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ABSTRACT

We investigate the implications of two protective properties, sustain-

ability and exemption, when imposed separately in conjunction with other

basic properties for the resolution of conflicting claims. Under the pro-

tective properties, agents with sufficiently small claims in relation to the

others are fully reimbursed. We show that the constrained equal awards

rule is the only rule satisfying (1) sustainability and claims monotonicity,

(2) sustainability and super-modularity, and (3) exemption, order preser-

vation, and bilateral consistency. Then, we extend the notions of the

protective properties to groups of agents, and show that no rule satisfies

any of these extensions. Journal of Economic Literature Classification

Numbers: D63, D74.

Keywords: claims problems; sustainability; exemption; constrained equal

awards rule.
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any remaining deficiency.
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1 Introduction

We consider the problem of distributing an infinitely divisible and homo-

geneous resource among agents having claims on it. An example is when

the liquidation value of a bankrupt firm has to be divided among its cred-

itors. A rule is a function that associates with each problem of this kind,

called a “claims problem”, a division of the amount available, called an

“awards vector”. How should the division be performed? The literature

devoted to the search for the desirable rules is initiated by O’Neill [7].1

Our goal is to conduct a systematic analysis of two “protective” prop-

erties introduced by Herrero and Villar [5,6]. The properties are intended

to fully reimburse agents with relatively small claims. Such preferential

treatment is a common phenomenon in the world. For example, think

of the interpretation of a claims problem as a particular tax-assessment

problem. Here agents’ claims correspond to their pre-taxed incomes, and

the amount available to “the total amount of their post-taxed incomes”

(the difference between the sum of their pre-taxed incomes and the to-

tal amount of income taxes). How should agents’ post-taxed incomes be

assigned?2 We often observe that agents with relatively low incomes are

exempted from income taxation. In other words, their pre-taxed incomes

are equal to their post-taxed incomes. The question is how small a claim

should be relative to both other claims and the amount available to make

the protective treatment desirable.

Herrero and Villar [5,6] formulate two standards of smallness: agent

i’s claim ci is “sustainable” if truncating all claims at ci results in a sit-

uation where there is enough to fully reimburse everyone; agent i’s claim

ci is “exemptive” if it is not greater than equal division. The first prop-

1For a comprehensive survey of this literature, see Thomson [10].
2This problem can be understood as the “dual” of the tax-assessment problem

considered by Young [15,16]. In that model, agents’ claims correspond to their pre-
taxed incomes, and the amount available to the total amount of income taxes. Thus,
Young’s tax-assessment problem focuses on how to allocate the total amount of income
taxes. However, our tax-assessment problem emphasizes on how to assign agents’ post-
taxed incomes.

3



erty, sustainability, says that if an agent’s claim is sustainable, he should

be fully compensated. The second property, exemption, says that if an

agent’s claim is exemptive, he should be fully compensated. Note that

sustainability implies exemption. However, the converse is not true. For

a rule satisfying a variable-population property to be defined shortly, ex-

emption implies sustainability (Proposition 1).

Herrero and Villar [5,6] find that the constrained equal awards rule3,

which assigns equal amounts to all agents subject to no one receiving more

than his claim, satisfies sustainability. They then base characterizations

of the rule on this property when imposed in conjunction with two other

appealing properties. The first one is a composition property. When the

amount available decreases from some initial value, there are two ways to

look at the situation. We can cancel the initial division and recalculate

the awards for the revised amount available. Alternatively, we can take

the initial awards calculated on the basis of the initial amount available

as claims in dividing the revised amount available. Composition down

(Moulin [8]) says that both procedures should produce the same awards

vector. The second one is the variable-population property alluded to in

the previous paragraph. Suppose that an awards vector is chosen for a

problem. Consistency (Aumann and Maschler [1]; Young [15,16]) says

that this awards vector should be in agreement with the awards vector

chosen for any problem obtained by imagining some agents leaving with

their awards, and re-evaluating the situation from the viewpoint of the

remaining agents.4

Herrero and Villar [5,6] show that the constrained equal awards rule

is the only rule satisfying sustainability and composition down, and that

it is the only rule satisfying exemption, composition down, and “bilateral

consistency”5. Composition down is an attractive property but unfortu-

3For earlier references, see Aumann and Maschler [1] and Dagan [3].
4For a comprehensive survey of the literature on consistency and its converse, see

Thomson [11].
5It is a weaker version of consistency, which restricts attention to two-agent sub-

groups.

4



nately it is not satisfied by many well-known rules, such as the “Talmud

rule”6. One may wonder whether the characterizations could be obtained

by replacing composition down with some other property that would be

satisfied more generally. We will identify several such properties.

We consider first claims monotonicity. It says that when an agent’s

claim increases, he should not receive less than what he did initially. We

show that, surprisingly, this very mild property and sustainability to-

gether are satisfied only by the constrained equal awards rule (Theorem 1).

Next, we turn to two order properties. Order preservation (Aumann and

Maschler [1]) says that of two agents, the one with the larger claim should

not receive less than the other. Also, his loss (the difference between his

claim and his award) should not be less than the other’s. Super-modularity

(Dagan, Serrano, and Volij [4]) says that when the amount available in-

creases, of two agents, the one with the larger claim should not receive a

smaller share of the increment than the other. We show that sustainability

and super-modularity are satisfied only by the constrained equal awards

rule (Theorem 2), and that exemption, order preservation, and bilateral

consistency are satisfied only by the rule (Theorem 3).

We replace composition down in Theorem 2.1 of Herrero and Villar [5]

with claims monotonicity or super-modularity. In addition, composition

down in Theorem 2 of Herrero and Villar [6] is replaced with order preser-

vation. These replacements are significant since a number of well-known

rules satisfy claims monotonicity, super-modularity, and order preserva-

tion, but not composition down. Examples are the Talmud rule, “Piniles

rule”, and the “random arrival rule”.

In the case of claims problems, suppose that a rule is characterized

by a list of properties for problems involving only two agents. In ad-

dition, it satisfies bilateral consistency and a converse of this property,

“converse consistency”. Then, its characterization can be extended to

more than two agents by imposing bilateral consistency or converse con-

6This rule is defined by Aumann and Maschler [1] to rationalize the recommenda-
tions made in the Talmud for several numerical examples.
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sistency. Such extensions are immediate consequences of the “Elevator

Lemma”, which states that if a rule satisfies bilateral consistency, and

in the two-agent case, coincides with some other rule that satisfies con-

verse consistency, then the two rules coincide in general.7 For instance,

the constrained equal awards rule is the only rule satisfying sustainability

and composition down (Herrero and Villar [5] Theorem 2.1). Note that

sustainability and exemption are equivalent in the two-agent case. Thus,

the rule is the only rule satisfying exemption and composition down in

that case. Since it satisfies bilateral consistency and converse consistency,

the Elevator Lemma gives us two results: the constrained equal awards

rule is the only rule satisfying exemption, composition down, and bilateral

consistency (Herrero and Villar [6] Theorem 2), and it is the only rule sat-

isfying exemption, composition down, and converse consistency (Yeh [14]

Theorem 2).

Therefore, the Elevator lemma and our new characterizations of the

constrained equal awards rule together give us another group of charac-

terizations of the rule: it is the only rule satisfying exemption, claims

monotonicity, and bilateral consistency (Proposition 2) or converse con-

sistency (Proposition 3), and it is the only rule satisfying exemption,

super-modularity, and bilateral consistency (Proposition 4) or converse

consistency (Proposition 5).

Finally, we formulate versions of sustainability and exemption for groups

by taking the arithmetic average of claims of a group of agents. We show

that no rule satisfies any of them (Theorems 4 and 5). Thus, taking the

arithmetic average of claims of a group of agents to extend the notions of

the protective properties is too demanding.

The paper is organized as follows. In Section 2, we introduce the

model, the constrained equal awards rule, and the protective properties.

7The lemma is introduced by Thomson [11] and stated in a “model-free” fashion.
It says that if a (possibly multi-valued) rule satisfies consistency and is a subrule of a
conversely consistent rule in the two-agent case, then the inclusion holds in general.
The lemma as stated here is the special case for single-valued rules. For this expression
and a study of the lemma, see Thomson [11].

6



In Section 3 we present our results and check the independence of the

properties appearing in each of our characterizations. In Sections 4 and 5,

we state the dual parts of our characterizations, and extend the ideas of

the protective properties to groups of agents. Following Section 5 is the

conclusion.

2 The model, the constrained equal awards

rule, and the protective properties

There is an infinite set of “potential” agents, indexed by the set of natural

numbers N. Let N be the class of finite subsets of N. Given N ∈ N , an

amount available E ∈ R+ of an infinitely divisible and homogeneous

resource has to be distributed among a group of agents N having claims

on it.8 For each i ∈ N , let ci be agent i′s claim. Let c ≡ (ci)i∈N be

the claims profile. A claims problem for N is a pair (c, E) ∈ RN
+ ×R+

such that
∑

i∈N ci ≥ E.9 Let CN be the class of claims problems. An

awards vector for (c, E) ∈ CN is a point x ∈ RN such that 0 5 x 5 c

and
∑

i∈N xi = E.10 Let X (c, E) be the set of all awards vectors for

(c, E). A rule is a function defined on
⋃

N∈N CN that associates with each

N ∈ N and each claims problem (c, E) ∈ CN an awards vector in X (c, E).

Our generic notation for rules is ϕ. For each group N ′ ⊂ N , we denote

cN ′ ≡ (ci)i∈N ′ , ϕN ′ (c, E) ≡ (ϕi (c, E))i∈N ′ , and so on.

We now formally define the constrained equal awards rule and the

protective properties.

Constrained equal awards rule, CEA: For each N ∈ N , each (c, E) ∈
CN , and each i ∈ N , CEAi(c, E) ≡ min {ci, λ}, where λ is chosen such

that
∑

i∈N CEAi (c, E) = E.

8By R+ we denote the set of real numbers, R+ ≡ {x ∈ R | x ≥ 0}.
9By RN

+ we denote the Cartesian product of |N | copies of R+, indexed by the
elements of N .

10Vector inequalities: x = y, x ≥ y, and x > y.
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Sustainability: For each N ∈ N , each (c, E) ∈ CN , and each i ∈ N ,

if
∑

j∈N min {cj, ci} ≤ E, then ϕi (c, E) = ci.

Exemption: For each N ∈ N , each (c, E) ∈ CN and each i ∈ N , if

ci ≤ E
|N | , then ϕi (c, E) = ci.

Note that sustainability and exemption are equivalent in the two-agent

case, and that sustainability implies exemption in general. Moreover, as

we show in the next section, exemption, when imposed together with a

variable-population property to be defined shortly, implies sustainability.

3 The results

The following lemma plays an important role in our presentation. To

introduce it, we define two variable-population properties. Consider a

problem and suppose that a rule has been chosen to solve the problem.

Then, an awards vector is obtained for the problem. Now, imagine that

some agents leave with their awards. The first variable-population prop-

erty says that when the situation is re-evaluated from the viewpoint of

the remaining agents, the rule should recommend the same awards for the

remaining agents as initially.

Consistency: For each N ∈ N , each N ′ ⊂ N , and each (c, E) ∈ CN , if

x ≡ ϕ (c, E), then xN ′ = ϕ
(
cN ′ ,

∑
i∈N ′ xi

)
.

A weaker version of consistency is defined by restricting attention to

two-agent subgroups.

Bilateral consistency: For each N ∈ N , each (c, E) ∈ CN , and each

N ′ ⊂ N with |N ′| = 2, if x ≡ ϕ (c, E), then xN ′ = ϕ
(
cN ′ ,

∑
i∈N ′ xi

)
.

Suppose that an awards vector x for a problem is such that its restric-

tion to each two-agent group would be chosen by the rule for the problem

of dividing between them the sum of their components of x. The second
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variable-population property says that x should be chosen by the rule for

the original problem.

Converse consistency: For each N ∈ N , each (c, E) ∈ CN , and each

x ∈ X (c, E), if for each N ′ ⊂ N with |N ′| = 2, xN ′ = ϕ
(
cN ′ ,

∑
i∈N ′ xi

)
,

then x = ϕ (c, E).

The lemma is known as the Elevator Lemma.

Elevator Lemma (Thomson [11]) If a rule ϕ is bilaterally consistent and

coincides with a conversely consistent rule ϕ′ in the two-agent case, then

ϕ coincides with ϕ′ in general.

Proof. See Thomson [11].

Notice that sustainability implies exemption. However, it is easy to

check that the converse is not true. As we show next, provided consistency

holds, exemption implies sustainability. Let n be the cardinality of N .

Proposition 1 If a rule satisfies exemption and consistency, then it sat-

isfies sustainability.

Proof. Let ϕ be a rule satisfying exemption and consistency. Let N ∈ N
and (c, E) ∈ CN . Let Nsus (c, E) ≡

{
i ∈ N

∣∣∣∑j∈N min {cj, ci} ≤ E
}

. We

assume that Nsus (c, E) 6= ∅ since otherwise there is nothing to check. Let

j ≡ max {i ∈ Nsus (c, E) | for each k ∈ Nsus (c, E) , ck ≤ ci}. Without loss

of generality, we assume that c1 ≤ c2 ≤ · · · ≤ cn. It follows that for each

k ∈ {1, 2, . . . , j}, k ∈ Nsus (c, E). We show that for each k ∈ {1, 2, . . . , j},
ϕk(c, E) = ck. The proof is by induction on k.

Case 1: k = 1. Since j ∈ Nsus (c, E), then
∑j−1

k=1 ck + (n− j + 1) cj ≤
E. Note that c1 ≤ c2 ≤ · · · ≤ cn. Thus, nc1 ≤ E. By exemption,

ϕ1(c, E) = c1.

Case 2: k > 1. By induction hypothesis, suppose that for each k ∈
{1, 2, . . . , t}, ϕk (c, E) = ck, where t ∈ N such that t < j. We show
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Figure 1: Illustration of the Proof of Theorem 1. The claims of
agents 1 and 2 are sustainable. Agent 4 receives the smallest amount
among the agents whose claims are not sustainable.

that ϕt+1 (c, E) = ct+1. Let N ′ ≡ {t + 1, t + 2, · · · , n}. Since
∑j−1

k=1 ck +

(n− j + 1) cj ≤ E and ct+1 ≤ ct+2 ≤ · · · ≤ cj ≤ · · · ≤ cn, then ct+1 ≤
E−∑t

k=1 ck

n−t
. By exemption, ϕt+1

(
cN ′ , E −∑t

k=1 ck

)
= ct+1. By induction

hypothesis, for each k ∈ {1, 2, . . . , t}, ϕk (c, E) = ck. By consistency,

ϕt+1 (c, E) = ϕt+1

(
cN ′ , E −∑t

k=1 ck

)
. Thus, ϕt+1 (c, E) = ct+1. Q.E.D.

3.1 Claims monotonicity

We first investigate the implication of sustainability when imposed to-

gether with a monotonicity property. This property says that if an agent’s

claim increases, he should not receive less than what he did initially.11

Claims monotonicity: For each N ∈ N , each (c, E) ∈ CN , each i ∈ N ,

and each c′i ∈ R+, if c′i > ci, then ϕi (c
′
i, c−i, E) ≥ ϕi (c, E).

All well-known rules satisfy this property. Examples are the “propor-

tional” rule, the constrained equal awards rule, the “constrained equal

losses” rule (Dagan [3]), Piniles’ rule (Piniles [9]), random arrival rule,

and the Talmud rule. Observe that among them, the constrained equal

awards rule is the only rule satisfying sustainability. In fact, as we show

next, sustainability and claims monotonicity altogether are satisfied only

by this rule.

11By the notation (c′i, c−i), we mean the claims vector c in which the i-th component
has been replaced by c′i and c−i ≡ (cj)j∈N\{i}.
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Theorem 1 The constrained equal awards rule is the only rule satisfying

sustainability and claims monotonicity.

Proof. (Figure 1) Obviously, the constrained equal awards rule satisfies

the two properties. Conversely, let ϕ be a rule satisfying the properties.

Let N ∈ N and (c, E) ∈ CN . Without loss of generality, we assume that

c1 ≤ c2 ≤ · · · ≤ cn. Let Nsus (c, E) ≡
{

i ∈ N
∣∣∣∑j∈N min {cj, ci} ≤ E

}
,

x ≡ CEA(c, E), and y ≡ ϕ(c, E). We show that x = y.

Suppose, by contradiction, that x 6= y. By sustainability, for each

i ∈ Nsus (c, E), yi = ci. Thus, for each i ∈ Nsus (c, E), yi = xi. Note that

for each i ∈ N\Nsus (c, E), xi = λ < ci where λ is such that
∑

i∈N xi = E.

Since
∑

i∈N xi =
∑

i∈N yi and x 6= y, there is k ∈ N\Nsus (c, E) such

that yk < λ < ck. Let j ∈ N\Nsus (c, E) be such that yj = ymin ≡
mini∈N\Nsus(c,E) yi. Since yj ≤ yk and j ∈ N\Nsus (c, E), then yj < λ < cj.

Let c′ be such that c′j ≡ λ and c′−j ≡ c−j. Note that yj < c′j and y−j 5 c′−j.

Thus, E =
∑

i∈N yi <
∑

i∈N c′i. It follows that (c′, E) is well-defined. Note

that
∑

i∈N min
{
c′j, c

′
i

}
= E. By sustainability, ϕj(c

′, E) = c′j = λ. By

claims monotonicity, ϕj(c
′, E) ≤ ϕj (c, E). Thus, λ ≤ yj in violation of

λ > yj. Q.E.D.

Notice that exemption is equivalent to sustainability in the two-agent

case, and that the constrained equal awards rule is bilaterally consistent

and conversely consistent. With these facts, the next two results are im-

mediate consequences of Theorem 1 and the Elevator Lemma together.

Proposition 2 The constrained equal awards rule is the only rule satis-

fying exemption, claims monotonicity, and bilateral consistency.

Proof. Obviously, the constrained equal awards rule satisfies the three

properties. Conversely, let ϕ be a rule satisfying the properties. Note that

exemption is equivalent to sustainability in the two-agent case. Thus,

Theorem 1 implies that ϕ = CEA in that case. Note that ϕ is bilater-

ally consistent, and that the constrained equal awards rule is conversely

consistent. By the Elevator Lemma, ϕ = CEA in general. Q.E.D.
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Proposition 3 The constrained equal awards rule is the only rule satis-

fying exemption, claims monotonicity, and converse consistency.

Proof. Obviously, the constrained equal awards rule satisfies the three

properties. Conversely, let ϕ be a rule satisfying the properties. Note that

exemption is equivalent to sustainability in the two-agent case. Thus,

Theorem 1 implies that ϕ = CEA in that case. Note that ϕ is conversely

consistent, and that the constrained equal awards rule is bilaterally con-

sistent. By the Elevator Lemma, ϕ = CEA in general. Q.E.D.

3.2 Super-modularity

We next switch our attention to an order property. It says that when the

amount available increases, of two agents, the one with the larger claim

should not receive a smaller share of the increment than the other (Dagan,

Serrano, and Volij [4]).

Super-modularity: For each N ∈ N , each (c, E) ∈ CN , each E < E ′,

and each pair {i, j} ⊆ N , if
∑

i∈N ci ≥ E ′ and ci ≤ cj, then ϕi (c, E
′) −

ϕi (c, E) ≤ ϕj (c, E ′)− ϕj (c, E).

All rules we have mentioned in Section 3.1 satisfy this property. How-

ever, there is no logical relation between claims monotonicity and super-

modularity. The “constrained egalitarian rule” (Chun, Schummer, and

Thomson [2]) satisfies the former but not the latter. The following rule

satisfies the latter but not the former. Given N ∈ N and (c, E) ∈ CN

with c1 ≤ c2 ≤ · · · ≤ cn, if N ≡ {i, j} and cj = 2ci, then we apply the

Talmud rule; otherwise, we apply the proportional rule.

Note that super-modularity implies another order property defined

next. It says that of two agents, the one with the larger claim should

not receive less than the other. Also, his loss should not be less than the

other’s (Aumann and Maschler [1]).

Order preservation: For each N ∈ N , each (c, E) ∈ CN , and each pair

12



rc1 x1 = y1

rc2 x2 = y2

r
r

rc3 = y′3

x3

y3

λ
r

r
r

c4y′4

x4
y4

rrr
y′5

c5

x5

y5
r
r

r
y′6

c6

x6

y6

Figure 2: Illustration of the Proof of Theorem 2. The claims of
agents 1 and 2 are sustainable. Agent 2 receives the largest amount among
the agents whose claims are sustainable.

{i, j} ⊆ N , if ci ≤ cj, then ϕi (c, E) ≤ ϕj (c, E). Also, ci − ϕi (c, E) ≤
cj − ϕj (c, E).

We use this implication to prove the next result.

Theorem 2 The constrained equal awards rule is the only rule satisfying

sustainability and super-modularity.

Proof. (Figure 2) Obviously, the constrained equal awards rule satisfies

these properties. Conversely, let ϕ be a rule satisfying the properties. Let

N ∈ N and (c, E) ∈ CN . Without loss of generality, we assume that

c1 ≤ c2 ≤ · · · ≤ cn. Let Nsus (c, E) ≡
{

i ∈ N
∣∣∣∑j∈N min {cj, ci} ≤ E

}
,

x ≡ CEA(c, E), and y ≡ ϕ(c, E). We show that x = y.

Suppose, by contradiction, that x 6= y. By sustainability, for each

i ∈ Nsus (c, E), yi = ci. Thus, for each i ∈ Nsus (c, E), xi = yi. Let

k ≡ max {i ∈ Nsus (c, E) | for each j ∈ Nsus (c, E) , yj ≤ yi}. Note that

ck < ck+1 ≤ · · · ≤ cn. Since super-modularity implies the first part of

order preservation, yk ≤ yk+1 ≤ yk+2 ≤ · · · ≤ yn. Note that for each

i ∈ Nsus (c, E), yi = xi, and that for each i ∈ N\Nsus (c, E), xi = λ < ci

where λ is such that
∑

i∈N xi = E. Since
∑

i∈N xi =
∑

i∈N yi and x 6= y, it

follows that yk+1 < λ < ck+1, and that there is j > k+1 such that λ < yj ≤
cj. Thus, yk+1 < yj. Let E ′ ≡ ∑

i∈Nsus(c,E) ci + |N\Nsus (c, E)| ck+1. Since

ck+1 ≤ ck+2 ≤ · · · ≤ cn, then E ′ ≤ ∑
i∈N ci. Thus, (c, E ′) is well-defined.

Since for each i ∈ N\Nsus (c, E), λ < ci, then E < E ′. Let y′ ≡ ϕ(c, E ′).

Note that
∑

i∈N min {ci, ck+1} = E ′, and that c1 ≤ c2 ≤ · · · ≤ cn. By

13



sustainability, for each i ≤ k + 1, y′i = ci. Note that ck+1 ≤ cj. By the

first part of order preservation, y′k+1 ≤ y′j. Recall that
∑

i∈N y′i = E ′,

and that for each i ≤ k + 1, y′i = ci. It follows that y′j = y′k+1 = ck+1.

Thus, when the amount available increases from E to E ′, the increments

of agents k +1 and j are y′k+1−yk+1 = ck+1−yk+1 and y′j−yj = ck+1−yj.

Recall that yk+1 < yj. It follows that y′k+1 − yk+1 > y′j − yj in violation of

super-modularity. Q.E.D.

Again, the next two propositions are immediate consequences of The-

orem 2 and the Elevator Lemma together. We state them without proofs.

Proposition 4 The constrained equal awards rule is the only rule satis-

fying exemption, super-modularity, and bilateral consistency.

Proposition 5 The constrained equal awards rule is the only rule satis-

fying exemption, super-modularity, and converse consistency.

3.3 Order preservation

In the proof of Theorem 2, we use the fact that super-modularity implies

order preservation. One may wonder whether super-modularity can be

replaced with order preservation in Theorem 2, Propositions 4 and 5. The

answer is no except in Proposition 4. The following example demonstrates

that if we replace super-modularity with order preservation in Theorem 2,

the constrained equal awards rule is not the only acceptable rule.

Example 1 Given N ∈ N and (c, E) ∈ CN with c1 ≤ c2 ≤ · · · ≤ cn,

ϕ∗ (c, E) ≡





(0, E) if N ≡ {i, j} , ci < cj, and E ≤ ci,
(E − ci, ci) if N ≡ {i, j} , ci < cj, and ci < E ≤ 2ci,
(ci, E − ci) if N ≡ {i, j} , ci < cj, and 2ci < E ≤ ci + cj,
CEA (c, E) otherwise.

The next example is a rule that differs from the constrained equal

awards rule and satisfies exemption, order preservation, and converse con-

sistency.

14



Example 2 Given N ∈ N and (c, E) ∈ CN with c1 ≤ c2 ≤ · · · ≤ cn,

ϕ∗∗ (c, E) ≡
{

ϕ∗ (c, E) if N ≡ {1, 2} ,
CEA (c, E) otherwise .

However, as we show next, if we replace super-modularity with order

preservation in Proposition 4, the constrained equal awards rule is still

the only rule satisfying exemption, order preservation, and bilateral con-

sistency. Thus, Proposition 4 can be seen as a corollary of the next result.

Theorem 3 The constrained equal awards rule is the only rule satisfying

exemption, order preservation, and bilateral consistency.

Proof. Obviously, the constrained equal awards rule satisfies the three

properties. The proof of uniqueness is in two steps. Step 1 establishes

that in the two-agent case, if a rule satisfies the three properties, then

it is the constrained equal awards rule. Step 2 completes the proof by

applying Step 1 and the Elevator Lemma. Let ϕ be a rule satisfying the

three properties.

Step 1: For each N ∈ N with |N | = 2 and each (c, E) ∈ CN ,

ϕ (c, E) = CEA (c, E).

Let N ≡ {i, j} ∈ N and (c, E) ∈ CN . Without loss of generality, we

assume that ci ≤ cj. Let Nsus (c, E) ≡
{

i ∈ N
∣∣∣ ∑

j∈N min {cj, ci} ≤ E
}

,

x ≡ CEA (c, E), and y ≡ ϕ (c, E). We show that x = y. If |Nsus (c, E)| =
2, then E =

∑
k∈N ck. It follows that x = y. If |Nsus (c, E)| = 1, then

2ci ≤ E < ci + cj. By exemption, yi = ci. Thus, yi = xi. Since
∑

k∈N xk =∑
k∈N yk = E, then yj = xj. If |Nsus (c, E)| = 0, then xi = xj = E

2
. Let

l ∈ N\N be an agent with claim cl ≡ E
2
. Let N ′ ≡ {l, i, j}, c′ ≡ (cl, ci, cj)

and E ′ ≡ E + E
2
. Since

∑
k∈N ′\{l} c′k = ci + cj ≥ E and c′l = cl = E

2
,

then (c′, E ′) is well-defined. Note that c′l = E
2

= E′
3

. By exemption,

ϕl(c
′, E ′) = E′

3
. Since |Nsus (c, E)| = 0, then E

2
< ci = c′i. Thus, c′l <

c′i ≤ c′j. By order preservation, ϕl (c
′, E ′) ≤ ϕi (c

′, E ′) ≤ ϕj (c′, E ′). Note

that
∑

k∈N ′ ϕk (c′, E ′) = E ′, and that ϕl (c
′, E ′) = E′

3
. Thus, ϕi (c

′, E ′) =
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ϕj (c′, E ′) = E′
3

. When agent l leaves with his award E′
3

, the reduced prob-

lem with respect to {i, j} and ϕ (c′, E ′) is equivalent to (c, E). By bilateral

consistency, ϕi (c
′, E ′) = ϕi

(
c′{i,j}, E

′ − E′
3

)
= ϕi (c, E) and ϕj (c′, E ′) =

ϕi

(
c′{i,j}, E

′ − E′
3

)
= ϕj (c, E). Since ϕi (c

′, E ′) = ϕj (c′, E ′) = E′
3

= E
2
,

then x = y.

Step 2: Completion of the proof.

Notice that the constrained equal awards rule is conversely consistent.

By Step 1 and the Elevator Lemma, we conclude that ϕ = CEA. Q.E.D.

3.4 Independence of the properties

Here, we discuss what additional rules would be made possible by removing

one property at a time from the list appearing in each of previous results.

For this purpose, we introduce the following rules. The first rule assigns

amounts so as to equate the losses experienced by all agents subject to no

one receiving a negative amount.

Constrained equal losses rule, CEL: For each N ∈ N , each (c, E) ∈
CN , and each i ∈ N , CELi(c, E) ≡ max {0, ci − λ}, where λ is chosen

such that
∑

i∈N CELi(c, E) = E.

The second one assigns equal amounts to the agents with the smallest

claim until they are fully compensated. The remainder is then divided

similarly to the agents with the second smallest claim, and so on.

Example 3 (Herrero and Villar [5]) Let ϕ′ be defined as follows. Let

N ∈ N , (c, E) ∈ CN , and N0 ≡ ∅. Given k ∈ N such that 1 ≤ k ≤ |N |, let

Nk (c) ≡ {
i ∈ N

∣∣ci = minj∈N\∪s<kNs(c) cj

}
and yk ≡ minj∈N\∪s<kNs(c) cj.

Now, for each i ∈ Nk (c),

ϕ′i (c, E) ≡




0
E−∑

s<k|Ns(c)|ys

|Nk(c)|
ci

if 0 ≤ E ≤ ∑
s<k |Ns (c)| ys,

if
∑

s<k |Ns (c)| ys < E ≤ ∑
s≤k |Ns (c)| ys,

otherwise.
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Property \ Rule CEL ϕ′ ϕ′′ ϕ∗∗

sustainability No Yes No Yes
exemption No Yes Yes Yes
claim monotonicity Yes No Yes No
super-modularity Yes No Yes No
order preservation Yes No Yes Yes
bilateral consistency Yes Yes No No
converse consistency Yes Yes No Yes

Table 1: Independence of the properties in each of our results

The last one consists of two parts. The first part deals with the situa-

tions in which the number of agents is 3 and agents’ claims are different.

When equal division is at most as large as the smallest claim, the rule

assigns equal amounts to all agents. When equal division is greater than

the smallest claim, the rule fully reimburses the agent with the smallest

claim. Then the agent with the second smallest claim receives equal di-

vision plus one-third of the difference between the equal division and the

smallest claim. The last agent then receives the remainder. Continue this

procedure subject to no one receiving more than his claim; otherwise, the

constrained equal awards rule is applied.

Example 4 (Yeh [14]) Let ϕ′′ be defined as follows. Let N ∈ N and

(c, E) ∈ CN . Without loss of generality, we assume that c1 ≤ c2 ≤
· · · ≤ cn. Then,

ϕ′′ (c, E) ≡
{

ϕ∗∗∗ (c, E) if |N | = 3 and for each pair {i, j} ⊂ N , ci 6= cj,
CEA (c, E) otherwise.

where ϕ∗∗∗ is defined as follows: let N ≡ {i, j, k} and (c, E) ∈ CN with

ci < cj < ck.

ϕ∗∗∗ (c, E) ≡




(
E
3
, E

3
, E

3

)
(
ci,

E
3

+ 1
3

(
E
3
− ci

)
, E

3
+ 2

3

(
E
3
− ci

))
(ci, cj, E − ci − cj)

if E
3
≤ ci,

if ci < E
3
≤ ci+3cj

4
,

otherwise.
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Table 1 shows that the properties appearing in each of our results are

independent. For example, ϕ′ satisfies sustainability but not claims mono-

tonicity. The constrained equal losses rule satisfies claims monotonicity

but not sustainability. Thus, the properties in Theorem 1 are independent.

4 Dual results

In the literature on axiomatic claims problems, the dual of a characteriza-

tion can be derived by exploiting dual relations between rules, and between

properties of rules. Given a rule ϕ, its dual, denoted by ϕd, is obtained by

first replacing the amount available with its “complement” (the difference

between the sum of the claims and itself), then applying ϕ to distribute

that difference, and finally subtracting the resulting awards vector from

the claims vector. Formally, for each N ∈ N and each (c, E) ∈ CN ,

ϕd(c, E) ≡ c − ϕ(c,
∑

i∈N ci − E). Clearly, the constrained equal awards

rule and the constrained equal losses rule are dual of each other (Herrero

and Villar [6]).

Similarly, any property can also be associated with its dual. We say

that two properties are dual if whenever a rule satisfies one of them, its

dual satisfies the other.12 The dual of sustainability and exemption are

“independence of residual claims” and “exclusion”, respectively (Herrero

and Villar [5,6]). The dual of claims monotonicity is formulated by Thom-

son and Yeh [13]. Examples of the properties that are dual of themselves

are super-modularity (Thomson [12]), bilateral consistency (Herrero and

Villar [6]), converse consistency and order preservation (Thomson and

Yeh [13]).

Thus, the dual of Theorems 1, 2, and 3, are that the constrained

equal losses rule is the only rule satisfying independence of residual claims

and the dual of claims monotonicity (the dual of Theorem 1) or super-

modularity (the dual of Theorem 2), and that it is the only rule satisfying

12For a study of the dual relations between rules, and the properties of rules, see
Thomson and Yeh [13].
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exclusion, order preservation, and bilateral consistency (the dual of The-

orem 3). Similarly, the dual of Propositions 2, 3, 4, and 5 are that the

constrained equal losses rule is the only rule satisfying exclusion, the dual

of claims monotonicity, and bilateral consistency (the dual of Proposi-

tion 2) or converse consistency (the dual of Proposition 3), and that it

is the only rule satisfying exclusion, super-modularity, and bilateral con-

sistency (the dual of Proposition 4) or converse consistency (the dual of

Proposition 5).

5 Extensions

We extend the ideas of sustainability and exemption to groups of agents.

We say that the claims of a group of agents are “group sustainable” if

truncating all other claims at the arithmetic average of claims of that

group results in a situation where there is enough to fully compensate

everyone. The property, group sustainability, says that if the claims of a

group of agents are group sustainable, each agent in that group should be

fully compensated.

Group sustainability: For each N ∈ N , each (c, E) ∈ CN , and each

N ′ ⊂ N , if
∑

j∈N ′ cj +
∑

j∈N\N ′ min
{

cj,
∑

i∈N′ ci

|N ′|

}
≤ E, then ϕN ′ (c, E) =

cN ′ .

We show that such an extension of sustainability is extremely demand-

ing.

Theorem 4 No rule satisfies group sustainability.

Proof. The proof is by means of an example. Let ϕ be a rule satisfying

the property. Let N ≡ {1, 2, 3}, c ≡ (1, 5, 5), and E ≡ 9. Let x ≡
ϕ(c, E). Let N ′ ≡ {1, 2} and N ′′ ≡ {1, 3}. Note that

∑
i∈N′ ci

|N ′| = 3 and
∑

j∈N ′ cj +
∑

j∈N\N ′ min
{

cj,
∑

i∈N′ ci

|N ′|

}
= 9 = E. By group sustainability,

x1 = 1 and x2 = 5. Similarly, x1 = 1 and x3 = 5. Thus,
∑

i∈N xi = 11 > 9

in violation of
∑

i∈N xi = 9. Q.E.D.
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The intuition of Theorem 4 is that group sustainability may protect

agents whose claims are not sustainable. For instance, in the proof of

this theorem, the claim of agent 2 is not sustainable. However, when he

forms a group with agent 1, their claims are group sustainable. Then,

agent 2 is fully reimbursed by group sustainability, but not by sustainabil-

ity. The same reasoning applies for agent 3. Thus, all agents will be fully

compensated. That is impossible.

Next, we formulate a version of exemption for groups. We say that

the claims of a group of agents are “group exemptive” if the arithmetic

average of claims of this group is not greater than equal division. The

property, group exemption, says that if the claims of a group of agents are

group exemptive, each agent in that group should be fully reimbursed.

Group exemption: For each N ∈ N , each (c, E) ∈ CN , and each N ′ ⊂
N , if

∑
i∈N′ ci

|N ′| ≤ E
|N | , then ϕN ′ (c, E) = cN ′ .

As we show next, such an extension of exemption is very demanding

too. The intuition of this result is similar to that of Theorem 4.

Theorem 5 No rule satisfies group exemption.

Proof. The proof is by means of an example. Let ϕ be a rule satisfying

the property. Let N ≡ {1, 2, 3}, c ≡ (1, 4, 5), and E ≡ 9. Let N ′ ≡ {1, 2}
and N ′′ ≡ {1, 3}. Let x ≡ ϕ(c, E). Note that

∑
i∈N′ ci

|N ′| = 5
2

and E
3

= 3. By

group exemption, x1 = 1 and x2 = 4. Similarly, x1 = 1 and x3 = 5. Thus,∑
i∈N xi = 10 > 9 in violation of

∑
i∈N xi = 9. Q.E.D.

6 Conclusion

We provided a systematic analysis of sustainability and exemption when

imposed together with other natural properties, and showed that sustain-

ability and exemption have strong implications. That is, in the presence

of very mild properties such as claims monotonicity, super-modularity, or
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order preservation, only one rule satisfies sustainability and exemption sep-

arately, and this rule is the constrained equal awards rule. These results

furthered our understanding of the rule, and confirmed the importance it

has played in recent work. In addition, we extended the ideas of sustain-

ability and exemption to groups of agents, and found that no rule satisfies

each of these extensions. These impossibility results suggested that taking

the arithmetic average of claims of a group of agents to extend the ideas

of the protective properties for groups is too demanding.
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Appendix that is not part of the submission
for publication

To save space, we have included in this appendix, which is not for

publication, formal definitions of certain rules and certain properties that

play auxiliary roles. We begin with formal definitions of the proportional

rule, the Talmud rule, the Piniles’ rule, the random arrival rule, and the

constrained egalitarian rule.

The proportional rule assigns awards proportional to claims.

Proportional rule, P : For each N ∈ N , each (c, E) ∈ CN , and each

i ∈ N , Pi(c, E) ≡ λci, where λ is chosen such that
∑

i∈N Pi(c, E) = E.

The Talmud rule is defined by Aumann and Maschler [1] to rationalize

the recommendations made in the Talmud for several numerical examples.

It is a hybrid of the constrained equal awards and constrained equal losses

rules.

Talmud rule, T : For each N ∈ N , each (c, E) ∈ CN , and each i ∈ N ,

Ti(c, E) ≡
{

min
{

ci

2
, λ

}
if

∑
ci

2
≥ E,

max
{

ci

2
, ci

2
− λ

}
otherwise.

where λ is chosen such that
∑

i∈N Ti (c, E) = E.

The Piniles’ rule (Piniles [9]) can be understood as resulting from the

“twice” application of the constrained equal awards rule.

Piniles’ rule, Pin: For each N ∈ N , each (c, E) ∈ CN , and each i ∈ N ,

Pini(c, E) ≡
{

min
{

ci

2
, λ

}
if

∑
ci

2
≥ E,

ci

2
+ min

{
ci

2
, λ

}
otherwise.

where λ is chosen such that
∑

i∈N Pini (c, E) = E.

The random arrival rule (O’Neill [7]) is defined on the basis of first-

come first-serve scheme associated with any particular order in which
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agents arrive, let us take the arithmetic average of the awards vectors

calculated in this way when all orders of arrival are equally probable.

Given N ∈ N , let ΠN designate the class of bijections on N .

Random arrival rule, RA: For each N ∈ N , each (c, E) ∈ CN , and

each i ∈ N ,

RAi (c, E) ≡ 1

|N |!
∑

π∈ΠN

min



ci, max



E −

∑

j∈N,π(j)<π(i)

cj, 0







 .

The constrained egalitarian rule (Chun, Schummer, and Thomson [2])

is defined as follows: assume that c1 ≤ c2 ≤ · · · ≤ cn. For amounts

available up to
∑

ci

2
, awards are computed as for the Talmud rule. At

that point, any additional unit goes to agent 1 until he receives his claim

or half of the second smallest claim, whichever is smaller. If c1 ≤ c2
2
, he

stops at c1. If c1 > c2
2
, any additional unit is divided equally between

agents 1 and 2 until they reach c1, at which point agent 1 drops out, or

they reach c3
2
. In the first case, any additional unit goes entirely to agent

2 until he reaches c2 or c3
2
. In the second case, any additional unit is

divided equally between agents 1, 2, and 3 until they reach c1, at which

point agent 1 drops out, or they reach c4
2
, and so on.

Constrained egalitarian rule, CE: For each N ∈ N , each (c, E) ∈ CN ,

and each i ∈ N ,

CEi (c, E) ≡
{

min
{

ci

2
, λ

}
if E ≤ ∑ cj

2
,

max
{

ci

2
, min {ci, λ}

}
otherwise.

where λ is chosen such that
∑

i∈N CEi (c, E) = E.

Next is the formal definition of composition down (Moulin [8]).

Composition down: For each N ∈ N , each (c, E) ∈ CN , and each

0 ≤ E ′ ≤ E, we have ϕ (c, E ′) = ϕ (ϕ (c, E) , E ′).
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Now, we formally define the dual properties of sustainability, exemp-

tion, and claims monotonicity. We begin with the dual of sustainability.

We say that agent i’s claim is “residual” if the aggregate excess claim

relative to this agent exceeds the worth of the amount available, namely

E ≤ ∑
j∈N max {0, cj − ci}. Independence of residual claims requires that

if an agent’s claim is residual, he should get nothing.

Independence of residual claims: For each N ∈ N , each (c, E) ∈ CN ,

and each i ∈ N , if E ≤ ∑
j∈N max {0, cj − ci}, then ϕi (c, E) = 0.

Next is the dual of exemption. We say that agent i’s claim is “ex-

clusive” if his claim is not greater than the average loss, namely, ci ≤∑
j∈N cj−E

|N | . Exclusion says that if agent i’s claim is exclusive, he should

get nothing.

Exclusion: For each N ∈ N , each (c, E) ∈ CN , and each i ∈ N , if

ci ≤
∑

j∈N cj−E

|N | , then ϕi (c, E) = 0.

The dual of claims monotonicity follows. It says that if an agent’s claim

and the amount available increase by the same amount α, this agent’s

award should not increase by more than α.

Dual of claims monotonicity: For each N ∈ N , each (c, E) ∈ CN , each

i ∈ N , and α ∈ R+, we have ϕi (ci + α, c−i, E + α)− ϕi (c, E) ≤ α.

In the context, we claim that ϕ∗∗ is conversely consistent. Here we

provide a proof. The proof makes use of the facts that ϕ∗∗ satisfies “re-

source monotonicity”13 and order preservation. These facts are immediate

consequences of the definition of the rule.

Claim 1 ϕ∗∗ is conversely consistent.

13This property says that if the amount available increases, no one should receive
less than what he did initially. Formally, for each N ∈ N , each (c, E) ∈ CN , and each
E′ > E, if

∑
i∈N ci ≥ E′, then ϕ (c, E′) ≥ ϕ (c, E).
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Proof. Let N ∈ N and (c, E) ∈ CN . Without loss of generality, we

assume that c1 ≤ c2 ≤ · · · ≤ cn. Let x ∈ X (c, E) be such that for each

N ′ ⊂ N with |N ′| = 2, xN ′ = ϕ∗∗
(
cN ′ ,

∑
i∈N ′ xi

)
. Let y ≡ ϕ∗∗ (c, E). We

assume that |N | ≥ 3 since otherwise there is nothing to check. By the

definition of ϕ∗∗, y ≡ CEA (c, E). We show that x = y.

Step 1: For each k ∈ N\ {1, 2} , xk = yk. Suppose, by contradiction,

that there exists k ∈ N\ {1, 2} such that xk 6= yk. Without loss of gener-

ality, let xk > yk. Since
∑

i∈N xi =
∑

i∈N yi, then there exists k′ ∈ N\ {k}
such that xk′ < yk′ . Note that {k, k′} 6= {1, 2}. By the definition of ϕ∗∗,

we have to apply the constrained equal awards rule to the situations in-

volving only agents k and k′. If xk+xk′ ≥ yk+yk′ , then since CEA satisfies

resource monotonicity, it follows that (xk, xk′) = CEA (ck, ck′ ; xk + xk′) ≥
CEA (ck, ck′ ; yk + yk′) = (yk, yk′). Thus, xk′ ≥ yk′ in violation of xk′ < yk′ .

If xk + xk′ < yk + yk′ , then since CEA satisfies resource monotonicity, it

follows that (xk, xk′) = CEA (ck, ck′ ; xk + xk′) ≤ CEA (ck, ck′ ; yk + yk′) =

(yk, yk′). Thus, xk ≤ yk in violation of xk > yk.

Step 2: x1 = y1 and x2 = y2. Suppose, by contradiction, that x1 6= y1.

We consider two cases.

Case 1: x1 > y1. By Step 1 and the fact that
∑

i∈N xi =
∑

i∈N yi,

x1 + x2 = y1 + y2. Thus, x2 < y2. We consider three subcases.

Subcase 1.1: x1 + x2 ≤ c1. By the definition of ϕ∗, x1 = 0. Since x1 > y1,

it follows that y1 < 0 in violation of y1 ≥ 0.

Subcase 1.2: c1 < x1 + x2 ≤ 2c1. By the definition of ϕ∗, x2 = c1.

Let k ∈ N\ {1, 2}. Note that (x2, xk) = CEA (c2, ck; c1 + xk). Since

c1 ≤ c2 ≤ ck and x2 = c1, then xk = c1+xk

2
. Thus, xk = c1. By Step 1,

yk = xk. Thus, yk = c1. Note that y2 > x2 = c1 and yk = c1. It follows

that yk < y2. Since c2 ≤ ck and ϕ∗∗ satisfies order preservation, then

yk ≥ y2 in violation of yk < y2.

Subcase 1.3: 2c1 < x1 + x2 ≤ c1 + c2. Let k ∈ N\ {1, 2}. Note that

(x2, xk) = CEA (c2, ck; x2 + xk). Since c2 ≤ ck, then either x2 = c2 or
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x2 = xk (x2 = x2+xk

2
). If x2 = c2, then since x2 < y2, it follows that

c2 < y2 in violation of y2 ≤ c2. If x2 = xk, then by Step 1, yk = xk. Thus,

yk = x2. Since x2 < y2, it follows that yk < y2. Since c2 ≤ ck and ϕ∗∗

satisfies order preservation, then y2 ≤ yk in violation of yk < y2.

Case 2: x1 < y1. We consider two subcases.

Subcase 2.1: x1 + x2 ≤ 2c1. By the definition of ϕ∗, x1 ≤ c1. Let

k ∈ N\ {1, 2}. Note that (x1, xk) = CEA (c1, ck; x1 + xk). Since c1 ≤ ck

and x1 ≤ c1, then either x1 = c1 or x1 = xk (xk = x1+xk

2
). If x1 = c1, then

since x1 < y1, it follows that c1 < y1 in violation of y1 ≤ c1. If x1 = xk,

then by Step 1, yk = xk. Thus, yk = x1. Since x1 < y1, it follows that

yk < y1. Since c1 ≤ ck and ϕ∗∗ satisfies order preservation, then y1 ≤ yk

in violation of y1 > yk.

Subcase 2.2: 2c1 < x1 + x2 ≤ c1 + c2. By the definition of ϕ∗, x1 = c1.

Since x1 < y1, it follows that c1 < y1 in violation of y1 ≤ c1. Q.E.D.
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