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1 Introduction

The most commonly used term structure models are affine term structure models (ATSMs)

in which the yield or log bond price is an affine function of the underlying state variables. Ex-

amples include Vasicek (1977), Cox, Ingersoll, and Ross (CIR; 1985), Brennan and Schwartz

(1982), Schaefer and Schwartz (1984), Longstaff and Schwartz (1992), and De Jong (2000),

among others. In a single-factor affine yield model, the short-term interest rate is the single

factor driving movements in the term structure. Longstaff and Schwartz (1992) suggest that

the two factors of the term structure model are the short-term interest rate and the instanta-

neous variance of changes in the short-term interest rate and these two factors summarize the

state of the economy. De Jong (2000) provides evidence that a three-factor affine model with

correlated factors is able to provide an adequate fit of the cross-section and the dynamics

of the term structure. Generally, Duffie and Kan (1996) characterize the complete class of

the affine model and provide necessary and sufficient conditions on the stochastic model for

these affine representations. Their characterization has served as a general framework for

more systematic study of model design. Dai and Singleton (2000) show how generalizations

of earlier affine models lead to substantial improvements in their ability to account for dollar

swap rates.1

However, despite a number of desirable features of these models of the affine class and

their widespread use, the recent literature has challenged these models. In particular, em-

pirical evidence on the diffusion process of the interest rate has been at odds with the affine

class models. Longstaff (1989) derives an alternative closed-form general equilibrium model

of the term structure within the CIR framework, in which discount bond yields are nonlinear

functions of the risk-free interest rate, and shows that the double square root model that

1For further studies on the affine term structure model, see Balduzzi et. al. (1996), Balduzzi et. al.
(1998), Backus, Telmer and Wu (1999), Backus, Foresi, Mozumdar, and Wu (2001), Backus, Foresi, and
Telmer (2001), Campbell, Lo, and MacKinlay (1997), Chen and Scott (1992, 1993), Dai and Singleton (2002),
Duffie and Singleton (1999), Gong and Remolona (1997), Pearson and Sun (1994) and among others.
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allows yield nonlinearity is more successful in capturing the level and variation of six- to

twelve-month Treasury bill yields than the square root model during the 1964-1986 period.2

Aït-Sahalia (1996a,b) shows, using a nonparametric approach, that there is evidence of non-

linearities in both the drift and diffusion functions. Using their semiparametric factor model

of interest rates, Ghysels and Ng (1998) found that the empirical evidence does not support

the restrictions imposed by affine models. Duffee (2002) shows that the standard class of

affine models produces poor forecasts of future Treasury yields.

Ahn and Gao (1999) propose an alternative single-factor term structure model that is

consistent with the dynamics of the interest rate process documented in the nonparametric

literature. In this model, the specification for the diffusion is r1.5 as suggested in empirical

studies such as Chan et. al. (1992) and Stanton (1997), and the drift is specified as a

quadratic function instead of a linear one, so that it exhibits substantial nonlinear mean-

reverting behaviour when the interest rate is above its long-run mean. They found that

this model captures the nonlinearities in the drift and the diffusion and performs better

than the affine model in explaining the stochastic process of the short rate. Ahn, Dittmar

and Gallant (2002) point out that affine term structure models have a theoretical drawback

that hampers their empirical performance and there is some omitted nonlinearity in these

models. They propose a quadratic term structure model (QTSM) in which the yield on

a bond is a quadratic function of underlying state variables and develop a comprehensive

QTSM, which is maximally flexible and thus encompasses all features of the diverse models

in the literature. They show that the QTSM outperforms the ATSMs in explaining historical

bond price behaviour in the United States.

Thus, recent claims for nonaffine family of term structure models cast doubt on the

validity of ATSMs and whether discount bond yields are linear or nonlinear functions of the

underlying state variables is an important question for evaluating term structure models.

2Beaglehole and Tenney (1992) point out that Longstaff ’s (1989) bond pricing equation is not the solution
to the pricing problem because it is a failure to properly account for a boundary condition.
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Furthermore, if there is a nonlinear relationship between bond yields and state variables,

what is the nature of the nonlinearity? From an unbounded universe of alternative nonlinear

specifications, how does one decide which nonlinear specification is the right one to use?

This paper applies a methodology recently developed by Hamilton (2001) to address these

questions. This approach provides a valid test of the null hypothesis of linearity against

a broad range of alternative nonlinear models, consistently estimates what the nonlinear

function looks like, and makes a formal comparison of alternative nonlinear models. Hamilton

(2003) and Kim, Osborn and Sensier (2002) show that this methodology is very useful for

characterizing the nonlinear relationship between oil price changes and GDP growth and

nonlinearities in the U.S. Federal Reserve System’s monetary policy respectively.

Following Longstaff and Schwartz (1992), we consider the risk-free rate and its volatility as

two state variables and develop a flexible two-factor model in which the yield is a unrestricted

function of these two variables. The results of the linearity test against nonlinear alternatives

suggest that there is clear evidence of nonlinearity, in contrast to the ATSMs and consistent

with recent claims in the literature. While the relationship between the risk-free rate and

the short-term rate seems to be linear, the dependence on the conditional variance of the

risk-free rate seems to be nonlinear for all interest rates. We find there is a threshold effect of

volatility on the interest rate, but this threshold effect seems not to capture the entire nature

of nonlinearity in the term structure. More formal statistical comparison of the nonlinear

dynamics implied by alternative specifications with what appears in the data from the flexible

inference procedure used in this paper suggests that the QTSM performs better than the

threshold model but the former seems to miss some aspect of nonlinearity for short-term

rates. However, our flexible nonlinear model, which incorporates the threshold effect and the

convexity of volatility into the quadratic term structure model, generally performs well for

all interest rates and an out-of-sample forecasts support the claim of nonlinearities.

The plan of the paper is as follows. Section 2 reviews the QTSM and proposes a flexible
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two-factor model in which a discount bond yield is an unrestricted function of two state

variables (factors). Section 3 briefly introduces the methodology applied in this paper. Em-

pirical results are presented and suggested nonlinear specifications are evaluated in Section

4. Conclusions are offered in Section 5.

2 A flexible two-factor term structure model

In this section, we review the QTSM developed by Ahn et al. (2002) and develop a flexible

two-factor model for describing the bond yields. For this end, we follow Longstaff and

Schwartz (1992) and thus assume that the short-term interest rate and its volatility are the

most important factors and the bond yield can be described by these state variables. Thus,

we consider the two-factor QTSM which is a two-state variables version of the N -factor

QTSM of Ahn et al. (2002). Specifically, under a given complete probability space (Ω, F, P )

and the augmented filtration F = {Ft : t ≥ 0}, let P (t, n) denote the price at time t of a
zero-coupon bond maturing at time t+n, and letM(t, t+1) denote a pricing kernel satisfying

P (t, n) = EP
t [P (t+ 1, n− 1)M(t, t+ 1)], (2.1)

where EP
t denotes expectation conditional on the information at time t under the physical

probability measure P and P (t + 1, n − 1) is the price of the n − 1 period bond at time
t+1. M(t, t+n) is the stochastic discount factor, which discounts payoffs at time t+n into

time t value under the stochastic economy. Under the assumption of a complete market as

in Harrison and Kreps (1979) and Harrison and Pliska (1981), there is a unique probability

measure Q under which all money market scaled bond prices follow a martingale and we can

write the stochastic discount factor, M(t, t+ n) = M(t+n)
M(t)

M(t, t+ n) =
G(t)

G(n)
N (t, t+ n) = [exp(−

Z n

t
rsds)]N (t, t+ n), (2.2)
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where G(n) denotes a money market account, G(t) = exp(
R t
0 r(s)ds), rs denotes the risk-

free instantaneous rate at time s, and N (t, t + n) = dQ(t,n)
dP (t,n) is called the Radon-Nikodym

derivative. Ahn and Gao (1999) and Ahn et al. (2002) assume that the time-series process

of the stochastic discount factor, M(t), is represented as the stochastic differential equation

(SDE)

dM(t)

M(t)
= −rtdt+ 102StdWt,

= −rtdt+ 102[(a+ bxt)¯ dWt] (2.3)

where St is a 2 × 2 diagonal matrix with the ith diagonal element given by [St]ii = ai +

b0ixt,bi = (b1i, b2i)
0,a = (a1, a2)

0,b = (b1,b2)
0, 12 is 2 × 1 ones vector, ¯ is an element

by element multiplication, xt = (x1t, x2t)
0 is the 2 × 1 vector of two state variables, and

Wt is a 2-dimensional vector of standard Wiener processes which are mutually independent.

Equation (2.3) implies that −rt is the drift and the diffusion is an affine function of the state
variables.

They also assume that the instantaneous short term rate is a quadratic function of the

two state variables:

rt = δ0 + δ01xt + xt
0Φxt, (2.4)

where δ0 is a constant, δ1 is a 2× 1 vector and Φ is a 2× 2 matrix of constants. To ensure
the nonnegativity of the nominal interest rate, it is assumed that δ0− 1

4δ
0
1Φ

−1δ1 ≥ 0 and Φ
is a positive definite matrix. While the short rate is an affine function of a vector of state

variables in the ATSM, it is a generalized positive semidefinite quadratic form in the equation

(2.4). Note that the lower bound on the short rate is δ0 − 1
4δ
0
1Φ

−1δ1 when xt = −12Φ−1δ1.
Moreover, they assume that the dynamics of the state variables xt are governed by

dxt = (ξ + θxt)dt+ΣdZt, (2.5)
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where ξ is an 2 × 1 constant vector, θ and Σ are 2-dimensional square matrices, and Zt is
a 2-dimensional vector of standard Wiener processes that are mutually independent. It is

further assumed that θ is diagonalizable and has negative real components of eigenvalues to

ensure the stationarity of the state variables. The correlation matrix between dWt and dZt,

Covt(dWt, dZt), is denoted by Γ, a 2× 2 matrix of constants. Thus the time-series process
of the state variables is represented as a Gaussian process with steady-state long-term means

of −θ−1ξ, and covariance matrix ΣΣ0.
Using the transitional densities for the state variables, Ito’s lemma, and Girsanov Theo-

rem, they drive following equation for the n-period bond yield, ynt:

ynt =
1

n
[−A(n)−B(n)0xt − xt0C(n)xt], (2.6)

where, A(n),B(n) and C(n) with the initial conditions A(0) = 0,B(0) = 02, and C(0) =

02×2, satisfy the ordinary differential equations (ODEs)

dC(n)

dn
= 2C(n)ΣΣ0C(n) + (C(n)(θ − κ1) + (θ − κ1)0C(n))−Φ,

dB(n)

dn
= 2C(n)ΣΣ0B(n) + (θ − κ1)0B(n) + 2C(n)(ξ − κ0)− δ1,

dA(n)

dn
= tr[ΣΣ0C(n)] +

1

2
B(n)0ΣΣ0B(n) +B(n)0(ξ − κ0)− δ0,

κ0 = −ΣΓa, and κ1 = −ΣΓb. Equation (2.6) implies that the bond yield is a nonlinear
(specifically, a quadratic) function of the state variables. This QTSM nests the affine-factor

model when C(τ) = 02×2 and other nonlinear term structure models of Longstaff (1989),

and Beaglehole and Tenny (1992).

Although the QTSM model encompasses the ATSM and has the potential to capture

omitted nonlinearities, it is driven from the specific assumption that the instantaneous short
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term rate is a quadratic function of the two state variables. In reality, however, since there

can be an unbounded universe of alternative nonlinear specifications, it is very hard to say

which specification is the right one to use without examining the data. Hence, a more general

approach is to leave the functional form unrestricted and to infer the functional form from

the data. Thus, a more general equation for the n-period bond yield is:

ynt = f(xt),

where f(.) is unrestricted and the functional form is unknown. We seek the expectation of

scalar ynt conditional on the state-variable vector xt, E(ynt|xt) = µ(xt). The regression of

the n-period bond yield on the state variables with measurement error is

ynt = µ(xt) + εt, (2.7)

where εt is i.i.d. with mean zero and independent of both µ(.) and xτ for τ = t, t− 1, ..., 1.
If we identify the state variables, we can use the flexible nonlinear technique of Hamilton

(2001) to estimate the bond yield regression (2.7) using maximum likelihood or Bayesian

method. For example, under the model of Longstaff and Schwartz (1992), the level and the

variance of risk-free rate are two the factors which drive the bond yields and xt in equation

(2.7) is the 2× 1, vector

 y1t

v2t+1|t

, where y1t is the risk-free short term rate and v2t+1|t is

the conditional variance of y1,t+1 given information at time t. In the following section, we

describe the basic technique.

3 A flexible approach to nonlinear inference

Hamilton (2001) proposes a new framework that combines the advantages of non-parametric

and parametric methods. While the procedure does not assume any specific parametric
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functional form for the conditional mean function, it has parameters to be estimated by

maximum likelihood or Bayesian methods for the unknown conditional mean function and

performs inference and hypothesis testing based on classical econometric theory. Consider a

nonlinear regression model of the form

yt = µ(xt) + εt, (3.1)

where yt is a scalar dependent variable, xt is a k-dimensional vector of explanatory variables,

and εt is an error term with mean zero and is independent of xt and of lagged values of

yt−j or xt−j . Since the form of the function µ(·) is unknown, we seek to represent it using
a flexible class. In our term structure application below, yt = ynt, xt = (y1t, v

2
t+1|t) for the

n-period bond yield. Following Hamilton (2001), we view µ(.) as the outcome of a random

field. Specifically, the value of the function µ(xt) at xt = τ is treated as being a Gaussian

random variable with mean equal to the linear component α0 +α
0
τ and variance λ2, where

α0,α, and λ are population parameters to be estimated. In the special case of λ = 0, then

µ(xt) is fixed and (3.1) becomes the usual linear regression model. In general, the parameter

λ measures the overall extent of nonlinearity.

The basic idea of the method is that nonlinearity implies the values for µ(xt) and µ(xs)

will be positively correlated for periods t and s whenever the vectors xt and xs are close to

each other. The key is then parameterizing this correlation based on the distance measure

hst = (1/2)
hPk

i=1 g
2
i (xis − xit)

2
i1/2

where xit denotes the ith element of the vector xt and

g1, g2, ..., gk are k additional parameters to be estimated. Hamilton proposes that µ(xs)

should be uncorrelated with µ(xt) if xs is sufficiently far away from xt. More precisely,

E{[µ(xs)− α0 −α0
xs][µ(xt)− α0 −α0

xt]} = 0 if hst > 1 (3.2a)

However, when 0 ≤ hst ≤ 1, this correlation should increase as hst decreases, with the
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correlation going to unity as hst goes to zero. In our context where there are two nonlinear

explanatory variables (k = 2), then the correlation is assumed to be given by

Corr(µ(xs), µ(xt)) = H2(hst) if 0 ≤ hst ≤ 1 (3.2b)

where

H2(hst) = 1− (2/π)[hst(1− h2st)
1/2 + sin−1(hst)]. (3.3)

For the general specification and rationalization of this correlation, see Lemma 2.1 and

Theorem 2.2 in Hamilton (2001). It should be emphasized that Hk(.) does not assume

any parametric form for the functional relation µ(.) itself, but rather it parameterizes the

correlation between pairs of random outcomes µ(xs) and µ(xt). The coefficient gi determines

the extent to which variation in the i-th element of xt contributes to nonlinear variation in

µ(xt). For gi small, the value of µ(xt) changes little when xi changes, with gi = 0 implying

linearity of µ(xt) with respect to xi.

Prior to estimation it is appropriate to determine whether nonlinearity exists by testing

H0 : λ = 0. As is usual in nonlinear modelling, certain parameters are unidentified under

the null of linearity. In the present context, this applies to g1, g2, ..., gk. For the purpose

of the nonlinearity test, Hamilton suggests that the lack of identification can be avoided

by setting gi = 2
h
k
³
T−1

PT
t=1(xit − xi)

2
´i−1/2

, thereby scaling in terms of the individual

sample standard deviations and the number of explanatory variables. Then, for T sample

observations, the (T × T ) matrix H of correlations can be formed, with the row s, column

t element Hk{hst} given in (3.3) when k = 2 and 0 ≤ hst ≤ 1, or zero when hst > 1. The

Lagrange multiplier (LM) test of the null hypothesis can be obtained by using the residuals

from an OLS linear regression of yt on (1,x0t)0. Denoting the OLS residual vector by bε and
the OLS squared standard error as eσ2 = (T −k−1)−1bε0bε, and the (T ×T ) projection matrix

M = IT −X(X0X)−1X0 where X is a (T × (1 + k)) matrix whose tth row is given by (1,x0t)
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and IT is the (T × T ) identity matrix, the test statistic is

ν2 =
[bε0Hbε− eσ2tr(MHM)]2eσ4(2tr{[MHM− (T − k − 1)−1Mtr(MHM)]2}) . (3.4)

Under the null hypothesis of linearity, ν2 has an asymptotic χ2(1) distribution. Dahl’s (2002)

Monte Carlo investigations suggest that this test has good size and power properties against

a variety of nonlinear alternatives.

In the presence of nonlinearity, Hamilton writes (3.1) as

yt = α0 +α
0
xt + λm(xt) + εt (3.5)

= α0 +α
0
xt + ut,

where m(.) is the realization of a scalar-valued Gaussian random field with mean zero, unit

variance and covariance function given by (3.2a) and (3.2b). Assuming that the regression

disturbance εt is i.i.d. N(0, σ2), the composite disturbance ut = λm(xt)+εt is also Gaussian.

With independence between x0t and εt, this specification implies a GLS regression model of

the form

y|X ∼ N(Xβ,P0 + σ2IT )

where y = (y1, y2, ..., yT )
0
, β is the (1 + k)-dimensional vector (α0,α0)0, and P0 is a (T × T )

matrix whose row s, column t element is given by λ2Hk(hst)δ[hst<1] with hst is defined above,

and the function Hk(.) is specified in (3.3) for the case k = 2.

In addition to the linear regression parameters (α0,α) and σ2, parameters to be estimated

are the variance of the nonlinear regression error, λ2, which governs the overall importance

of the nonlinear component, and the parameters (g1, g2, ..., gk) determining the variability

of the nonlinear component with respect to each explanatory variable in xt. As the above

discussion implies, estimation and inference can be achieved by a GLS Gaussian regression.
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However, Hamilton (2001) also describes the use of numerical Bayesian methods for the

evaluation of the posterior distribution of any statistics of interest. The optimal inference of

the value of the unobserved function µ(x∗) at an arbitrary point x∗ is given by

bµ(x∗) = α0 + α0x∗ + q0(P0 + σ2IT )
−1(y −Xβ), (3.6)

where the (T×1) vector q has tth element λ2Hk(h
∗
t )δ[h∗t<1] for h

∗
t = (1/2)

hPk
i=1 g

2
i (xit − x∗i )2

i1/2
,

in which xit denotes the ith element of xt and x∗i denotes the ith element of x
∗. Hamilton

shows that bµ(x∗) converges to the true value µ(x∗) for any µ(.) from a broad class of con-

tinuous functions. This permits the calculation of confidence intervals, using (3.6) along

with its known standard error for each given parameter vector in conjunction with values of

α0,α, σ, λ, and g =(g1, g2, ..., gk)0 generated from their posterior distributions, and examining

the resulting distribution of inferences.

From a Monte Carlo investigation, Dahl (2002) shows that in many situations Hamilton’s

random field based estimator is substantially more accurate than the non-parametric spline

smoother. He also finds that the procedure is useful in finite samples for characterizing a

wide range of nonlinear time series models.

4 Empirical results

In this section, as in Longstaff and Schwartz (1992), we consider the risk-free rate and it’s

volatility as two factors. Following Hamilton’s (2001) methodology described in the previous

section, we estimate a flexible two-factor model:

ynt = µ(xt) + εt (4.1)

µ(xt) = α0 +α01xt + λm(g ¯ xt), (4.2)
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where xt = (y1t, v2t+1|t)
0 is a 2×1 vector. We report estimates of equations (4.1) and (4.2) for

various discount bond yields. Then, we evaluate alternative specifications of term structure

models using a formal statistical basis for the comparison of the nonlinear dynamics. Finally,

we consider the root-mean-squared-error (RMSE) for comparing the forecast performance of

nonaffine models with that of the affine model.

4.1 Data

In order to investigate the implications of our flexible term structure model, we consider

five zero-coupon bond yields; 3- and 6-month and 1-, 5- and 10-year (3M, 6M, 1Y, 5Y, 10Y

respectively). These data are sampled at a monthly frequency and cover the period from

February 1959 to December 1999. All data, except the 10-year Treasury bond, are taken from

the Center for Research in Security Prices (CRSP). The yield data for 10-year maturity bond

were downloaded from the Federal Reserve Board of Governors. We assume that the 1-month

interest rate is the risk-free rate, as usual in the literature, and consider its volatility as the

conditional variance of the rate. To describe time variation in the volatility of interest rates,

we use the generalized autoregressive conditional heteroskedasticity (GARCH) framework.

Following Brenner, Harjes, and Kroner (1996) and Hamilton and Kim (2002), we model the

conditional variance of the risk-free rate as a function of both the interest rate level and

previous squared interest rate innovations:

y1t = c+ φy1,t−1 + εt, (4.3)

εt|Ωt−1 ∼ N(0, v2t|t−1),

v2t|t−1 = ω0 + ω1ε
2
t−1 + ω2v

2
t−1|t−2 + ω3y1,t−1. (4.4)
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Maximum likelihood estimates of equations (4.3) and (4.4) are as follows, with conventional

standard errors in parentheses:

y1t = 0.1411
(0.0367)

+ 0.9742
(0.0085)

y1,t−1 + εt, (4.5)

v2t|t−1 = −0.0224
(0.0064)

+ 0.3141
(0.0477)

ε2t−1 + 0.6444
(0.0444)

v2t−1|t−2 + 0.0093
(0.0023)

y1,t−1. (4.6)

We then used the fitted values v̂2t+1|t for the conditional variance of the risk-free rate in

regressions explaining the bond yields.

4.2 Estimates of a flexible two-factor model

Under the assumption that the data were generated from (4.1) and (4.2), we have the fol-

lowing regression:

ynt = α0 + α1y1t + α2v̂
2
t+1|t + σ[ζm(g1y1t,g2v̂

2
t+1|t) + υt], (4.7)

where v̂2t+1|t is the conditional variance of y1,t+1 given information at time t. The innovation

εt in (3.3) is written here as σ times υt, and the parameter λ in (3.3) is written as σ times

ζ. Table 1 reports the test statistic ν2 of the null hypothesis of linearity. The test statistics

for 3M, 6M, 1Y, 5Y, and 10Y are 17.87, 33.88, 72.65, 53.42 and 26.94 respectively and a

large value for a χ2(1) variable implies overwhelming rejection of the null hypothesis that

the relation between bond yields and the two factors, the risk-free rate and its volatility, is

linear.

Bayesian posterior estimates and their standard errors for the flexible nonlinear alterna-

tive are reported in Table 2. The risk-free rate and its volatility exert positive effects on bond

yields, though only the coefficients on the risk-free rate are statistically significant at the 1%

level. When we consider a hypothesis of linearity for the risk-free rate and its volatility taken

individually, we reject the null in relation to both variables for only 3-month rate. However,
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the t-statistic for ζ = 0 in all five bond yields is highly significant and it is consistent with the

results of the LM tests, implying that collectively the nonlinear component makes a highly

significant contribution in all bond yields. Interestingly, as time to maturity increases, the

value of estimated λ (σ times ζ) increases.

Given any particular values for the vectors g, α, and the scalar λ, we can calculate the

value of H2(.) as associated with any pair of observations on xt and xs, the row t, column

s element of the matrix P0 as λ2H2(.) and a value for (3.6) for any x∗ of interest, which

represents the econometrician’s inference as to the value of the conditional mean µ(x∗) when

the explanatory variables take on the value represented by x∗ and when the parameters

are known to take on these specified values. By using values of g and other parameters

from the posterior distribution whose mean and standard deviation are reported in Table 2,

we generate a range of estimates of µ(x∗), and the mean of this range then represents the

econometrician’s posterior inference as to the value of µ(x∗).

To examine what the nonlinear function µ(.) looks like, we fixed the value of bv2t+1|t equal
to its sample mean, and evaluated the Bayesian posterior expectation of (3.4) for various

values of y1t. Figure 1a - 1e plot the result as an function of y1t along with 95% probability

regions for 3M, 6M, 1Y, 5Y and 10Y bond yields respectively. While Figure 1a, 1b and 1c

indicate that the relation between short-term bond yields (3M, 6M, 1Y) and risk-free rate

is at least approximately linear, the relation for long-term bond yields (5Y, 10Y) seems to

be nonlinear, as in Ahn and Gao (1999). This result suggests that the magnitude of the

nonlinearity may increase as time to maturity increases.

Figure 2a - 2e answer the analogous question, fixing y1t equal to its sample mean, y1t,

and varying the value of bv2t+1|t for 3M, 6M, 1Y, 5Y, and 10Y bond yields respectively. All
figures indicate that there is a threshold effect of volatility on the interest rates but the value

of threshold looks different depending on the interest rate. In particular, the threshold effect

is most marked in the 3M rate and it is around 1.2 of conditional variance. These results
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imply that while the effect of volatility on the bond yield is little at lower volatility values,

relatively high volatility has a significant impact on the interest rates.

Another point to make is that all figures indicate that as volatility increases, the slope

of the conditional expected function with respect to volatility is steeper, implying that the

functional form of the bond yield is convex with respect to the volatility of risk-free rate.

This convexity is compatible with the characteristic of the QTSM of Ahn et al. (2002).

However, since the nonlinearity of the volatility component taken individually is not statis-

tically significant in the Bayesian posterior estimates (Table 2), it is needed to examine this

convexity in terms of the collective contribution of the nonlinear components.

To examine the interactive effect of nonlinear components, we consider contours. Figure

3a - 3e plot contours of the function bE[µ(y1t, bv2t+1|t)|YT ] for all five bond yields. For the

6M interest rate, there is little indication about nonlinearity resulting from the interaction.

However, Figure 3d and 3e show that there is a significant relation between long-term bond

yields and the multiplication of risk-free rate and its volatility, implying that the interaction

between two components has an impact on the long-term bonds. For 3M and 1Y interest

rate, there is an indication of interaction but not substantially. Furthermore, Figure 3a,

3c, 3d and 3e indicate that the value of threshold in volatility is an increasing function of

the risk-free rate. To investigate this point, we calculated how the effect of volatility on

bond yields are affected by different values of y1t. Figure 4a - 4e compare the six func-

tions bµ(3, bv2t+1|t), bµ(4, bv2t+1|t), bµ(y1t, bv2t+1|t), bµ(7, bv2t+1|t), bµ(8, bv2t+1|t), and bµ(9, bv2t+1|t), plotted
as a function of bv2t+1|t. All figures show that the value of the threshold in volatility increases
as the risk-free rate rises though it is less clear in the 6-month rate. In particular, this

phenomenon is significant for the 3-month rate and two long-term rates.

In sum, the flexible inference suggests three types of nonlinearity; threshold effect of

volatility, interaction between the risk-free rate and its volatility, and convexity. The thresh-

old effect of volatility on the bond yield seems to be an increasing function of the risk-free
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rate. The convexity with respect to volatility is compatible with the QTSM.

4.3 Alternative nonlinear specifications

Which form of nonlinear dynamics captures the exact nature of nonlinearity in the term

structure? To address this question, we consider parametric models of nonlinear dynamics

and estimate them. Then, we can use (3.4) as a specification test to see whether the nonlin-

earity has been successfully modeled. This procedure provides a formal statistical basis for

comparing the nonlinear dynamics implied by alternative specifications with what appears

in the data from the flexible inference. For example, the QTSM of (2.6) can be described as

a linear regression model of the form

yt = α0 +α0zt + εt, (4.8)

with zt =
³
y1t, bv2t+1|t, (y1t ∗ bv2t+1|t), y21t, (bv2t+1|t)2´0. Then, one can test directly whether such

a specification of zt adequately captures any nonlinearity that appears in the data by com-

paring (4.8) with the more general model

yt = α0 +α0zt + λm(xt) + εt,

for xt = (y1t, bv2t+1|t)0 and m(.) a realization of the random field whose correlations are char-

acterized by (3.3). In what follows, we consider four alternative nonlinear specifications and

Table 3 summarizes them.

Model A denotes the threshold model of volatility where the threshold value is an in-

creasing function of the risk-free rate. The parameters c0 and c1 can be chosen from Figures

4a - 4e.3 Model B indicates the interaction between risk-free rate and its volatility. Model C

3From the Figures 4a - 4e, we tried to find the initial threshold point and considered several values around
it as a candidate of c0. From this threshold point, we tried to draw the straight line and calculated the slope
of the line. Then, we took the value as c1. Thus, we have c0 = 0.6 for 3M, c0 = 0.6 for 6M, c0 = 0.8 for
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is the two-factor quadratic model of Ahn et. al. (2002). Since we found that the estimated

coefficient on y21t is not statistically significant for all bond yields, we exclude y
2
1t from Model

C and consider the result as Model D. Finally, Model E incorporates the threshold effect and

the convexity of variance on the interest rate into the QTSM and thus this model is based

on our flexible inference. We consider that exp(bv2t+1|t) catches the aspect of convexity in the
model.

Table 4 reports the ν2 statistics for five alternative nonlinear specifications and these can

be compared with the corresponding values in Table 1. There is significant decrease in ν2

statistics for Model A. We can not reject the null of linearity for 3M and 10Y at the 5% level

whereas we reject the null for 6M, 1Y and 5Y interest rates, indicating that the threshold

model does not capture the entire nature of nonlinearity in the term structure. The Model B

is doing well for the long-term rates but does not capture the nonlinearity in the short-term

rates. bα3, the value in the estimated coefficient in the multiplication of risk-free rate and its
volatility, is negative for all bond yields, indicating that the correlation between two factors

has a negative impact on the interest rate. Dai and Singleton (2000), and Ahn et. al. (2002)

state that the conditional correlation among the state variables plays an important role in

explaining the dynamics of bond yields.

We cannot reject the null hypothesis that the general QTSM (Model C) accurately de-

scribes long-term bond yields relative to the ATSM and there is significant decrease in the ν2

statistics for all three short-term bond yields. Nevertheless, we reject the QTSM at the 5%

level for these short-term rates. When we exclude the squared risk-free rate, y21t, from Model

C, the test statistics decreases significantly but we reject the null for two short-term rates,

6M and 1Y at the 5% level. Finally, in Model E, we cannot reject the null of linearity for all

interest rates except 1Y in which the null is marginally rejected at the 5% level and the test

statistics for 6M rate is relatively lower than in Model D though the statistic for 3M rate

1Y, c0 = 0.8 for 5Y, c0 = 0.8 for 10Y and c1 = 0.207 for all bond yields.
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is slightly higher than in Model D. Thus, it would seem on the basis of these tests that the

QTSM of Ahn et al. (2002) does a good job for describing the nonlinearity in the long-term

rates but not in the short-term rates while the flexible nonlinear model is generally doing

well for all interest rates. This result suggests that the incorporation of the threshold effect

and the convexity of variance of the risk-free rate into the QTSM describes the nonlinearity

in the term structure and thus is a promising representation of nonlinearities.

To further investigate if the implications of the estimates from the QTSM would turn out

to look something like those of the flexible nonlinear model, we consider what Figure 4 would

look like if calculated assuming that the estimated QTSM were true rather than assuming

the flexible nonlinear model. For doing this, we estimated the QTSM and used estimated

values of the parameters to calculate the expected values of the interest rates for the range

of variance from zero to bv2t+1|t+2∗qvar(bv2t+1|t) (the mean of variance plus 2 times standard
deviation of the variance), when the risk-free rate has 6 values: 3%, 4%, 5.6% (mean), 7%,

8% and 9%.4 Figure 5a - 5e plot the expected values of five interest rates against variance.

Even though Figure 5s have some similar features with Figure 4s, particularly in the long-

term rates, the expected interest rates based on the QTSM appear to be concave against

the variance whereas those based on the flexible inference are convex (at least between 0

and 2.48 of the value of variance). These results imply that the QTSM seems to miss some

aspect of the nonlinearity.

So far, our empirical results suggest that allowing for nonlinearities in the pricing of bond

yields is quite important for describing the term structure. To examine how well nonlinear

term structure models perform relatively to the ATSM, we consider the forecastability of

three models; a two-factor affine model (ATSM), the quadratic term structure model (QTSM,

Model D), and a flexible two-factor model (FNM, Model E). We estimate these two models

for the sample from 1959:1 to 1995:12. Then, we use estimated coefficients to forecast five

4Figure 5a - 5e are based on the estimate of Model C. We also estimated Model D and found that the
results are very similar. These results are available upon request.
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interest rates over the period 1996:1 - 1999:11 and then calculate the root-mean-squared-

errors (RMSEs).

Table 5 reports the RMSEs in three models for all five bond yields. For all interest rates,

the RMSEs in the ATSM are higher than both nonlinear models. In particular, the difference

between the RMSE of the ATSM and that of nonlinear models increases as time to maturity

increases, implying that the nonlinear model performs better relatively to the ATSM in the

long-term rates than in the short-term rates. Thus, out-of-sample forecasts also support the

claims of nonlinearities. The RMSEs of the short term rates in the QTSM are higher than

those in the FNM while it is reverse in the long-term rates, confirming the results of Table

4 in which the QTSM is a good representation for the long-term rates but might miss some

aspect of nonlinearity in the short-term rates.

5 Concluding remarks

The affine term structure models have received a lot of attraction from academic researchers

as well as financial analysts due to analytical tractability and relatively easy implementation.

However, these models have recently been challenged on the empirical performance. Recent

empirical studies have shown that there are nonlinearities in the term structure and the

nonlinear models capture the term structure dynamics considerably better than the affine

models. From this point of view, whether the relation between bond yields and underlying

state variables is linear is an important question for evaluating the term structure model.

Furthermore, characterizing nature of the nonlinearity is a worthy task pursuing.

The contribution of this paper is to address this question using the framework of Hamilton

(2001) that explicitly parameterizes the set of nonlinear relations in a flexible way and takes

into account uncertainty about the functional form in conducting hypothesis tests. Since the

risk-free rate and its volatility are the most important factors in modern financial markets,

we considered these two factors as the underlying two state variables. We found that there is
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clear evidence of nonlinearities in the term structure, in contrast to the affine term structure

model and consistent with recent claims in the literature.

When one looks at this nonlinear relation from a flexible, unrestricted framework, there

seems to be three natures of nonlinearity: a threshold effect of volatility on bond yields,

interaction between the risk-free rate and its volatility, and convexity. The threshold ef-

fect characterizes the nature of the nonlinearity but seems not to capture entire nature of

nonlinearity. While the interaction captures the nonlinearity well for long-term rates, its

performance is not good for short-term rates.

The quadratic term structure model specified by Ahn et al. (2002) does perform better

than the threshold model but seems to miss some aspect of the nonlinearity for short-term

rates. However, our flexible nonlinear model which incorporates the threshold effect and

the convexity of volatility of the risk-free rate into the quadratic model, generally performs

well for all interest rates and out-of-sample forecasts for comparing the performance of the

nonlinear model with the affine model indicate that the nonlinear model are considerably

better than the affine model. Hence, our results suggest that the flexible nonlinear model is

a promising representation of nonlinearities and a better candidate for the hedging or pricing

of interest rate contingent claims than the affine models.
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Table 1 The test of the null hypothesis that µ(Xt) = α0 +α01Xt

maturity ν2 statistic p− value

3M 17.874 2.36e-05

6M 33.883 5.85e-09

1Y 72.650 1.55e-17

5Y 53.421 2.69e-13

10Y 26.936 2.10e-07

Note: 3M, 6M, 1Y, 5Y and 10Y denote 3-month, 6-month, 1-year, 5-year, and 10-year

bond yields respectively.
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Table 2 Bayesian posterior estimates for the flexible nonlinear alternative

ynt = α0 + α1y1t + α2v̂
2
t+1|t + σ[ζm(g1y1t,g2v̂

2
t+1|t) + υt].

maturity α̂0 α̂1 α̂2 σ̂ ζ̂ ĝ1 ĝ2

3M 0.962
(0.448)

0.955
(0.042)

0.091
(0.055)

0.248
(0.012)

2.399
(0.874)

0.641
(0.305)

1.896
(0.897)

6M 1.749
(1.139)

0.882
(0.083)

0.095
(0.090)

0.314
(0.012)

3.169
(0.949)

0.293
(0.156)

0.786
(0.483)

1Y 3.039
(0.943)

0.769
(0.086)

0.052
(0.161)

0.428
(0.020)

3.193
(0.893)

0.201
(0.125)

0.767
(0.563)

5Y 4.674
(1.540)

0.585
(0.130)

0.041
(0.183)

0.869
(0.039)

2.274
(0.700)

0.183
(0.097)

0.973
(0.659)

10Y 5.019
(1.628)

0.584
(0.137)

0.098
(0.193)

1.015
(0.041)

1.980
(0.673)

0.206
(0.117)

1.252
(0.836)

Note: The values in all parentheses are the standard errors of Bayesian posterior estimates

with N = 5, 000 Monte Carlo simulations.
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Table 3 Alternative nonlinear specifications

model specifications

A ynt = α0 + α1y1t + α2(bv2t+1|t − c0 − c1y1t)δ[bv2
t+1|t>c0+c1y1t]

+ εt

B ynt = α0 + α1y1t + α2bv2t+1|t + α3(y1t ∗ bv2t+1|t) + εt

C ynt = α0 + α1y1t + α2bv2t+1|t + α3(y1t ∗ bv2t+1|t) + α4(y1t)
2 + α5(bv2t+1|t)2 + εt

D ynt = α0 + α1y1t + α2bv2t+1|t + α3(y1t ∗ bv2t+1|t) + α5(bv2t+1|t)2 + εt

E ynt = α0 + α1y1t + α2bv2t+1|t + α3δ[bv2
t+1|t≥c2] + α4(y1t ∗ bv2t+1|t) + α5(bv2t+1|t)2 + α6 exp(bv2t+1|t) + εt

Note: a. In model A, δ[bv2
t+1|t>c0+c1y1t]

= 1 if bv2t+1|t > c0 + c1y1t and 0 otherwise, where c0

and c1 are parameters.

b. In model E, δ[bv2
t+1|t≥c2] = 1 if bv2t+1|t ≥ c2, where c2 = 1.2 for all five yields and 0

otherwise.
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Table 4. Tests of the linearity null hypothesis µ(xt) = α0+α
0xt for alternative nonlinear

specifications in the term structure

maturity model A model B model C model D model E

ν2 p− v. ν2 p− v. ν2 p− v. ν2 p− v. ν2 p− v.

3M 1.962 0.161 8.962 0.003 5.297 0.021 2.484 0.115 3.466 0.063

6M 8.292 0.004 34.122 5.18e-09 6.481 0.011 4.975 0.026 3.190 0.074

1Y 8.074 0.005 13.783 0.0002 8.836 0.003 4.074 0.044 3.877 0.049

5Y 12.93 0.0003 0.991 0.320 0.253 0.615 0.033 0.857 0.042 0.837

10Y 3.100 0.078 1.628 0.202 0.621 0.431 0.236 0.627 0.1.48 0.701

Note. a. In model A, c0 = 0.6 for 3M, c0 = 0.6 for 6M, c0 = 0.8 for 1Y, c0 = 0.8 for

5Y, c0 = 0.8 for 10Y and c1 = 0.207 for all bond yields.

b. p− v. denotes the p− value of the test.
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Table 5. The Forecastability of the affine model and the flexible nonlinear models

maturity ATSM QTSM FNM

3M 0.2302 0.2202 0.2188

6M 0.3304 0.3083 0.3059

1Y 0.4151 0.3939 0.3910

5Y 0.7167 0.6776 0.6781

10Y 0.8115 0.7615 0.7668

Note. a. ATSM, QTSM, and FNM denote the affine term structure model, the quadratic

term structure model and the flexible nonlinear model (Model E) of (4.7).

b. All figures are the root mean squared errors (RMSE) of multi-step-ahead out-of-sample

forecasting from 1996:1 to 1999:12.
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Figure 1a – 1e 
The effect of the risk-free rate on the interest rates 
Solid line plots the posterior expectation of the function )('

10 tt m xxα λα ++  

evaluated at )'ˆ,( 2
|11 ttt vx +=x  as a function of 1x  where ∑ = +

−
+ =

T

t tttt vTv
1

2
|1

12
|1 ˆˆ  and where 

the expectation is with respect to the posterior distribution of ,,,0 λα α and )( tm x  

conditional on observation of { }Tttty 1, =x , with this posterior distribution estimated by 
Monte Carlo importance sampling with 5,000 simulations. Dashed lines give 95% 
probability regions.
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Figure 2a – 2e 
The effect of volatility on the interest rates 
Solid line plots the posterior expectation of the function )('

10 tt m xxα λα ++  

evaluated at )',( 21 xy tt =x  as a function of 2x . Dashed lines give 95% probability 
regions.
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Figure 3a – 3e 
The Contour of )(xµ for the interest rates 
The figures are contour lines for estimated )(xµ  function and plot combinations of 1x  
and 2x . 
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Figure 4a. The effect of volatility on the 3-month rate: y1t = 3, 4, mean, 7, 8, 9
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Figure 4b. The effect of volatility on 6-month rate: y1t = 3, 4, mean, 7, 8, 9
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Figure 4c The effect of volatility on 1-year rate: y1t = 3, 4, mean, 7, 8, 9
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Figure 4d. The effect of volatility on 5-year rate: y1t = 3, 4, mean, 7, 8, 9
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Figure 4e The effect of volatility on 10-year rate: y1t = 3, 4, mean, 7, 8, 9
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Figure 4a – 4e 
The effect of volatility on the interest rates 
Each line plots the posterior expectation of the function )('

10 tt m xxα λα ++  evaluated 
at )',( 21 xxt =x  as a function of 2x . For the thin-solid line, %31 =x , for the thin-
dotted line, %41 =x , for the solid line, )(%65.51 meanx = , for the dotted line, 

%71 =x , for the thick-solid line, %81 =x , and for the thick-dotted line, %91 =x . 
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Figure 5a The effect of volatility on the 3-month rate in QTSM: 
y1t = 3, 4, mean, 7, 8, & 9%
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Figure 5b The effect of volatility on the 6-month rate in QTSM: 
y1t = 3, 4, mean, 7, 8 & 9%
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Figure 5c The effect of volatility on the 1-year rate in QTSM:
 y1t = 3, 4, mean, 7, 8, & 9%
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Figure 5d The effect of volatility on the 5-year rate in QTSM:
 y1t = 3, 4, mean, 7, 8, & 9%
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Figure 5e The effect of volatility on the 10-year rate in QTSM:
 y1t = 3, 4, mean, 7, 8, & 9%
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Figure 5a – 5e 
The effect of volatility on the interest rates in QTSM 
Figure 5’s are based on the estimation of model C. They plot the expected values of 
the interest rates for the range of conditional variance from zero to 

)ˆvar(2ˆ 2
|1

2
|1 tttt vv ++ ×+  (the mean of variance plus 2 times standard deviation of the 

variance), when the risk-free rate has 6 values: 3% for the thin-solid line, 4% for the 
thin-dotted line, 5.6% (mean) for the solid line, 7% for the dotted line, 8% for the 
thick-solid line and 9% for the thick-dotted line. 
 
 


