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Abstract

The two-sample version of the celebrated Pearson (1900) goodness-of-�t problem has

been a topic of extensive research and several tests like the Kolmogorov-Smirnov,

Cramér-von Mises and Anderson-Darling tests have been suggested. Although these

tests perform fairly well as omnibus tests for comparing two samples with di¤er-

ent probability density functions (PDF), they fail to have good power particularly

against very speci�c alternatives like departures in location, scale, skewness and kur-

tosis terms. We show that a modi�ed version of Neyman smooth test based on the

empirical distribution functions (EDF) obtained from the two samples remarkably

improves the detection of directions of departure. We can identify deviations in the

mean, variance, skewness or kurtosis terms using what we call the ratio density func-

tion, which is the PDF of the probability integral transform of one sample based on

the other sample EDF. We derived Neyman�s smooth test using Rao�s score princi-

ple. We also establish a bound on the relative sample sizes of the two samples that

makes our test consistent. Furthermore, we suggest an �optimal�choice range of the

sample size of one sample compared to the other to ensure minimal size distortion in

�nite samples. As an application of our procedure we compare the age distributions

of employees with small employers in New York and Pennsylvania with group insur-

ance before and after the enactment of the �Community Rating�legislation in New

York. It has been a conventional wisdom that if community rating is enforced (where

group health insurance premium does not depend on age or any other physical char-

acteristics of the insured), then the insurance market will collapse since only older or

less healthy patients would prefer group insurance. We �nd that there are signi�cant

changes in the age distribution in the population in New York owing mainly to a

shift in the location and scale. Our extensive Monte Carlo studies also indicate that

the suggested test has attractive �nite sample properties both in terms of size and

power.



1 Introduction

One of the old, celebrated problems in statistics is the two-sample version of Pearson

(1900) goodness-of-�t problem [Lehmann (1953) and Darling (1957)]. Suppose we

have two samples X1; X2; :::; Xn and Y1; Y2; :::; Ym from two unspeci�ed absolutely

continuous distributions with cumulative distribution functions (CDF) F (x) and

G (x), respectively. The problem is to test the hypothesis H0 : F = G: Most of the

tests in the literature are based on some distance measures between the two empirical

distribution functions (EDF), Fn (x) and Gm (x) : The Kolmogorov-Smirnov criterion

uses [see, for instance, Darling (1957, p. 828)]

Dnm =

r
nm

n+m
sup

�1<x<1
jFn (x)�Gm (x)j : (1)

Cramér- von Mises statistic is based on the measure [see, for example, Anderson

(1962, p. 1148)]

W 2
nm =

nm

n+m

Z 1

�1
[Fn (x)�Gm (x)]

2 dHn+m (x) ; (2)

where Hn+m (x) is the EDF of the two samples together, i.e., Hn+m (x) = [nFn (x) +

mGm (x)]= (m+ n) : Anderson and Darling (1952) modi�cation of (2) is given by [see

Darling (1957, p. 827)]

A2nm =
nm

n+m

Z 1

�1
[Fn (x)�Gm (x)]

2  (Hn+m (x)) dHn+m: (3)

Here  (:) is some non-negative weight function chosen to accentuate the distance

between Fn (x) andGm (x) where the test is desired to have sensitivity. A statistically

appealing weight function  (u) = [u (1� u)]�1 has the e¤ect of weighing the tails

heavily since the function is large near u = 0 and u = 1 [Anderson and Darling

(1954, p. 767)]. As Darling (1957, p. 824) stated the asymptotic distribution of

these statistic are based on certain distribution analogues of the Glivenko-Cantelli

type lemma

sup
�1<x<1

jFn (x)� F (x)j ! 0 with probability 1

in the same way that the central limit theorem is a distribution analogue of the law

of large numbers. However, the computation and implementation of these tests are

not easy. Moreover, being very general, these tests do not have good �nite sample

power properties. In this paper, we propose a much simpler test forH0 using Neyman

(1937) smooth test principle.

Let us �rst consider a simpler problem, the one-sample Pearson goodness-of-
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�t test of H
0
0 : F (x) = F0 (x) where F0 (x) is a speci�ed CDF with f0 (x) as the

corresponding probability density function (PDF). De�ne the probability integral

transform (PIT)

zi = F0 (xi) =

Z xi

�1
f0 (!) d!: (4)

If H
0
0 is true, then Z1; Z2; :::; Zn are independently and identically distributed (IID)

as U (0; 1) irrespective of F0. And we can test H0 by testing uniformity of Z in (0; 1) :

Therefore, in some sense, �all�testing problems can be converted into testing only

one kind of hypothesis [see Neyman (1937, pp. 160-162) and Bera and Ghosh (2001,

p. 1)]. Neyman (1937) considered the following smooth alternative to the uniform

density

h (z) = c (�) exp

"
kX
j=1

�j�j (z)

#
; 0 < z < 1; (5)

where c (�) is the constant of integration depending on �1; �2; :::; �k; �j (z) are orthog-

onal polynomials1 of order j satisfyingZ 1

0

�i (z)�j (z) dz = �ij where �ij = 1 if i = j

= 0 if i 6= j:

(6)

We can test H 0
0 : F (x) = F0 (x) by testing H

00
0 : �1 = �2 = ::: = �k = 0 in (5): Using

the generalized Neyman-Pearson (N-P) lemma, Neyman (1937) derived the locally

most powerful symmetric test for H
00
0 against the alternative H1 :At least one �i 6= 0;

for small values of �i: Under H0; asymptotically the test statistic

	2k =
kX
j=1

u2j � �2k where uj =
1p
n

nX
i=1

�j (zi) ; j = 1; :::; k: (7)

Neyman suggested this test to rectify some of the drawbacks of Pearson (1900)

goodness-of-�t statistic [see Bera and Ghosh (2001) for more on this issue and for a

1Neyman (1937) used �j (y)
0
s as the orthogonal polynomials which can be obtained by using

the following conditions,

�j (y) = aj0 + aj1y + :::+ ajjy
j ; ajj 6= 0;

given the restrictions of orthogonality given in (6). Solving these the �rst �ve �j (y) are (Neyman
1937, pp. 163-164)
�0 (y) = 1;
�1 (y) =

p
12
�
y � 1

2

�
;

�2 (y) =
p
5
�
6
�
y � 1

2

�2 � 1
2

�
;

�3 (y) =
p
7
�
20
�
y � 1

2

�3 � 3 �y � 1
2

��
;

�4 (y) = 210
�
y � 1

2

�4 � 45 �y � 1
2

�2
+ 9

8
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historical perspective], and called it a smooth test since the alternative density (5) is

close to the null density U (0; 1) for small �s and has few intersections with the null

density.

Now turning to the problem of testing H0 : F = G in the two sample case, let

us start assuming that F (:) is known. We construct a new random variable Z by

de�ning Zj = F (Yj) ; j = 1; 2; :::;m: The CDF of Z is given by

H (z) = Pr (Z � z) = Pr (F (Y ) � z)

= Pr
�
Y � F�1 (z)

�
= G

�
F�1 (z)

�
= G (Q (z)) (8)

where Q (z) = F�1 (z) is the quantile function of Z: Therefore, the PDF of Z can be

written as [see Neyman (1937, p. 161), Pearson (1938, p. 138) and Bera and Ghosh

(2001, p. 185)]

h (z) =
d

dz
H (z) =

g (Q (z))

f (Q (z))
; 0 < z < 1: (9)

Although this is the ratio of two PDFs, h (z) is a proper density function in that

sense that h (z) � 0; z 2 (0; 1) and
R 1
0
h (z) dz = 1; if we assume that F and G

are also strictly increasing functions. In the literature the PDF h (:) is known under

di¤erent names. Cwik and Mielniczuk (1989) termed it the relative density, while

Parzen (1992, p. 7) and Handcock and Morris (1999, p. 22) called it the compari-

son density function and the density ratio, respectively. We will call it ratio density

function (RDF) since it is both a ratio of two densities and a proper density function

itself. Under H0 : F = G; h (z) = 1; i.e., Z � U (0; 1) : And, under the alternative

hypothesis H1 : F 6= G; h (z) will di¤er from 1 and that provides a basis for the

Neyman smooth test. Under the alternative, we take h (z) as given in (5) and test

�1 = �2 = ::: = �k = 0. Therefore, the test utilizes (9) which looks more like a �like-

lihood ratio�. To see the exact form of h (z), let us consider some particular cases.

When the two distributions di¤er only in location; for example, f (:) � N (0; 1) and

g (:) � N (�; 1) ; ln(h (z)) = �z � 1
2
�2 which is linear in z: Similarly, if the distribu-

tions di¤er in scale parameter, such as, f (:) � N (0; 1) and g (:) � N (0; �2) ; �2 6= 1;
ln (h (z)) = z2

2

�
1� 1

�2

�
� 1

2
ln�2; a quadratic function of z: As plotted in Figure 1,

the �rst and second-order normalized polynomials �1 (z) and �2 (z) can capture this

type of di¤erences in location and scale aspects of the distributions. In Figure 2, we

provide plots of h (z) when f (:) and g (:) di¤er respectively in skewness and kurto-

sis terms. These plots very closely resemble the plots of the third and the fourth

normalized Legendre polynomials �3 (z) and �4 (z) plotted in Figure 3. Therefore,

we believe that the test will not only be powerful but also will be informative on
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identifying particular source(s) of departure(s) from H0:

Figure 1: Plots of �1 (z) and �2 (z) :

Figure 2. Plots of RDF with di¤erent skewness and kurtosis terms
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Figure 3: Plots of �3 (z) and �4 (z) :

This approach to testing H0 : F = G is related to those based on the distance

functions between F and G mentioned earlier. Under Neyman�s smooth test for-

mulation, we consider the distance between h (z) and 1, i:e: d
dz
[G (F�1 (z))� z] ;

0 < z < 1: G (F�1 (z)) � z is a familiar quantity in the literature of tests based on

di¤erences of EDFs, such as those mentioned in (1)-(3). Due to the equality [see

Ser�ing (1980, pp. 110-111)]

sup
�1<x<1

jF (x)�G (x)j = sup
0<z<1

��G �F�1 (z)�� z
�� ;

we can transform the domain from (�1;1) to (0; 1) :Moreover,
p
m [Gm (F

�1 (z))� z]

converges to the well-known Brownian bridge process in distribution [see, for in-

stance, Billingsley (1968, p. 104)]. Neyman�s smooth test simpli�es the problem

even further by looking at the distance of h (z) from 1 towards a particular direction

speci�ed by (5) [see Figure B for the directions using Legendre polynomials]. In the

next section we derive Neyman�s smooth test using Rao�s (1948) score test principle

for testing H0 : �1 = �2 = ::: = �k = 0 in (5), assuming F (:) is known. In Section

3, we allow F (:) to be unknown and use ẑj = Fn (yj) ; i.e., we get the EDF of one

population and then consider the PIT of the sample from the other population. Re-

placing F (:) by Fn (:) requires careful theoretical considerations and these are also

addressed in Section 3.
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2 Neyman Smooth Test

For simplicity we �rst consider the test when F (x) is known and we use of the

PIT as de�ned by Zj = F (Yj) : Neyman (1937) derived a locally most powerful

symmetric (regular) unbiased test (or critical region) for H0 : �1 = �2 = ::: = �k = 0

in (5) against H1 : at least 1 �i 6= 0 , and he called it an unbiased critical region

of type-C. This type-C critical region is an extension of the locally most powerful

unbiased (LMPU) test (type-A region) of Neyman and Pearson (1936) from a single

parameter case to a multiparameter situation. Let us denote the power function

as � (�1; �2; :::; �k) = � (�) � �: Assuming, that the power power function � (�) is

twice di¤erentiable in the neighborhood of H0 : � = 0; Neyman (1937, pp. 166-167)

formally required that an unbiased critical region of type-C of size � should satisfy

the following conditions :

1: � (0; 0; :::0) = �: (10)

2: �j =
@�

@�j

����
�=0

= 0; j = 1; 2; :::; k: (11)

3: �jl =
@2�

@�j@�l

����
�=0

= 0; j; l = 1; 2; :::; k; j 6= l: (12)

4: �jj =
@2�

@�2j

����
�=0

=
@2�

@�21

����
�=0

; j = 2; 3; :::k: (13)

5: And �nally, the common value of @
2�
@�2j

���
�=0
is the maximum over all such regions

satisfying the conditions (10)-(13).

It is clear that conditions (10) and (11) are respectively for the size and

unbiasedness. Conditions (12) and (13) ensures that equal departures from � = 0;

in all directions should lead to the same power. Therefore, for this type-C critical

region the approximate power function is � (�) = � + 1
2
�11
Pk

j=1 �
2
j : Neyman (1937)

used (5) as the PDF under the alternative hypothesis. After considerable algebra [see

Neyman (1937, pp. 169-180)] and using multiparameter version of the generalized

Neyman-Pearson lemms, Neyman obtained his optimal test statistic. His resulting

statistic, however, takes a very simple form as given below.

Proposition 1 (Neyman, 1937) The type-C critical region is given by

	2k =
kX
j=1

u2j � C� (14)
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where uj = 1p
m

Pm
i=1 �j (zi) ; and for large m the critical point C� is determined from

Pr [�2k � C�] = �.

We now show that the test statistic 	2k can simply be obtained using Rao(1948)

score (RS) test principle. Taking (5) as the PDF under the alternative hypothesis,

the log-likelihood function l (�) can be written as

l (�) = m ln c (�) +
kX
j=1

�j

mX
i=1

�j (zi) : (15)

The RS test for testing the null H0 : � = �0 is given by

RS = s (�0)
0 I (�0)�1 s (�0) (16)

where s (�) is the score vector @l (�) =@� and I (�) is the information matrixE
h
�@2l(�)
@�@�0

i
:

In our case �0 = 0: It is easy to see that

s (�j) =
@l (�)

@�j

= m
@ ln c (�)

@�j
+

mX
i=1

�j (zi)

= m
@ ln c (�)

@�j
+
p
muj; j = 1; 2; :::; k: (17)

From (5),
R 1
0
h (z) dz = 1: Di¤erentiating this identity with respect to �j

@c (�)

@�j

Z 1

0

exp

"
kX
j=1

�j�j (z)

#
dz + c (�)

Z 1

0

exp

"
kX
j=1

�j�j (z)

#
�j (z) dz = 0: (18)

Evaluating this under � = 0; we have @ ln c(�)
@�j

���
�=0

= 0 and under the null

s (�j) =
p
muj: (19)

To get the information matrix, let us �rst note from (17) that

@2l (�)

@�j@�l
= m

@2 ln c (�)

@�j@�l
, (20)

which is a constant. Therefore, under H0 the (j; l)th element of the information

matrix I (�) is simply �m@2c (�) =@�j@l evaluated at � = 0: Di¤erentiating (18) with

7



respect to �l and evaluating it at � = 0; after some simpli�cation we have

@2c (�)

@�j@�l

����
�=0

+

Z 1

0

�j (z)�l (z) dz = 0: (21)

Using (6)
@2C (�)

@�j@�l

����
�=0

= ��jl; (22)

and

I (�0) = mIk; (23)

where Ik is a k � k identity matrix. Combining (16), (20) and (23) the RS test

statistic has the simple form

RS =

kX
j=1

u2j : (24)

The test is transformed into the problem of testing �uniform�distribution of Zi,

i = 1; 2; :::; n against the smooth alternative with density function

h (y) = C (�) exp

"
kX
j=1

�j�j (y)

#
;

where C (�) is a normalizing constant. If we denote logC (�) =  (�) ; we may

re-write the density in the form

h (y) = exp

"
 (�) +

kX
j=1

�j�j (y)

#
: (25)

This choice of the alternative can be recast into the well-known Maximum Entropy

characterization. Suppose, we have k�restrictions on the random variable Zi given

by [see for example, Kagan, Linnik, Rao and Ramachandran (1973), p. 409] 2

E [�j (z)] = cj; j = 1; 2; :::; k: (26)

Then, among all possible distributions, the density function that maximizes the en-

tropy �E [ln f (x)] has the form (25). In this sense, we are testing for the most

�plausible�density function that satis�es the required conditions in (26) and maxi-

mizes the entropy measure.

The components that Neyman considered in his test is connected to an ANOVA

2We can interpret it as k moment conditions in a more general framework without the orthogonal
polynomials �j ; this problem can be extended to a GMM framework, which is a topic of out future
research.
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like decomposition of the distribution. If we consider the classical Cramér- von Mises

test for H0 : FX (:) is uniformly distributed against H1 : FX (:) is not uniformly

distributed, the test statistic is

CvM = n

Z 1

0

h
F̂X (y)� y

i2
dy;

(or equivalently, if we test that H0 : FX (:) = F0 (:) against H1 : FX (:) 6= F0 (:) ;

we consider n
R 1
0

h
F̂X (:)� F0 (:)

i2
dF0 (:)) where F̂X (:) is the empirical distribution

function of Xi: Now, if we consider the following Fourier transform

�2j�1 =

Z 1

0

cos (2�jx) dF (x)

�2j =

Z 1

0

sin (2�jx) dF (x) ; j = 1; 2; :::;

then the testing problem is equivalent to testing H0 : �j = 0; j = 1; 2; :::: against

H1 :at least one of the �j 6= 0: If we let �̂j be the empirical Fourier coe¢ cients, then
the CvM test can be expressed as

CvM =
n

2�2

1X
j=1

j�2
�
�̂22j�1 + �̂22j

�
: (27)

From the representation in (27), we can see that the classical CvM test (and also

K-S) put increasingly smaller weights (j�2) to high frequency components (i.e. put a

weight j�2 to ei2�jx with large j). hese weights (j�2) make the CvM type test e¤ec-

tively only use the �rst few components of �j: In Neyman�s smooth test formulation,

instead of putting a decreasing weight to the components, the selected components

are equally weighted. This allows us to focus on the selected directions of departure

from the null distribution, this makes the smooth test superior when we are trying

to identify speci�c directions of departure and not just an overall departure [see, for

example, Durbin and Knott (1972), Eubank and LaRiccia (1992) for studies on this

issue]. Durbin and Knott (1972) also suggested that when using a slightly di¤erent

representation for the term Znj in their decomposition (see Durbin 1972) given in

(27) for testing goodness-of-�t, usually the �rst few �js should be examined, this is

essentially the same spirit as the Neyman�s smooth test with k�components.
The basic idea of the decomposition of the Cramér- von Mises statistic is to

consider a Fourier transform on F (y) ; y 2 [0; 1] to the frequency domain �j; j =

9



1; 2; ::: and thus the population version of the statistic

n

Z 1

0

[FX (y)� y]2 dy

can be expressed as in (27). Given a �nite sample fX1; X2; :::; Xng ; the empirical
Fourier coe¢ cients �̂1; �̂2; :::; �̂n are a su¢ cient statistic, and consequently the origibal

testing problem is equivalent to the test H 0
0 : �j = 0; j = 1; 2; :::; n:

If there is a priori evidence that the two samples di¤er mostly at low frequencies,

then Neyman Smooth test with a choice of small k can indeed be a powerful test.

In some applications however, it is desirable to choose the parameter �k� in the

construction of Neyman�s test. In other applications, we may want k to be even an

increasing parameter with the sample size; say, n and choose k using some model

selection criterion, such as the Schwarz�s criterion (see for example, Ledwina 1994).

When choosing the ideal value of k; we have to consider two aspects. One one side,

a large value of k can potentially di¤erentiate between two distribution in several

directions (particularly, in high frequency data this might be useful). On the other

hand, if k is too high there are two possible problems. First the e¤ectiveness of te

test in each direction would be diluted as pointed out by Neyman himself. Second,

the accumulated stochastic errors discussed in Section 3 in each direction would be

large and deteriorate the performance of the resulting test.

3 Testing Equality of Distributions Using the Smooth

In practice, we have to relax the assumption of known distribution function in the

two sample case. We consider again two-samples of n and m observations fXigni=1
and fYigmi=1 from unknown distributions with CDFs F (x) and G (x) ; and test the

hypothesis H0 : F = G; the underlying distribution being otherwise unspeci�ed.

Without the knowledge about the distribution function F; Zi = F (Yi) is unknown

and thus 	2k is infeasible. Instead, we consider using the empirical distribution

function (EDF)

Fn (x) =
1

n

nX
i=1

I (Xi � x) ; (28)

in place of F and construct

Ẑi = Fn (Yi) =
1

n

nX
l=1

I (Xl � Yi) ; i = 1; :::;m: (29)

10



where I (:) is the indicator function. Substituting Zi by Ẑi in the formula of the

statistic 	2k; we obtain the following generalized version of the smooth test using the

EDF Fn

	̂2k =

kX
j=1

"
1p
m

mX
i=1

�j

�
Ẑi

�#2
: (30)

As noted earlier, the infeasible test 	2k converges to a �
2-distribution with degree

of freedom k and can be interpreted using Rao�s score test principles. Now, we

want to show that under certain regularity conditions, 	̂2k has the same limiting

distribution. To obtain the asymptotic �2-distribution for 	̂2k; we need to show that

the errors coming from estimating F by the EDF Fn is asymptotically zero. As

will be clear in our later analysis and in the proofs given in the Appendix, this

asymptotic result does not hold true automatically even with both m and n ! 1:

In fact, di¤erent expansion rates for m and n are required to preserve the �2 limiting

distribution.

We summarize the result in the following Theorem 1, whose proof is given in the

Appendix.

Theorem 1 Under the null hypothesis that F=G, if (log logn)m
n

! 0 as m;n ! 1,
	̂2k ) �2k:

From the above Theorem 1 we can see that the size of the sample used in estimat-

ing the distribution function should be larger in magnitude than the other sample

size. The reason for this requirement is the following. If we estimate the CDF of X

based on observations fXigni=1 ; Fn converges to F at the rate
p
n (pointwise), i.e.

the estimation error in Ẑi is of the order n�
1
2 : Thus, notice that �j (:) is �rst-order

Lipschitz continuous, the accumulated estimation error in 1p
m

Pm
i=1 �j

�
Ẑi

�
has the

order m
1
2n�

1
2 ; which goes to zero if n increases to 1 at a rate faster than m:

Let us try to give a heuristic justi�cation of the results given here. To obtain

consistent tests, we require that the size of the sample that is used to estimate the

empirical distribution (n) should be larger than the size of the sample in the �2

approximation (m). Intuitively, the errors of the preliminary estimation of z is of

order n�
1
2 : These preliminary estimation errors would be accumulated in then sec-

ond stage when we ake sum of m z0s; which is necessary to obtain the assymptotic

�2-approximation. Roughly speaking, the aggregated errors from the preliminary

distributional estimation is of order
p
m=
p
n: To obtain consistent tests, this error

term should go to zero, as the sample size increases. Consequently, the distribution

function F (:) should be estimated with higher accuracy than the second stage �2

approximation. The same problem exists in similar statistical applications. For ex-

ample, the situation in our case is similar, but not exactly the, to the methods of

11



simulation based inference (e.g. Gourieroux and Monfort 1996), where, for exam-

ple, the conditional moment are estimated based on simulation. If the number of

simulation increases fast enough relative to the sample size, the simulation method

estimator has the same asymptotic distribution as the corresponding estimator as if

the conditional moment is known.

Theorem 1 provides an upper bound for m given n so that we still have a con-

sistent �2 test using the EDF Fn. Under this condition, a wide range of sample

sizes can be chosen and all provie asymptotically equivalent tests, although the �nite

sample performance of these tests may di¤er substantially. A natural question to

ask is: what is the optiomal rate of m relative to n?

Theorem 2 Under the null hypothesis,

	̂2k = �2 +Op

�
1p
m

�
+Op

�r
m

n

�
;

and thus the optimal relative magnitude ofm and n that minimizes the size distortion

is m = O
�
n
1
2

�
:

Heuristically, we can decompose

1p
m

mX
i=1

�j

�
Ẑi

�
into

1p
m

mX
i=1

�j (Zi) +
1p
m

mX
i=1

h
�j

�
Ẑi

�
� �j (Zi)

i
: (31)

The �rst part of (31), i.e. 1p
m

Pm
i=1 �j (Zi) ; converges to a standard normal variate

which contributes to the limiting �2 distribution.. The larger them, the faster it goes

to the limiting normal distribution. The second part of (31), i.e. 1p
m

Pm
i=1

h
�j

�
Ẑi

�
� �j (Zi)

i
;

which is the error term coming from the estimating distribution function, converges

to zero under teh conditions in Theorem 1. The larger the n relative to m, the

smaller the term. To optimize the sampling properties of the test, a trade-o¤ has

to be made to balance these two components, giving an optimal relative magnitude

between m and n.

Although an exact formula of the optimal sample sizes will be dependent on the

optmality criterion and the exact formulation of the higher order terms are potentially

not available. Theorem 2 gives the optimal relative magnitude between m and n,

which substantially narrows down the range of choices for the sample sizes. Monte

Carlo experiment results indicate that a simple rule of thumb choices such asm =
p
n
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based on the guidance of Theorem 2 provides pretty good sampling performance to

the propsed test.

4 Application of Neyman Smooth Test with EDF

Let us consider an insurance market where there are several insurance companies

providing health insurance who are competing for clients. These clients can be

grouped into di¤erent risk categories depending on their �proneness�or �propensity�

of having bad health. However, the main problem that the insurance companies face

is one of adverse selection since they cannot see beforehand what type of client they

are insuring, high risk or low risk (Akerlof, 1970). Rothschild and Stiglitz (1976)

claimed that in a insurance market setup where there are two types of clients, a

health insurance contract based on risk categories will ensure that the high risk

client chooses to pay higher premium while both high and low risk clients will fully

insure. However, if it is not possible to write a health insurance contract based on

the risk categories due to either legislation or other restrictions then there could

be two possible scenarios. A healthier (low risk) individual will chose to buy less

than complete coverage while the less healthy (high risk) individuals will buy full

insurance, so the insurance market will still function although this will not the the

most e¢ cient outcome like the case where there could be risk based contracts. The

second scenario happens if further regulations restrict or prohibit the selling of less

than full insurance, then we have a problem that the healthy or low risk individuals

will stop by coverage which means that gradually the insured population will be

made up of more high risk individuals and the insurance company has to pay out

more often. This will cause the premium to go up, so healthier individuals will drop

their coverage even further and this cycle will �nally result in a total collapse of

the insurance market. This scenario is refered to as the �Adverse Seclection Death

Spiral�[Buchmueller and DiNardo (2000)].

It has been a conventional wisdom that if �community rating�for setting health

insurance premiums is enforced (where all the insured people have to pay exactly

the same premium irrespective of their age, sex, and health conditions), more and

more healthier (younger) members of a group insurance policy would drop out of

the insurance plan. To �nd the evidence of any existence of �Adverse Selection

Death Spiral�, the state of New York where legislation for enforcing �community

rating�was enacted in 1993 canm be compared with Pennsylvania, where there was

no such legislations enacted. We would like to test for the di¤erence between the age

distributions of the adult civilian population between 18 and 64, before and after

1993 for each state to verify whether there is any di¤erence solely due to the �death

13



spiral�story. The data is from 1987-1996 March Current Population Survey covering

questions on whether an individual have insurance coverage, and if so whether the

coverage is through a small employer and other similar questions. New York and

Pennsylvania were selected because these states are very similar both geographically

as well as demographically.

Our objective is to use Neyman�s smooth test to determine if there is a di¤erence

between the PDF of the age distributions in a state before and after 1993. The

population selected was individuals who were covered by group insurance policies

sponsored by their employers who had 100 or less employees. This was divided into

two parts, one for the individuals before 1993 and the other for those after 1993. Fig.
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4A and 4B gives the estimated PDFs using kernel density estimator.3

Fig 4A. Density estimates for New York.

3We estimated the PDF f (x) of the sample x1; x2; :::; xn before 1993 using kernel density esti-
mator (see Fig. 4A and Fig. 4B)

f̂bef (x) =
1

b

nX
j=1

K

�
x� xj
b

�
; (32)

where the bandwidth is quadruple of b = 1:06min(�̂x; IQR=1:34)n�
1
5 , �̂x is the estimated standard

deviation of x0js and IQR is the interquartile range for the sample and K (:) is the kernel suggested
by Parzen (1962) [also see Silverman (1986) pp. 45-47].
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Fig 4B. Density estimates for Pennsylvania.

Suppose now, that the sample y1; y2; :::; ym comes from a population with PDF g (z)

after 1993. The probability integral transforms (PIT) of each zi based on the density

estimates are

zj = Fn (yj) ; j = 1; 2; :::;m: (33)

We estimate the cumulative distribution function (CDF) based on the equation (33)

by simply calculating the empirical distribution function (EDF) of x. If the null

hypothesis of the correct speci�cation of the model is true then z1; z2; :::; zm should

be distributed as U (0; 1) (see Fig. 5B). However, if the null hypothesis is not true,

then Neyman smooth test might give us the direction (s) of departure(s) from the
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null hypothesis.

Fig 5A. Age distributions of small groups. Fig 5B. PIT histogram for age after 1993.

Kolmogorov-Smirnov (KS) or the Cramér-von Mises (CvM) types of tests are the

most commonly used tests based on the EDF for comparing two distributions. KS

statistic is the maximum distance between the two EDF�s in �g. 5A while CvM

statistic is a weighted sum of the squares of the di¤erence between the two CDFs.

Table 1. gives us the values of all the commonly used test statistics based on the

EDF of individuals covered under small employer sponsored group insurance in New

York and Pennsylvania along with the .1% critical values of all the modi�ed statistics

[Stephens (1970)].

Test Statistic Critical Values

New York Pennsylvania Upper .1%

D+ 1.128 0.8915 1.859

D� 4.3492 4.4053 1.859

KS 4.3492 4.4053 1.95

Kuiper 5.4809 5.3015 2.303

CvM 5.3503 5.1944 1.167

A-D 28.4875 25.2846 6.0

W 2.0858 1.9058 0.385

Table 1. Goodness-of-Fit Statistics based on EDF.

Except for the test on D+ [which considers the positive part of (1)]; all the tests clearly
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indicate that the two distributions are di¤erent. However, these test statistics based

on the EDF fails to indicate the nature of the deviation from the null hypothesis.

In order to attempt to answer the above question we use Neyman�s smooth test

based on the test statistic

	2k =
kX
j=1

u2j ; uj =
1p
m

mX
i=1

�j (zi) ; j = 1; :::; k; i = 1; :::;m; (34)

where we chose k = 4 and �j(:) as the jth order normalized Legendre polynomial dis-

cussed in Neyman (1937). Table 2 gives the results on the data on all the individuals

under small employer sponsored group in New York (with n=4548 and m=2517).

Source 	2 u21 u22 u23 u24

Test Statistic 90.41531 39.15748 44.75897 3.91509 2.58377

p-value 0.0 0.0 0.0 0.04785 0.10796

Table 2. Neyman�s smooth statistic and components.

In place of taking the whole population if we just use a random sample of size

m = 500 of individuals covered under small employer sponsored group insurance in

New York, the results we are given in Table 2A.

Source 	2 u21 u22 u23 u24

Test Statistic 27.6095 7.4413 13.7468 3.8773 2.544

p-value 0.000015 0.00637 0.00021 0.04894 0.11071

Table 2A. Neyman�s smooth statistic and components for a sample.

Under the null, 	2k should have a �
2 distribution with k (here we have k = 4) degrees

of freedom and each of the u2j should be independent �
2 with 1 degree of freedom.

We can interpret the components of 	2 given by u2j as some measure of the j
th order

of the departure from the null hypothesis. If we perform the same test on all the

individuals who has any health insurance coverage (	2 = 60:30782) and those who

purchased individual insurance (	2 = 10:81446) we see the departure from the null

hypothesis with varying degrees.

Although, based on these results it appears that the population of civilian adults

who had insurance before 1993 and after 1993 were distinctly di¤erent, however, as
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shown in the Table 3. the summary statistics of the two distribution are similar.

State New York Pennsylvania

Data Before 1993 After 1993 Before 1993 After 1993

Observations 4548 2517 3113 1875

Mean 39.2535 40.5268 38.5239 39.9712

Standard Deviation 11.85 11.0622 11.8109 11.1529

Skewness Coe¢ cient 0.3082 0.1793 0.4106 0.216

Excess Kurtosis -0.9381 -0.8858 -0.834 -0.8548

Minimum 18 18 18 18

1st Quartile 29 32 29 31

Median 38 40 37 39

3rd Quartile 48 49 47 48

Maximum 64 64 64 64

Table 3. Age distribution for small employers insured group in NY and PA.

If we perform a simple test for equality of means in the samples for New York before

and after 1993 we get a p-value of 6.3�10�6 while the test for di¤erence of variances
gives 5.1�10�5. Using the components of Neyman�s smooth test we can conclude
that the age distributions before and after 1993 are distinctly di¤erent and the major

departure seems to be due to a di¤erence in the �rst and second order terms, although

third order term also plays some part in the di¤erence in the two distributions.

5 Monte Carlo Study of Smooth test with EDF

Some preliminary size and power Monte Carlo studies have shown that the result of

the smooth test have better size properties for samples where the evaluation sample

size (which is used to estimate the EDF) is much bigger than the test sample size

(which is used for performing the smooth test). Table 4. shows the actual size of a

5% nominal level test where the samples are drawn at random from the population of

insured civilian adults who has health coverage sponsored by small employers (with

less than 100 employees) before 1993 when the �community rating�legislation was
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enacted.

Source 	2 u21 u22 u23 u24

Null Distribution �24 �21 �21 �21 �21

actual size (n = 2500;m = 500) 0.0577 0.0423 0.0529 0.0497 0.083

actual size (n = 2500;m = 50) 0.0425 0.0473 0.0474 0.0461 0.0473

Table 4. Actual sizes for 5% nominal size smooth tests.

The results are based on evaluation sample size n = 2500 and the test sample size

m = 500 and m = 50;, with 10000 replications.

From the results we see that if we have the test sample size n to be substantially

smaller than the evaluation sample size n improves the size distortion of the resulting

smooth test. We have shown in Theorem 2 that having m to be in the order of
p
n

is optimal from the point of view of size distortion.

Fig 6A. Sample size and test size for n = 900; increasing m; no. of repl.=500.
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Fig 6B. Sample size and test size for n = 2500; increasing m; no. of repl.=200.

In Fig 9 shows a plot the size of the test with the sample size of the test sample

drawn at random from the population of employees covered by small employers group

insurance. The evaluation sample of size n = 900 is also drawn at random from the

same population. For calculating the size of the smooth test we took 500 replications

and evaluated the size for each value of m = 10 to m = 900 in increments of 10. The

results with increments of 5 is also similar shown in �gure. We observe that the test

size increases more or less with the sample size m after a while. Furthermore, there

could be several values of m for n = 900 where we have a test with a 5% actual size.

Although, subsampling from the original data of small insurance population be-

fore 1993 in New York gives us an idea about how size might be a¤ected by the

sample size keeping the evaluation sample size the same, it will not give us much

idea about the power properties. Therefore, we redo the whole exercise with simu-

lated data using a mixture of Gaussian and log-normal distributions which gives us

a density close to the real data at least visually. The test size and sample size plot

is given in Fig. 4. In order to get a better idea about the relative size and power
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properties for a data from a population of the variable X which is

X = B �X1 + (1�B) �X2 (35)

where B � Bernoulli(0:3), X1 has a log normal distribution with � = �1:2, �2 = 4
and X2 is N (� = 1:2; �2 = 1:21). Suppose, we also consider the alternative where B

� Bernoulli(0:5), lnX1 is N (�0:1; 1) and �nally X2 has N (1:75; 0:81) : In the fol-

lowing charts Fig 7 and Fig 7A, we have considered n = 625 and gradually increased

m in increments of 5 to calculate the size of the tests based on 200 replications. Fig

7A is a magni�cation of Fig 7 upto m = 250:

Fig 7. Sample size and the size of smooth test with simulated data using EDF.
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Fig 7A. Sample size and the size of smooth test with simulated data using EDF.

Fig 8 shows the plot of the sample size m with the power of the smooth test based
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on the EDF of a sample of size n = 625:

Fig 8. Sample size and power of the smooth test with EDF with simulated

data.

Putting the above two charts together in Fig 9, we can get some idea about the

range of the optimal sample size for the test sample m given a �xed value n of the

evaluation sample (here n = 625): It is also worth noting that the power properties

dramatically increase as we increase the size of the test sample m: For example, if

n = 2500 then using m = 50; the power of the smooth test is 0.855 while the size is

0.05. If we plot the test sample size with the size and power of the test for n = 2000

and m between 10 and 600, we observe that the size distortion is less pronounced

(see Fig. 10).

24



Fig 9. Size and Power of the smooth test for simulated data (m = 625)

25



Fig 10. Size and Power of the smooth test for simulated data (n = 2000).

The optimal value of m relative to n and also the size and power of the smooth test

can be obtained from a range of values of m with acceptable value of size. For a

more analytical answer, we have already shown that the size of m should be in the

order of
p
n for minimizing the size distortion, however the exact relationship of m

and n will depend on the values of the coe¢ cients of the higher order terms in the

Cornish-Fisher expansion discussed in the Section 3 under Theorem 2.

6 Conclusion and Future Research

We proposed a smooth test for comparing two densities in a two sample setup. Unlike

traditional goodness of �t tests like the Kolmogorov-Smirnov or the Cramér-von

Mises classes of tests, the smooth test for comparing two densities helps us identify

the nature of the discrepancy between the two densities, and hence, the sources

of departure from the null hypothesis that the two densities are identical. We have

already seen that the smooth test is nothing but Rao�s score test, and hence it enjoys

all the optimality properties of the score test (Bera and Bilias, 2001). We have also

shown that the choices of the relative sizes of the estimation and test samples are
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very important to get a consistent test with minimum size distortion. Unfortunately,

in the current setup the exact values of the relative sizes cannot be obtained, we

can only give the test sample size upto the
p
n -order of the estimation sample size.

Hence, we have to rely on Monte Carlo simulation to get what the relative sample

sizes should be. Our Monte Carlo simulation also revealed that the smooth test has

very good power properties and an optimal choice of the test sample size will also

ensure that the true size is close to the nominal size of the test even in �nite samples.

There are several directions of future research that we want to pursue. One of

the questions that we would like to answer is how we can adjust one distribution to

remove the e¤ect of another distribution, very much in the line of what the di¤erence-

in-di¤erence estimate tries to accomplish (Dinardo and Buchmuller, 2001). Only

in that case, we can provide a viable alternative procedure for examining whether

the �Adverse Selection death spiral�can be observed in the insurance market. We

have looked at the global characteristics of the two distributions we are comparing,

however, there could be some very local chracteristics of the density function that

we have not focused on. We can extend the smooth test for comparison of two

densities similar to what Fan (1996) proposed adaptively using both Neyman smooth

test technique and a wavelet based test for comparing global and local departures

from the null hypothesis. Last but not the least, we have to accomodate for possible

dependence in the data when comparing two distributions particularly in the context

of time series or panel data, we have not addressed that issue in this context.

There are several possible applications of this testing technique, we can list just

a few of them. Smooth test can be used for comparing wage distributions between

di¤erent genders, di¤erent ethnic groups or di¤erent residential neighborhoods like

public housing projects or wealthier localites in Toronto (Oreopoulos 2002). Regional

di¤erences between unemployment rates in 50 Spanish provinces between two di¤er-

ent regimes, 1985 and 1997 can also be investigated using the smooth test technique

(López-Baro, Barrio and Artis, 2002). There has been an extensive literature in

demography and public policy economics on causes adverse birth outcomes in terms

of low birth weight (LBW) including socio-economic conditions and behavioral pat-

terns like smoking habits of mothers during pregnancy [see Evans and Ringel (1999)].

Smooth test based techniques can also be used for several other studies explaining

the infant mortality gap between two ethnic groups by comparing the distributions

of birth weight (Miller 2002). In �nance, we can look at the problem of comparing

distribution of pre-tax and after-tax returns of mutual funds for taxable investors

that can determine the cash in�ows of these funds (Bergstresser and Poterba 2000).
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7 Appendix

7.1 Proof of Theorem1

We �rst give two Lemmas that can be used in our proof.

Lemma 1 If we de�ne for Pl (z) =
�
(2z � 1)2 � 1

	l
for any l � k and l � 1, then

for any r � 2l

dr

dzr
Pl (z) � 22l

24min(l;2l�r)X
j=0

l!

j! (l � j)!

(2l � j)!

(2l � j � r)!

35 : (36)

Proof. Let us use the following simpli�cation of the expression
�
(2z � 1)2 � 1

	l
;

Pl (z) =
�
(2z � 1)2 � 1

	l
=
�
4z2 � 4z + 1� 1

	l
= 4lzl (z � 1)l

= 22l
lX

j=0

l!

j! (l � j)!
z2l�j (37)

Since z 2 (0; 1) ;

d

dz
Pl (z) = 2

2l

lX
j=0

l!

j! (l � j)!
(2l � j) z2l�j�1

= 22l
min(l;2l�1)X

j=0

l!

j! (l � j)!

(2l � j)!

(2l � j � 1)!z
2l�j�1: (38)

Thus (36) holds for r = 1: Now suppose that the equality in (38) is true for the rth

derivative of Pl (z) for any arbitrary 0 � r � 2l � 1; then we will show it also holds
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for r + 1: We have

dr+1

dzr+1
Pl (z)

=
d

dz

�
dr

dzr
Pl (z)

�

=
d

dz

0@22l
24min(l;2l�r)X

j=0

l!

j! (l � j)!

(2l � j)!

(2l � j � r)!
z2l�j�r

351A
= 22l

24min(l;2l�r�1)X
j=0

l!

j! (l � j)!

(2l � j)!

(2l � j � r)!
(2l � j � r) z2l�j�r�1

35
= 22l

24min(l;2l�r�1)X
j=0

l!

j! (l � j)!

(2l � j)!

(2l � j � r � 1)!z
2l�j�r�1

35 : (39)

Therefore, for any r � 2l;

dr

dzr
Pl (z) = 2

2l

24min(l;2l�r)X
j=0

l!

j! (l � j)!

(2l � j)!

(2l � j � r)!
z2l�j�r

35 : (40)

Since z 2 (0; 1) ; from (40) the result follows.

Lemma 2 If �l (:) is the normalized Legendre polynomial of degree l de�ned on
(0; 1) ; then the �rst order Lipschitz condition holds; that is

j�l (ẑ)� �l (z)j �M jẑ � zj (41)

where M is a positive constant, and z and ẑ are any two points between 0 and 1:

Proof. The Legendre polynomials are de�ned as [see, for instance, Kendall and
Stuart (1973, p. 460)]

Ll (z) =
�
l!2l
��1 dl

dzl

n�
z2 � 1

�lo
where

Z 1

�1
Ll (z)Lk (z) dz = 0 if l 6= k;

= 2
2l+1

if l = k:

(42)
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The corresponding orthonormal polynomials on (0; 1) are

�l (z) = (2l + 1)
1
2 Ll

�
2

�
z � 1

2

��
= (2l + 1)

1
2 Ll (2z � 1)

= (2l + 1)
1
2
�
l!2l
��1 dl

d (2z � 1)l
�
(2z � 1)2 � 1

�l
= (2l + 1)

1
2
�
l!2l+1

��1 dl
dzl

�
(2z � 1)2 � 1

�l
: (43)

Therefore,

�l (ẑ)� �l (z) = (2l + 1)
1
2
�
l!2l+1

��1��
dl

dẑl
�
(2ẑ � 1)2 � 1

	l � dl

dzl
�
(2z � 1)2 � 1

	l�
: (44)

For jz� � zj < jẑ � zj the mean value theorem gives

dl

dzl
Pl (ẑ) =

dl

dzl
Pl (z) + (ẑ � z)

dl+1

dzl+1
Pl (z

�)

i.e.,
dl

dzl
Pl (ẑ)�

dl

dzl
Pl (z) = (ẑ � z)

dl+1

dzl+1
Pl (z

�) : (45)

Hence, using (42) and (45) and applying Lemma 1, we have

j�l (ẑ)� �l (z)j

= (2l + 1)
1
2
�
l!2l+1

��1 ����� dldzlPl (ẑ)� dl

dzl
Pl (z)

�����
= (2l + 1)

1
2
�
l!2l+1

��1 �����(ẑ � z)
dl+1

dzl+1
Pl (z

�)

�����
� jẑ � zj (2l + 1)

1
2

�
�
l!2l+1

��1
22l

24min(l;2l�1)X
j=0

l!

j! (l � j)!

(2l � j)!

(2l � j � 1)!

35
=M jẑ � zj ; (46)

where M is a �nite number:

Proof of Theorem 1
We only need to show that

b	2k �	2k = op(1):
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Notice that

b	2k = kX
j=1

"
1p
m

mX
i=1

�j( bZi)#2

=

kX
j=1

1

m

"
mX
i=1

�j(Zi) +

mX
i=1

h
�j( bZi)� �j(Zi)

i#2

=

kX
j=1

1

m

"
mX
i=1

�j(Zi)

#2
+

kX
j=1

1

m

"
mX
i=1

h
�j( bZi)� �j(Zi)

i#2

+ 2

kX
j=1

1

m

"
mX
i=1

�j(Zi)

#"
mX
i=1

h
�j( bZi)� �j(Zi)

i#
= 	2k +R1;m;n +R2;m;n

where

R1;m;n =
kX
j=1

1

m

"
mX
i=1

h
�j( bZi)� �j(Zi)

i#2
;

R2;m;n = 2
kX
j=1

1

m

"
mX
i=1

�j(Zi)

#"
mX
i=1

h
�j( bZi)� �j(Zi)

i#
:

We show that, as m;n!1; and (log log n)m=n! 0,

R1;m;n = op(1); R2;m;n = op(1):

We �rst look at R1;m;n.

R1;m;n =
kX
j=1

1

m

"
mX
i=1

h
�j( bZi)� �j(Zi)

i#2

�
kX
j=1

1

m

"
mX
i=1

����j( bZi)� �j(Zi)
���#2 :

By Lemma 2, the orthonormal polynomials �j(�) satisfy the �rst-order Lipschitz
condition that

j�j(u)� �j(v)j �M ju� vj ;
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for some �nite number M > 0. Thus

R1;m;n �
kX
j=1

1

m

"
mX
i=1

����j( bZi)� �j(Zi)
���#2

�M2

kX
j=1

1

m

"
mX
i=1

��� bZi � Zi

���#2

�M2

kX
j=1

1

m

�
m max

1�i�m

��� bZi � Zi

����2
Notice that for each �xed Yi; by Donsker�s Theorem we have that

p
n [Fn(Yi)� F (Yi)]

converges in distribution to a normal variate. In addition, supu jFn(u)� F (u)j is
maximally of order

p
(log log n)=n as n!1 (see, e.g. Shorack and Wellner (1986)).

Thus

max
1�i�m

��� bZi � Zi

��� = Op(
p
(log log n)=n)

and

R1;m;n � mM2

kX
j=1

�
max
1�i�m

��� bZi � Zi

����2 = Op((log log n)m=n);

which converges to 0 if (log log n)m=n! 0 as m;n!1:

Similarly,

jR2;m;nj = 2
kX
j=1

1

m

�����
mX
i=1

�j(Zi)

�����
�����
mX
i=1

h
�j( bZi)� �j(Zi)

i�����
� 2

kX
j=1

1

m

�����
mX
i=1

�j(Zi)

�����
"
mX
i=1

����j( bZi)� �j(Zi)
���# :

Notice that 1p
m

Pm
i=1 �j(Zi) converges to a standard normal variable and

mX
i=1

�j(Zi) = Op(m
1=2):

By a similar analysis to that for R1;m;n, we have

mX
i=1

����j( bZi)� �j(Zi)
��� �M

mX
i=1

��� bZi � Zi

��� �Mm max
1�i�m

��� bZi � Zi

��� = Op(m
p
(log log n)=n):

32



Thus

jR2;m;nj � 2
kX
j=1

1

m

�����
mX
i=1

�j(Zi)

�����
"
mX
i=1

����j( bZi)� �j(Zi)
���#

= Op

�
1

m
�m1=2 �m

p
(log log n)=n

�
= Op(

p
(log log n)m=n);

converging to 0 when (log log n)m=n! 0 as m;n!1:

7.2 Proof of Theorem 2

>From the proof of Theorem 1, we know that the asymptotic �2 test statistic b	2k
can be decomposed into

	2k +R1;m;n +R2;m;n:

We analyze each of these terms to show how the relative magnitude of m and n

a¤ects the testing size.

For the leading term

	2k =
kX
j=1

1

m

"
mX
i=1

�j(Zi)

#2
:

By construction, conditional on X, for each j; Vji = �j(Zi) (i = 1; :::::;m) are m

independent and identically distributed random variables with mean zero and unit

variance, thus
1p
m

mX
i=1

Vji ) N(0; 1) � �j;

where �j (j = 1; ::::; k) are k independent standard normal variates. In addition,

assuming that Vji possesses moments up to the forth order, by standard result of

Edgeworth expansion (see, e.g., Rothenberg 1984 and references therein), the prob-

ability density function of 1p
m

Pm
i=1 Vji has the following expansion

f(x) � '(x)

�
1 +

k3H3(x)

6
p
m

+
3k4H4(x) + k23H6(x)

72m

�
where ' is the density of standard normal, kr is the r-th cumulant, and Hr is the

Hermite polynomial of degree r de�ned as Hr(x) = (�1)r'(r)(x)='(x). In this sense,
m�1=2Pm

i=1 Vji can be expanded into a leading term of standard normal variable �j
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plus a second order term, say 1p
m
Aj, of Op(m�1=2) and a third term, 1

m
Bj, of order

Op(m
�1) :

1p
m

mX
i=1

Vji � �j +
1p
m
Aj +

1

m
Bj:

Therefore, the term

	2k =

kX
j=1

1

m

"
mX
i=1

�j(Zi)

#2
can be expanded as

kX
j=1

�2j +
1p
m
A+

1

m
B + op(

1

m
)

where the leading term
Pk

j=1 �
2
j is the �

2 random variable with k degree of freedom

and the second term 1p
m
A is of order Op(m�1=2): To obtain a good approximation of

the �2 distribution, a large m is preferred.

Now we turn to the estimation of distribution functions.

R1;m;n =

kX
j=1

1

m

"
mX
i=1

h
�j( bZi)� �j(Zi)

i#2

=
m

n

kX
j=1

"
1

m

mX
i=1

p
n
h
�j( bZi)� �j(Zi)

i#2
=
m

n
C:

Notice that

Uji =
p
n
h
�j( bZi)� �j(Zi)

i
= Op(1);

and 1
m

Pm
i=1 Uji = Op(1); we have

C =

kX
j=1

"
1

m

mX
i=1

p
n
h
�j( bZi)� �j(Zi)

i#2
= Op(1);

and thus

R1;m;n = Op

�m
n

�
:
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Similarly,

R2;m;n = 2
kX
j=1

1

m

"
mX
i=1

�j(Zi)

#"
mX
i=1

h
�j( bZi)� �j(Zi)

i#

= 2

r
m

n

kX
j=1

"
1p
m

mX
i=1

�j(Zi)

#"
1

m

mX
i=1

p
n
h
�j( bZi)� �j(Zi)

i#

= Op

�r
m

n

�
since

D = 2

kX
j=1

"
1p
m

mX
i=1

�j(Zi)

#"
1

m

mX
i=1

p
n
h
�j( bZi)� �j(Zi)

i#
= Op(1):

In summary

b	2k = 	2k +R1;m;n +R2;m;n

=
kX
j=1

�2j +
1p
m
A+

r
m

n
D + op(

1p
m
+

r
m

n
);

where 1p
m
A,
p

m
n
D; etc., are higher order terms that brings size distortion in �nite

sample, but are op(1). In particular, the leading terms are of order Op
�

1p
m

�
and

Op
�p

m
n

�
respectively. To minimize the distortion coming from estimating the dis-

tribution function, we prefer n to be larger relative to m. On the other hand, to

obtain fast convergence to the �2 limit, we want a large m. Thus, a trade-o¤ has to

be made to minimize size distortion. We balance these two terms so that they are of

the same order of magnitude, giving the optimal relative magnitude as m = O(
p
n):

References

[1] Anderson, T. W.(1962), Annals of Mathematical Statistics, 33, pp.1148-1159

[2] Anderson, T. W. and D.A. Darling (1952), Asymptotic Theory of certain �good-

ness of �t�criteria based on stochastic processes. Annals of Mathematical Sta-

tistics, 23, pp. 193-212

[3] Anderson, T. W. and D.A. Darling (1954), A test of goodness of �t. Journal of

the American Statistical Association, 49, pp. 765-769.

35



[4] Andrews, D. W. K.(1994), Empirical Process methods in Econometrics. In

Handbook of Econometrics, Vol IV. Eds. R. F. Engle and D. L. McFadden.

Elsevier Science: Amsterdam, pp. 2247- 2294.

[5] Andrews, D. W. K. and M. Buchinsky. A three-step method for choosing the

number of bootstrap replications. Econometrica, 68, pp. 23-51.

[6] Bahadur, R. R. (1966), A note on quantiles in large samples, Annals of Mathe-

matical Statistics, 37, pp. 577-580.

[7] Bera, A. K. and A. Ghosh (2001), Neyman�s smooth test and its applications in

Econometrics. In: Handbook of Applied Econometrics and Statistical Inference,

Eds. A. Ullah, A. Wan and A. Chaturvedi, Marcel Dekker, pp. 177-230.

[8] Billingsley, P. (1968). Convergence in Probability Measures. John Wiley: New

York.
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