2002), Arellano (2003), and
Hsiao (2003).

Most economic relationship are dynamic in nature. There have been many applications of dynamic
panel models in economics and finance. The theoretical investigation of dynamic panel models has
received a lot of attention recently. Related works are Arellano and Bond (1991), Kiviet (1995), Hahn
and Kuersteiner (2002), Hahn et al. (2002), and Alvarez and Arellano (2003), to name just a few. On
the other hand, unlike the nonlinear time series literature (e.g., Tong 1990, Granger and Terasvirta
1993), not much attention has been paid to the nonlinear panel models in the past. However, their
usage has increased rapidly recently (e.g., Diggle 2002, Chs. 4 and 5, Li and Stengos 1996, Cheng and
Wei 2000, Arellano and Honore, 2001, Honore 2002, Gourieroux and Jasiak, 1998, Stenseth et al. 1999,
Yao et al. 2000, Rice 2003). For example, Paap et al. (2003) consider a panel smooth transition AR
(STAR) model to capture a large panel of unemployment data in order to examine the common business
cycle in unemployment and the importance of sector-specific variations. Stenseth et al. (1999) suggest
a panel self-exciting threshold autoregressive (SETAR) model to study the Canada Lynx pollutions and
Yao et al. (2000) also consider a panel SETAR model to study Canada mink-muskrat data.

Nonlinear dynamic modeling is rather challenging in the panel data context. It is known that the
ability to difference out (e.g, using the conditional likelihood) the individual effects/time effects relies
heavily on the linear specification for the panel models. For many nonlinear panel models, it is impossible
to use the conditional likelihood or other methods, for example, to eliminate the individual/time effect
(see Lancaster 2000 for a survey). This becomes even more challenging when the regressors include
lagged dependent variables. For example, the initial condition problem for the nonlinear dynamic panel
data with individual effect/time effect is a difficult issue (see Wooldridge 2002 for more discussion).
Therefore it is important for researchers to determine first whether a panel model is linear before they
go to a nonlinear specification. Before building a nonlinear panel model, it is advisable to find whether
a linear panel model will adequately characterize the underlying economic relationships. If that is the
case, there will be more econometric theory for building a reasonable model than if a nonlinear model
is needed. On the other hand, it may happen, particularly when the time dimension if the panel data
is short, that investigators successfully estimate a nonlinear model, although the true relationship is
linear. The danger of unnecessarily complicating the model building is real, and this can be diminished
by linearity testing. More generally, not much effort has been made to evaluate of dynamic panel models
(Granger 1996). To fill this gap, we develop a new class of tests for linear specification in dynamic panel
models with conditional heteroskedasticity of unknown form.

There are a variety of tests for various hypotheses on panel model specification, e.g., Hausman
(1978), Hausman and Taylor (1981), Kang (1985), Holtz-Eakin (1988), Arellano (1990), Arellano and
Bond (1991), Li and Stengos (1992), Baltagi (1997, 1999, 2001 Ch. 4), Metcalf (1996), Fu et al. (2002,



FLF) and Andrews and Lu (2001). Hausman (1978) and Hausman and Taylor (1981) develop tests
to check whether the unobserved individual/time effects are correlated to the regressors. Kang (1985)
discusses how to extend Hausman'’s test to the two-way panel models. Holtz-Eakin (1988) develops a
test for the presence of individual effects in dynamic panel models. Arellano (1990) develops minimum
chi-square tests for various covariance restrictions. Arellano and Bond (1991) propose a test to the
second-order serial correlation for the error terms. Li and Stengos (1992) propose a Hausman’s type
test using the semiparametric estimators. Arellano (1993) proposes an alternative variable addition test
to Hausman’s test which is robust to autocorrelation and heteroskedasticity of arbitrary form. Angrist
and Newey (1991) propose an over-identification test to test the fixed effect specification. Baltagi
(1997) applies the double-length artificial regression to test whether the panel model is linear or log-
linear. Ahn and Low (1996) and Baltagi (1999) showed that Hausman’s test can be obtained using
artificial regressions. Metcalf (1996) shows can be obtained specification tests for correlated fixed
effects developed by Hausman and Taylor (1981) can be extended to panel models with endogenous
regressors. FLF extend the portmanteau time series test of Li and McLeod (1981) to dynamic panel
models. Andrews and Lu (2002) develop consistent model and moment selection criteria (MMSC) for
dynamic panel models to select the lag length for lagged dependent variables and determine the existence
of correlation between regressors and the individual effect.

All the existing tests for panel model specification assume a known form of a common alternative
for all individuals. This may not be desirable in terms of power because there may exist significant
inhomogeneity across individuals (e.g., Choi 2002). For example, by assuming a common alternative
model, existing tests (e.g., Hausman 1978, FLF, Andrews and Lu 2002) ignore inhomogeneity across
individuals, and so have low or little power against some alternatives with significant inhomogeneity
across individuals. Moreover, the existing tests may be powerful against some misspecifications in mean
and may lose power in detecting certain nonlinear alternatives.

In this paper, we propose a class of generally applicable omnibus tests for neglected nonlinearity and
dynamic misspecification in panel models, with no prior knowledge of possible alternatives (including
functional forms, lag structures and inhomogeneity across individuals). We extend the generalized
spectral analysis of Hong (1999) and Hong and Lee (2004) from the time series context to panel data
contexts. The generalized spectrum was proposed by Hong (1999) as a basic frequency domain tool for
nonlinear time series, in a spirit similar to the conventional spectral density as a basic tool for linear time
series (e.g., Priestley 1981). Generalized spectrum can capture serial dependence in various conditional
moments, and therefore is not suitable to test conditional mean dynamics. In a time series context,
Hong and Lee (2004) use a suitable derivative of the generalized spectrum which focuses solely on the
conditional mean specification of a time series model. We now generalize this method to test neglected
nonlinearity and dynamic misspecification in a linear dynamic panel model with large numbers of both
individuals and time observations. Panel data with large n and T have become increasingly available
in practice. (Examples are the Penn World Tables, World Bank, NBER, etc.) They are particularly
informative about the dynamic natures of a panel process. The associated asymptotic analysis and
limited results are substantially different from those in pure time series analysis. We provide a joint

limit analysis by allowing both n and 7" to grow to infinity simultaneously, giving a sensible alternative



analytic approach to the existing joint limit analysis methods in the literature (e.g., Phillips and Moon
1999, Hahn et al. 2002). Distinct from the existing joint limit analysis, we allow relatively mild
conditions on the relative speed of n and T. We allow n to grow faster or slower than or the same as
T, whereas the existing joint limit theories usually assume n grows slower than 7. Thus, our test is
applicable to panel data with various combinations of n and 7. In contrast to Hong and Lee (2003),
our asymptotic results here are different. In pure time series contexts, Hong and Lee (2003) obtain the
asymptotic normality of their nonparametric kernel-based tests by requiring the smoothing parameter
(or lag order) to grow to infinity as 7' grows. This condition on the smoothing parameter is not required
for the asymptotic normality of our nonparametric test statistics in panel contexts, thanks to the
benefits of using panel data with large n and 7. In time series analysis, it is well known (e.g., Skaug and
Tjostheim 1993, 1996) that the asymptotic theory for nonparametric statistics usually provides poor
finite sample approximation, because the asymptotically negligible higher order terms depend on the
smoothing parameter and are very close in order of magnitude to the dominant term which determines
the limit distribution. The fact that the asymptotic distribution of our nonparametric test statistics in
panel contexts does not depend on the smoothing parameter indicates that test statistics may provide a
reasonable approximation even in moderately small samples. This is an advantage of using panel data
with large n and 7. Indeed, our asymptotic theory works reasonably well for (n,T") as small as (25, 25),
and for different combinations of large n and small T, or small n and large 7.

Because there exist infinite nonlinear alternatives and potentially significant inhomogeneity across
individuals, we avoid assuming an alternative model in constructing our tests. Thanks to the use of the
characteristic function, the generalized spectral derivative can capture both linear and nonlinear serial
dependence in conditional mean. The latter can be subtle and difficult to detect using conventional
techniques. In the meantime, the generalized spectrum enjoys the nice features of spectral analysis. In
particular, it incorporates information on serial dependence from all lags and can characterize cyclical
dynamics caused by linear or nonlinear serial dependence. Thus, our approach can detect a wide variety
of misspecifications in both functional form and lag structure. Moreover, we treat each individual
separately, and can capture inhomogeneity across individuals. This is distinct from the existing tests
for panel conditional mean models. FLF and Andrews and Lu (2002) assume a linear functional form
and focus only on lag order misspecification, with a common linear alternative for all individuals. One
important feature of dynamic panel modelling similar to time series modelling is that the conditioning
information set usually contains an infinite number of lags (i.e., the entire past history), unless Markovian
assumption holds. In practice, most dynamic panel models usually employ a very small number of lags.
As a consequence, it is important to check whether there exists dynamic misspecification due to the
use of improper lag orders. Because we use a spectral approach, our tests check a large number of lags
without suffering from the curse of dimensionality. When a large number of lags is used, chi-square
tests for linearity usually have poor power in finite samples, due to the loss of a large number of degrees
of freedom. This undesired feature, fortunately, is not shared by our generalized spectral approach,
because it naturally discounts higher order lags, which is consistent with the stylized fact that economic
behaviors are usually more influenced by recent events than by the remote past. Thus, our tests are

particularly useful when the information set has a large dimension. We note that our tests can be used



to test the martingale hypothesis for observed raw data with no modification.

Economic theory, while having implications on conditional mean dynamics, is usually silent about
higher order conditional moment dynamics. Thus, it is important to develop tests of conditional mean
models that are robust to conditional heteroskedasticity and other higher order time-varying moments
of unknown form (e.g., Meghir and Windmeijer 1999, Cermeno and Grier 2001). Granger (1995) em-
phasizes the importance of testing linearity in the presence of conditional heteroskedasticity in a time
series context, and this equally well applies to testing linearity in panel data contexts. Volatility clus-
tering for economic time series is more a rule than an exception. Failure to accommodate conditional
heteroskedasticity will lead to improper size for the tests, giving a misleading conclusion. For example,
an ARCH process is similar to a bilinear autoregressive process in terms of autocorrelations in level
and level-square respectively (e.g., Bera and Higgins 1997). An LM test for a bilinear alternative will
likely be mistaken for an ARCH process if conditional homoskedasticity is assumed. As is well known
(e.g., Diebold and Nason 1990, Meese and Rose 1991, Granger 1992, Sec. 8), the distinction between
nonlinearity in mean and in higher order moments has important economic implications. For example,
suppose an asset return follows a bilinear process. Then the level of asset return is predictable using
its past history. In contrast, if the asset return follows an ARCH process, then its level is not pre-
dictable because it is a martingale difference sequence (m.d.s.). As an important feature, our tests for
conditional mean models are robust to conditional heteroskedasticity and all other higher order condi-
tional moments of unknown form. In contrast, all existing specification tests in panel models assume
conditional homoskedasticity or i.i.d. errors (Baltagi 2001, Ch.4).

The vast literature on testing panel model specification is Hausman’s (1978) test and its various
extensions; there have been no discussion on tests for the conditional mean. Also Hausman’s test
is not robust to heteroskedasticity of unknown form with inhomogeneity across individuals. Because
we compare a nonparametric (inefficient) generalized spectral derivative estimator with a restricted
(efficient) counterpart implied by correct conditional mean specification, our tests can be viewed as a
generalization of the methods of Hausman (1978) and Hausman and Taylor (1981) on panel models
from a parametric context to a nonparametric context. Our tests are generally applicable. We only
require the estimated residuals as inputs. No specific estimation method is required, and the tests
have the appealing “nuisance parameter free” property that parameter estimation uncertainty has no
impact on the limit distribution of the test. Our panel model can be static or dynamic, and one-way
or two-way; both balanced and unbalanced panel data are covered; individual and time effects can be
fixed or random; regressors can contain lagged dependent variables or deterministic/stochastic trending
variables; and no specific estimation method is required.

Section 2 sets up the model. Section 3 describes test statistics. Section 4 introduces the assumptions
and derives the asymptotic distribution, and Section 5 investigates the asymptotic power. Section
6 discusses the data-driven lag order selection. Section 7 reports the simulation results. Section 8
concludes, and all proofs are given in the appendix. A GAUSS code for implementing our tests is
available from the authors upon request. Throughout, we use C' to denote a generic bounded constant,

|| - || the Euclidean norm, and A* the complex conjugate of A.

2. Model



We consider a general linear dynamic panel model
Yi=a;+ M+ X,0+ei, t=12,--Ti=1,..,n, (2.1)

where «; is an individual-specific effect, A is a time-specific effect, and X;; may contain lagged dependent
variables {Y;;—;, 7 > 0}, and current and lagged exogenous variables {Z;;_;, 7 > 0}, and 8 € B is a
finite-dimensional parameter. Both «; and A; can be fixed or random. We allow for unbalanced panel
data, which are often the case in practice. For convenience, we assume T; = T for some integer T
where ¢; € [¢,C], where 0 < ¢ < C' < 00, and ¢ and C' do not depend on .

Throughout, we make the following assumption about the data generating process.

Assumption A.1: (i) For each i, {X;; — EXjs,eit} is a stationary a-mixing process with

o

(/=1 <
max ; Oaz(J) ) <C,
‘7:

and max)<;<p, E|| Xy — EXy|[* < C, E(%) = 02 € [¢, O] for all 4, and max;<;<, F(c},) < C.

We impose strict stationarity. only on {X;; — EXj, i }. Thus, we allow X;; to contain some de-
terministic trends. For example, X;; = Z;‘lzo aijtj + Zit, where {Z;;} is a stationary a-mixing process.
However, Assumption A.l rules out unit root processes for X;;, though it seems plausible to extend
our analysis to these cases. This will be pursued in subsequent research. Recall the definition of a-
mixing. Let F} be the o-field generated by {X;; — EXjr,eir}2_,. Then {X;;, — EXj, 4} is mixing if
SUPAery, Fe2, | [P(ANB) — P(A)P(B)] < a;(j) and «;(j) — 0 as j — oo. The condition on «;(j) thus
characterizes the rate at which serial dependence decays to zero asymptotically. The mixing condition
is rather convenient for nonlinear time series analysis and nonlinear dynamic panel analysis.

Model (2.1) covers most of the popular econometric linear dynamic panel models in the literature
(e.g., Holtz-Eakin et al. 1988, Arellano and Bond 1991, Arellano 2003, Hsiao 2003 ), which are often

specified as

L
Yie = o + X0+ ijyi,tfj + &it,
j=1

where L is the lag length of the lagged Yj;, and there is no time-specific effect A;. In contrast, Hjellvik

and Tjostheim (1999) consider
L

Yie = M + ijyi,tfj + &t
j=1
where the time-specific effect A; is used to capture the intercorrelation (i.e., cross-sectional dependence)
across ¢ and A; and ¢;; are assumed to be iid. In the econometrics literature, the time effect ) is usually
removed for simplicity. However, Hjellvik and Tjostheim (1999) point out that the removal of A; will
lead to ignorance of the intercorrelation across ¢ and they discuss the consequence of neglecting the
intercorrelation.

In a dynamic panel context, one is often interested in knowing whether the linear dynamic model is



adequate in capturing the dynamics of Yj;. Conditional mean modelling has been the primary interest
in panel data models, because E(Yj|I; ;1) is the optimal predictor for Yj; using I; ;1 in terms of the
mean squared error criterion, where I; ;1 is the information available to individual 7 at time ¢ — 1. The
regressor X;; is a subset of I;;_1. We say that the linear dynamic panel model is correctly specified for
E (Y|l 1—1) if

Ho : Pr[E(Yig|Li 1) = X1,3°] = 1 for some ° € B. (2.2)

The null hypothesis Hy is a joint hypothesis of (i) E(Yj|l;1—1) = E(Yi|Xit) for some Xy € I; ;1
and (ii) E(Yu|X:) = X0 for some [3. All existing tests for linearity in mean in time series contexts
only focus on testing (ii) and ignore testing (i); they can easily miss conditional mean misspecification
that occurs only at higher lag orders. Moreover, even for any given lag order, existing linearity tests
except White’s (1989) neural network test cannot detect all departures from (i).

Alternatively, the linear dynamic panel model is misspecified for E(Yj|l; ;1) if

Ha : sup Pr[E(Y|lii—1) = X;, ] < 1. (2.3)
BeB
In this case, we say that model (2.2) suffers from dynamic misspecification and/or neglected nonlinearity
in mean. Model misspecification can arise when there exist omitted variables, improper specification of
a lag structure, and misspecification of functional form.

Our definition of linearity in mean Hy differs from the usual notion of a linear dynamic panel model
in the literature, which is a weighted sum of current and past shocks {g;;j, j > 0}, where {e;} is
serially uncorrelated (e.g., Andrews and Lu 2001, p.144). Such a process may not be linear in mean in
the sense of (2.2), because a white noise {€;;} may not be a m.d.s. A white noise process with non-zero
conditional mean is predictable in mean. Only when {e;;} is a m.d.s., the notion of a linear panel time
series coincides with our definition of linearity in mean. The latter concept is more useful for modeling
conditional mean dynamics.

We are interested in testing Hp vs. H 4. This is obviously a chandelling job, because there are infinite
number of nonlinear alternatives, and because I; ;1 is possibly infinite-dimensional (dating back to the
infinite past), as is the case for non-Markovian processes. There have been plenty of linearity tests in the
time series contexts; see Granger and Terasvirta (1993, Ch.6), Hansen (1999), and Hong and Lee (2004)
for partial surveys. Most of the linearity tests in time series assume an alternative model, and it is not
clear how they can be extended to test nonlinearity in panel contexts, particularly in light of potential
inhomogeneity across individuals, where the assumption of a common alternative model is inappropriate.
In panel models, testing linearity in mean has not attracted much attention, which should be the first
stage in any nonlinear modelling. For example, in the dynamic panel model with unobserved effects,
(cvi, At), the treatment of the initial observations is a difficult theoretical and practical problem (e.g.,
Wooldridge 2002). One of the reasons is that there are no known transformations that can eliminate
the unobserved effects. On the other hand, the linear dynamic panel models with unobserved effects
are well developed in the literature, e.g., Baltagi (2001, Ch.8) and Hsiao (2003, Ch.4). Hence, before we
build a nonlinear panel model it is advisable to find out if linear models would adequately characterize
the data.



In the panel literature, the most important and popular specification test is the test pioneered by

Hausman (1978) and Hausman and Taylor (1981). Hausman’s test is essentially testing the null that
E (uit|Ii,t,1) =0 a.s.

where u;;y = a; + A\ + €. Hausman’s test is constructed by comparing the generalized least squares
(GLS) and within estimators, both of which are consistent under the null E (ui|l; ;1) = 0, but which
have different limits (for a large n and a fixed T') if the null is not true. It is clear to see that Hausman’s
test statistic is model-dependent. For example, Hausman’s test will have no power against the alterna-
tive when there exists heterokedasticity across individuals since GLS is misspecified and not consistent
under both the null and alternative. That is the failure of a variety of specification, e.g., heterokedas-
ticity, neglected nonlinearity, will also cause the usual Hausman’s test to have a nonstandard limiting
distribution, which means the resulting test will have size distortion (see Wooldridge 2002, p.289 for
more discussion). Ahn and Moon (2001) pointed out that the GLS and within estimators are asymp-
totically equivalent not only under the null, but also under the alternatives if both n and 1" are large.
Ahn and Moon also find that the convergence rate of Hausman’s test is sensitive to data generating
process (DGP), i.e., again Hausman'’s test is model dependent especially if both n and T are large. For
example, the cross-sectional heterogeneity has a big impact on the performance of Hausman’s test. Ahn
and Moon suggest the future studies should pay more attention to the cross-sectional heterogeneity.

This paper offers answers to this call. In our paper, we are testing
E[Eitui,t—l} =0 a.s.

Hence, unlike Hausman’s test and other existing specification tests whose constructions are model-
dependent, our tests are generally applicable. Our tests are applicable to test the hypothesis that
E(u|l;1—1) = 0 and hence can detect a wide range of model misspecifications in mean (including
misspecification of functional form and lag order), and are robust to conditional heteroskedasticity and
higher order time-varying moments of unknown form and to the inhomogeneity across individuals.

In addition, as discussed earlier, most economic theories have implications on and only on the
conditional mean dynamics of the underlying economic variable. The popular method for estimating
the dynamic panel models is the generalized method of moments (GMM). Andrews and Lu (2001)
recently extend the moment selection criteria of Andrews (1999) to suggest an MMSC using GMM to
select the lag length, to detect the number of locations of structural breaks, to determine the exogeneity
of regressors, and/or to determine the existence of correlation between the regressors and the individual
effect. The MMSC is based on the J-test statistic used for testing over-identifying restrictions. In the
context of dynamic panel models in econometrics, such that u;; = o; + ¢4, the J-test statistic of MMSC
is testing

E (Aei|;z—1) = 0,

where Aejp = €4 — €i4—1 = Uit — Ui —1. Note Andrews-Lu’s MMSC only works in the GMM context

and only when finitely many moment conditions are imposed. On the other hand, our procedures



only require the existence of any/nT-consistent parameter estimate and allow an infinite set of moment
conditions. Again our tests are generally applicable and Andrews-Lu’s MMSC can be seen as a special
case of our tests.

In a recent development, FLF give several definitions of residual autocorrelations and derive their
joint asymptotic distribution for the panel time series model of Hjellvik and Tjostheim (1999). FLF
propose a portmanteau test to test the model specification on the lag order. The FLF test statistic is
defined as

Q(m) =nr (5) Vi (5)
where  is an m x m matrix with the ith diagonal element (T —i —1)7",

V=0 (T-1)" (1—52) M,

N Am—1
1 0 0"
N ~92 N
. o 0 "
M = ‘ ,
~m—1 ém ~2m—2

T ~
r (g) _ D i1 D i1 CittiCit
T =2
Z?:l Zt:l Eit
@ _ Z?:l Zthl }N/i,t—&—l%t
= L
D1 i1 Vi

)

)

and
git = Y — 0Y;4 1

[=1,...,m, where

}N/it =Y — 7-7&-
FLF show that the FLF test statistic has an asymptotic x2, distribution under Hy and has reasonable
size and power from a simulation study. A limit distribution of the FLF test is that it is derived under
i.i.d. N(0,0?). Also its robust versions under conditional heteroskedasticity of unknown form are not
available.

Compared to the existing tests in the panel literature, our tests can detect dynamic misspecification
at any unknown lag order and can check generic nonlinearity at each lag, and our tests are robust to
heteroskedasticity of unknown form over time and to inhomogeneity across individuals

Meghir and Windmeijer (1999) argue the importance to model the higher order moments, such as
ARCH, of the dynamic panel models. For example, the ARCH effects could come from that the fact
that persons at different levels of the income distribution face a different variance of their time-income

profile when one models the income dynamic and uncertainty. As we have emphasized, it is important



to distinguish nonlinearity in different moments, which have different economic implications. More
importantly, the rejection of the linear specification according the conventional sense could be due the
existence of the ARCH effect in the error term. To our knowledge, our paper is the first work to allow

the m.d.s errors {e;;} in the panel literature.
3. Test Statistics

3.1 Generalized Spectral Analysis
Our approach to testing a correct conditional mean specification (Hy in (2.2)) is based on Hong’s (1999)
generalized spectrum, which is an analytic tool for nonlinear time series, just as a power spectrum is an
analytic tool for linear time series (Priestley 1981).
Recall the model error e = Yi; — X, — p; — A has the property that Eley(8g)|Lit—1] = 0 a.s. for
some 6y € ©. This implies
Eleit(00)I;1—1] =0 a.s, (3.1)

where If, | = {€i1-1(60),cit—2(0o), - - }. Thus, to test Hy, we can check if Ele;t(60)|I5;_,] =0 a.s.!
Still, we have the curse of the dimensionality problem because I, ; has an infinite dimension. Fortu-
nately, the generalized spectral approach provides a sensible way to tackle this difficulty.

For notational economy, we put e;; = €;(6). Suppose {e;t} is a strictly stationary process with
marginal characteristic function ¢(u) = E(el**#*) and pairwise joint characteristic function p;(t,s) =
E(eiusit“wi’t*lﬂ), where i = /—1, u,v € R, and j = 0,%£1,---. The basic idea of the generalized

spectrum is to consider the spectrum of the transformed series {e!“%it}. It is defined as

o

filw,u,v) = — Z oij(u, v)e_ijw, w € [—m, 7, (3.2)

j=—o00

where w is the frequency, and o;;(u, v) is the covariance function of the transformed series:
0ij(u,v) = cov(eFit, evei-lil) j=10,%1,--- .

The function f;(w,u,v) can capture any type of pairwise serial dependence in {g;:}, i.e., dependence
between €;; and ¢;4—; for any nonzero lag j, including that with zero autocorrelation. This is analogous
to higher order spectra (Brillinger and Rosenblatt 1966a, 1966b) in the sense that f;(w, u,v) can capture
serial dependence in higher order moments. However, unlike higher order spectra, f;(w,u,v) does not
require existence of any moment of {€;}. This is important in economics and finance because it has

been argued that the higher order moments of many economic/financial time series may not exist.

!For a univariate time series, the knowledge of I; 1 = {Yi—1,Yi_2,---} is equivalent to the knowledge of I;_; =
{et—1,€t—2,--- } under certain regularity conditions. However, when I;_; contains other current and lagged exogeneous
variables, these two information sets generally differ. Below, we will first develop tests based on I;_;, and then consider
extensions to the more general information set in Section 5. (77)



When 02 = E(c2,) exists, we can obtain power spectrum as a derivative of fi(w,u, v):

2 o

1 o
—mfi(w,u,v) }(u,u):(o,O) =hi(w) = o Z cov(eir, €i—pj1)e VY, w € [—m, 7.

j=—00

For this reason, we call fj(w,u,v) the generalized spectrum of {g;}.

As is well known, the interpretation of spectral analysis is much more difficult for nonlinear time
series than for linear time series. For example, the bispectrum B;(wi,ws) has no physical (e.g., energy
decomposition over frequencies) interpretation as the power spectrum h;(w). This is also the case
for the generalized spectrum f;(w,u,v). However, the basic idea of characterizing cyclical dynamics
still applies: fij(w,u,v) has useful interpretations when searching for linear or nonlinear cycles. A
strong cyclicity of data may be linked with a strong serial dependence in {g;;}, which is not necessarily
measurable by autocorrelation. The generalized spectrum f;(w, u,v) can capture such nonlinear cyclical
patterns by displaying distinct spectral peaks. For example, suppose an ARCH process has a stochastic
cyclical dynamics in volatility. Then power spectrum h;(w) will be flat and miss the volatility cycles. In
contrast, f;(w,u,v) can effectively capture such cycles. More generally, the generalized spectrum can
capture cyclical dynamics caused by linear and nonlinear dependence. The latter includes dynamics in
volatility, skewness, and other higher order conditional moments.?

The generalized spectrum f;(w,u,v) itself is not suitable for testing Hp in (2.2), because it can
capture serial dependence in mean and in higher order moments. An example is an ARCH process.
The generalized spectrum f;(w,u,v) can capture this process, although it is a m.d.s. However, just
as the characteristic function can be differentiated to generate various moments of {e;1}, fi(w,u,v)
can be differentiated to capture serial dependence in various moments. To capture (and only capture)

dependence in conditional mean, one can use the derivative

1 — .
fi(O,l,O) (w, O,U) = % Z O.E;,O) (O’,U)e—ljw’ w e [—71',7'(}, (33)
Jj=—o00
where
UE;’O)(OW) = %Uij(uav) lu=o = cov(igy, elV%ui-1il).

The measure 05]1-’0) (0,v) checks whether the autoregression function E(eie;¢—j) at lag j is zero. Under

appropriate conditions, US’O) (0,v) = 0 for all v € R if and only if E(git|e;r—;) = 0 a.s.> The autore-
gression function can capture linear and nonlinear serial dependence in mean, including the processes

with zero autocorrelation. Examples are a panel bilinear autoregressive process €j; = az;1—1€i1—2 + Zit

and a panel nonlinear moving-average process €;; = az; 1 1%t 2 + 2it, where {z;;} is i.i.d.(0,0?%). These

? A potentially useful application is the investigation of possible nonlinear business cycles by fi(w, u, v). Power spectrum
hi(w), when applied to macroeconomic time series such as the U.S. GDP growth rate, often produces a flat spectrum.
However, some nonlinear time series experts (e.g., Tong 1990, p.) believe that business cycles are related to nonlinear
cyclical dynamics. It will be interesting to examine whether f;(w,u,v) can capture and identify such nonlinear cycles.

3See Bierens (1982) and Stinchcombe and White (1998) for discussion in a different but related context with .i.d.
samples.
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processes are white noises, but they are not m.d.s., because their conditional means are time-varying.
Thus, E(eitles ;) is a natural tool to test Ho, whereas cov(e; s, e;¢—;) will miss such subtle nonlinear
processes as those with zero autocorrelation. Nevertheless, E(eje;¢—j) has not been as widely used as
cov(eit, €it—j). An exception is Hjellvik and Tjgstheim (1996), who consider testing linearity in mean
for observed raw data using a kernel estimator for the autoregression function. Terdsvirta et al. (1994)
and Tong (1990) also discuss smoothed nonparametric estimation of the autoregression function.
Although E(ej|e;, ¢—;) and O'E;’O) 1(-;’0)
nonparametric estimation. The measure sup,cr |0S’0) (0,v)] can be viewed as an operational version of

(0, v) are equivalent measures, the use of o;;" (0, v) avoids smoothed
the maximum mean correlation, max .y [corr[e;t, f(€it—;)]|, which is proposed by Granger and Terédsvirta
(1993, p.23) as a measure for nonlinearity in mean. Similarly, the supremum generalized spectral
derivative modulus

m;(w) = sup |fi(0’1’0)(w,0,v)|, w € [—m, 7], (3.4)

vE(—00,00)
can be viewed as the maximum dependence in mean at frequency w. It can be used to search cycles in
mean that are caused by linear or nonlinear serial dependence in mean. An example of the latter is the
well-known ARCH-in-mean effect (Engle, Lilien and Robins 1987).
The hypothesis of E(sitllit_l) = 0 a.s. is not the same as the hypothesis of E(eile;—;) = 0 a.s.
for all j > 0. The former implies the latter but not vice versa. This is the price we have to pay for
dealing with the difficulty of the “curse of dimensionality”. One example that is not m.d.s. but has

E(eit|eit—j) = 0 a.s. for all j > 0 is a panel nonlinear moving-average process
.. 2
it = QZjt 2% 1-3 + Zit, Zit ~ 1.5.d.(0,0%). (3.5)

Obviously, there are many such examples.*

It seems to be extremely difficult to formally characterize the gap between E (6it’1’£€,t—1) =0 a.s. and
E(eitleit—;) = 0 a.s. for all j > 0. However, these two hypotheses coincide under some special cases.
The first case is when {e;; } is a stationary Gaussian process, which can have a long memory. The second
case is when {g;; } is an Markovian process. This covers both linear and nonlinear Markovian processes.
The examples of the latter are a panel nonlinear autoregressive process €;; = g(&;¢—1) + zix and a panel
bilinear autoregressive process €;; = ag; ;-1 + Bzit€i1—1 + 2it, where {2} ~ i.3.d.(0, 0?). The third case

is when {e;;} follows an additive panel time series process:
o
€it = ayo + Zgij(gtfj) + 23,
j=1
where g;;(-) is not a zero function at least for some j > 0.
3.2 Generalized Spectral Derivative Estimation

In the present context, ;4 is not observed. Suppose we have a random sample {Y;;}]_; which is used to

1t is well-known (e.g., Granger and Terdsvirta 1993, Tong 1990, Priestley 1988) that the class of nonlinear moving
averages processes is genenrally not invertible, and as a consequence, has found little empirical applications in practice.
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estimate model (2.1). For two way panel models, we obtain the “within” type estimated model residual
éit = ﬁit — ﬂi. - a.t + QTL, (36)

_— . ) — A, P— . / o
t=1,...,1;,i=1,..,n, where 4 = Yy — X, 3,

n T;

n
el O | A -1 N
. =T E Uit, Ut =M E Ui, u = (nT;) E E Uit
i=1

i=1 t=1
and B is a consistent estimator for 5.
Assumption A.2: (nT)1/2(B — %) = Op(1), where 8* = 3° under Hy.

We only require that B is v/nT-consistent for 5°. The estimator B needs not be asymptotically most
efficient. Examples of B are GMM, within estimator, limited information maximum likelihood (LIML)
(see Alvarez and Arellano 2003 for more discussion about the estimation issues when both T and n tend
to infinity). We do not require the knowledge of the asymptotic structure of 3 because as will be shown
below, parameter estimation uncertainty in B has no impact on the limit distribution of our tests.

We can estimate fi(o’l’o) (w,0,v) by a smoothed kernel estimator

T;—1

N 1 . . ~ —ijw
FOw,0,0) = = ST (- 11/T) Y2k /p)el 0 (0,0)e 7, w e [, 7], (3.7)
J=1-T;

where 601°(0,0) = Z6(u, 0)|u—o, 645 (u,0) = Py (1, v) — (1, 0);;(0,v), and

T;

1 A
5 (. v) = : Z el +ivE; 5|

Here, The factor (1 — |j|/T)"/? is a finite-sample correction. It could be replaced by unity. The
parameter p; = p;(7;) is a bandwidth. In our theory, we allow p; to differ across individuals so as
to pick up potential inhomogeneity across individuals. & is a kernel function satisfying the following

condition.

Assumption A.3: (i) k: R — [—1,1] is a symmetric kernel function that is continuous at zero and all
points except a finite number of points on R such that k(0) =1, [;° |zk(z)|dz < C and |k(z)| < C|z|7°
as z — oo for some b > % (ii) There exists a monotonically decreasing function &k : R — [—1, 1] such
that |k(-)] < k(-) and [;° zk(2)dz < oo.

Assumption A.3 is a regularity condition on the kernel k(). It includes all commonly used kernels in
practice. The condition of k(0) = 1 ensures that the asymptotic bias of the smoothed kernel estimator
fOL0) (4, 0,0) in (3.7) vanishes as T; — co. The tail condition on k(-) requires that k(z) decays to zero
sufficiently fast as |z| — oo. It implies [;°(1 4 2)k*(2)dz < oo. For kernels with bounded support, such
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as the Bartlett and Parzen kernels, b = oo. For the Daniell and Quadratic-spectral kernels, b = 1 and
2, respectively. These two kernels have unbounded support, and thus all 7; — 1 lags contained in the
sample are used in constructing our test statistics. Under certain conditions, fi(o’l’o) (w,0,v) is consistent
for fi(o’l’o) (w,0,v) (See Theorem 2 below).

Under H, the generalized spectral derivative fi(o’l’o) (w,0,v) becomes a “flat” spectrum:

1
f%)’l’o)( 0,v) = 081’0)(0,11), w € [—m, 7, (3.8)

v 2

which can be consistently estimated by

f(é),l’O) (w’ O’ U) = %&% 0) (07 U)v we [_T(’ Td' (39)

K3

To test Hy, we can compare f (0.1,0) (w,0,v) with ﬂ(g 1,0) (w,0,v). Any significant difference between
them will indicate the rejection of Hy.
3.8 Tests under Conditional Heteroskedasticity

There is a growing consensus among economists that volatilities of most high-frequency economic and
financial data are time-varying. It is well-known that the asymptotic variances of test statistics for
autocorrelations and conditional mean models depend on the type and degree of heteroskedasticity
present. Ignoring it will invalidate the limit distribution of the test statistics (e.g., Diebold 1986, Lo
and Mackinlay 1988, Wooldridge 1990, 1991, Whang 1998). This is also true for our tests. In fact, for
our tests, it is also important to take into account other higher order time-varying moments. Recent
studies (e.g., Hansen 1994, Harvey and Siddique 1999, 2000, Jondeau and Rockinger 2003) find that
the conditional skewness and kurtosis of asset returns are time-varying. Below, we will propose tests
of testing Hy that are robust to conditional heteroskedasticity and other time-varying higher order
moments of unknown form. This is one of the most important contributions of our paper in terms of
empirical relevance and asymptotic analysis. The asymptotic analysis is non-trivial because of the need

to take care of serial dependence in higher order moments.

Our test statistic that is robust to conditional heteroskedasticity and other time-varying higher order

conditional moments of unknown form is given as follows:

n T;—1 n
S RGT i) [ |0 0,0] ave) - S cu (3.10)

where W : R — R is a nondecreasing function that weighs set about zero equally,

A2

Clz — Z kQ ]/pz

wzt i Q} (’U),
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2
T;—21T;—2 T;

bu=23 SRR [[lmmey L s 0] VeV,
j=1 i=1 t=max(j,l)+1
and b, (v) = et —@, (v), and ¢;(v) = T, + S5 | €i*é. Throughout, all unspecified integrals are taken on
the support of W(-).% An example of W(-) is the N(1,0) CDF, which is commonly used in the empirical
characteristic function literature. The centering and scaling factors Cy; and Dy; are approximately
the mean and variance of T; [ |7 )fi(o’l’o) (w,0,v) — fi(g’l’o) (w,O,v)fdde(v). They have taken into
account the impact of conditional heteroskedasticity and other time-varying higher order conditional

moments. Alternatively, we could also consider the following test statistic

2 ~ [ A
dW(U) — Ch‘ / Dh'

Intuitively, Mfr can be viewed as a heteroskedasticity-corrected test while M is a heteroskedasticity-

n

. 1 T;—1
i = 2= 30 | S RGmm—d) [
i=1 =1 :

54(0,0)

consistent test, where heteroskedasticity arises from different variances D1; and bandwidth parameters
pi. In Mf , these two forms of heteroskedasticity are corrected first for each 7. As is shown below, M
and Mfr are asymptotically N(0, 1) under Hy, but their power properties generally differ. Both M and
Mfr apply to one-way or two-way error component models. For one-way component models, however,
one can use &; = U — ;. if one knows Ay = 0, and use &;; = U — .4 if one knows u; = 0. To test the
null hypothesis of Hausman’s test, we use &; = 4;: — 4. The limit distribution of the test statistics is

unchanged.

3.4 Tests under Conditional Homoskedasticity

To examine why it is important to take into account conditional heteroskedasticity and higher order
time-varying moments in testing Hp, we now derive generalized spectral tests for Hy under conditional
homoskedasticity and under i.i.d. for {e;;} respectively. Suppose {e;;} is conditionally homoskedastic

(ie., B(e4|l;1—1) = 02 a.s.). Then we can simplify our test statistics as follows:

n T;—1

. : 2 L
M= |33 R G@ -5 [ |5 000] ave) - Y| /
i=1 j=1 : =1
where
T—1
Co = & [ (o~ P W) 3 K p),
: =
T;—2T;—2 : ,
Dy = 2§§Z ZkQ(j/pi)kQ(l/pi) //‘&i,jl(v,v')} dW (v)dW (v'),
j=1 I=1 -

"To compute M, (p), there is no need to integrate frequency w but numerical integration over transform parameter
v is needed. The latter can be implemented by using Gauss-Legendre quadrature, which is available in most statistical
software. Alternatively, it can be approximated to any desired accuracy by simulation.
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and §f =

T, 132 22 is the sample variance of {e;;}_,. Both centering and scale factors Cy; and Dy;
have been simplified, by exploiting the implication of conditional homoskedasticity. The form of Dy;

still takes into account the impact of possibly time-varying third order and higher order moments.
3.5 Tests under the i.i.d. Case

In the panel literature, {e;;} is generally assumed to be an i.i.d.(0,0?) sequence. When {e;} is

i.1.d.(0, a?), which implies Hg, our test statistic can be further simplified:

n T;—1 n
~ ’ g 2 R
My= > K (i/p)(T; —j)/ &S’O)(o,v)] dw(v) -3 Cyil /
i=1 j=1 ‘ Pt

where Cy; = Cy; and Ds; = 28% [ |630(v,v')|* dW (0)dW (v') 317 K4(j /pi)-
The scale factor Ds; has been greatly simplified. Interestingly, the My test derived under conditional
homoskedasticity differs from the Mg test derived under 4.i.d. This is because M still takes into account

possibly time-varying higher order moments (e.g., skewness and kurtosis).
4. Asymptotic Distribution

To derive the null limit distribution of our tests, we provide some regularity conditions:

Assumption A.4: (i) {e;} is spatially independent across different individuals i. (ii) There exists a
sequence of {eg4:} such that E(eq|Fit—1) = 0 and as ¢ — 00, €444 is independent of F;;_,—1, and

maxij<i<n E(Sg,it) < C.

Assumption A.5: W : R — RT is a weighting function with [v*dW (v) < C and W(-) weighs set

about zero equally.

Assumption A.4 will be required only under Hy. Part (i) implies that {e;} and {e¢;s} are mutually
independent for all ¢, s whenever i # j. It assumes that the m.d.s. {e;;} can be approximated by a ¢
dependent m.d.s. process {e;1} arbitrarily well when ¢ is sufficiently large. Because {e;1} is a m.d.s.,
Assumption A.4 essentially imposes restrictions on serial dependence in higher order moments of ;.
Among other things, it implies ergodicity for {e;}. It holds trivially when {e;} is a ¢—dependent process
with an arbitrarily large but finite order ¢. It also covers many non-Markovian processes. To appreciate

this, we consider as an example an infinite order conditionally heteroskedastic error process {e;;}:

1/2
Eit = hit/ Zit,
S 2
hit = ag + Zajzijt,j; (4.1)
Jj=1

{Zit} ~1.i.d.(0,1), ag >0, a; >0 Vj>0.
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— 3 1/2 — q 2
Define e;q; = hiq,tzit, where hig: = ap + ijl Az Then we have

o0
2 2 2
E(eit —cigt)” = E|,|ao+ E I ao+Zajzi,tfj
j=1

Jj=1
2 2
o oo
1 E 2 §
< a_OE ajzi,t*j < C Oéj y
J=q+1 J=q+1

provided E(z}) < oo. Thus, Assumption A.2 holds if Z]‘?’;q 1105 < Cg™". A sufficient condition is
aj < Cj="=1 for j — oo, which rules out long-memory volatility processes (i.e., the processes with
cov(e?, 512,75— ;) not summable over j).

We now state the asymptotic distribution of the M,,c=1,2,3, tests under H.

Theorem 1: Suppose Assumptions A.1-A.5 hold, and p = T (needs to be changed) for X € (0, (2b —
1)/(4b —1)) and ¢ € (0,00). (i) M 4, N(0,1) under Hy, (ii) If in addition E (e4|li;—1) = 07 a.s.,
then My — N(0,1) under Ho. (iii) If {ei} is i.i.d.(0,02), then Ms3 N N(0,1).

As an important feature of M,(p) the use of estimated model residuals {&;} in place of true unob-
servable errors {;} has no impact on the limit distribution of M,(p). One can proceed as if the true

parameter value 6y were known and equal to 0. The reason is that the convergence rate of parametric

Jg(o,l,o)(

w,0,v) to

f(O,l,O)(

parameter estimator 6 to 6y is faster than that of nonparametric kernel estimator

fgo,l,o)(

w,0,v). Consequently, the limit distribution of M,(p) is solely determined by w,0,v),
and replacing 6y by 6 has no impact asymptotically. This delivers a convenient procedure, because no
specific estimation method for g is required. Of course, parameter estimation uncertainty in 0 may
have impact on the small sample distribution of Mc(p). In small samples, one can use a bootstrap
procedure similar to Hansen (1996) to obtain more accurate size of the tests.

Because parameter estimation uncertainty in 6 has no impact on the limit distribution of Mc(p),
M_(p) can be readily used to test the m.d.s. hypothesis for observed raw data with conditional het-
eroskedasticity of unknown form. No modification to the test statistic My or its limit distribution is
needed.

A very important feature of our tests is that they are asymptotically N(0,1) even if the lag orders
{pi} do not grow with the sample sizes {T;}. This is expected to enhance the size performance of our
tests, as is confirmed in our simulation studies. Indeed, our simulation shows that sizes of M,(p) are

close to the nominal sizes even the sample is as small as (n,t) = (25, 25).
5. Asymptotic Power

Our tests are derived without assuming an alternative model. To gain insight into the nature of the
alternatives that our tests are able to detect, we now examine the asymptotic behavior of M, under
Hy in (2.3). For this purpose, we impose an additional condition on k(-) and a condition on serial

dependence in {g;}.
Assumption A.6: There exists some ¢ € (0,00) such that k,lim._o[1 — k(2)]/|2]? € (0, 00).
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Assumption A.7: maxi<icn 350, 700 [sup,cg o1 (0,)]]% < C.

Theorem 2: Suppose Assumptions A.1 and A.3-A.7 hold, and p = ¢T* (needs to be changed) for
A€ (0,3) and c € (0,00). Then as for ¢ =1,2,3,

@ myit) 2 [20 [ w] Cx ity [ [0

= [QD‘/O‘OO k‘%z)dz} )

where

Nl—

2
FOR0 (w0 0,0) = £910 (0w, 0,0)| dwdW (v)

Nl=

hmn 122/’ (1,0 Ov dW()

=1 j=1

D = lmn- 120 Z //|%uv 2dW (u)dVV ()

]7—00

~ o liﬁn;af | / | / | /7r (w1, 0) 2 deod W () AWV (v).

The constant D takes into account serial dependence in conditioning variables {e!**it—i,j > 0)}, which
generally exists even under Hy, due to the presence of serial dependence in the conditional variance and

higher order moments of {g;}. This differs from the i.i.d. case, where

D = limn~ 120 //|010 v, o)) 2dW (0)d WV ()

=1

depends only on the marginal distribution of ;.

Suppose the autoregression function E (¢j|e; ;) # 0 at some lag j > 0. Then we have
/|a(10 (0,v)[2dW (v) > 0

for any weighting function W (-)that is positive, monotonically increasing and continuous, with un-
bounded support on R. As a consequence, limg_oP[M. > C(T)] = 1 for any constant C(T) =
o(T/p%)(needs to be changed). Therefore, M, has asymptotic unit power at any given significance
level, whenever E (e;|e;;—;) is nonzero at some lag j > 0.0 We thus expect that M. has relatively
omnibus power against a wide variety of linear and nonlinear alternatives with unknown lag structure,
as is confirmed in our simulation below. It should be emphasized that the omnibus power property
does not mean that M, is more powerful than any other existing tests against every alternative. In

fact, just because M, has to take care of a wide range of possible alternatives, it may be less powerful

3 o T . 2 . . oy
fSince [ [T L0 (0, 0,0) — fi(g’l’o) (w,0, v)‘ dwdW (v) is strictly positive whenever E (g¢|ei,1—;) # 0 for some lag
j > 0, upper-tailed asymptotic critical values (e.g., 1.645 at the 5% level) should be used.
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against certain specific alternatives than a parametric test. Nevertheless, the main advantage of M, is
that it can eventually detect all possible model misspecifications that render E(e|e; ;) nonzero at
some lag j > 0. This avoids the blindness of searching for different alternatives when one has no prior
information.

Because existing tests for linearity in mean only consider a fixed order lag, they can easily miss
misspecifications at higher lag orders. Of course, these tests could be used to check a large number of
lags when a large sample is available. However, they are not expected to be powerful when the number
of lags is too large, due to the loss of a large number of degrees of freedom. This power loss is greatly
alleviated for our tests due to the role played by k?(-). Most non-uniform kernels discount higher order
lags. This enhances good power against the alternatives whose serial dependence decays to zero as lag
order j increases. Thus, our tests can check a large number of lags without losing too many degrees
of freedom. This feature is not available for popular y?-type tests with a large number of lags, which
essentially give equal weighting to each lag. Equal weighting is not fully efficient when a large number
of lags is considered.

Once the linear dynamic model is rejected by our omnibus test MC, one may like to go further to
explore possible sources of model misspecification in mean. For this purpose, we can further differen-
tiate the generalized spectral derivative fi(o’l’o) (w,0,v) with respect to v and construct corresponding
tests in a similar spirit to our M, tests. In particular, the derivatives ag’l)(0,0) with [ = 1,2,3,4
yield cov(ei, €i—j), cov(ei, 61271573-), cov(ait,ag’jtf j) and cov(g;, sitf j) respectively. Tests based on these
derivatives can thus tell us whether there exists linear correlation, ARCH-in-mean, skewness-in-mean
or kurtosis-in-mean effects respectively. ARCH-in-mean effects are important in finance (Engle, Lilien
and Robins 1987), and the recent literature also finds time-varying skewness and kurtosis and their

economic relevance in finance (Harvey and Siddique 1999, 2000).
6. Data-Driven Lag Order

A practical issue in implementing our tests is the choice of lag order {p;}. As an advantage, our
smoothing generalized spectral approach can provide a data-driven method to choose p;, which, to some
extent, let data themselves speak for a proper p;. Theorems 1 and 2 allow use of different lag orders
for different individuals, which may enhance power of our tests when substantial degrees in neglected
nonlinearity and dynamic misspecification are present. However, substantially different data-driven lag
orders may distort the size of the tests in finite samples. To control the size of our tests, we consider a
data-driven method for a common lag order p in this section. Such a common lag order will converge
to zero under Hp but automatically grows to infinity under H4, thus ensuring the power of the tests.

Before discussing any specific method, we first justify the use of a data-driven lag order, p, say. For

this, we impose a Lipschitz continuity condition on k().
Assumption A.8: For any z,y € R, |k(z) — k(y)| < Clx — y| for some constant C < oo.

This condition rules out the truncated kernel k(z) = 1(|z| < 1), where 1(-) is the indicator function,

but it still includes most commonly used non-uniform kernels.
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Theorem 3: Suppose Assumptions A.1-A.6 and A.8 hold, and p is a data-driven bandwidth such that
p/p =1+ Op(p_( ) for some B > (2q — —)/(2q 1), where q is as in Assumption A.6, and p is
a nonstochastic bandwidth with p = ¢T* for A € (0,(2q — 1)/(4qg — 1)) and ¢ € (0,00). Let M.(p) be
defined as M, where p is used for all individuals i. Then (i) My (p) — M (p) == 0 and M, (p) 4, N(0,1)
under Hy. (ii) If in addition E(e%|I;1—1) = 0 a.s., then My(p) — My (p) 2 0 and Mo (p) LN N(0,1)
under Hy. (iii) If {ey} is i.i.d.(0,02), then Mz(p) — Mz(p) == 0 and Mz (p) 4, N(0,1).

Thus, as long as p converges to p sufficiently fast, the use of p instead of p has no impact on the
limit distribution of Mc(ﬁ). This is an additional “nuisance parameter-free” property.

Theorem 3 allows for a wide range of admissible rates for p. One plausible choice of p is the nonpara-
metric plug-in method similar to Hong (1999, Thm. 2.2). It minimizes an average asymptotic integrated
mean squared error (IMSE) criterion for the estimator f; (0:-1,0) (w,0,v) in (3.7). Consider some “pilot”

generalized spectral derivative estimators based on a preliminary bandwidth p :

T.f

— 1 2 l ~ —ijw

R0 = o 3 A=/ k(e 0 e (6.1)
7=1-T;

1 T;—1 .

—a.1 . 1 A -1q ,—ijw

70w 0,0) = o (1= 1§1/T) 2R (/P ™ (0, v) |7, (6.2)
7=1-T;

where the kernel k() needs not be the same as the kernel k(-) used in (3.7). For example, ko(:) can
be the Bartlett kernel while k(-)is the Daniell kernel. Note that fi(o’l’o) (w,0,v) is an estimator for

fi(o’l’o) (w,0,v) and fi(q’l’o) (w,0,v) is an estimator for the generalized spectral derivative
1,0 - 1,0 N —iiw
1w, 0,0) = 52 37 a0, 0)llte . (6.3)

Then we define the plug-in bandwidth
1
Po = ¢oT2aF1 (6.4)

where the tuning parameter estimator

2k2 S [ T 1 w,0,0) Pdd (v) ]
SR @z ) TR (w, 0, —0)dW (0)2de

208 XL ST LT D/ y%fA”MM»MquﬁH
_]fo kQ( ) Zz 123 1— T( ‘]‘)Eg(j/p R; ]Uzg v —U)dW( )

and R;(j) = (T;—|j]) ZtT;\j\H Eit€iz—|; and kg is given in Assumption A.6. Note that py is real-valued.
One can take its integer part, and the impact of integer-clipping is expected to be negligible.

The data-driven pg in (6.4) involves the choice of a preliminary bandwidth p, which can be fixed or
grow with sample size T. If p is fixed, pg still generally grows at rate Tﬁ under H 4, but ¢y does not

converge to the optimal tuning constant ¢y (say) that minimizes the average IMSE of f (0,1,0) (w,0,v)
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over all 7. This is a parametric plug-in method. Alternatively, following Hong (1999), we can show
that when p grows with T properly, the data-driven bandwidth po in (6.4) will minimize an asymptotic
IMSE of fi(o’l’o) (w,0,v). The choice of p is somewhat arbitrary, but we expect that it is of secondary
importance. This is confirmed in our simulation below.”

We emphasize that from a theoretical point of view, the data-driven p based on the IMSE criterion
generally will not maximize the power of M,. A more sensible alternative would be to develop a data-
driven p using a power criterion, or a criterion that trades off size distortion and power loss. This will
necessitate higher order asymptotic analysis and is beyond the scope of this paper. We are content with
the IMSE criterion here. Our simulation suggests that the power of our tests seems to be relatively
flat in the neighborhood of the optimal lag order that maximizes the power, and po in (6.4) performs
reasonably well in finite samples. Nevertheless, the issue of the optimal data-driven p for our tests is

far from being resolved from a theoretical perspective.
7. Simulations

We now investigate the finite sample performance of Mc(ﬁo), c=1,2,3, tests. While our tests can be
used to test nonlinear conditional mean models, we focus on testing linearity in mean, which is still the
main choice for most researchers in the panel literature. For example, in Hsiao (2003) only two chapters
out of eleven devoted to nonlinear models. Even for these two chapters (there are limited dependent
panel models) the true latent structures are still linear. Because our tests are derived without specifying

an alternative, we will compare them with a linearity test of FLF portmanteau test.
7.1 Simulation Design
7.1.1 Size

To examine the size of the tests under Hy, we consider the following DGPs

DGP S.1 [AR(1)-i.0.d.(0,1)]: Yt = 0.3Y4-1 + 0, +cit, it ~ ii.d. N(0,1),
Yt = 0.3Y5 41 +n; + €4t

DGP S.2 [AR(1)-ARCH(1)]: eir = hif 2z, hay = 0.43 4+ 0.57¢2,_y,
2z ~ii.d. N(0,1).

where 7, is generated from some fixed constant by following FLF. Under DGPs, the dynamic panel
linear model
E(Yit|lip—1) = Y11 (7.1)

is correctly specified for E(Yj|1;j;—1) = BOYM,L The parameter 5° = 0.3 can be estimated consistently
by an consistent estimator 3. The model error {g;(3°)} is conditionally homoskedastic under DGP S.1;
all tests considered are asymptotically valid under this DGP. Under DGP S.2, {&;(3")} is conditionally

heteroskedastic; only M, (Po) has a valid limit distribution. This allows us to examine the importance of

"The tuning parameter estimator é will converge to zero under Hy. To ensure po — oo, we can use formula (6.4)
supplemented with a slow-growing lower bound (say InT) such that po = max(InT,po). The choice of the slow-growing
lower bound InT" is arbitrary, but it will not affect the IMSE-optimal rate po under Ha, when T is sufficiently large.
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taking into account conditional heteroskedasticity. We have chosen parameter values in DGP S.2 such
that E[e%(8%)] < 00.8 To examine the size performance, we consider nine sample sizes: (n,T) = (25,25),
(25,50), (25,100), (50,25), (50,50), (50,100), (100,25), (100,50), (100,100). These cover various

combinations of relative sizes of n and 7.
7.1.2 Power

Next, we examine the power of the tests for neglected nonlinearity or dynamic misspecification in mean.
Because FLF is not valid under conditional heteroskedasticity, we will focus on homoskedastic errors

for power comparison. We consider the following DGPs:

DGP P.1 [AR(2)]: Yit = 0.3Y54—1 + 0.05Y; 42 + 1, + €it,

DGP P.2 [ARMA(1,1)]: Yie = 0.3Yi -1 + 1y + €it, €it = pi€it—1 + vit, and p; ~ U[—0.3,0.3].
Yii=05Y; 1 —(44+04Y; 1)G(-2Y 1) + 1y + €it,

where G(z) = [1 + exp(—2)] 71,

0.5Y; i1+ + €it ifY;; 1 <0,

—05Y5 1+ +ei  if Y1 >0,

DGP P.3 [STAR(1)]:
DGP P4 [SETAR(1):  Yi = {

where {gi} is 4.i.d.N(0,1).

DGP P.1, AR(2), is taken from FLF. DGP P.2, a panel random-coefficient model, has been used
extensively in literature (see Chapter 6 in Hsiao 2002 for a survey). DGP P.3 is a panel STAR model.
Paap et al. (2003) consider a similar panel STAR model to examine the common business cycle in
unemployment and the importance of sector-specific variations. DGPs P.3, panel SETAR model was
suggested by Stenseth et al (1999) and Yao et al. (2000) to model a panel of ecological time series.

We choose sample size: (n,T") = (25,25), (50, 50) respectively for the power comparison.

7.2 Computation of Test Statistics.

To compute FLF portmanteau test one has to determine how many lags, m, to be used in the test

r(8) = (r1 (8) s ru®)

We choose m = 2,4, and 6. FLF test statistic is computed as follows: (i) regress ffit on 1 and }N’i,t_l

vector

and save the estimated residuals {&;:}; (ii) let © is an m X m matrix with the ith diagonal element
(T —i— 1)71 ; (iii) regress & on (€i,&i4—1, - ,€i4—1), L = 1,...,m, and save the estimates r (5) ; (iv)

compute FLF statistic
Q(m) =nr (/9\) Vlr (5) ,

where
A~ 2 ~

V=Q-(T-1)" (1—5)M,

SWe also consider a GARCH process with an infinite fourth order moment. The size performance of the generalized
spectreal derivative tests is similar.
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. b0 "
M = )
émfl ém ~2m—2

and compare it to the N(0,1) distribution.

To compute M, (o) we use the N(1,0) CDF truncated on [—3,3] for the weighting function W ().
We also use the Bartlett kernel kp(z) = (1 — |2])1(|2| < 1) for k(-), which has bounded support and is
computationally efficient. Our simulation suggests that the choices of W (-) and k(+) have little impact on
both the size and power of our tests.” We choose a data-driven pg via the plug-in method in (6.4), with
the Bartlett kernel for k(-) used in the preliminary generalized spectral derivative estimators in (6.1) and

(6.2). To examine the impact of the choice of preliminary bandwidth p, we consider p =1,2,3,--- ,10.
7.8 Monte Carlo Results

Table 1 reports the empirical sizes of the tests under DGP S.1 (homoskedastic errors) at the 10% and
5% levels, using asymptotic theory. When n > T, M;(po) overrejects Ho, while Ma(po) and Ms(po)
underreject Hp but not excessively.

When n =T and n < T, FLF and Mc(ﬁo) all perform well under Hy, and they do even better when
n =T increases.

Over all the tests My(po) and Ms(po) derived under conditional homoskedasticity and i.i.d. respec-
tively have better sizes than N (Po). There is some tendency that a larger preliminary lag order p gives
a better size for M (p) test.

Under DGP S.2 (ARCH errors) in Table 2, Ma(po) and Ms(po) display very strong overrejection, as
is expected. In contrast, M (Po) performs very well for all cases also as expected.

Next, we turn to the size of FLF test which is valid test under. Under DGP S.1, the FLF test
has better levels than the Mc(ﬁo) tests, though not in every case. Under DGP S.2; FLF shows mild
overrejections.

Table 3 reports the size-corrected power at the 10% and 5% levels under DGPs P.1-P.4. The
empirical critical values are obtained under DGP S.1. We compare M,(po) with FLF test, Q(m), which
is derived under conditional homoskedasticity. Under DGP P.1, a panel AR2, FLF test is more powerful
than M_.(fo). Under DGP P.2, a panel random coefficient ARMA (1,1), FLF test fails to detect the
model. In contrast, Mc(ﬁo) are very powerful against the random coefficient model, indicating that
generalized spectral tests, J\ch(ﬁo), are rather effective in capturing inhomogeneous serial correlations
across individuals. The power of QQ(m) is relatively sensitive to the choice of m. On the other hand, the
power of M, (fg) is robust to the choice of preliminary lag order p.

Under DGP P.3, a SETAR, again FLF test has no power for all cases. All ]\ch(ﬁo) tests are equally
powerful. Under DGP P.4 (TAR), M.(po) tests are also powerful.

The relatively omnibus and robust power performance of the Mc(ﬁo) tests under DGP P.2-P.4 is

9We have also used the Parzen kernel (not reported). Although the data-driven lag order po is substantially smaller,
the test statistics are rather similar to those based on the Bartlett kernel in most cases.
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encouraging given the fact that DGP P.2-P.4 are all first order dynamic processes whereas the Mc(]ﬁo)
employ several or many lags. Such omnibus and robust power apparently comes from the use of the
characteristic function and downward weighting kernel k(-) for lags, which highlights the advantages of
the generalized spectrum.

In summary, we observe:

1. The empirical sizes of the Mc(ﬁo) tests are close the nominal levels. Under homoskedastic errors,
the homoskedasticity-specific tests, Ma(po) and Ms(po), have better size than the heteroskedasticity-
robust test M; (po). Under ARCH errors, M, (o) remains to have reasonable size, but all homoskedasticity-

specific tests strongly overreject the correct model.

2. The powers of FLF test, Q(m), are rather sensitive to the choice of lag order m especially when
the sample size is small. In contrast, the Mc(ﬁo) tests have relatively robust power with respect
to the choice of preliminary lag order p, and they require no knowledge of the lag structure of the

potential alternative.

3. The Mc(ﬁo) tests are not always the most powerful in detecting each of the four DGPs. However,
they have relatively omnibus power against all four DGPs provided the sample size is sufficiently
large. Q(m) can be very powerful in detecting some DGPs but may have little power against

others even when the sample size increases.

4. The heteroskedasticity-robust generalized spectral test has similar power to the homoskedasticity-

specific generalized tests in most cases.
9. Conclusion

Using a generalized spectral derivative approach, we develop a class of residual-based, generally
applicable specification tests for neglected nonlinearity and dynamic misspecification in dynamic panel
models. The tests can detect a wide range of model misspecification in mean while being robust to
conditional heteroskedasticity and other higher order time-varying moments of unknown form, and in-
homogeneity across individuals. They check a large number of lags but naturally discount higher order
lags, which alleviates the power loss due to the loss of a large number of degrees of freedom. Our test
statistics have a convenient limit N(0,1) distribution even if the lag order of the generalized spectral
density estimator is fixed, as is the case under the null hypothesis. The tests enjoy the appealing
“nuisance parameter free” property that parameter estimation uncertainty has no impact on the limit
distribution of the tests. Simulations show that it is important to take into account conditional het-
eroskedasticity to ensure a proper size. The tests have omnibus and robust power against a variety of

dynamic misspecification and nonlinear alternatives in mean relative to an existing test.
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Table 1: Empirical Sizes of Tests Under DGP S1

(mT)  (25.25) (25,50)  (25,100)  (50,25)  (50,50)  (50,100)  (100,25)  (100,50)  (100,100)
Level 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
M¢(2) 93 48 116 61 103 56 115 64 108 56 130 62 160 84 133 7.6 101 4.9
M®(4) 92 45 114 60 110 60 114 63 109 62 130 62 158 81 136 7.0 103 5.0
M&6) 89 35 103 58 107 57 109 53 98 55 115 61 154 68 124 55 98 48
Mg(2) 80 35 106 6.0 100 61 68 43 90 44 117 59 83 39 101 58 85 46
Mg(4) 7.7 34 104 59 101 62 67 38 88 44 113 61 75 35 98 54 89 48
Mg(6) 63 27 92 54 99 60 54 28 80 42 105 56 47 20 79 37 85 4l
M$(2) 80 35 105 58 100 61 70 43 90 44 119 59 82 41 102 58 85 47
Mg(4) 82 37 108 59 102 63 75 42 90 46 115 61 81 41 101 55 90 48
M(6) 82 33 100 59 107 65 85 38 93 51 114 61 80 33 100 50 94 46
M!(2) 102 54 116 64 103 56 116 64 108 56 130 64 161 88 143 73 100 5.0
M(4) 97 51 118 65 106 57 121 63 111 58 134 68 163 9.1 146 7.2 104 5.0
MP(6) 98 50 106 59 109 63 132 59 107 57 120 65 182 90 137 58 111 5.0
M(2) 83 40 109 60 99 59 74 43 89 46 119 59 80 39 104 59 82 45
M(4) 81 41 109 6.0 106 61 74 42 91 46 114 61 80 40 101 58 92 44
M(6) 7.7 33 102 57 105 66 74 33 91 48 114 58 7.3 32 95 44 90 47
M(2) 83 40 109 58 99 59 74 42 92 49 119 59 80 39 104 59 82 45
M(4) 83 42 109 62 106 64 75 42 92 49 114 63 82 41 99 51 92 44
M(6) 89 39 107 61 107 67 84 36 94 51 116 59 84 37 100 48 93 47
Q(2) 110 42 107 54 109 57 107 59 99 57 92 36 95 43 119 65 97 45
Q4) 100 43 114 61 117 66 115 62 108 57 110 53 96 40 112 49 85 45
Q6) 110 52 103 56 134 66 11.0 57 111 6.7 106 53 92 49 101 53 100 5.8




Table 2: Empirical Sizes of Tests: DGP S2

(n,T)  (25:25) (25,50) (25,100) (50,25) (50,50) (50,100) (100,25)  (100,50)  (100,100)
Level 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

M{(2) 111 41 105 57 107 59 122 51 100 53 102 55 184 96 140 59 101 5.0
M{(4) 102 4.0 103 58 105 56 11.8 47 95 50 102 52 185 93 137 54 100 5.0
(6 84 32 95 52 101 51 113 43 82 38 9rv 51 1r1 &1 127 49 93 45

)

2) 645 53.1 779 66.1 824 727 838 794 943 91.0 974 949 989 96.6 100 99.8 100 99.8
) 633 51.2 769 661. 828 723 87.3 T77.7 946 90.7 97.3 945 987 963 100 99.8 99.9 99.8
) 542 414 705 581 78.0 66.7 780 652 923 864 959 90.8 94.6 895 99.6 989 99.8 994

2) 646 53.1 77.8 66.1 826 728 837 79.6 945 91.1 974 948 99.0 96.6 100 99.8 100 99.8
) 642 525 773 665 829 724 87.8 788 946 90.7 97.3 945 989 965 100 99.8 99.9 99.3

—~
D

(6) 579 465 726 60.7 791 67.7 8.0 716 923 864 961 918 96.1 929 100 99.0 99.8 99.4
M!(2) 86 35 100 53 95 53 95 39 87 41 92 52 153 70 113 43 88 43
MY(4) 84 35 99 54 94 51 97 36 82 42 91 51 154 72 18 39 91 45
MP6) 74 28 94 48 96 50 101 28 72 35 84 48 156 6.6 115 43 83 42
M.(2) 602 47.8 747 628 99 814 840 755 931 894 969 936 97.8 949 999 996 99.9 99.8
M.(4) 596 472 751 619 10.6 81.8 831 738 931 889 967 934 975 944 998 995 99.9 998
ML(6) 513 394 674 558 105 765 753 63.0 89.9 825 947 89.6 938 885 99.6 984 99.7 99.4
ML(2) 602 47.8 747 626 99 814 839 755 931 895 969 935 978 949 999 996 99.9 99.8
ML(4) 598 47.8 753 620 10.6 81.8 833 742 931 892 967 935 975 946 999 995 998 998
ML(6) 543 412 685 568 10.7 77.2 771 66.0 902 837 950 90.0 940 894 99.6 987 99.7 99.4

19.8 122 187 124 194 119 189 123 187 11.2 17,5 102 177 115 199 131 179 10.8
190 106 185 107 178 117 173 99 165 10.7 16.0 9.7 168 105 178 109 153 8.0
182 108 171 91 185 104 154 9.2 16.7 10.7 159 92 163 93 171 96 144 76
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Table 3: Size-Adjusted Power of Tests:

DGP1: AR2 DGP2: ARMA DGP3: SETAR DGP4: TAR

(n,T)  (25,25) (50,50) (25,25) (50,50) (25,25) (50,50) (25,25) (50,50)
Level 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

M(2) 189 95 216 11.9 389 252 93.7 8.6 540 37.7 76.7 627 419 270 943 89.1
Mg(4) 186 9.8 219 124 385 262 940 89.1 535 391 772 623 409 27.0 940 882
Mg(6) 156 88 212 111 369 253 936 86.5 47.7 342 725 551 333 208 90.7 814
Mg(2) 173 86 21.0 13.0 404 30.0 958 91.9 594 451 87.3 786 466 312 98.0 95.6
Mg(4) 172 88 222 129 403 293 961 91.6 58.6 442 87.1 793 454 305 97.8 953
Mg(6) 148 84 208 117 393 271 949 889 53.3 389 837 720 40.1 248 960 922
Mg(2) 174 89 211 13.0 400 300 958 91.9 589 455 87.2 785 467 31.2 979 955
Mg(4) 176 9.0 221 136 411 295 960 91.9 587 446 862 765 463 30.6 97.6 95.3
Mg(6) 147 83 211 118 389 282 949 892 529 39.0 83.6 725 389 249 960 924
MY(2) 177 9.0 212 117 398 241 951 895 531 358 784 623 37.9 217 94.0 89.0
MP(4) 175 91 218 127 395 244 948 898 531 368 779 623 380 21.7 939 89.0
MY6) 164 79 205 121 387 239 936 881 481 317 73.0 568 323 17.7 905 81.6
M3(2) 188 9.0 212 123 419 294 959 915 59.6 436 86.6 766 463 30.6 979 953
M3(4) 178 85 221 123 424 285 956 914 580 419 86.6 763 446 29.0 97.7 95.0
M(6) 150 83 216 124 392 267 950 898 51.8 375 838 70.8 39.1 240 959 918
ML(2) 188 9.0 212 125 416 296 959 91.6 595 439 86.6 766 460 306 97.9 95.2
Mg(4) 177 85 221 123 422 286 956 91.3 579 419 867 763 456 29.0 97.7 95.0
ML(6) 155 82 216 124 393 268 950 89.6 519 37.3 837 705 39.1 236 958 917

235 171 668 531 115 71 133 7.0 168 124 302 208 108 7.6 11.8 5.5
226 151 568 421 136 82 116 7.1 180 124 374 267 123 92 11.2 5.6
190 11.3 487 334 122 66 114 6.3 154 91 300 19.6 120 7.0 106 6.0
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