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1 Introduction

The theory of optimal intertemporal allocation has been developed primarily for the case in
which the objective function of the planner or representative agent can be written as:

U(c1, c2...) ≡
∞∑
t=1

δt−1w(ct) (1.1)

where ct represents consumption at date t, w the period felicity function, and δ ε (0, 1) a discount
factor, representing the time preference of the agent.

An objective function like (1.1) leads naturally to the study of dynamic optimization problems
of the following “reduced form”:

Maximize
∞∑
t=0

δtu(xt, xt+1)

subject to (xt, xt+1) ∈ Ω for t ∈ {0, 1, 2, ...}
x0 = x




(1.2)

where δ ∈ (0, 1) is the discount factor, X is a compact set (representing the state space), Ω ⊂
X × X is a transition possibility set, u : Ω → R is a utility function, and x ∈ X is the initial
state of the system.

The restrictive form of the objective function (1.1) has often been criticized, and alternative
forms have been suggested. Since imposing no structure on U (c1, c2, ...) will yield very little
useful information about the nature of optimal programs, the alternative formulations involve
some restrictions, of course, and these basically take one of two forms.

First, one can dispense with the time-additively separable nature of (1.1), by following Koop-
mans (1960) and Koopmans, Diamond and Williamson (1964), and postulate that there is an
aggregator function, A, such that

U (c1, c2, ...) = A(c1, U(c2, c3, ...)) (1.3)

A nice feature of (1.3) is that it preserves the recursive nature of the problem inherent in Ramsey-
type problems based on (1.1). The restriction is that the independence of tastes between periods
that was present in (1.1) is also implicit in (1.3). Optimal growth problems with (1.3) as the
objective function have been investigated quite extensively, starting with Iwai (1972); a useful
reference for this literature is Becker and Boyd (1997).

Second, one can preserve the time-additive separable form, but explicitly model the intertem-
poral dependence of tastes by postulating that the felicity derived by the agent in period t depends
on consumption in period t(ct), but the felicity function itself is (endogenously) determined by
past consumption (ct−1). [The fact that “past consumption” is reflected completely in ct−1 is a
mathematical simplification; consumption in several previous periods can clearly be allowed for
at the expense of cumbersome notation and significantly more tedious algebraic manipulations].
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This formulation leads to the objective function1:

U(c1, c2, ...) =
∞∑
t=1

δt−1w(ct, ct+1) (1.4)

Models of optimal growth with intertemporal dependence in tastes, in which the objective func-
tion is similar to (1.4), have been examined by several authors.2 To the best of our knowledge,
the specific form (1.4) was first used by Samuelson (1971), to capture the essential features of
such intertemporal dependence of tastes.

An objective function like (1.4) leads to the study of dynamic optimization problems of the
following “reduced form”:

Maximize
∑

∞

t=0 δ
tu(xt, xt+1, xt+2)

Subject to (xt, xt+1, xt+2) ∈ Λ for t ∈ {0, 1,2, ...}
(x0, x1) = (x, y)


 (1.5)

where δ ∈ (0, 1) is the discount factor, X is a compact set, Ω ⊂ X ×X is a transition possibility
set, Λ = {(x, y, z) : (x, y) εΩ and (y, z) εΩ}, u : Λ → R is a utility function, and (x, y) εΩ is the
initial state of the system.

Notice that even under intertemporal dependence in tastes, we have a recursive structure in
the dynamic optimization problem (1.5) very much like in (1.2) [and in optimization problems
involving (1.3) as the objective function]. The difference is that in dealing with a one capital
good model (like the standard one or two-sector models of neoclassical growth theory), the state
space is X in problem (1.2), while it is a subset of X2 in problem (1.5). Thus, for problem (1.2),
(optimal) value and policy functions are defined on X, and for problem (1.5), these functions
are defined on Ω ⊂ X2. In terms of examining the dynamic behavior of optimal programs,
we are therefore dealing with a one-dimensional dynamical system for problem (1.2) and a two-
dimensional dynamical system for problem (1.5).

The structure of recursive problems like (1.5) are not as well understood as that of (1.2),
and we feel that it is worthy of a systematic study. Specifically, one might explore two themes:
(i) identifying the conditions under which the results of the traditional Ramsey-type theory
are preserved even when the intertemporal independence assumption is relaxed; (ii) examining
alternative scenarios in which the asymptotic behavior of an optimal program is qualitatively
different (from its traditional Ramsey counterpart) because of the presence of intertemporal
complementarity. Local analysis of the first theme has been presented by Samuelson (1971),
and of the second by Boyer (1978), and others. Our principal interest in this paper is in
establishing global results on the first theme, and in relating them to the local results, by using

1This objective function also arises in a somewhat different class of models, which study economic growth with
altruistic preferences. For this literature, see, for example, Dasgupta (1974), Kohlberg (1976), Lane and Mitra
(1981), and Bernheim and Ray (1987). The focus of this literature is however not on the socially optimal solution,
but the intergenerational Nash equilibrium solutions.

2The earlier literature on this topic includes, among others, Chakravarty and Manne (1968), and Wan
(1970). Heal and Ryder (1973) present a continuous-time model which accommodates a more general depen-
dence structure.
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the mathematical theory of two-dimensional dynamical systems.3

The plan of the paper is as follows. After describing the model in Section 2, we develop
the basic properties of the (optimal) value function, V , and the (optimal) policy function, h, in
Section 3. A useful tool for our study is the φ-policy function, defined on X, by

φ(x) = h(x, x) for x εX (1.6)

It is introduced in Section 3, and the circumstances under which it satisfies a “single-crossing
condition” are examined.

Section 4 might be considered as providing the global analytical counterpart to Samuelson’s
(1971) local analysis of “turnpike behavior” in this model. We show that when the (reduced-
form) utility function, u, is supermodular on its domain, Λ, then the optimal policy function
is monotone increasing in both arguments. This property, together with the “single-crossing
condition” on φ allows us to establish global asymptotic stability of optimal programs with respect
to the (unique) stationary optimal stock, by using an interesting stability result for second-order
difference schemes.

In Section 5, we provide an analysis of the local dynamics of optimal solutions. To this end, we
study the fourth order difference equation, which represents the linearized version of the Ramsey-
Euler equations near the stationary optimal stock. This equation yields four characteristic roots
and we show how two of them are selected by the optimal solution (assuming that the optimal
policy function is continuously differentiable in a neighborhood of the stationary optimal stock).
The roots selected by the optimal solution provide information about the speed of convergence
of non-stationary optimal trajectories to the stationary optimal stock.

The theory linking the derivative of the optimal policy function to the “dominated” charac-
teristic root associated with the Ramsey-Euler equation, for the optimization problem (1.2) is,
of course, well-known. To our knowledge, the corresponding theory for problem (1.5) has not
been developed in the literature.

In subsection 5.3, the optimal policy function is shown to be continuously differentiable in
a neighborhood of the stationary optimal stock, by using the Stable Manifold Theorem.4 This
validates the conclusions which are reached in Sections 5.1 and 5.2, by assuming this property.

2 Preliminaries

2.1 The Model

Our framework is specified by a transition possibility set, Ω, a (reduced form) utility function, u,
and a discount factor, δ. We describe each of these objects in turn.

A state space (underlying the transition possibilities) is specified as an interval X ≡ [0, B],
where 0 < B <∞. The transition possibility set, Ω, is a subset of X2, satisfying

3The second theme is explored in detail in Mitra and Nishimura (2001).
4The global differentiability of the optimal policy function for problem (1.2) has been studied by Araujo (1991),

Santos (1991) and Montrucchio (1998). The relation of the characteristic roots associated with the optimal policy
function to those associated with the Ramsey-Euler equation at the steady state has been studied for problem
(1.2) by Araujo and Scheinkman (1977) and Santos (1991).
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(A.1) (0, 0) and (B,B) are in Ω; if (0, y) ∈ Ω then y = 0.
(A.2) Ω is closed and convex.
(A.3) If (x, y) ∈ Ω and x ≤ x′ ≤ B, 0 ≤ y′ ≤ y, then (x′, y′) ∈ Ω.
(A.4) There is (x̄, ȳ) ∈ Ω with ȳ > x̄.
These assumptions are standard in the literature. Note that (A.3) means that the transition

possibility set Ω allows free-disposal, so long as the stock level does not exceed B. Assumption
(A.4) implies the existence of expansible stocks.

Notice that for all x ∈ [0, B], we have (x, x) ∈ Ω. Associated with Ω is the correspondence
Ψ : X → X, given by Ψ(x) = {y : (x, y) εΩ}. Define the set:

Λ = {(x, y, z) : (x, y) εΩ and (y, z) εΩ}

The utility function, u, is a map from Λ to R. It is assumed to satisfy:
(A.5) u is continuous and concave on Λ, and strictly concave in the third argument.
(A.6) u is non-decreasing in the first argument, and non-increasing in the third argument.
In what follows, we will normalize u(0,0, 0) = 0; also, we will denote max

(x,y,z)εΛ
|u(x, y, z)| by B̄.

The discount factor, δ, reflects how future utilities are evaluated compared to current ones.
We assume:

(A.7) 0 < δ < 1

2.2 Programs

The initial condition (which should be considered to be historically given) is specified by a pair
(x, y) in Ω. A program (xt) from (x, y) is a sequence satisfying

x0 = x, x1 = y, (xt, xt+1) ∈ Ω for t ≥ 1 (2.1)

Thus, in specifying a program, the period 0 and period 1 states are historically given. Choice
of future states starts from t = 2. Notice that for a program (xt) from (x, y) ∈ Ω, we have
(xt, xt+1, xt+2) ∈ Λ for t ≥ 0.

An optimal program (x̄t) from (x, y) ∈ Ω is a program from (x, y) satisfying

∞∑
t=0

δtu(xt, xt+1, xt+2) ≤
∞∑
t=0

δtu(x̄t, x̄t+1, x̄t+2) (2.2)

for every program (xt) from (x, y).
Under our assumptions, a standard argument suffices to ensure the existence of an optimal

program from every initial condition (x, y) ∈ Ω. Using Assumptions (A.2) and (A.5), it can also
be shown that this optimal program is unique.
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2.3 Value and Policy Functions

We can define a value function, V : Ω → R by

V (x, y) =
∞∑
t=0

δtu(x̄t, x̄t+1, x̄t+2) (2.3)

where (x̄t) is the optimal program from (x, y). Then, V is concave and continuous on Ω.
It can be shown that for each (x, y) ∈ Ω, the Bellman equation

V (x, y) = max
(y,z)εΩ

[u(x, y, z) + δV (y, z)] (2.4)

holds. Also, V is the unique continuous function on Ω, which solves the functional equation
(2.4).

For each (x, y) ∈ Ω, we denote by h(x, y) the value of z which maximizes [u(x, y, z)+δV (y, z)]
among all z satisfying (y, z) ∈ Ω. Then, a program (xt) from (x, y) ∈ Ω is an optimal program
from (x, y) if and only if:

V (xt, xt+1) = u(xt, xt+1, xt+2) + δV (xt+1, xt+2) for t ≥ 0 (2.5)

This, in turn, holds if and only if

xt+2 = h(xt, xt+1) for t ≥ 0 (2.6)

We will call h the (optimal) policy function. It can be shown by using standard arguments that
h is continuous on Ω.

2.4 Two Examples

2.4.1 Optimal Growth with Intertemporally Dependent Preferences

The example (which follows Samuelson (1971) and Boyer (1978) closely) captures the feature
that tastes between periods are intertemporally dependent. Such a model can be described in
terms of a production function, f , a welfare function, w, and a discount factor, δ.

Let X = [0, B] be the state space with 0 < B <∞. The production function, f , is a function
from X to itself which satisfies:

(f) f(0) = 0, f(B) = B;f is increasing, concave and continuous on X.
The welfare function, w, is a function from X2 to R, which satisfies:

(w) w is continuous and concave on X2, and strictly concave in the second argument; it
is non-decreasing in both arguments.5

The discount factor, δ, is as usual assumed to satisfy:
(d) 0 < δ < 1.

5Boyer (1978) assumes that w is increasing in both arguments. Samuelson (1971) does not; he assumes instead
that w(c, c) is increasing in c. It is this latter assumption that is crucial in proving the uniqueness of a stationary
optimal stock in this model, and therefore of our “single-crossing property”; see Section 3.3.

6



A program, in this framework, is described by a sequence (kt, ct), where kt denotes the capital
stock and ct the consumption in period t. The initial condition is specified by (k, c) ≥ 0, where
k + c ≤ B.

Formally, a program (kt, ct) from (k, c) is a sequence satisfying

(k1, c1) = (k, c), kt+1 = f (kt)− ct+1 for t ≥ 1
0 ≤ ct+1 ≤ f(kt) for t ≥ 1

}
(2.7)

An optimal program from (k, c) is a program (k̄t, c̄t) satisfying

∞∑
t=1

δt−1w(ct, ct+1) ≤
∞∑
t=1

δt−1w(c̄t, c̄t+1) (2.8)

for every program (kt, ct) from (k, c).
To reduce the optimality exercise in (2.8) subject to (2.7) to the one in (1.5), we can proceed

as follows. First, the transition possibility set, Ω, can be defined as:

Ω = {(x, y) : x ∈ X, 0 ≤ y ≤ f(x)}

Second, the reduced form utility function can be defined, for (x, y, z) in Λ as:

u(x, y, z) = w(f(x)− y, f (y)− z)

Finally, the initial condition (k, c) in the example, translates to the initial condition in the
framework of Section 2.2 as (x, y) = (f−1(k1+ c1), k1). That is, x is the capital stock (in period
0) which produced the output (k1 + c1) in period 1, that was split up between consumption (c1)
and capital stock (k1) in period 1; y is the capital stock in period 1. The choice of consumption
decisions, ct, starts from t ≥ 2; correspondingly, the state variable, xt, is determined for t ≥ 2
by the following equation:

xt+1 = kt+1 = f(kt)− ct+1 for t ≥ 1 (2.9)

It is worth noting that in the model of Samuelson (1971) there is no maximization with respect
to c1. This is because in order for his problem to be well-posed, one needs to know both k0 and
c1 (and therefore both x0 and x1 in terms of the problem stated in (1.5)) The information about
c1 is needed to define the welfare function w(c1; c2). That is the welfare in period 2 depends on
the choice of c2, but the welfare function itself is determined endogenously by past consumption
( c1 ).6

6Of course, variations of problem (1.5) can arise, where the last line of (1.5) would simply say x0 = x. Solving
such a problem would involve solving (1.5) and in addition solving for the “correct” x1. Clearly, an optimal
solution of such a problem must solve (1.5), and therefore inherit all the dynamic properties of such a solution,
as described in this paper.
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2.4.2 Optimal Harvesting of a Renewable Resource with Delayed Recruitment

The theory of management of renewable resources deals with the issue of optimal harvesting of
biological populations, such as various species of marine life. For many species, recruitment to the
breeding population takes place only after a delay. Clark (1976) has modeled this phenomenon
by describing the population dynamics by a delay-difference equation, instead of the standard
first-order difference equation which is commonly used in the literature on renewable resources.
We describe a simple version of his model where the delay involved is two periods.7

The model can be described formally in terms of a recruitment function, F , a return function,
W , a survival coefficient, λ, and a discount factor, δ.

The recruitment function, F , is a function from R+ to itself which satisfies:
(F) F (0) = 0;F is increasing, concave and continuous onX; limx→0[F (x)/x] > 1, limx→∞[F (x)/x] =

0.
The return function, w, is a function from R+ to R, which satisfies:

(W) W is continuous, non-decreasing and strictly concave on R+.
The survival coefficient, λ, satisfies:

(s) 0 < λ < 1.
The discount factor, δ, is as usual assumed to satisfy:

(d) 0 < δ < 1.
Given (F), there is a unique positive number B, such that [F (B)/B] = (1−λ). Then, defining

f(x) = F (x) + λx for all x ∈ R+, we see that (i) f(B) = B, (ii) B > f(x) > x for x ∈ (0, B),
and (iii) B < f (x) < x for x > B. Thus, it is natural to choose the state space to be X = [0, B].

A program, in this framework, is described by a sequence (kt, ct), where kt denotes the
biomass of the adult breeding population and ct the harvest of this population in period t. The
initial condition is specified by (k, k′) ≥ 0, where k ≤ B and k′ ≤ B.

Formally, a program (kt, ct) from (k, k′) is a sequence satisfying

(k0, k1) = (k, k′), kt+1 = λkt + F (kt−1)− ct+1 for t ≥ 1
0 ≤ ct+1 ≤ λkt + F (kt−1) for t ≥ 1

}
(2.10)

Note that for a program (kt, ct) from (k, k′) ≤ (B,B), we have (kt, ct) ≤ (B,B) for all t ≥ 2,
and this justifies our choice of the state space as X = [0,B].

An optimal program from (k, k′) is a program (k̄t, c̄t) satisfying

∞∑
t=1

δt−1W (ct+1) ≤
∞∑
t=1

δt−1W (c̄t+1) (2.11)

for every program (kt, ct) from (k, k′).
To explain the population dynamics, the adult breeding population k0 at time 0 yields a

“recruitment” to the population in period 2 (that is, after a delay of two periods) of F (k0). Part
of the adult breeding population k1 at time 1 does not survive beyond period 1; the remaining part
is λk1. The total available output of the renewable resource at time 2 is therefore F (k0)+λk1. A

7The modeling of the recruitment delay as two periods in our formulation of the model of renewable resource
management is a mathematical simplification; recruitment delays of longer duration can clearly be allowed for.
The corresponding theory is somewhat harder to present and analyze.
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part of this resource (c2) is harvested in period 2. The remainder of the resource ( F (k0)+λk1−c2)
becomes the adult breeding population k2 at time 2. This process is then repeated indefinitely.

To reduce the optimality exercise in (2.11) subject to (2.10) to the one in (1.5), we can proceed
as follows. First, the set, Λ, can be defined as:

Λ = {(x, y, z) : x ∈ X, y ∈ X,0 ≤ z ≤ λy + F (x)}

Second, the reduced form utility function can be defined, for (x, y, z) in Λ as:

u(x, y, z) = w(λy + F (x)− z)

Finally, the initial condition (k, k′) in the example, translates to the initial condition in the
framework of Section 2.2 as (x, y) = (k, k′). The choice of consumption decisions, ct, starts from
t ≥ 2; correspondingly, the state variable, xt, is determined for t ≥ 2 by the following equation:

xt+1 = kt+1 = λkt + F (kt−1)− ct+1 for t ≥ 1 (2.12)

Note that the dynamic optimization problem of the form (1.5) arises in the renewable resource
example from the (biological) production side of the model rather than the preference side.

3 Basic Properties of Value and Policy Functions

In this section, we examine some basic properties of the value and policy functions. These
properties will be useful in conducting the analysis in the following sections.

3.1 Value Function

We proceed under the following additional assumption:
(A.8) There is x̂ in (0, B), such that (x̂, x̂/δ, x̂/δ2) ∈ Λ, and θ ≡ u(x̂, x̂/δ, x̂/δ2) >

u(0, 0, 0) = 0.
Assumption (A.8) is a δ-productivity assumption jointly on (Λ, u, δ). It is analogous to the

δ-productivity assumption in the usual reduced-form model, where it is used to establish the
existence of a non-trivial stationary optimal stock.

Lemma 1 Let N ≥ 2 be a given positive integer. Defining x = δN x̂, we have (x, x/δ) ∈ Ω, and

V (x, x/δ) ≥ [(N − 1)θ/x̂]x (3.1)

Proof. Since (x̂, x̂/δ) ∈ Ω and (0, 0) ∈ Ω, we have (δnx̂, δn(x̂/δ)) ∈ Ω for n ≥ 1. Using this
observation, the sequence (xt) = (x, (x/δ), (x/δ2), ..., (x/δN ), (x/δN+1), 0, 0, ...) is a program
from (x, (x/δ)). Note that (x/δN) = x̂, (x/δN+1) = (x̂/δ), and since (x̂, x̂/δ, x̂/δ2) ∈ Λ
by (A.8), we have (x̂, x̂/δ, 0) ∈ Λ by (A.3), and u(x̂, x̂/δ, 0) ≥ u(x̂, x̂/δ, x̂/δ2) > 0. Also
((x̂/δ), 0) ∈ Ω and (0, 0) ∈ Ω imply that (x̂/δ, 0,0) ∈ Λ, and u(x̂/δ, 0, 0) ≥ u(0, 0, 0) [by (A.6)]
= 0. For 0 ≤ t ≤ N − 2:

u(xt, xt+1, xt+2) = u(x/δt, x/δt+1, x/δt+2) = u(x̂δN−t, x̂δN−t−1, x̂δN−t−2)

≥ δN−tu(x̂, x̂/δ, x̂/δ2) + (1− δN−t)u(0, 0, 0).
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Thus, for 0 ≤ t ≤ N − 2, δtu(xt, xt+1, xt+2) ≥ δNu(x̂, x̂/δ, x̂/δ2), and we have

V (x, x/δ) ≥
N−2∑
t=0

δtu(xt, xt+1, xt+2) ≥ (N − 1)δNθ = [(N − 1)θ/x̂]x

which establishes the Lemma.

Proposition 1 The value function, V , satisfies the property:

[V (x, x/δ)/x] → ∞ as x→ 0 (3.2)

Proof. For (x, x/δ) ∈ Ω, and 0 < λ < 1, we have V (λx, λx/δ) ≥ λV (x, x/δ) + (1 −
λ)V (0, 0) = λV (x, x/δ). Using Lemma 1, and defining the sequence {x(N)} by: x(N) = δN x̂
for N = 2, 3, ..., we have [V (x(N), x(N)/δ)/x(N)] → ∞ as N → ∞. Then, (3.2) follows since
for x ∈ [δN+1x̂, δN x̂], V (x, x/δ)/x ≥ [V (δN x̂, δN (x̂/δ))/δN x̂].

Proposition 2 The value function, V , satisfies the property:

[V (x, x)/x] → ∞ as x→ 0 (3.3)

Proof. For 0 < x ≤ x̂, we have (x, x/δ) ∈ Ω, and (x, 0) ∈ Ω, so (δx + (1 − δ)x, δ(x/δ) +
(1− δ).0) ∈ Ω; that is (x, x) ∈ Ω. By concavity of V , we have

V (x, x) = V (δx+ (1 − δ)x, δ(x/δ) + (1− δ).0)

≥ δV (x, x/δ) + (1− δ)V (x,0)

≥ δV (x, x/δ)

Thus [V (x, x)/x] → ∞ as x→ 0 by Proposition 1.

3.2 Policy Function

A useful tool, related to the policy function, is the φ-policy function defined for x ∈ X by:

φ(x) = h(x, x) for x ∈ X

That is, φ gives us the optimal policy when the arguments in h happen to take on identical
values.

In the standard reduced-form model, if xt were constant for two successive periods along an
optimal program, the constant value would have to be a stationary optimal stock. Here, given
xt−1 = xt = x in X,φ(x) is not necessarily equal to x; in fact, it will typically be different from
x. If φ(x) = x, then x would be a stationary optimal stock in the present framework.

We proceed under the following additional assumption:
(A.9) There isA > 0, such that for all (x, y, z), (x′, y′, z′) in Λ, |u(x, y, z)− u(x′, y′, z′)| ≤

A ‖(x, y, z)− (x′, y′, z′)‖ .
Assumption (A.9) is a bounded-steepness assumption on the utility function, and this is

ensured by making u Lipschitz-continuous, with Lipschitz constant A. The norm used in (A.9)
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is the sum-norm; that is, ‖(x, y, z)‖ = |x| + |y| + |z| for (x, y, z) in R
3. [In the usual reduced-

form model, a condition like (A.9) was introduced by Gale (1967), to establish the existence of
shadow-prices, associated with optimal programs].

Proposition 3 There is a > 0 such that for all x ∈ ( 0, a), φ(x) > x.

Proof. Suppose, on the contrary, there is a sequence (xs), such that xs → 0 as s→ ∞, and
xs > 0, φ(xs) ≤ xs for all s.

Using Proposition 2, we can find a1 > 0, such that for x ∈ (0, a1), we have

[V (x, x)/x] > 4A/(1− δ) (3.4)

Since xs → 0, we can find s large enough for which 0 < xs < a1. Pick such an xs and call it
x. Then x ∈ (0, a1) and φ(x) ≤ x. Denote φ(x) by y, and h(x, y) by z.

Since y ≤ x, and (y, z) ∈ Ω, we have (x, z) ∈ Ω, and (x, y, z) ∈ Λ,and:

V (x, x) ≥ u(x,x, z) + δV (x, z)

≥ u(x,x, z) + δV (y, z)

= [u(x, x, z)− u(x, y, z)] + δV (y, z) + u(x, y, z)

= [u(x, x, z)− u(x, y, z)] + V (x, y)

≥ V (x, y)−Ax

the final inequality following from (A.9). We can now write:

V (x, x) = u(x, x, y) + δV (x, y)

≤ u(x, x, y) + δV (x, x) + δAx

so that:

V (x, x) ≤ [u(x, x, y)/(1− δ)] + δAx/(1 − δ)

≤ [A(2x+ y) + δAx]/(1− δ)

by using (A.9) again. Thus, using y ≤ x,we have [V (x, x)/x] ≤ (3+δ)A/(1−δ) which contradicts
(3.4).

We now introduce an additional assumption for our next result.
(A.10) u(B,B,B) ≤ u(0, 0, 0) = 0.

Assumption (A.10) is an expression of the fact that “inaction” can produce at least as much util-
ity as “excessive action”. In the context of the standard aggregative growth model, considered
in Section 2.4.1, it translates to the fact that the consumption level associated with the maxi-
mum sustainable stock is 0 and so is the consumption associated with the zero stock. Actually
the standard aggregative growth model does not model disutility of effort directly. Typically,
maintaining high stocks involves considerable effort, which has disutility, and this will reinforce
the circumstances under which (A.10) will hold.

Proposition 4 The φ-policy function satisfies

φ(B) < B (3.5)
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Proof. Suppose, on the contrary, that h(B,B) = B. Then, we have V (B,B) = u(B,B,B)/(1−
δ) ≤ u(0, 0, 0)/(1− δ) = 0. Define the sequence (xt) as follows:

(x0, x1) = (B,B); xt = 0 for t ≥ 2

Then, (xt) is a program from (B,B), and we have:

∞∑
t=0

δtu(xt, xt+1, xt+2) = u(B,B, 0) + δu(B, 0, 0) ≥ 0

the inequality following from (A.3) and (A.6). This means that (B,B, 0, 0, . . .) and (B,B,B,B, . . .)
are both optimal from (B,B). But this contradicts the fact that u is strictly concave in the third
argument. This establishes the result.

Proposition 5 There is some x∗ ε (0, B), such that x∗ is a stationary optimal stock; that is,

h(x∗, x∗) = x∗ (3.6)

Proof. By Proposition 4, φ(B) < B. By Proposition 3, we can find x ε (0, B), such that
φ(x) > x. By continuity of φ, there is x∗ ε (0, B) such that φ(x∗) = x∗.

3.3 A Single Crossing Condition

In the following sections, we will find it useful to assume that the φ-policy function (introduced
in Section 3.2) has the following “single-crossing property”:

There is 0 < x∗ < B, such that
φ(x∗) = x∗;x < φ(x) for 0 < x < x∗;x > φ(x) for x > x∗

}
(SC)

Given Propositions 3 and 4, there is a stationary optimal stock in (0, B), and the single-
crossing property holds if there is a unique stationary optimal stock in (0,B). Note that if
x ∈ (0, B) is a stationary optimal stock, then h(x,x) = x, and so:

u3(x, x, x) + δu2(x, x, x) + δ2u1(x, x, x) = 0 (3.7)

In the example discussed in Section 2.4.1, with w and f both C1, w1 > 0 and w2 > 0, denoting
f(x)− x by c, condition (3.7) is satisfied only if:

[w2(c, c) + δw1(c, c)] = δf ′(x)[w2(c, c) + δw1(c, c)]

This implies that δf ′(x) = 1. Since f is strictly concave, there can be only one stationary optimal
stock in (0, B), and the single-crossing property is verified.

If u is C2 on Λ, then (3.7) has a unique solution if the function:

H(x) ≡ u3(x,x, x) + δu2(x, x, x) + δ2u1(x, x, x) (3.8)
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has a negative derivative, wherever it has a zero. This amounts to the condition:

[δ2u11 + δu22 + u33] + (δ2 + 1)u13 + δ(δ + 1)u12 + (δ + 1)u23 < 0 (3.9)

being satisfied at any x [the derivatives being evaluated at (x, x, x)] at which H(x) = 0. For
δ ≈ 1, (3.9) is clearly satisfied if u has a negative-definite Hessian.

4 Turnpike Behavior

In this section, we will provide sufficient conditions under which one can establish global asymp-
totic stability of the stationary optimal stock (turnpike property). This demonstrates that “one
can relax the independence assumption somewhat and still derive the usual known results”, a
point indicated earlier by Samuelson (1971), using local analysis around the turnpike. A crucial
role in our global analysis is played by the assumption of supermodularity of the utility function8

in its three variables, a concept we define below analogously to the more familiar two variable
case.

4.1 Supermodularity of the Utility Function

A function G : Ω → R is supermodular if whenever (x, y), (x′, y′) εΩ with (x′, y′) ≥ (x, y), we
have

G(x, y) +G(x′, y′) ≥ G(x′, y) +G(x, y′)

provided (x′, y) and (x, y′) εΩ. If G is C2 on Ω, then it is well-known that G is supermodular
on Ω if and only if G12 ≥ 0 on Ω

In our case, the utility function, u : Λ → R is a function of three variables, and we may
define supermodularity of it as follows. In the C2 case, we would now like to have all the three
cross-partials of u to be non-negative; that is u12, u13 and u23 ≥ 0 on Λ. In the general (not
necessarily differentiable) case, this translates to the following definition.

The utility function u : Λ → R is called supermodular on Λ if whenever (x, y, z), (x′, y′, z′) εΛ
with (x′, y′, z′) ≥ (x, y, z), we have

(i) u(x, y, z) + u(x′, y′, z′) ≥ u(x′, y, z) + u(x, y′, z′) provided (x′, y, z) and (x, y′, z′) εΛ
(ii) u(x, y, z) + u(x′, y′, z′) ≥ u(x, y′, z) + u(x′, y, z′) provided (x, y′, z) and (x′, y, z′) εΛ
(iii) u(x, y, z) + u(x′, y′, z′) ≥ u(x, y, z′) + u(x′, y′, z) provided (x, y, z′) and (x′, y′, z) εΛ
If u is C2 on Λ with u12, u12 and u23 ≥ 0 on Λ, then (i) can be verified as follows: A =

[u(x′, y′, z′) − u(x, y′, z′)] − [u(x′, y, z) − u(x, y, z)] =
∫ x′

x
u1(t, y

′, z′)dt −
∫ x′

x
u1(t, y, z)dt. Now

u1(t, y
′, z′) − u1(t, y, z) ≥ 0 for all t ε [x, x′], since u12 ≥ 0 and u13 ≥ 0, (y′ − y) ≥ 0 and

(z′ − z) ≥ 0. Thus, we get A ≥ 0, establishing (i). Conditions (ii) and (iii) can be verified
similarly.

8The supermodularity concept is due to Topkis (1968). A nice exposition of the concept in the two variable
case, and its relation to the non-negativity of the cross partial derivative is given in Ross (1983). Benhabib and
Nishimura (1985) introduced its use in optimal economic dynamics in the two variable case in the form of this
derivative condition. More recent comprehensive studies involving the concept of supermodularity can be found
in Amir, Mirman and Perkins (1991), Amir (1996) and Topkis (1998).
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Both of the above definitions are, of course, special cases of the general definition of super-
modularity of a function on a lattice, as given by Topkis (1968, 1998).

4.2 An Example

In order to understand the restriction imposed by the assumption of supermodularity of u, we
consider the assumption in the context of the example discussed in Section 2.4.1, when w and f
are both C2 on their domains.

We can calculate the first-order partial derivatives of u as follows:

u1(x, y, z) = w1(f (x)− y, f(y)− z)f ′(x)

u2(x, y, z) = w2(f (x)− y, f(y)− z)f ′(y)− w1(f (x)− y, f(y)− z)

u3(x, y, z) = −w2(f(x)− y, f(y) − z)

Since w1 > 0 and w2 > 0, it follows that u1 > 0 and u3 < 0, as required in (A.6).
The second-order cross partial derivatives of u can be calculated as follows:

u12(x, y, z) = [w12(f(x)− y, f (y)− z)f ′(y)− w11(f(x)− y, f(y)− z)]f ′(x)

u13(x, y, z) = −f ′(x)w12(f(x)− y, f (y)− z)

u23(x, y, z) = w12(f (x)− y, f(y)− z)− w22(f (x) − y, f(y)− z)f ′(y)

Thus, in order for u to be supermodular, (i) we need the marginal utility of present consump-
tion to be declining in past consumption (w12 < 0), sometimes referred to as Edgeworth-Pigou
substitutability, and (ii) we need the magnitude of this cross effect (−w12) to be “small” relative
to the magnitudes of the own effects (−w11) and (−w22).We state requirement (ii) loosely, since
the magnitude of the marginal product of capital is involved beside the second-order derivatives
of w. However, the requirement (ii) can be seen most transparently at the steady state, where
δf ′(x∗) = 1. There, the requirement of supermodularity translates to the condition that in the
symmetric matrix:

W =

[
δ2(−w11) δ(−w12)
δ(−w12) (−w22)

]

the diagonal terms dominate the off-diagonal terms.
We now provide a specific example of the framework discussed in Section 2.4.1, to show that

all the assumptions made on the reduced-form model can be verified with suitable restrictions
on the parameters of the primitive-form. Consider the production function, f , defined by:

f(x) = px− qx2 for x ∈ [0, (p− 1)/q] ≡ [0, B]

(where 1 < p < 2 and q > 0), and the welfare function, w, defined by:

w(c, d) = ac− bc2 + αd− βd2 − θ cd for (c, d) ∈ X2

where a > 0, b > 0, α > 0, β > 0 and θ > 0.Note that at x = B = (p − 1)/q, we have
[f(x)/x] = p− qx = p− q[(p− 1)/q] = 1. Also, f ′(x) = p− 2qx for all x ∈ X, so f ′(0) = p and
f ′(B) = p− 2q[(p− 1)/q] = 2 − p. Since 1 < p < 2, we have f ′(0) > 1 > f ′(B) > 0.
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To ensure that w is increasing in both components of consumption, we impose the following
restrictions:

a− (θ + 2b)B > 0; α− (θ + 2β)B > 0 (R1)

These restrictions ensure that u1(x, y, z) > 0 and u3(x, y, z) < 0 on Λ, since f ′(x) > 0 on X.
Notice that w11 = −2b < 0 and w22 = −2β < 0, so, to ensure concavity of w, we can assume

θ2 < 4bβ (R2)

This ensures that u is concave on Λ, since f is concave on X. Further, since u33(x, y, z) =
w22(f (x)− y, f(y)− z) = −2β < 0, u is strictly concave in its third argument.

We have w12 = −θ < 0 so that u13 > 0 on Λ. To ensure that u23 > 0 on Λ, we assume that
(−w22)f ′(B) > (−w12); that is

2β(2− p) > θ (R3)

Finally, to ensure that u12 > 0 on Λ, we assume that (−w11) > (−w12)f
′(0); that is,

2b > θp (R4)

Thus, under the restrictions (R1) - (R4), assumptions (w), (f) are satisfied, and so are As-
sumptions (A.1) - (A.6). Further, u is supermodular on Λ.

For specific numerical values of the parameters, ensuring that all the above restrictions are
simultaneously satisfied, take p = (3/2), q = (1/2), so that B = 1 and X = [0, 1]. Choosing
b = β = 1, a = 3, α = 5, and θ = (1/2), it is easy to check that the restrictions (R1) - (R4) are
satisfied.

4.3 Monotonicity of the Policy Function

The principal result (Theorem 1) of this subsection is that if the utility function is supermodular
then the (optimal) policy function is monotone non-decreasing in each component.

In the case usually treated, where the reduced form utility function is a function of two
variables, if the utility function is supermodular, then the policy function is monotone non-
decreasing, and this can be established by ensuring that the value function (a function of a single
variable) is monotone non-decreasing. This property of the value function is straightforward,
given the free-disposal property of the transition possibility set and the fact that the utility
function is monotone non-decreasing in its first argument.

In the present context, the value function is a function of two variables, and we need to
show that the value function is supermodular in these two variables (Proposition 6), when the
utility function is supermodular in its three variables. To obtain the supermodularity of the
value function from the supermodularity of the utility function, the natural route suggested is to
establish supermodularity for each finite-horizon value function, and then obtain this property
for the infinite horizon value function as a limit of the finite-horizon ones. The first part of this
two-step procedure (Lemma 2) follows from the general result of Topkis (1968), so we state the
result without a proof.

Lemma 2 Let G : Ω → R be a concave, continuous and supermodular function on Ω. If u is
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supermodular on Λ, then the function H : Ω → R given by

H(x, y) = max
zεΨ(y)

[u(x, y, z) + δG(y, z)] (P)

is well-defined, and is a concave, continuous and supermodular function on Ω.

Proposition 6 If u is supermodular on Λ, then V is supermodular on Ω.

Proof. Define a sequence of functions, V t : Ω → R given by

V 0(x, y) = u(x, y,0) and V t+1(x, y) = max
zεΨ(y)

[u(x, y, z) + δV t(y, z)]

Then V 0 is a concave, continuous and supermodular function on Ω. Using Lemma 2, V t is
a concave, continuous and supermodular function on Ω for each t ≥ 0.

Since |u(x, y, z)| ≤ B̄ on Λ, we have |V t(x, y)| ≤ B̄/(1 − δ) on Ω for all t ≥ 0. To see this,
note that it is clearly true for t = 0. Assuming this is true for t = T ≥ 0, we have

∣∣V T+1(x, y)
∣∣ ≤ B̄ + δ[B̄/(1 − δ)] = B̄/(1 − δ)

Thus |V t(x, y)| ≤ B̄/(1− δ) on Ω for all t ≥ 0 by induction.
We now proceed to show that V t+1(x, y) ≥ V t(x, y) for t ≥ 0, for all (x, y) ∈ Ω. For t = 0,

we have

V 1(x, y) = max
zεΨ(y)

[u(x, y, z) + δV 0(y, z)]

≥ u(x, y, 0) + δV 0(y,0)

= u(x, y, 0) + δu(y, 0,0)

≥ u(x, y, 0) = V 0(x, y)

since u is non-decreasing in its first argument and u(0, 0, 0) = 0.
Suppose V t+1(x, y) ≥ V t(x, y) for t = 0, ..., T where T ≥ 0. We now show that the inequality

must hold for t = T + 1 as well. Let z̄ be the solution of the maximization problem

max
zεΨ(y)

[u(x, y, z) + δV T (y, z)]

given (x, y) ∈ Ω. Then, by definition of V T+2, we have

V T+2(x, y) ≥ u(x, y, z̄) + δV T+1(y, z̄)

≥ u(x, y, z̄) + δV T (y, z̄)

= V T+1(x, y)

This completes the induction proof.
For each (x, y) ∈ Ω, define

V̄ (x, y) = lim
t→∞

V t(x, y)

Then V̄ is well-defined and is a concave, continuous and supermodular function on Ω.
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Given (x, y) ∈ Ω, let zt be the solution to the maximization problem:

max
zεΨ(y)

[u(x, y, z) + δV t(y, z)]

Then, we have
V t+1(x, y) = u(x, y, zt) + δV t(y, zt)

The sequence {zt} is bounded, and has a convergent subsequence, converging to some z̄; clearly
z̄ ∈ Ψ(y). For the subsequence on which zt converges to z̄, taking limits we have

V̄ (x, y) = u(x, y, z̄) + δV̄ (y, z̄) (4.12)

Also, for all z ∈ Ψ(y), we have

V t+1(x, y) ≥ u(x, y, z) + δV t(y, z)

and so
V̄ (x, y) ≥ u(x, y, z) + δV̄ (y, z) (4.13)

Using (4.12) and (4.13) we have

V̄ (x, y) = max
zεΨ(y)

[u(x, y, z) + δV̄ (y, z)]

Thus, V̄ is the value function, V , of problem (2.4), and V is supermodular on Ω.

Theorem 1 If u is supermodular on Λ, then h is non-decreasing in each component.

Proof. Let (x, y) and (x′, y′) ∈ Ω with (x′, y′) ≥ (x, y). Define z = h(x, y) and z′ = h(x′, y′).
We claim that z′ ≥ z. Suppose, on the contrary, that z′ < z. We know that

V (x, y) = u(x, y, z) + δV (y, z)

V (x′, y′) = u(x′, y′, z′) + δV (y′, z′)

Since (y, z) εΩ and z′ < z, (y, z′) εΩ, and

V (x, y) > u(x, y, z′) + δV (y, z′)

Since (y, z) εΩ and y′ ≥ y, (y′, z) εΩ, and

V (x′, y′) > u(x′, y′, z) + δV (y′, z)

Thus, we get

[u(x, y, z) + u(x′, y′, z′)] + δ[V (y, z) + V (y′, z′)] (4.14)

> [u(x, y, z′) + u(x′, y′, z)] + δ[V (y, z′) + V (y′, z)]
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Since u is supermodular on Λ, and (x′, y′) ≥ (x, y) and z > z′,

u(x, y, z′) + u(x′, y′, z) ≥ u(x, y, z) + u(x′, y′, z′) (4.15)

Since V is supermodular on Ω, and y′ ≥ y and z > z′,

δ[V (y, z′) + V (y′, z)] ≥ δ[V (y, z) + V (y′, z′)] (4.16)

Adding (4.15) and (4.16), we contradict (4.14).

4.4 Global Dynamics

In this section we study the global dynamics of the two-dimensional dynamical system, (Ω,Γ)
where Γ is a map from Ω to Ω given by

Γ(x, y) = (y, h(x, y))

For (x, y) ∈ Ω, we have h(x, y) ∈ Ψ(y), and so (y, h(x, y)) ∈ Ω.
We maintain the assumption that u is supermodular on Λ, and so h is non-decreasing in both

its arguments. We also maintain the single-crossing condition on φ, introduced in Section 3c.
The principal result of this subsection (Theorem 2) is that if (xt) is an optimal program from

(x, y), where (x, y) ∈ Ω and (x, y) >> 0, then xt converges to x∗ as t → ∞, thus exhibiting
global asymptotic stability (“turnpike property”).

Theorem 2 Let (xt) be an optimal program from (x, y) ∈ Ω with (x, y) >> 0. Then lim
t→∞

xt = x∗.

Proof. Define m = min{x0, x1, x
∗} and M = max{x0, x1, x

∗}, where x∗ is given by the
single-crossing condition (SC).

We show that xt ≥ m for all t ≥ 0. This is clear for t = 0,1. Suppose xt ≥ m for
t = 0,1, ...T , where T ≥ 1, then

xT+1 = h(xT−1, xT ) ≥ h(m,m) ≥ m (4.17)

The first inequality in (4.17) follows from the monotonicity of h in both arguments, the definition
of m, and the fact that xT−1 and xT are at least as large as m. The second inequality follows
from the fact that m ≤ x∗and condition (SC). This establishes by induction that xt ≥ m for
t ≥ 0.

We show that xt ≤ M for all t ≥ 0. This being clear for t = 0,1, suppose xt ≤ M for
t = 0,1, ..., T , were T ≥ 1. Then

xT+1 = h(xT−1, xT ) ≤ h(M,M ) ≤M (4.18)

The first inequality in (4.18) follows from the monotonicity of h in both arguments, the definition
of M , and the facts that xT−1 ≤M, xT ≤M by hypothesis. The second inequality follows from
the fact that M ≥ x∗ and condition (SC). This establishes by induction that xt ≤M for t ≥ 0.

We also note that
xt+1 = h(xt−1, xt) ≤ h(B,B) = φ(B) (4.19)
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Define a = lim inf
t→∞

xt. We claim that a ≥ x∗. Otherwise, if a < x∗, then using a ≥ m > 0,

we have φ(a) > a and so we can find ε > 0 such that (a − ε) > 0 and φ(a − ε) > a + ε. By
definition of a, we can find N such that for t ≥ N, xt ≥ (a− ε). Thus, for t ≥ N ,

xt+2 = h(xt, xt+1) ≥ h(a− ε, a− ε) = φ(a− ε) > a+ ε

But this means that lim inf
t→∞

xt ≥ a+ ε, a contradiction. Thus, we must have a ≥ x∗.

Define A = lim sup
t→∞

x∗t . We claim that A ≤ x∗. Suppose, on the contrary, A > x∗. We know

that A ≤ φ(B) [by (4.19)]< B [by Proposition 4]. Using condition (SC) we have φ(A) < A, and
so we can find ε > 0 such that (A+ ε) < B, and φ(A+ ε) < (A− ε). By definition of A, we can
find N such that for t ≥ N , xt ≤ (A+ ε). Thus for t ≥ N ,

xt+2 = h(xt, xt+1) ≤ h(A+ ε, A+ ε) = φ(A+ ε) < A− ε

But this means that lim sup
t→∞

xt ≤ A− ε, a contradiction. Thus, we must have A ≤ x∗.

Since A ≥ a, we have
x∗ ≥ A ≥ a ≥ x∗ (4.20)

which proves that a = A = x∗, and so (xt) converges and lim
t→∞

xt = x∗.

Remark 1 The style of proof is similar to that used in Hautus and Bolis (1979), but since the
domain of definition of h and φ are different in our framework from theirs, we cannot appeal
directly to their result.

4.5 Remarks on Models of Habit Formation

The literature on habit formation 9studies optimization problems of the type described in Section
2.4.1. The model of Boyer (1978) on habit formation, where utility is assumed to be increasing
both in current and in past consumption, can be treated as a special case of the model we
described in Section 2.4.1.10 However, in many models of habit formation, utility is assumed to
be increasing in present consumption, but decreasing in past consumption. The idea is that a
high consumption in the past means that a person gets used to a higher standard, and therefore
this has a negative effect on her evaluation of current consumption.

Assumption (w) in the example described in Section 2.4.1 (and more generally assumption
(A.6) of the reduced-form model described in Section 2.1) rules out such environments of habit
formation. However, the methods and results of our paper continue to be applicable to some of
these environments. We elaborate on this remark by presenting an example of habit formation

9See Boyer (1978), Abel (1990) and Deaton (1992) and the references cited by them for the main contributions
to this literature.

10He does not look at the corresponding reduced-form model, and does not assume conditions on the primitive
form which would ensure the supermodularity of the reduced-form utility function. Thus, in his model, unlike
ours, it is “possible to experience cycles in consumption, investment, capital and the interest rate” (Boyer (1978,
p.594)).
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where utility is assumed to be increasing in present consumption and decreasing in past con-
sumption, and yet the main monotonicity and global asymptotic stability results of our paper
continue to hold.

The framework of the example is similar to the one described in Section 2.4.1, with a pro-
duction function, f , satisfying assumption (f), a discount factor, δ, satisfying assumption (d);
however, the welfare function, w, is a function from X2 to R, which satisfies:

(w’) w is continuous and concave on X2, and strictly concave in the second argument; it
is non-decreasing in the second argument and non-increasing in the first argument.

We now provide a specific example of this framework, which is a variation of the example
discussed in Section 4.2..Consider the production function, f , defined by:

f(x) = px− qx2 for x ∈ [0, (p− 1)/q] ≡ [0, B] = X

Here p = (3/2) and q = (1/2), so that B = 1.
The welfare function, w, is defined by:

w(c, d) = A[d/(1 + d)]− acb for (c, d) ∈ X2

where a ∈ (0, 1), b ≥ 2, and A > 4ab.
The discount factor, δ, is chosen to be in (0.8, 1).
For any x ∈ (0, 1), we have f(x) > x, and so the stationary program (x, x, x, ...) is feasible.

Denoting f(x)− x by c, we note that c ∈ (0, 1) is the constant consumption along this program.
Given the form of w, we have w(c, c) > 0.

Note that w is C2 on X2; the partial derivatives of w can be calculated as follows:

w1(c, d) = −abcb−1 < 0

w2(c, d) = A/(1 + d)2 > 0

w11(c, d) = −b(b− 1)acb−2 < 0

w12(c, d) = 0

w22(c, d) = −2A/(1 + d)3 < 0

Thus, w is clearly increasing in d and decreasing in c on X2. Further, it is strictly concave in
(c, d) on X2. It can be checked that for all c ∈ (0, 1), we have w1(c, c) +w2(c, c) > 0, as required
in the study of Samuelson (1971) and the habit formation model of Sundaresan (1989).

The properties (A.1)-(A.4) of the corresponding reduced form model (Λ, u, δ) can be verified
quite easily. To verify other properties, we can compute the relevant first and second-order
partial derivatives of u as in Section 4.2. Since w1 < 0 and w2 > 0, it follows that u1 < 0 and
u3 < 0, while u2 > 0. Note that (A.6) is clearly violated. By definition of u, it is clearly concave
(given concavity of w and f ) and continuous on Λ, so that (A.5) is satisfied.

Since w12 = 0 and w11 < 0, w22 < 0, we have u13 = 0 and u12 > 0, u23 > 0. Thus, u is
supermodular on Λ.11

11In order to keep our example simple, we have used a form for w(c, d) for which w12 = 0. However, this is
not essential to the example. One can allow for functions w(c, d) in which w12 < 0, and the cross effect is small
relative to the direct effects of w11 and w22, (as explained in Section 4.2) and still preserve the main results of
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Assumption (A.7) is clearly satisfied by definition of δ. To verify (A.8), define x̂ = (δ/4).
Then (x̂/δ) = (1/4) and (x̂/δ2) = (1/4δ). Note that f(x̂/δ) = f(1/4) = (11/32) > (10/32) >
(1/4δ) = (x̂/δ2); it follows that, f(x̂) ≥ δf(x̂/δ) > (x̂/δ). Thus, (x̂, (x̂/δ), (x̂/δ2)) ∈ Λ. Note
that for x ∈ (0, x̂/δ), defining g(x) = f (x) − (x/δ), we have g′(x) = (3/2) − x − (1/δ) >
(3/2)− (1/4)− (5/4) = 0. Thus, we have f(x̂/δ)− (x̂/δ2) > f(x̂)− (x̂/δ), and so using w2 > 0,
we have:

u(x̂, (x̂/δ), (x̂/δ2)) ≥ w(f(x̂)− (x̂/δ), f (x̂)− (x̂/δ)) > 0

the last inequality following from (7). Thus, (A.8) is verified. Assumption (A.9) is clearly
satisfied since both f and w have bounded steepness. Finally, Assumption (A.10) is satisfied,
since u(0, 0, 0) = 0 = u(B,B,B). To summarize, in this example, all the assumptions except
(A.6) are satisfied; further, u is supermodular on Λ.

Since the analysis in our paper relies at various points on the use of assumption (A.6),
our methods are not directly applicable to this example of habit formation. However, slight
modifications of our methods can be used to verify that (i) the policy function satisfies the
single-crossing property; (ii) the value function is supermodular on its domain, and the policy
function is non-decreasing in each of its arguments. Thus, Theorem 2, which uses only these
properties of the model, continues to be valid in this example of habit formation. The details of
this verification can be found in Mitra and Nishimura (2003).

We should add that there are clearly models of habit formation which cannot be analyzed
in terms of the methods used in our paper, and the results of our paper do not apply to those
frameworks. For example, one might follow Abel (1990) and consider a particular specification
of the habit-formation model where:

w(ct, ct+1) = (1/(1− α))(ct+1/ct)
(1−α) where α ∈ (0, 1)

In this case, not only is w1 < 0 and w2 > 0, so that the corresponding reduced-form model
violates (A.6), but w itself is not a concave function of (ct, ct+1), so that the corresponding
reduced-form model also violates (A.5). The dynamic optimization problem in (1.5) is then one
involving a non-concave objective function. This takes one beyond the scope of environments
that can be handled with the methods used in our paper.

5 Local Dynamics

In this section, we provide an analysis of the local dynamics of optimal solutions near a sta-
tionary optimal stock. To this end, we study (in subsection 5.1) the behavior of the optimal
policy function (assuming that it is continuously differentiable in a neighborhood of the station-
ary optimal stock) and obtain restrictions on the two characteristic roots associated with the
linearized version of it near the stationary optimal stock. Next, we show (in subsection 5.2)
that each of these characteristic roots must also be a characteristic root of the linearized version
of the Ramsey-Euler equation near the stationary optimal stock. We then examine the fourth
order difference equation, which represents the linearized version of the Ramsey-Euler equations
near the stationary optimal stock, and we show which two of them are selected by the optimal

this example.
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solution. The roots selected by the optimal solution provide information about the speed of con-
vergence of non-stationary optimal trajectories to the stationary optimal stock. The assumption
of supermodularity of the utility function is not used in the above analysis.

In subsection 5.3, the optimal policy function is shown to be continuously differentiable in
a neighborhood of the stationary optimal stock, by using the Stable Manifold Theorem. This
provides a rigorous basis for the analysis carried out in subsections 5.1 and 5.2.12

5.1 Characteristic Roots Associated with the Optimal Policy Func-

tion

We proceed with our local analysis of the optimal policy function by making strong smoothness
assumptions.

We assume that there is ε > 0 such that the utility function is C2 in a neighborhood N ≡ Q3

of (x∗, x∗, x∗), [where Q = (x∗ − ε, x∗ + ε) ] with u1 > 0, u3 < 0 and u13 > 0, and a negative-
definite Hessian on N . Further, we assume that there is a neighborhoodM ′ of (x∗, x∗) on which
V is C2 and h is C1.13 Clearly, we can choose a smaller neighborhood M of M ′ such that for
all (x, y) in M , (x, y, h(x, y)) is in N and (y, h(x, y)) is in M ′.

In terms of the example of Section 2.4, the restriction u13 > 0 is satisfied if w is C2 with
w12 < 0 [and f is C1, with f ′ > 0]. This restriction is quite important: it implies that the policy
function is monotone increasing in the first argument on M .

Proposition 7 The policy function, h, satisfies h1(x, y) > 0 for (x, y) εM .

Proof. Let (x, y) εM . Then h(x, y) solves the maximization problem:

Max
(y,z)εΩ

[u(x, y, z) + δV (y, z)]

Since (y, h(x, y)) εM ′ and (x, y, h(x, y)) is in N ,

u3(x, y, h(x, y)) + δV2(y, h(x, y)) = 0 (5.1)

This is an identity in (x, y) εM , and so, differentiating with respect to x,

u31(x, y, h(x, y)) + u33(x, y, h(x, y))h1(x, y) + δV22(y, h(x, y))h1(x, y) = 0

We have V22 ≤ 0 [by concavity of V ], and u33 < 0 [since the Hessian of u is negative definite];
thus u33(x, y, h(x, y)) + δV22(y, h(x, y)) < 0, and so h1(x, y) > 0.

If x∗ > 0 is the unique positive stationary optimal stock, another useful property of the
optimal policy function may be obtained, namely: h1(x∗, x∗) + h2(x∗, x∗) ≤ 1. Recall that the
circumstances under which there is a unique positive stationary optimal stock were discussed in
connection with the single-crossing condition in Section 3.3.

12Our proof of the continuous differentiability of the optimal policy function near the stationary optimal stock
involves using the result as well as the method of proof of Theorem 2. Since the latter result was proved by us
under the assumption of supermodularity of the utility function, we are not able to totally dispense with the
supermodularity assumption in Section 5.

13The circumstances under which these smoothness assumptions hold are given in Section 5.3.
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Proposition 8 Suppose x∗ is the unique positive stationary optimal stock. Then

h1(x
∗, x∗) + h2(x

∗, x∗) ≤ 1

Proof. Since [h(x, x) − x] ≥ 0 for 0 ≤ x ≤ x∗, and [h(x∗, x∗) − x∗] = 0, we must have
[h(x, x)− x] minimized at x = x∗ among all x ε [0, x∗]. Thus,

h1(x
∗, x∗) + h2(x

∗, x∗) − 1 ≤ 0

which establishes the result.
Given the non-linear difference equation

xt+2 = h(xt, xt+1)

the linear difference equation associated with it (near the stationary optimal stock, x∗) is given
by

at+2 = qat + pat+1 (5.2)

where q denotes h1(x∗, x∗) and p denotes h2(x∗, x∗), and at is to be interpreted as (xt − x∗) for
t ≥ 0.

The characteristic equation associated with the equation (5.2) is

λ2 = q + pλ (5.3)

Denoting by λ1 and λ2 the roots of (5.3), we observe that

λ1 + λ2 = p
and λ1λ2 = −q

}
(5.4)

These are explicity given by the formula:

λ = [p±
√
p2 + 4q]/2 (5.5)

Under our assumptions we have the information that

q > 0, p ≥ 0, p+ q ≤ 1 (5.6)

Since q > 0, we can use (5.4) to infer that the roots λ1, λ2 are real and they are of opposite signs.
Without loss of generality, let us denote the positive root by λ1 and the negative root by λ2.

Using (5.4), (5.6), we have

1 ≥ p+ q = λ1 + λ2 − λ1λ2 = λ1 + (1 − λ1)λ2

so that
(1 − λ1) ≥ (1 − λ1)λ2 (5.7)

Now, if λ1 > 1, then we would get (1−λ1) < 0, and (1−λ1)λ2 > 0 (since λ2 < 0) contradicting
(5.7). Thus, we can conclude that

0 < λ1 ≤ 1 (5.8)
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Now, using (5.4), we have (−λ2) = λ1 − p ≤ λ1 ≤ 1. Thus, neither characteristic root can
exceed 1 in absolute value.

5.2 Characteristic Roots Associated with the Ramsey-Euler Equa-

tion

Consider the Ramsey-Euler equation:

u3(xt, xt+1, xt+2) + δu2(xt+1, xt+2, xt+3) + δ2u1(xt+2, xt+3, xt+4) = 0 (5.9)

In particular, of course, xt+s = x∗ for s = 0, 1, 2, 3, 4 satisfies (5.9):

u3(x
∗, x∗, x∗) + δu2(x

∗, x∗, x∗) + δ2u1(x
∗, x∗, x∗) = 0 (5.10)

If we use the Mean-Value theorem around (x∗, x∗, x∗) to evaluate the difference between
the left-hand sides of (5.9) and (5.10), but ignore the second-order terms (so that one obtains a
“first-order” or “linear” approximation to the difference) we get (dropping the point of evaulation
(x∗, x∗, x∗) to ease the writing) the expression:

δ2u13εt+4 + (δ2u12 + δu23)εt+3 + (δ2u11 + δu22 + u33)εt+2 + (δu21 + u32)εt+1 + u31εt

If we substitute βt+s for εt+s(s = 0, 1, 2, 3, 4), and equate the resulting expression to zero, we
get the characteristic equation associated with the Ramsey-Euler equation (5.9):

δ2u13β
4 + (δ2u12 + δu23)β

3 + (δ2u11 + δu22 + u33)β
2 + (δu21 + u32)β + u31 = 0 (5.11)

The idea is that the roots of this characteristic equation will reflect local behavior around the
stationary optimal stock, x∗, of solutions to Ramsey-Euler equations.

We now show that the characteristic roots associated with the optimal policy function, which
we analyzed in Section 5.1, must be solutions to the characteristic equation (5.11). By continuity
of the optimal policy function, we can choose a neighborhoodM of (x∗, x∗) such that for all (x, y)
in M , (y,h(x, y)), (h(x, y), h(y,h(x, y))) and (h(y, h(x, y)), h(h(x, y), h(y, h(x, y))) are in M ′,
and (x, y, h(x, y)), (y, h(x, y), h(y, h(x, y))) and (h(x, y), h(y, h(x, y)), h(h(x, y), h(y, h(x, y)))) are
in N . Thus, the Ramsey-Euler equation yields the following identity in (x, y):

W (x, y) = u3(x, y, h(x, y)) (5.12)

+δu2(y,h(x, y), h(y, h(x, y)))

+δ2u1(h(x, y), h(y, h(x, y)), h(h(x, y), h(y, h(x, y))))

= 0

If we differentiate W with respect to x and evaluate the derivatives of u at (x∗, x∗, x∗), and the
derivatives of h at (x∗, x∗), then the derivative ∂W (x∗, x∗)/∂x must be equal to zero. We can
write the derivative (after dropping the points of evaluation (x∗, x∗, x∗) and (x∗, x∗) to ease the
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writing) as:

∂W (x∗, x∗)/∂x = u31 + u33h1 + δ[u22h1 + u23h2h1] + δ2[u11h1 + u12h2h1 + u13(h1)
2 + u13(h2)

2h1]

= u31 + [u33 + δu22 + δ2u11]h1 + δ[u23 + δu12]h1h2 + δ2u13[(h1)
2 + (h2)

2h1]

Denote [u33 + δu22 + δ2u11] by Ĉ, and [u23 + δu12] by D̂. Then, we have:

∂W (x∗, x∗)/∂x = u31 + Ĉh1 + δD̂h1h2 + δ2u13[(h1)
2 + (h2)

2h1] = 0 (5.13)

Similarly, if we differentiate W with respect to y, and evaluate the derivatives of u at
(x∗, x∗, x∗), and the derivatives of h at (x∗, x∗), then the derivative ∂W (x∗, x∗)/∂y must be
equal to zero. We can write the derivative (after dropping the points of evaluation (x∗, x∗, x∗)
and (x∗, x∗) to ease the writing) as:

∂W (x∗, x∗)/∂y = u32 + u33h2 + δ[u21 + u22h2 + u23h1 + u23(h2)
2]

+δ2[u11h2 + u12h1 + u12(h2)
2 + 2u13h1h2 + u13(h2)

3]

= u32 + δu21 + Ĉh2 + δD̂h1 + 2δ2u13h1h2 + δD̂(h2)
2 + δ2u13(h2)

3

Rearranging terms yields the derivative:

∂W (x∗, x∗)/∂y = (u32 + δu21) + Ĉh2 + δD̂[h1 + (h2)
2] + δ2u13[2h1 + (h2)

2]h2 = 0 (5.14)

We recall from Section 5.1 that if λ is a characteristic root associated with the optimal policy
function, then (λ)2 = h2λ + h1. Using this information in (5.13) and (5.14), we get:

∂W (x∗, x∗)/∂x+ λ∂W (x∗, x∗)/∂y = u31 + [u32 + δu21]λ + Ĉ(h1 + h2λ) + δD̂[h1λ + (h2)
2λ + h1h2]

+δ2u13[(h1)
2 + (h2)

2h1 + 2h1h2λ+ (h2)
3λ]

= u31 + [u32 + δu21]λ + Ĉλ2 + δD̂[h1λ + h2λ
2]

+δ2u13[h1(h1 + h2λ) + h1h2λ+ (h2)
2[h1 + h2λ]]

= u31 + [u32 + δu21]λ + Ĉλ2 + δD̂λ3

+δ2u13[h1λ
2 + h1h2λ+ (h2)

2λ2]

= u31 + [u32 + δu21]λ + Ĉλ2 + δD̂λ3 + δ2u13[h1λ
2 + h2λ

3]

= u31 + [u32 + δu21]λ + Ĉλ2 + δD̂λ3 + δ2u13λ
4 = 0

This completes the verification of our claim.
We now show how the characteristic roots associated with the optimal policy function (ana-

lyzed in Section 5.1) can be found by calculating the characteristic roots of (5.11).
Notice that β = 0 is not a solution to (5.11) since u13 �= 0. We can, therefore, use the

transformed variable:
µ = δβ + (1/β)

to examine the roots of (5.11). Using this transformation, (5.11) becomes

u13µ
2 + (δu12 + u23)µ+ [δ2u11 + δu22 + u33 − 2δu13] = 0 (5.15)
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Let us define G : R → R by

G(µ) = u13µ
2 + (δu12 + u23)µ+ [δ2u11 + δu22 + u33 − 2δu13] (5.16)

Since the Hessian of u is negative definite, we have u11 < 0, u22 < 0, u33 < 0, and since
u13 > 0, we have

[δ2u11 + δu22 + u33 − 2δu13]/u13 < 0

Denoting the roots of (5.15), which is a quadratic in µ, by µ1 and µ2, we note that

µ1µ2 < 0 (5.17)

so these roots are necessarily real. We denote the positive root by µ1 and the negative root by
µ2.

Given µi(i = 1, 2), we can obtain the corresponding roots of β by solving the quadratic

δβ + (1/β) = µi (5.18)

We denote the roots of (5.18) corresponding to µ1 by β1 and β2 [with |β1| = min[|β1| , |β2|]] and
the roots of (5.18) corresponding to µ2 by β3 and β4 [with |β3| = min[|β3| , |β4|]].

Define the function F : R2 → R by

F(β;m) = δβ2 −mβ + 1 (5.19)

Then β1 and β2 are the roots of F(β;µ1) = 0, and β3 and β4 are the roots of F(β;µ2) = 0.
Using our analysis in Section 5.1, we can show that the roots β1 and β2 are real, and

0 < β1 ≤ 1 < β2 (5.20)

To see this, recall that λ1 and λ2 are solutions of (5.3). These are real and of opposite signs.
Thus, examining (5.19), it is clear that λ1 and λ2 must correspond to different µi. This means
that β1 and β2 are real, and so are β3 and β4.

Now, note that since β1 and β2 solve the equation

δβ2 − µ1β + 1 = 0 (5.21)

and µ1 > 0, we have β1β2 = (1/δ) > 0 and (β1 + β2) = (µ1/δ) > 0. Thus, β1 and β2 are both
positive.

Since β3 and β4 are roots of the equation

δβ2 − µ2β + 1 = 0 (5.22)

we have β3β4 = (1/δ) > 0 and β3 + β4 = (µ2/δ) < 0. Thus β3 and β4 are of the same sign, and
they must both be negative.

It follows from the above analysis that λ1 must be one of the roots β1 and β2, and λ2 must
be one of the roots β3 and β4. Further, since λ1 ≤ 1, and β1β2 = (1/δ) > 1, λ1 = β1 and
β2 ≥ (1/δ). This establishes (5.20).
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Similarly, we can show that:
0 > β3 ≥ −1 > β4 (5.23)

Since (−λ2) ≤ 1, and β3β4 = (1/δ) > 1, (−λ2) = (−β3) and (−β4) ≥ (1/δ). This establishes
(5.23).

5.3 Differentiability of the Optimal Policy Function

In Section 5.1, we assumed that the optimal policy function was continuously differentiable in a
neighborhood of the steady state, x∗. We used this to obtain the characteristic roots associated
with the optimal policy function, and to relate them (in Section 5.2) to the characteristic roots
associated with the Ramsey-Euler equation. To complete our analysis, we need to show that
the optimal policy function is indeed continuously differentiable in a neighborhood of the steady
state, x∗. We do this by applying the Stable Manifold Theorem.14

We have seen in Section 5.2 that the characteristic roots (β1, β2, β3, β4) associated with the
equation (5.11) satisfy the restrictions:

β4 < −1 ≤ β3 < 0 < β1 ≤ 1 < β2 (5.24)

We assume now that the generic case in (5.24) holds; that is, the weak inequalities in (5.24) are
replaced by strict inequalities:

β4 < −1 < β3 < 0 < β1 < 1 < β2 (5.25)

We wish to analyze the behavior of the Ramsey-Euler dynamical system near the steady
state, x∗. To this end, we define:

F (v,w, x, y, z) = u3(v,w, x) + δu2(w,x, y) + δ2u1(x, y, z)

in a neighborhood N ′ ≡ Q5 of (x∗, x∗, x∗, x∗, x∗) [where Q = (x∗ − ε, x∗ + ε) and ε is as given in
Section 5.1]. Then, F is C1 on N ′. We note that:

D5F (x∗, x∗, x∗, x∗, x∗) = δ2u13(x
∗, x∗, x∗) �= 0

and so we can apply the implicit function theorem15 to obtain an open set Ũ containing (x∗, x∗, x∗, x∗),
and an open set V containing x∗, and a unique function Φ : Ũ → V, such that:

u3(v,w,x) + δu2(w, x, y) + δ2u1(x, y,Φ(v,w,x, y)) = 0 for all (v,w, x, y) ∈ Ũ (5.26)

and:
Φ(x∗, x∗, x∗, x∗) = x∗ (5.27)

Further, Φ is C1 on Ũ . Clearly, we can pick an open set Û ⊂ Ũ , with Û containing (x∗, x∗, x∗, x∗),

14The use of stable manifold theory to optimal growth was pioneered by Scheinkman (1976). Since then, it has
figured prominently in the theoretical work of Araujo and Scheinkman (1977) and Santos (1991), and in numerous
applications of this theory to dynamic macroeconomic models.

15See, for example, Rosenlicht (1986), p.205-209.
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such that Φ(Û) ⊂ Q.
Define the set U ′ = {(v′, w′, x′, y′) ∈ R4 : (v′,w′, x′, y′) = (v − x∗, w − x∗, x − x∗, y − x∗) for

some (v,w, x, y) ∈ Û}. Thus, U ′ is a neighborhood of (0, 0,0, 0), a translation of the set Û by
subtraction of the point (x∗, x∗, x∗, x∗) from each point (v,w, x, y) ∈ Û . Now, define G : U ′ → R

4

as follows:

G1(X1,X2,X3,X4) = X2

G2(X1,X2,X3,X4) = X3

G3(X1,X2,X3,X4) = X4

G4(X1,X2,X3,X4) = Φ(x∗ +X1, x∗ +X2, x∗ +X3, x∗ +X4)− x∗




(5.28)

Note that G(0, 0,0, 0) = (0, 0, 0, 0), using (5.27).
The Ramsey-Euler dynamics near the steady state is governed by (5.26). This gives rise to

the (four-dimensional) dynamical system:

Xt+1 = G(Xt) (5.29)

In order to apply the standard form of the Stable Manifold Theorem, however, we need to
transform the variables appearing in this dynamical system.

To this end, we proceed as follows. Given G, we can calculate the Jacobian matrix of G at
(0, 0,0, 0) :

JG(0) =




0 1 0 0
0 0 1 0
0 0 0 1

Φ1(x
∗, x∗, x∗, x∗) Φ2(x

∗, x∗, x∗, x∗) Φ3(x
∗, x∗, x∗, x∗) Φ4(x

∗, x∗, x∗, x∗)


 (5.30)

The entries in the last row of JG(0) can be related to the second-order derivatives of u at
(x∗, x∗, x∗). Differentiating (5.26) with respect to v,w, x, y and evaluating the relevant derivatives
at (v,w, x, y) = (x∗, x∗, x∗, x∗), we obtain:

u31(x
∗, x∗, x∗) + δ2u13(x

∗, x∗, x∗)Φ1(x
∗, x∗, x∗, x∗) = 0

u32(x
∗, x∗, x∗) + δu21(x

∗, x∗, x∗) + δ2u13(x
∗, x∗, x∗)Φ2(x

∗, x∗, x∗, x∗) = 0
u33(x

∗, x∗, x∗) + δu22(x
∗, x∗, x∗) + δ2u11(x

∗, x∗, x∗) + δ2u13(x
∗, x∗, x∗)Φ3(x

∗, x∗, x∗, x∗) = 0
δu23(x

∗, x∗, x∗) + δ2u12(x
∗, x∗, x∗) + δ2u13(x

∗, x∗, x∗)Φ4(x
∗, x∗, x∗, x∗) = 0

(5.31)
These equations yield:

Φ1(x
∗, x∗, x∗, x∗) = −(1/δ2)

Φ2(x
∗, x∗, x∗, x∗) = −

[u32(x∗, x∗, x∗) + δu21(x∗, x∗, x∗)]

δ2u13(x∗, x∗, x∗)

Φ3(x∗, x∗, x∗, x∗) = −
[u33(x

∗, x∗, x∗) + δu22(x
∗, x∗, x∗) + δ2u11(x

∗, x∗, x∗)]

δ2u13(x∗, x∗, x∗)

Φ4(x
∗, x∗, x∗, x∗) = −

[δu23(x
∗, x∗, x∗) + δ2u12(x

∗, x∗, x∗)]

δ2u13(x∗, x∗, x∗)




(5.32)
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Define the Vandermonde matrix:

P =




1 1 1 1
β1 β3 β2 β4

β2
1 β2

3 β2
2 β2

4

β3
1 β3

3 β3
2 β3

4


 (5.33)

Note that the unusual order in the Vandermonde matrix is to be explained by the fact that the
characteristic roots β1 and β3 are less than one in absolute value, while β2 and β4 are greater than
one in absolute value. [This order becomes important in the application of the Stable Manifold
Theorem below]. Define the diagonal matrix of characteristic values:

B =



β1 0 0 0
0 β3 0 0
0 0 β2 0
0 0 0 β4


 (5.34)

Now, denoting by A the Jacobian matrix JG(0), we can verify (using (5.30),(5.32) and (5.11))
that:

AP = PB =



β1 β3 β2 β4

β2
1 β2

3 β2
2 β2

4

β3
1 β3

3 β3
2 β3

4

β4
1 β4

3 β4
2 β4

4


 (5.35)

This means that (β1, β3, β2, β4) are the characteristic roots of A, with the column vectors of P
constituting a set of characteristic vectors of A, corresponding to these characteristic roots. The
Vandermonde matrix is known to be non-singular16, so we get the spectral decomposition:

P−1
AP = B (5.36)

Returning now to our dynamical system (5.29), we rewrite it as:

Xt+1 = AXt + [G(Xt) −AXt] (5.37)

Multiplying through in (5.37) by P−1, we obtain:

P−1Xt+1 = (P−1
AP )P−1Xt + [P−1G(PP−1Xt)− (P−1

AP )P−1Xt] (5.38)

Thus, using (5.36), and defining new variables Y = P−1X, we get:

Yt+1 = BYt + [P−1G(PYt)− BYt] (5.39)

Denote by U the set {Y : Y = P−1X for some X ∈ U ′}, and define g : U → R4 as follows:

g(Y ) = P−1G(PY )− BY (5.40)

16Several methods are known for computing the inverse of a Vandermonde matrix. For one such approach, see
Parker (1964).
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Note that by (5.28), we have:
g(0, 0, 0,0) = (0, 0, 0, 0) (5.41)

Also, we obtain by differentiating (5.40) and evaluating the derivatives at (0, 0, 0, 0) :

Jg(0) = P−1JG(P0)P − B = P−1JG(0)P − B = P−1
AP − B = 0 (5.42)

Thus, the dynamical system (5.39) can now be written as :

Yt+1 = BYt + g(Yt) (5.43)

with g(0) = 0 and Jg(0) = 0.
The Stable Manifold Theorem can be applied to the dynamical system (5.43). We give below

the particular statement of it (due to Irwin (1970)) that is directly applicable17.

Stable Manifold Theorem for a Fixed Point (Irwin):
Let E = E1 × E2 be a Banach Space and let T1 : E1 → E1 and T2 : E2 → E2 be isomorphisms
with max{‖T1‖, ‖T

−1
2 ‖} < 1. Let U be an open neighborhood of 0 in E and let g : U → E be

a Cr map (r ≥ 1) with g(0) = 0 and Dg(0) = 0. Let f = T1 × T2 + g . Then, there exist open
balls C and D centered at 0 in E1 and E2 respectively, and a unique map H : C → D such that
f(graph(H)) ⊂ graph(H). The map H is Cr on the open ball C and DH(0) = 0. Further, for
all z ∈ C ×D, fn(z) → 0 as n→ ∞ if and only if z ∈ graph(H)).

To apply the theorem, we define the maps T1 : R2 → R2 and T2 : R2 → R2 as follows:

T1(z) =

[
β1 0
0 β3

] [
z1
z2

]
;T2(z) =

[
β2 0
0 β4

] [
z1
z2

]

Note that:

T−1
2 (z′) =

[
(1/β2) 0

0 (1/β4)

] [
z′1
z′2

]

so that, using (5.25), we have ‖T1‖ < 1 and ‖T−1
2 ‖ < 1. Applying the theorem in our context

(with r = 1) we get the C1 function H with the properties stated above. We wish to conclude
from this that the policy function, h, is C1 in a neighborhood of (x∗, x∗).

First, we note that H(0,0) = (0, 0). To see this, we check that f (0, 0, 0,0) = g(0, 0,0, 0) =
(0, 0,0, 0) by (5.41), so that fn(0, 0, 0, 0) = (0, 0, 0, 0), and so by the Stable Manifold Theorem,
(0, 0,0, 0) ∈ graph(H). That is, H(0, 0) = (0, 0).

Next, we define a function, K : R2 × R2 × C → R4 as follows:

K(a, b, z) = P−1(a, b)− (z,H(z)) (5.44)

Clearly, K is C1 on its domain, and K(0,0, 0, 0, 0,0) = (0, 0, 0, 0), since H(0, 0) = (0, 0). Further,
the matrix (DjKi(0, 0, 0, 0,0, 0)), where i = 1, 2,3, 4 and j = 3, 4, 5, 6 can be checked to be

17A good exposition of Irwin’s result can be found in Franks (1979).
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non-singular. To see this, denote P−1 by R, and write R as follows:

R =

[
R11 R12

R21 R22

]

where each Rij (with i = 1, 2; j = 1, 2) a 2 × 2 matrix. Then, we have:

(DjK
i(0,0, 0, 0, 0,0)) =

[
R12 −I
R22 0

]

where I is the 2 × 2 identity matrix, and 0 is the 2 × 2 null matrix. Thus, the matrix
(DjK

i(0, 0, 0, 0, 0, 0)) is non-singular if and only if R22 is non-singular. To verify that R22 is
non-singular, we write (by definition of R) :

[
R11 R12

R21 R22

] [
P11 P12

P21 P22

]
=

[
I 0
0 I

]

where each Pij (with i = 1, 2; j = 1, 2) is a 2 × 2 sub-matrix of P . This yields the equations:

R21P11 +R22P21 = 0
R21P12 +R22P22 = I

}
(5.45)

Clearly, P11 is non-singular, since det(P11) = β3 − β1 < 0 (by (5.25)). Thus, R21 = −R22P21P
−1
11

(from the first equation of (5.45)) and using this in the second equation of (5.45), we obtain
R22[P22 − P21P

−1
11 P12] = I. This establishes that R22 is non-singular.

We can now use the implicit function theorem to obtain an open set E ′ ⊂ R2 containing
(0, 0), an open set C ′ ⊂ C containing (0, 0), and an open set E ′′ ⊂ R2 containing (0, 0), and
unique functions L1 : E ′ → E ′′ and L2 : E ′ → C ′, such that:

K(a, L1(a),L2(a)) = 0 for all a ∈ E ′ (5.46)

and:
L1(0, 0) = (0, 0); L2(0, 0) = (0, 0) (5.47)

Further, L1 and L2 are C1 on E ′. Using the definition of K, we have from (5.46) :

P−1(a, L1(a)) = (L2(a),H(L2(a))) for all a ∈ E ′ (5.48)

Now, we look at the optimal policy function, h. Pick 0 < ε′ < ε (where ε is given as in
Section 5.1) so that (−ε′, ε′)4 ⊂ U ′ (where U ′ is given as in (5.28)), and P−1z ∈ C ×D for all
z ∈ (−ε′, ε′)4. Denote (−ε′, ε′) by S.

Pick any (z1, z2) ∈ S2. Define (x1, x2) = (x∗, x∗) + (z1, z2). Then the sequence {xt} satisfying
xt+2 = h(xt, xt+1) for t ≥ 1 is well-defined and xt → x∗ as t → ∞. Thus, the sequence {zt}
satisfying zt = xt−x∗ for t ≥ 1 is well-defined and zt → 0 as t→ ∞. Further, since (z1, z2) ∈ S2,
we have zt ∈ S for all t ≥ 1 (by the proof of Theorem 2). Then, we have:

(zt, zt+1, zt+2, zt+3) ∈ U ′ for t ≥ 1 (5.49)
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and:
P−1(zt, zt+1, zt+2, zt+3) ∈ C ×D for t ≥ 1 (5.50)

Using (5.28) and (5.49), we can write for t ≥ 1,

f (P−1(zt, zt+1, zt+2, zt+3)) = P−1(zt+1, zt+2, zt+3,Φ(x∗ + zt, x
∗ + zt+1, x

∗ + zt+2, x
∗ + zt+3)− x∗)

(5.51)
Using (5.12), we have for t ≥ 1,

u3(x
∗ + zt, x

∗ + zt+1, x
∗ + zt+2) + δu2(x

∗ + zt+1, x
∗ + zt+2, x

∗ + zt+3)

+ δ2u1(x
∗ + zt+2, x

∗ + zt+3, x
∗ + zt+4) = 0 (5.52)

Using (5.26) and (5.49), we have for t ≥ 1,

u3(x
∗ + zt, x

∗ + zt+1, x
∗ + zt+2) + δu2(x

∗ + zt+1, x
∗ + zt+2, x

∗ + zt+3)

+ δ2u1(x
∗ + zt+2, x

∗ + zt+3,Φ(x∗ + zt, x
∗ + zt+1, x

∗ + zt+2, x
∗ + zt+3)) = 0 (5.53)

Note that by (5.49), Φ(x∗ + zt, x
∗ + zt+1, x

∗ + zt+2, x
∗ + zt+3) ∈ Q. Since u13 > 0 on Q3, (5.52)

and (5.53) yield (by an application of the Mean Value theorem):

Φ(x∗ + zt, x
∗ + zt+1, x

∗ + zt+2, x
∗ + zt+3) = x∗ + zt+4 (5.54)

Using (5.54) in (5.51), we obtain:

f(P−1(zt, zt+1, zt+2, zt+3)) = P−1(zt+1, zt+2, zt+3, zt+4) for t ≥ 1 (5.55)

We can infer from (5.55) that:

fn(P−1(z1, z2, z3, z4)) = P−1(zn+1, zn+2, zn+3, zn+4) for n ≥ 1 (5.56)

Since the right hand-side of (5.56) converges to (0, 0, 0, 0) as n→ ∞,wemust have fn(P−1(z1, z2, z3, z4)) →
(0, 0,0, 0) as n→ ∞. By the Stable Manifold Theorem, then, we must have:

P−1(z1, z2, z3, z4) ∈ graph(H) (5.57)

Define a function ψ : S2 → R
2 by:

ψ(z1, z2) = (h(x∗ + z1, x
∗ + z2)− x∗, h(x∗ + z2, h(x

∗ + z1, x
∗ + z2))− x∗) for all z ∈ S2

Then ψ(0, 0) = (0, 0) and (5.57) shows that, given any z = (z1, z2) ∈ S2, we must have
P−1(z, ψ(z)) ∈ graph(H). Thus, given any z ∈ S2, there is z′ ∈ C, such that:

P−1(z, ψ(z)) = (z′,H(z′))

Clearly, such a z′ must be unique. Thus, there is a function, K : S2 → C such that:

P−1(z, ψ(z)) = (K(z),H(K(z))) for all z ∈ S2 (5.58)
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Note that since ψ(0, 0) = (0, 0), (5.58) implies that K(0, 0) = (0,0). Defining S′ = S2 ∩ E ′, we
have from (5.58),

P−1(z, ψ(z)) = (K(z),H(K(z))) for all z ∈ S ′ (5.59)

On the other hand, from (5.48), we have:

P−1(z, L1(z)) = (L2(z),H(L2(z))) for all z ∈ S ′ (5.60)

Since L1 and L2 are the unique functions satisfying (5.60) and (5.47), and since ψ(0, 0) = (0, 0)
and K(0, 0) = (0, 0), we must have ψ = L1 and K = L2 on S ′. Since L1 is C1 on S ′, we can
conclude that ψ is C1 on S ′. Using the definition of ψ , it follows that the optimal policy function,
h, is C1 on S ′.

6 Concluding Remarks

The purpose of the paper was to complete the program sketched in the contribution of Samuelson
(1971), by providing both a complete local and global analysis of the model under which the
standard results of the Ramsey model continue to hold even with dependence of tastes between
periods. We approached the problem by trying to identify structures in the reduced form of the
model under which this would be true. The reduced form model involves a utility function which
depends on the values of the state variable (capital stock) at three successive dates (instead of
the usual two).We showed that supermodularity of the reduced form utility function (in the three
variables), and a single-crossing condition provides such a structure. The methods used indicate
that our results should generalize to situations in which the reduced form utility function depends
on the values of the state variable in more than three periods (which correspond to situations in
which utility function used to evaluate current consumption depends on several periods of past
consumption).

We examined the implication of this structure for the model of Samuelson (1971) with in-
tertemporal dependence of tastes. Our analysis indicated the conditions on the primitive form
of the model under which the assumptions on the corresponding reduced form are met. It also
indicated plausible scenarios in which the stated assumptions on the reduced-form would not be
satisfied. Thus, identifying these assumptions provides a good handle on the richer dynamics
that this model can generate when these assumptions fail; exploration of this topic is undertaken
in Mitra and Nishimura (2001).

Application of our methods to models of habit formation is a natural direction of enquiry.
The model of Boyer (1978) on habit formation, where utility is assumed to be increasing both in
current and in past consumption, can be accommodated in our framework. Other frameworks
of habit formation, where utility is increasing in present consumption, but decreasing in past
consumption, are ruled out by the basic assumptions of our model. However, we indicated with
an example that our methods and results are valid in some of these frameworks of habit formation
as well. Models of habit formation leading to non-concave utility functions cannot be directly
addressed by the methods of this paper, and constitute a potentially interesting area of future
research.

33



References

[1] A.B. Abel (1990), Asset Prices under Habit Formation and Catching up with the Joneses,
American Economic Review Papers and Proceedings, 38-42.

[2] R. Amir (1996), “Sensitivity Analysis of Multisector Optimal Economic Dynamics”, Journal
of Mathematical Economics, 25, 123-141.

[3] R. Amir, L.J. Mirman andW.R. Perkins (1991), “One-Sector Nonclassical Optimal Growth:
Optimality Conditions and Comparative Dynamics”, International Economic Review, 32,
625-792.

[4] A. Araujo (1991), “The Once but not Twice Differentiability of the Policy Functions”,
Econometrica, 59, 1381-1393.

[5] A. Araujo and J.A. Scheinkman (1977), “Smoothness, Comparative Dynamics, and the
Turnpike Property”, Econometrica, 45, 601-620.

[6] R. Becker and J. Boyd (1997), Capital Theory, Equilibrium Analysis, and Recursive Utility,
Basil Blackwell: Oxford.

[7] J. Benhabib and K. Nishimura (1985), “Competitive Equilibrium Cycles”, Journal of Eco-
nomic Theory, 35, 284-306.

[8] B.D. Bernheim and D. Ray (1987), “Economic Growth with Intergenerational Altruism”,
Review of Economic Studies, 54, 227-243.

[9] M.Boyer (1978), “A Habit Forming Optimal Growth Model”, International Economic Re-
view, 19, 585-609.

[10] C.W. Clark (1976), ”A Delayed-Recruitment Model of Population Dynamics, with an Ap-
plication to Baleen Whale Populations”, Journal of Mathematical Biology, 3, 381-391.

[11] S. Chakravarty and A.S. Manne (1968), “Optimal Growth when the Instantaneous Utility
Function Depends Upon the Rate of Change of Consumption”, American Economic Review,
58, 1351-1354.

[12] P. Dasgupta (1974), “On Some Problems Arising from Professor Rawls’ Conception of Dis-
tributive Justice”, Theory and Decision, 4, 325-344.

[13] A. Deaton (1992), Consumption, Oxford University Press.

[14] J. Franks (1979), “Manifolds of Cr Mappings and Applications to Differentiable Dynamical
Systems”, Studies in Analysis, Gian-Carlo Rota (editor), New York: Academic Press, 271-
290.

[15] D.Gale (1967), “OnOptimalDevelopment in a Multi-SectorEconomy”, Review of Economic
Studies, 34, 1-18.

34



[16] M.L.J.Hautus and Bolis, T.S.(1979), “ARecursive Real Sequence”, American Mathematical
Monthly, 86, 865-866.

[17] G.M. Heal and H.E. Ryder (1973), “Optimal Growth with Intertemporally Dependent Pref-
erences”, Review of Economic Studies, 40, 1-31.

[18] M.C. Irwin (1970), “On the Stable Manifold Theorem”, Bulletin of the London Mathematical
Society, 2, 196-198.

[19] K. Iwai (1972), “Optimal Economic Growth and Stationary Ordinal Utility: A Fisherian
Approach”, Journal of Economic Theory, 5, 121-151.

[20] E. Kohlberg (1976), “A Model of Economic Growth with Altrusim Between Generations”,
Journal of Economic Theory, 13, 1-13.

[21] T.C. Koopmans (1960), “Stationary Ordinal Utility and Impatience”, Econometrica, 28,
287-309.

[22] T.C. Koopmans, P.A. Diamond, and R.E. Williamson (1964), “Stationary Ordinal Utility
and Time Perspective”, Econometrica, 32, 82-100.

[23] J. Lane and T. Mitra (1981), “On Nash Equilibrium Programs of Capital Accumulation
Under Altruistic Preferences”, International Economic Review, 22, 309-331.

[24] T.Mitra and K.Nishimura (2001), “Cyclical and Chaotic Optimal Paths in a Model with
Intertemporal Complementarity”, mimeo.

[25] T. Mitra and K. Nishimura (2003), “Simple Dynamics in a Model of Habit Formation”,
mimeo.

[26] L. Montrucchio (1998), “Thompson Metric, Contraction Property and Differentiability of
Policy Functions”, Journal of Economic Behavior and Organization, 33, 449-466.

[27] F.D. Parker (1964), “Inverses of Vandermonde Matrices”, American Mathematical Monthly,
71, 410-411.

[28] M. Rosenlicht (1986), Introduction to Analysis, Dover: New York.

[29] S.M. Ross (1983), Introduction to Stochastic Dynamic Programming, Academic Press: New
York.

[30] P.A. Samuelson (1971), “Turnpike Theorems even though Tastes are Intertemporally De-
pendent”, Western Economic Journal, 9, 21-26.

[31] M.S. Santos (1991), “Smoothness of the Policy Function in Discrete-Time Economic Mod-
els”, Econometrica, 59, 1365-1382.

[32] J.A. Scheinkman (1976), “OnOptimal Steady States of n-sectorGrowthModels whenUtility
is Discounted”, Journal of Economic Theory, 12, 11-20.

35



[33] S.M. Sundaresan (1989), “Intertemporally Dependent Preferences and the Volatility of Con-
sumption and Wealth”, Review of Financial Studies, 2, 73-89.

[34] D. Topkis (1968), “Minimizing a Submodular Function on a Lattice”, Operations Research,
26, 305-321.

[35] D. Topkis (1998), Supermodularity and Complementarity, Princeton University Press.

[36] H.Y. Wan (1970), “Optimal Savings Programs Under Intertemporally Dependent Prefer-
ences”, International Economic Review, 11, 521-547.

36


