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Abstract

To investigate players’ incentives in coalition formation, we consider a legislative bar-

gaining game with asymmetric information about time preferences. The force that does

not exist in usual bargaining games with unanimity is that due to majority rule, if a

player signals himself as the patient type, other players wish to exclude him from their

coalitions because more is required to buy his vote. As a result, separating equilibria

become harder to support, in the sense that type difference needs to be large enough. If

there exists one, we show that the only separating equilibrium that can survive under

the intuitive criterion is such that the patient player forms oversized coalitions, and the

impatient player prefers minimal-winning coalitions.
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1 Introduction

Most models of legislative bargaining have minimal-winning coalitions as their key predictions

for the equilibria. That is, proposers will never buy more than the smallest number of play-

ers needed to win. Empirical studies, however, find that oversized coalitions are very often

observed as well. Researchers have been trying to rationalize the formation of oversized coali-

tions.1 One popular explanation is uncertainty (Riker, 1962). With complete information,

forming minimal-winning coalitions is usually the cheapest way to win.2 However, if there

is uncertainty about which minimal-winning coalition will actually form, then ex ante, pro-

posers may wish to buy more votes than needed to reduce the uncertainty. Weingast (1979)

and others offer a theory of “universalism,” a norm built in order for everyone to receive a

benefit due to the fear that he will be excluded from the minimal-winning coalitions.

The arguments above fail to address how these cooperative motivations to form oversized

coalitions can sustain over time. More importantly, it remains to explain whether the in-

centives to attract more votes than needed are sequential rational, particularly when some

information about their bargaining position is revealed during the process. There may be

some other ways to incorporate uncertainty about what is to take to get a majority into a

dynamic model, but it is the most natural to incorporate incomplete information in players’

preferences into a legislative bargaining game. Thus, people have to take into account the

signaling effects of how their proposals and votes to reject affect their future bargaining po-

sition. There is no other paper, as far as we know, which also analyzes a bargaining model

with incomplete information where agreement requires less than unanimous approval.

We therefore consider a simple version of Baron and Ferejohn (1989) with three players

and three periods. Their influential model has become a workhorse tool for analyzing many

1See Volden and Carrubba (2004) for the survey on several theories.
2This argument applies to almost all formal models. Norman (2000) argues an equilibrium with oversized

coalitions can be supportable when players use history dependent strategies. Groseclose and Snyder (1996)

also get supermajority coalitions in a stylized model of vote buying.
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economic and political problems. In each period, nature selects a proposer who can divide

a pie. Legislators then vote once the proposal in on the floor, and it passes if it obtains a

majority of the votes, otherwise bargaining goes to the next period and the same process is

repeated. In this paper, we assume that the discount rate of each player is private information.

There is a huge literature in bilateral bargaining with two-sided incomplete information,

and much has been known about them.3 For example, with continuous type space and infinite

horizons, Cramton (1984) considers the case of one-sided offers, and Cramton (1992) considers

the case of alternating offers. Chatterjee and Samuelson (1987) deal with alternating offers

and binary type space. Watson (1998) also considers an alternating-offer game with two-sided

incomplete information about player’s discount rates. Fudenberg and Tirole (1983) provides

a entire profile of equilibria in a two-period game with binary type space, in which offers can

be made alternatingly. The literature in multilateral bargaining is relatively scarce. Baliga

and Serrano (1995) consider a multilateral bargaining with imperfect information, in that

players only knows his own share but not the ones offered to others. All of these papers

concern about unanimity rule.

It is natural to conjecture that adding incomplete information to Barn-Ferejohn model will

deliver a model sufficiently similar to the usual incomplete information bargaining games that

these results will carry over in some form. However, it is not correct. In typical incomplete

information bargaining games, a proposer wishes to signal that he is a “strong” bargainer (is

patient or has a low valuation) since this is what will convince the other players to concede

the most. In legislative bargaining games, however, a proposer’s incentives are much more

mixed. Unlike in bargaining with unanimity, being strong in the future is bad in the present:

to form a winning coalition, only a subset of the players need to agree, so the current proposer

will bribe a minimal-winning coalition with the players with the lowest continuation payoffs.

If the proposer signals that he is a strong bargainer, it is possible that no later proposers will

3See Kennan and Wilson (1993) for a thorough survey.
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include him in their coalitions because it is more expensive to buy his vote. As the result,

separation is harder to get: for separation the proposal by the strong type must be rejected

with positive probability; but if the strong type is revealed, he may not be included in the

later majority if the proposal is rejected.

We show that if the types are not very far apart, there exists no separating equilibrium,

because both types have the incentives to pass their proposal immediately. Only pooling

equilibria with minimal-winning coalitions can be supported. However, oversized coalitions

can be optimal if the types are different enough, and they must fail with some positive proba-

bility. In a separating equilibrium, the patient proposer tends to form oversized coalitions to

increase the probability of acceptance, when it is not too expensive to include two relatively

impatient opponents in the coalitions. The impatient proposer prefers minimal-winning coali-

tions in which his proposal passes for sure immediately, since he has less incentives to delay.

Therefore, proposers separate not only in making different proposals, but also in choosing

different forms of coalitions.

The remainder of the paper is organized as follows. Section 2 introduces the model.

In section 3, we analyze separating equilibria and pooling equilibria which can survive un-

der symmetric tie-breaking rules and the intuitive criterion. Section 4 makes some further

discussions and section 5 concludes.

2 The Model

The model is a three-player, three-period version of Baron and Ferejohn (1989). In the

beginning of each period if it is reached, nature selects a player as the proposer with equal

probability to divide a dollar. A proposal xi = (xi
1, x

i
2, x

i
3) satisfies xi

j ≥ 0 and
∑

3

j=1
xi

j ≤ 1

for all i, i ∈ {1, 2, 3}, where xi
j is the share that the proposer i offers to player j. Once the

proposal is on the floor, the legislature votes simultaneously, and it passes if it wins a majority

of the votes; if it fails, the game goes to the next round, and nature selects a proposer again
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and the same process is repeated. If there is still no agreement at period 3, the game ends

and everyone gets 0.

Players are risk neutral: the utility function of player j is uj(x
i, t) = δt−1

j xi
j , t = 1, 2, 3,

where δj ∈ (0, 1] is the discount rate. We assume that δj is private information to player

j, and it is common knowledge that for each player, the distribution function is binary:

δj ∈ Ω = {δ
¯
, δ̄}, δ̄ > δ

¯
, with probability 1

2
. Henceforth, we call player j of type δ̄ player jH

and player 1 of type δ
¯

player jL.

A history at the beginning of period t is ht = {i(n), xi(n), a1(n), a2(n), a3(n)}t−1
n=0

, where

aj ∈ {Yes, No} is j’s voting decision upon the proposal xi. A strategy of j is σj : ht × Ω →

[0, 1]3 when j is recognized to make a proposal at time t, and σj : ht× [0, 1]3×Ω → {Yes, No}

when j votes on the proposal on the floor. Without loss of generality, we assume player 1 is

the proposer in the first period. We look for sequential equilibria in this game.

3 Equilibria with Symmetric Tie-breaking Rules

In the third period if it is reached on the equilibrium path, no matter what beliefs players hold,

the proposer will demand the whole dollar and everyone will vote for it. The continuation

value for each player at the beginning of the third period is therefore either 1

3
δ̄ or 1

3
δ
¯
. Thus,

if the second period is reached on the equilibrium path, player jH (jL) will vote for i’s

proposal, yi = (yi
1, y

i
2, y

i
3), if and only if yi

j ≥ 1

3
δ̄ (yi

j ≥ 1

3
δ
¯
). Based on this fact, in the

following proposition we show that a minimal-winning coalition always forms in the second

period.

Proposition 1. Following equilibrium path proposals in the second period if it is reached:

1. A minimal-winning coalition always forms.

2. If player 1 is perceived as a L type after a rejection in the first period, he is always

included in the majority in the second period.
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Proof. See the Appendix.

If player 1’s proposal does not pass in the first period, players update their beliefs as

P (h) = (p1, p2, p3), given the history h. Due to the skimming property, if the second period

is reached on the equilibrium path, it is more likely that players 2 and 3 are of H type, that is,

p2 ≥ 1

2
and p3 ≥ 1

2
. However, it is not optimal for player 1 to make the first-period proposal

accepted neither by players 2 nor by 3, given the fact that the pie shrinks and player 1 may

lose control in the agenda setting when the bargaining is delayed to the next period, so that

at least one player between players 2 and 3 is of H type if the second period is reached on the

equilibrium path. Thus, when player 1 is the proposer again, he will satisfy one player of H

type and make the proposal pass (by offering 1

3
δ̄), instead of forming an oversized coalition

so that with a chance, the agreement is postponed to the third period.

When player 2 (3) is the proposer in the second period, he can choose either player 1 or

player 3 (2) in the coalition. Given the second-period strategies played, offering 1

3
δ̄ to another

player j will ensure it to pass. Again, instead of buying a supermajority, it is optimal to form

a minimal-winning coalition and bargaining concludes in the second period. Moreover, if

player 1 is perceived as a L type, he is in the majority for sure since it is cheaper to buy

his vote so that both players 2 and 3 will choose him in their coalitions. On the other hand,

if he is perceived as a H type, then there is a probability that he is not in player 2 or 3’s

coalition. In any case, a minimal-wining coalition forms in the second period if it is reached

on the equilibrium path.

3.1 Separating Equilibria

In a separating equilibrium, the first-period proposal x1 ∈ {xH , xL} made by players 1H and

1L are different; that is, xH 6= xL, so that player 1’s type is revealed in the first period. Given

a history h, supposing that Vj(h) is the continuation value at the beginning of the second

period for player j, then the equilibrium strategies call for player 2H to vote for x1 if and
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only if x1
2 ≥ δ̄V2(h), and for player 2L to vote for it if and only if x1

2 ≥ δ
¯
V2(h). Player 3 is

analogous.

Many separating equilibria can be supportable, but most of them are based on unreason-

able off-equilibrium beliefs. We then use the intuitive criterion as the refinement. However,

since a separating equilibrium puts no restriction on the tie-breaking rule, there are still many

equilibria that can be supportable after any refinement. We therefore focus on those equilib-

ria with symmetric tie-breaking rules; that is, the proposer selects one of the other players

in his coalition with equal probability when there is a tie. Restricting our attention to this

rule yields clear predictions for the equilibria. In the next section, we will discuss asymmetric

tie-breaking rules, in which the problem of multiple equilibria becomes more serious.

Proposition 2. Under symmetric tie-breaking rules and the intuitive criterion:

1. If δ̄ < 2δ
¯
, there exists no separating equilibrium.

2. If δ̄ ≥ 2δ
¯
, the only separating equilibrium that can be supportable is such that 1H forms

an oversized coalition, and 1L forms a minimal-winning coalition. Namely, xH =

(1− 2

3
δ
¯
, 1

3
δ
¯
, 1

3
δ
¯
), and xL = (1− 1

3
δ̄ + 1

9
δ̄δ
¯
− 1

18
δ̄2, 1

3
δ̄ − 1

9
δ̄δ
¯

+ 1

18
δ̄2, 0) or (1− 1

3
δ̄ + 1

9
δ̄δ
¯
−

1

18
δ̄2, 0, 1

3
δ̄ − 1

9
δ̄δ
¯

+ 1

18
δ̄2).

Proof. See the Appendix.

[Insert Figure 1]

In a separating equilibrium, as shown in the Appendix, the incentive constraints imply

that xH must be rejected with some probability on the equilibrium path. Thus, there are only

two candidates of xH for a separating equilibrium: (i) xH is made such that players 2L and

3L vote for it, but players 2H and 3H vote against it; (ii) xH is made such that only either

player 2L or 3L votes for it. Proposals other than those ones cannot increase the probability

of passing it but will give player 1H a lower share, and thus they can be eliminated by the

intuitive criterion.
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We also argue that it is not optimal that xL is made such that only one player of L

type votes for it, because although it saves some costs in the first period, the reduction in

the probability of acceptance cannot compensate the proposer. Hence, there are only two

candidates of xL for a separating equilibrium: (i) xL is made such that players 2L and 3L

vote for it, but players 2H and 3H reject it; (ii) xL is made such that only either player 2H

or 3H votes for it.

The results show that, in order to support a separating equilibrium, 1H has to be patient

enough, otherwise, since he has some probability not being included in others’ coalitions

when his first-period proposal is rejected, he has less incentives to reveal his information.

Therefore, since xH must fail with some positive probability, if δ̄ and δ
¯

are too close, no

separating equilibrium can be supported because 1H wishes to pass his proposal immediately.

On the other hand, if δ̄ and δ
¯

are distant enough, a enough patient 1H has the incentives to

form an oversized coalition, since when δ
¯

is small, it is not too expensive to buy one more vote

than needed to increase the probability of acceptance, although it means a worse bargaining

position when he reveals as a H type. For 1L, when δ
¯

is small, he has less incentives to

delay, so that a minimal-winning coalition is the optimal choice because it passes in the first

period for sure. Therefore, “separation” not only represents that the two types offer different

proposals in equilibrium, but also means that they choose different forms of coalitions.

Hence, majority rule creates a tradeoff that does not exist in traditional bargaining games.

In unanimity games, the patient player has more incentives to wait for better offers, so that

one typical equilibrium is that the impatient player wishes to pass his proposal immediately,

but the patient player wishes to delay with some probability. In the legislative bargaining

problems, there is another force such that the H type may sometimes have no incentives to

wait. According to Proposition 1, a L type player can obtain a better position in later stages

of bargaining because other players will include him in their coalitions. The tradeoff thus is

between being included in the future majority for sure and demanding a larger share of the
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pie today.

3.2 Pooling Equilibria

In a pooling equilibrium, both types offer the same proposal in the first period, that is,

xL = xH = x. Thus, if the second period is on the equilibrium path, then p1 = 1

2
. In this

case, after a rejection to x, no one can always be included in everyone’s coalition in the second

period. The following proposition claims that there are two kinds of proposals supportable

in a pooling equilibrium, depending on the difference of δ̄ and δ
¯
.

Proposition 3. Under symmetric tie-breaking rules and the intuitive criterion, the first-

period proposals in a pooling equilibrium are such that:

1. If δ̄ and δ
¯

are close, a minimal-winning coalition forms, i.e. x = (1 − 1

3
δ̄, 1

3
δ̄, 0) or

x = (1 − 1

3
δ̄, 0, 1

3
δ̄).

2. If δ̄ and δ
¯

are far apart, an oversized coalition forms, i.e. x = (1 − 2

3
δ
¯
, 1

3
δ
¯
, 1

3
δ
¯
).

Proof. See the Appendix.

[Insert Figure 2]

When δ̄ and δ
¯

are close, both 1H and 1L have incentives to pass their proposals im-

mediately because it is not too expensive to satisfy a H type, so that a minimal-winning

coalition forms. On the other hand, if δ̄ and δ
¯

are very different, the costs of buying two L

type players are relatively small although with some probability the proposal fails. Thus, an

oversized proposal is optimal for both types.

It is still possible to consider uncertainty as a good reason which indeed can lead to the

formation of oversized coalitions; however, in contrast to the previous literature, the winning

coalitions are oversized in an ex post sense: no one is quite sure what it takes to get a majority,

and oversized proposals are made to be rejected with some probabilities. It is shown that
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there must exist this kind of pooling equilibrium sometimes, where the proposer prefers to

make a proposal that is sure to attract too many votes, rather than take a bigger chance that

a more aggressive proposal will fail.

4 Discussions

4.1 An Asymmetric Equilibrium

The reason to focus on equilibria with symmetric tie-breaking rules is that it can produce

clear predictions for the equilibrium outcomes. When the tie-breaking rules are asymmetric,

much more equilibria can be supportable after any refinement, because players can punish and

reward their opponents by manipulating the way they break the tie. Consider the following

example, in which H type proposer is always included in the majority for sure in the second

period when there is a tie such that he has enough incentives to separate, even when δ̄ and

δ
¯

are close.

When there is a tie, we denote by ρ̄i
j the probability that proposer iH chooses j in his

coalition in the second period, and by ρ
¯

i
j

the probability that proposer iL chooses j. Then:

Proposition 4. There exists a tie-breaking rule (ρ̄i
j , ρ
¯

i
j
) such that the following separating

equilibrium can be supportable when δ̄ < 2δ
¯
:

1. xH = (1 − 2

3
δ
¯

+ 1

9
δ̄δ
¯
, 1

3
δ
¯
− 1

9
δ̄δ
¯
, 1

3
δ
¯
) which is accepted by player 2L and 3L;

2. xL = (1 − 1

3
δ̄ + 1

9
δ̄δ
¯
− 1

9
δ̄2ρ

¯

1

2
, 1

3
δ̄ − 1

9
δ̄δ
¯

+ 1

9
δ̄2ρ

¯

1

2
, 0) which is accepted only by 2H.

3. Tie-breaking rule when applicable:

ρ̄
j
1
(x1) =











1 if x1 = xH

0 otherwise

for j 6= 1; ρ̄1
2 = 0; ρ

¯

1

2
∈ [0, 1].

Proof. See the Appendix.

This example is cooked such that players always choose 1H when there is a tie in the

second period. This can change his incentive in separation, since when δ̄ and δ
¯

are close under
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the symmetric case, 1H has no incentive to wait because he has some significant probabilities

of not being in other’s coalitions once his proposal is rejected. Here, on the contrary, since

there is no restrictions put on the tie-breaking rules used off the equilibrium path, by carefully

choosing the tie-breaking rules on and off the equilibrium path, this separating equilibrium

can be supportable even if the types difference is small, and the range of non-separation is in

fact smaller than the previous case.

4.2 Unanimity Rule

In the traditional bargaining game with unanimity, the proposer has to offer everyone a

positive share in order to get enough votes, otherwise the proposal will fail. Thus, a patient

player can demand more because in case where the proposal is rejected, no one will be

excluded. He then has more incentives to separate herself by delaying the agreement.

Under the same game except the unanimity, there does not always exist a separating

equilibrium, especially when both types are less patient. However, contrary to the previous

case, we are able to construct a separating equilibrium in some range of the parameters,

even when the two types are very close. In this separating equilibrium, player 1H buys votes

from 2H and 3L (or 2L and 3H), in which case the proposals will be rejected with some

probability; and 1L buys votes from 2H and 3H, which passes for sure immediately.4 Thus,

in the sense that the types difference has to be larger, majority rule makes separation harder.

5 Conclusion

This paper studies a legislative bargaining model with asymmetric information. Equilibria

under majority rule can be quite different from the ones in typical bargaining games. In

unanimity games, patient players can demand more since it is less costly to delay. In legislative

bargaining, since only a majority is needed to pass a proposal, a player who is strong in

4This equilibrium is discussed in Appendix B.
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the future is now at a disadvantage because it is more expensive to buy his vote, so that

he is excluded from others’ coalitions. This new force makes separating equilibria harder to

support, in the sense that the type differences have to be large enough. We show that oversized

coalitions can form in a pooling equilibrium sometimes, in which the first-period proposal will

be rejected with some positive probability. Moreover, the only possible separating equilibrium

that can survive under the intuitive criterion is such that the patient type forms an oversized

coalition, and the impatient one chooses a minimal-winning coalition. Therefore, “separation”

here also represents that they choose different forms of coalitions.

Future research should address whether the results hold for more general environments.

The answer is more likely to be positive when the time horizons are extended to finite periods

more than three, because the effect of exclusion after separation may still make the “strong”

player (who may not always be the patient player now) hesitate in revealing his private

information. Another direction is to look at what happens as the number of legislators

increases, although its complexity will make it much difficult to predict the results. Our

haunch is that, it becomes very hard to support a “universal” coalition if it fails with some

probability as the level of uncertainty increases. Proposers sometimes may still have the

incentives to buy more votes than needed, because the advantage to be perceived as a “weak”

type at present should become larger when there are more players in the game, who wish to

include him in their coalitions. Therefore, we expect that some interesting implications can be

drawn from the pursuit of the endogenous relationship between the “optimal supermajority”

and the level of uncertainty.
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Appendix A

After history h, we define pj(h) the posterior beliefs in the second period that player j is of H

type, and P (h) = (p1, p2, p3). Also, xi = (xi
1, x

i
2, x

i
3) is the proposal offered by proposer i in

the first period, and if the second period is reached on the equilibrium path, yi = (yi
1, y

i
2, y

i
3)

is the proposal by i. When there is a tie, ρ̄i
j is the probability that proposer iH chooses j in

his coalition in the second period, and ρ
¯

i
j

is the probability that proposer iL chooses j.

Lemma 1. Given history h, following the equilibrium path proposal in the second period if it

is reached:

1. if min{pj , pk} > δ̄−δ
¯

3−δ̄−δ
¯

and pjpk > δ̄−2δ
¯

3−δ̄−2δ
¯

, then iH randomizes between yi = (1 −
1

3
δ̄, 1

3
δ̄, 0) and (1 − 1

3
δ̄, 0, 1

3
δ̄) with probability ρ̄i

j ∈ [0, 1];

2. if min{pj , pk} > δ
¯

3−δ̄−δ
¯

, and pjpk < δ̄−2δ
¯

3−δ̄−2δ
¯

, then iH proposes yi = (1− 2

3
δ
¯
, 1

3
δ
¯
, 1

3
δ
¯
) with

probability 1;

3. if min{pj , pk} < δ̄−δ
¯

3−δ̄−δ
¯

and pjpk > δ̄−2δ
¯

3−δ̄−2δ
¯

, or if min{pj , pk} < min{ δ̄−δ
¯

3−δ̄−δ
¯

, δ
¯

3−δ̄−δ
¯

} and

pjpk < δ̄−2δ
¯

3−δ̄−2δ
¯

, then iH proposes yi = (1 − 1

3
δ
¯
, 1

3
δ
¯
, 0) with probability 1 if pj < pk, and

randomizes between (1 − 1

3
δ
¯
, 1

3
δ
¯
, 0) and (1 − 1

3
δ
¯
, 0, 1

3
δ
¯
) with a probability ρ̄i

j ∈ [0, 1] if

pj = pk;

where i, j, k ∈ {1, 2, 3}, i 6= j 6= k. The cases for proposer iL are analogous.

Proof. First of all, the continuation value for each player in the beginning of the third period

is 1

3
. Thus, in the second period if it is reached, player jH votes for any proposal where

yi
j ≥ 1

3
δ̄ and jL votes for any proposal where yi

j ≥ 1

3
δ
¯
.

Suppose player 1H is the proposer (again) in the second period. Without loss, suppose

p2 ≤ p3. Proposal (1− 1

3
δ
¯
, 1

3
δ
¯
, 0) yields an expected payoff (1− 1

3
δ
¯
)(1− p2)+ 1

3
δ̄ · p2; proposal

(1 − 2

3
δ
¯
, 1

3
δ
¯
, 1

3
δ
¯
) gives him (1 − 2

3
δ
¯
)(1 − p2p3) + 1

3
δ̄ · p2p3, and proposal (1 − 1

3
δ̄, 1

3
δ̄, 0) or

(1 − 1

3
δ̄, 0, 1

3
δ̄) gives him 1 − 1

3
δ̄.
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If p2p3 > δ̄−2δ
¯

3−δ̄−2δ
¯

, then for player 1H, proposal (1 − 1

3
δ̄, 1

3
δ̄, 0) or (1 − 1

3
δ̄, 0, 1

3
δ̄) is better

than (1 − 2

3
δ
¯
, 1

3
δ
¯
, 1

3
δ
¯
). And if p2 > δ̄−δ

¯
3−δ̄−δ

¯

, then proposal (1 − 1

3
δ̄, 1

3
δ̄, 0) or (1 − 1

3
δ̄, 0, 1

3
δ̄) is

better than (1 − 1

3
δ
¯
, 1

3
δ
¯
, 0). Thus, (1 − 1

3
δ̄, 1

3
δ̄, 0) or (1 − 1

3
δ̄, 0, 1

3
δ̄) is the best proposal under

the conditions in part 1.

Suppose that p2p3 < δ̄−2δ
¯

3−δ̄−2δ
¯

. For player 1H, proposal (1 − 2

3
δ
¯
, 1

3
δ
¯
, 1

3
δ
¯
) is better than

(1− 1

3
δ̄, 1

3
δ̄, 0) or (1− 1

3
δ̄, 0, 1

3
δ̄). If p2 > δ̄−δ

¯
3−δ̄−δ

¯

, then proposal (1− 1

3
δ̄, 1

3
δ̄, 0) or (1− 1

3
δ̄, 0, 1

3
δ̄)

is better than (1 − 1

3
δ
¯
, 1

3
δ
¯
, 0), which means that (1 − 2

3
δ
¯
, 1

3
δ
¯
, 1

3
δ
¯
) is the best proposal.

For the rest of the cases, (1 − 1

3
δ
¯
, 1

3
δ
¯
, 0) is the best proposal. If p2 = p3, then player 1H

is indifferent between (1 − 1

3
δ
¯
, 1

3
δ
¯
, 0) and (1 − 1

3
δ
¯
, 0, 1

3
δ
¯
).

The cases where player 2 or 3 is the proposer can be similarly computed. Also, the cases

for 1L are analogous.

Proof of Proposition 1.

If the second period is reached on the equilibrium path, that is, x1 is rejected with some

positive probability, then by the skimming property, p2 ≥ 1

2
and p3 ≥ 1

2
. In a separating

equilibrium, if xL is rejected, p1 = 0. By Lemma 1, when player 2H (3H) is the proposer

in the second period, he will always choose player 1L and offer y2 = (1

3
δ
¯
, 1 − 1

3
δ
¯
, 0), and 1L

will accept it. On the other hand, if xH is rejected, p1 = 1. Then player 2 will randomize

between (1

3
δ̄, 1 − 1

3
δ̄, 0) and (0, 1 − 1

3
δ̄, 1

3
δ̄), because 1

2
> δ̄−δ

¯
3−δ̄−δ

¯

> δ̄−2δ
¯

3−δ̄−2δ
¯

. That is, player 1H

is not always in the majority. The case for player 2L (3L) being the proposer is similar.

When player 1 is the proposer in the second period again, according to Lemma 1, he

would propose y1 = (1− 2

3
δ
¯
, 1

3
δ
¯
, 1

3
δ
¯
) only if both types of both players 2 and 3 vote against x1

with some positive probabilities (i.e. when p2p3 < δ̄−2δ
¯

3−δ̄−2δ
¯

< 1

2
). Give that the pie shrinks in

a discount rate and player 1 may lose the control in agenda setting in the next period, this

case cannot happen on the equilibrium path, that is, at least one of p2 and p3 is equal to 1.

Therefore, player 1 will randomize between (1 − 1

3
δ̄, 1

3
δ̄, 0) and (1 − 1

3
δ̄, 0, 1

3
δ̄).

In a pooling equilibrium, if x1 is rejected on the equilibrium path, p1 = 1

2
. According

14



to Lemma 1, each proposer will offer 1 − 1

3
δ̄ to himself, and 1

3
δ̄ to one of the other players

randomly in the second period. Therefore, we can see that a minimal-winning coalition always

forms on the equilibrium path if the second period is reached.

Proof of Proposition 2.

There are several steps to prove this proposition.

Lemma 2. In a separating equilibrium, xH must be rejected with a positive probability.

Proof. Suppose that on the equilibrium path, xH passes for sure in the first period. It cannot

be a separating equilibrium when xL also passes for sure on the equilibrium path in the first

period, because one of the types will deviate to the proposal with a higher payoff. Suppose

that xL fails with some probability γL > 0, then we have the incentive constraints:

(1 − γL)xL
1 + γLδ

¯
V1(x

L) ≥ xH
1 (1)

xH
1 ≥ (1 − γL)xL

1 + γLδ̄V1(x
L) (2)

(1) and (2) cannot be both satisfied. Thus, xH must be rejected with a positive probability

on the equilibrium path.

Proposition 2, part 1. If δ̄ < 2δ
¯
, there exists no separating equilibrium under symmetric

tie-breaking rules and the intuitive criterion.

Proof. Since in a separating equilibrium, xH is rejected with a positive probability in the

first period on the equilibrium path, then based on the skimming property, P (xH) = (1, p2 ≥
1

2
, p3 ≥ 1

2
), and p2p3 ≥ 1

2
, and we can compute the continuation values in the second period,

given the strategies played in the second period as in Lemma 1:

V1(x
H) = V2(x

H) = V3(x
H) =

1

3

Thus, player j votes for xH if xH
j ≥ 1

3
δ, where δ ∈ {δ̄, δ

¯
}. In the first period, player 1 can

consider one of the following proposal: xH = (1 − 2

3
δ
¯
, 1

3
δ
¯
, 1

3
δ
¯
), (1 − 1

3
δ
¯
, 1

3
δ
¯
, 0), (1 − 1

3
δ
¯
, 0, 1

3
δ
¯
),

15



(1− 1

3
δ̄, 1

3
δ̄, 0), or (1− 1

3
δ̄, 0, 1

3
δ̄). Proposals other than those ones will give player 1 a smaller

share in the first period but will not increase the probability of passing, and thus they can

be ignored.

If xH = (1− 2

3
δ
¯
, 1

3
δ
¯
, 1

3
δ
¯
), then in equilibrium player 2L and 3L will vote for it, but player

2H and 3H will vote against it. Therefore, the expected payoff for player 1H from this

proposal is

3

4
(1 − 2

3
δ
¯
) +

1

4
· 1

3
δ̄ =

3

4
− 1

2
δ
¯

+
1

12
δ̄.

If xH = (1 − 1

3
δ
¯
, 1

3
δ
¯
, 0) (xH = (1 − 1

3
δ
¯
, 0, 1

3
δ
¯
) is analogous), then only player 2L will vote

for it, but players 2H and 3 (3H and 3L) will vote against it. Therefore, the expected payoff

for player 1H from this proposal is

1

2
(1 − 1

3
δ
¯
) +

1

2
· 1

3
δ̄ =

1

2
− 1

6
δ
¯

+
1

6
δ̄.

If xH = (1 − 1

3
δ̄, 1

3
δ̄, 0) (and xH = (1 − 1

3
δ̄, 0, 1

3
δ̄) is analogous), both players 2L and 2H

vote for it so that it passes in the first period. Thus, the payoff is 1 − 1

3
δ̄.

It is easily to verify that 1 − 1

3
δ̄ > 1

2
− 1

6
δ
¯

+ 1

6
δ̄ for any possible parameters δ̄ and δ

¯
, and

1 − 1

3
δ̄ > 3

4
− 1

2
δ
¯

+ 1

12
δ̄ if δ̄ < 2δ

¯
.5 That is, xH = (1 − 1

3
δ̄, 1

3
δ̄, 0) is the best proposal for

player 1H if he is perceived as a H type. Any other proposals which may be able to support

a separating equilibrium must be based on the belief that there is some probability that this

deviating proposal, x′ = (1 − 1

3
δ̄, 1

3
δ̄, 0), is offered by 1L, so that player 2 might be better

off to reject it. It is not the case when δ̄ < 2δ
¯
, because if P (x′) = (0, p2 ≥ 1

2
, p3 ≥ 1

2
) is the

off-equilibrium belief,6 the continuation value in the second period, following the strategies

played in that period, is

V2(x
′) =

1

3
− 1

9
δ
¯

+
1

18
δ̄ <

1

3
,

so that both types of player 2 are still better off to accept it, instead of rejecting it, and thus

5It is required that δ̄ <
3+6δ

¯5
, which is impled by δ̄ < 2δ

¯
for any δ̄, δ

¯
∈ (0, 1].

6p2 = 0 or p3 = 0 cannot be reasonable beliefs, because player 2L or 3L cannot be better off to reject the

proposal no matter what off-equilibrium beliefs players hold.
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player 1H is better off to deviate. Thus, no matter what off-equilibrium beliefs that players

may hold, it is optimal for 1H to offer xH = (1 − 1

3
δ̄, 1

3
δ̄, 0) or (1 − 1

3
δ̄, 0, 1

3
δ̄).

However, this contradicts to Lemma 2, in which we claim that the proposal must fail with

some probability in the first period in a separating equilibrium. This shows that there does

not exist any separating equilibrium if δ̄ < 2δ
¯

under the intuitive criterion.

Lemma 3. In a separating equilibrium, it is not optimal for player 1L that xL is made such

that only one player of L type accepts it in the first period.

Proof. Suppose that xL is accepted only by 2L in the first period, then in the second period

if it is reached, P (xL) = (0, 1, 1

2
), and V1(x

L) = 1

3
(1 − 1

3
δ̄) + 2

3
· 1

3
δ
¯
. Since 2L accepts xL iff

x2 ≥ δ
¯
[1
3
(1 − 1

3
δ
¯
)], in which 1L can set ρ

¯
1

3
= 1 to break the tie (that is, player 1L can always

choose player 3 if the second period is reached), the highest expected payoff in the first period

player 1L can obtain from this proposal is 1

2
(1 + 1

3
δ
¯
2 − 1

9
δ̄δ
¯
) (which is certainly higher than

the one under symmetric tie-breaking rules).

However, if 1L instead offers a proposal such that 2H accepts it, then no matter what

off-equilibrium beliefs players could hold, player 2H accepts it iff x2 ≥ δ̄[1
3
(1 − 1

3
δ
¯
) + 1

3
(1

3
δ̄)].

In this case, the least that player 1L can get from this proposal is (1− 1

3
δ̄ + 1

9
δ̄δ
¯
− 1

9
δ̄2), which

is always higher than 1

2
(1 + 1

3
δ
¯
2 − 1

9
δ̄δ
¯
). Hence, it is never optimal that xL is made such that

only one player of L type accepts it.

Lemma 4. In a separating equilibrium, if δ̄ > 2δ
¯
, then under the intuitive criterion, the only

possible xH is xH = (1 − 2

3
δ
¯
, 1

3
δ
¯
, 1

3
δ
¯
).

Proof. By Lemma 2, xH = (1 − 1

3
δ̄, 1

3
δ̄, 0) or (1 − 1

3
δ̄, 0, 1

3
δ̄) cannot be a candidate in a

separating equilibrium. Also, 3

4
− 1

2
δ
¯

+ 1

12
δ̄ > 1

2
− 1

6
δ
¯

+ 1

6
δ̄ is always true when δ̄ > 2δ

¯
. On

the other hand, there exist a range in δ̄ > 2δ
¯

such that 3

4
− 1

2
δ
¯

+ 1

12
δ̄ > 1 − 1

3
δ̄. Therefore,

if δ̄ > 2δ
¯

and a separating equilibrium exists, the only possible candidate of xH under the

intuitive criterion is xH = (1 − 2

3
δ
¯
, 1

3
δ
¯
, 1

3
δ
¯
), because this is the best proposal that player 1H

17



can obtain if he is perceived as a H type.

Proposition 2, part 2. If δ̄ ≥ 2δ
¯
, the only separating equilibrium that can be supportable

under the intuitive criterion is such that xH = (1 − 2

3
δ
¯
, 1

3
δ
¯
, 1

3
δ
¯
), and xL = (1 − 1

3
δ̄ + 1

9
δ̄δ
¯
−

1

18
δ̄2, 1

3
δ̄ − 1

9
δ̄δ
¯

+ 1

18
δ̄2, 0) or (1 − 1

3
δ̄ + 1

9
δ̄δ
¯
− 1

18
δ̄2, 0, 1

3
δ̄ − 1

9
δ̄δ
¯

+ 1

18
δ̄2).

Proof. By Lemma 2, 3 and 4, the only possible candidates for a separating equilibrium are:

(i) 1H buys two votes from 2L and 3L, and 1L buys two votes from 2L and 3L; and (ii) 1H

buys two votes from 2L and 3L, and 1L buys one vote from 2H or 3H.

Case (i):

Since both xH and xL are rejected with positive probabilities in the first period on the

equilibrium path, then P (xH) = (1, 1, 1) and P (xL) = (0, 1, 1). Again, the continuation

values in the second period can be obtained, and so xH = (1 − 2

3
δ
¯
, 1

3
δ
¯
, 1

3
δ
¯
), and xL = (1 −

2

3
δ
¯

+ 2

9
δ
¯
2 − 1

9
δ̄δ
¯
, 1

3
δ
¯
− 1

9
δ
¯
2 + 1

18
δ̄δ
¯
, 1

3
δ
¯
− 1

9
δ
¯
2 + 1

18
δ̄δ
¯
). The incentive constraints require:

(1 − γL)xL
1 + γLδ

¯
V1(x

L) ≥ (1 − γH)xH
1 + γHδ

¯
V1(x

H) (3)

(1 − γH)xH
1 + γH δ̄V1(x

H) ≥ (1 − γL)xL
1 + γLδ̄V1(x

L) (4)

Since in this case, γL = γH = 1

2
in equilibrium, and V1(x

H) = 1

3
> V1(x

L) = 1

3
− 1

9
δ̄ + 2

9
δ
¯

if

δ̄ > 2δ
¯
, it is equivalent to:

xL
1 ≥ xH

1 , (5)

or 1 − 2

3
δ
¯

+ 2

9
δ
¯
2 − 1

9
δ̄δ
¯
≥ 1 − 2

3
δ
¯
, which is not true if δ̄ > 2δ

¯
. Therefore, this case cannot be

supported as a separating equilibrium.

Case (ii):

The only case left is where 1H buys two votes from 2L and 3L, and 1L buys one vote

from 2H or 3H. We can show there exists a range of parameters in δ̄ > 2δ
¯

that supports this

equilibrium. First of all, supposing that 1L buys one vote from 2H, the reasonable beliefs

18



must put p2 ≥ 1

2
, because it is not possible that 2L is better off by rejecting the proposal, but

2H is better off to reject it. Therefore, we have xL = (1− 1

3
δ̄+ 1

9
δ̄δ
¯
− 1

18
δ̄2, 1

3
δ̄− 1

9
δ̄δ
¯
+ 1

18
δ̄2, 0),

based on P (xL) = (0, p2 ≥ 1

2
, 1

2
). The incentive constraints require

3

4
(1 − 2

3
δ
¯
) +

1

4
· 1

3
δ̄ ≥ 1 − 1

3
δ̄ +

1

9
δ̄δ
¯
− 1

18
δ̄2 ≥ 3

4
(1 − 2

3
δ
¯
) +

1

4
· 1

3
δ
¯
, (6)

which gives us the range of parameters (δ̄, δ
¯
) that satisfies incentive compatibility.7

Under the intuitive criterion, it also requires that these proposals are the best one in

a separating equilibrium for players 1H and 1L, respectively, so that there are two more

restrictions on parameters (δ̄, δ
¯
).8 That is, they assure that the proposal is the best one for

1H (1L) when he is perceived as a H (L) type. Combining all these constraints, we can

find a range of parameters (δ̄, δ
¯
) where this separating equilibrium can be supportable. For

example, δ̄ = 1 and δ
¯

= 0.3 and their neighborhood can satisfy all the constraints.

Proof of Proposition 3.

In a pooling equilibrium, both types of player 1 offer the same proposal in the first period.

Thus, if the second period is on the equilibrium path, p1 = 1

2
. Similar to Lemma 3, it can

still be shown that it is never optimal that x is made such that only one player of L type

accepts it. There remain two other cases.

Case (i): Proposal x is made such that either player 2H or 3H accepts it:

Suppose in equilibrium, player 2H accepts x, and both player 3L and 3H reject it. In

the second period if reached, reasonable beliefs are put such that p2 ≥ 1

2
, and thus P (x) =

(1

2
, p2 ≥ 1

2
, 1

2
). According to Lemma 1, every player, regardless of his type, offers 1 − 1

3
δ̄

to himself and 1

3
δ̄ to one of the other players. Therefore, the continuation value for each

player is 1

3
under symmetric tie-breaking rules. Player 1 thus offers x = (1 − 1

3
δ̄, 1

3
δ̄, 0) or

x = (1 − 1

3
δ̄, 0, 1

3
δ̄) and player 2 (or player 3) will accept it on the equilibrium path.

7Namely,
4δ
¯
−15+

√
16δ

¯

2
+24δ

¯
+297

4
≤ δ̄ ≤ 4δ

¯
−12+

√
16δ

¯

2
+24δ

¯
+216

4
.

8Namely, 3+6δ
¯5
≤ δ̄ ≤ −6+4δ

¯
+

√
54−18δ

¯
2

.

19



This proposal can be supportable when δ̄ and δ
¯

are close. One proposal that player 1 may

consider to deviate to is such that only 2L and 3L vote for it. However, as the calculations in

the separating equilibrium, when δ̄ and δ
¯

are close (for example, δ̄ < 2δ
¯
), the expected payoff

for 1H from this deviation is always less than the pool one, no matter what off-equilibrium

beliefs players hold.

Case (ii): Proposal x is made such that only players 2L and 3L accept it:

When the second period is reached on the equilibrium path, P (x) = (1

2
, 1, 1), and so in

this case, x = (1− 2

3
δ
¯
, 1

3
δ
¯
, 1

3
δ
¯
). The expected payoff for 1H is 3

4
(1− 2

3
δ
¯
)+ 1

4
· 1

3
δ̄ = 3

4
− 1

2
δ
¯
+ 1

12
δ̄,

and that for 1L is 3

4
− 5

12
δ
¯
.

Suppose that 1L deviates to buying one vote from 2H and offering him 1

3
δ̄. If this

deviation is considered from a H type, then the expected payoff is 1− 1

3
δ̄ under the reasonable

beliefs. Thus, as long as δ̄ and δ
¯

are distant enough such that 3

4
− 5

12
δ
¯

> 1 − 1

3
δ̄, this is no

a profitable deviation. If this deviation is considered from a L type, then the continuation

value for player 2 is 1

3
− 1

9
δ
¯
+ 1

18
δ̄, which is larger than 1

3
if δ̄ > 2δ

¯
. This means that player 2 is

better off to reject this deviating proposal. Therefore, when δ̄ and δ
¯

are distant enough, there

is no profitable deviation so that this proposal can be supportable as a pooling equilibrium.

The case for 1H is similar.

Proof of Proposition 4.

Suppose that on the equilibrium path, xH is accepted by 2L and 3L. Hence, P (xH) = (1, 1, 1)

when xH is rejected in the first period. Based on the tie-breaking rules proposed, player 2L

accepts xH iff

xH
2 ≥ 1

3
δ
¯
(1 − 1

3
δ̄) (7)

and player 3L accepts it iff

xH
3 ≥ 1

3
δ
¯
[(1 − 1

3
δ̄) +

1

3
δ̄] (8)

Player 1H thus proposes xH as stated. On the other hands, suppose that xL is accepted only
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by 2H. Since P (xL) = (0, p2 ≥ 1

2
, 1

2
) is based on reasonable beliefs, player 2H accepts it iff

xL
2 ≥ 1

3
δ̄[(1 − 1

3
δ
¯
) +

1

3
δ̄ · ρ

¯

1

2
] (9)

The incentive constraints implies

1 − 1

3
δ̄ +

1

9
δ̄δ
¯
− 1

9
δ̄2ρ

¯

1

2
≥ 3

4
(1 − 2

3
δ
¯

+
1

9
δ̄δ
¯
) +

1

4
δ
¯
(
1

3
+

1

9
δ̄) (10)

3

4
(1 − 2

3
δ
¯

+
1

9
δ̄δ
¯
) +

1

4
δ̄(

1

3
+

1

9
δ̄) ≥ 1 − 1

3
δ̄ +

1

9
δ̄δ
¯
− 1

9
δ̄2ρ

¯

1

2
(11)

Both (10) and (11) can be satisfied if ρ
¯
1

2
is chosen wisely even when δ̄ < 2δ

¯
. For example, if

δ̄ is close to but strictly less than 1 and δ
¯

= 1

2
, ρ
¯
1

2
> 5

8
works.

While looking for any profitable deviation, the best deviating proposal x′ for player 1H

is to make one player of H type, say 2H, accept it. In this case, P (x′) = (1, 1, 1

2
). He

can set ρ
¯
1

2
= 0, so that the best one is x′

2 = 1

3
δ̄[(1 − 1

3
δ̄) + 1

3
δ̄ · (1 − ρ̄3

1)] and x′
1 = 1 − x′

2,

given the tie-breaking rule which player 3 is applying. Since there is no restriction on the

tie-breaking rules which people are using off the equilibrium path, there is an equilibrium

supportable at ρ̄3
1 = 0, so that in some range of δ̄ < 2δ

¯
, there is no profitable deviation given

any off-equilibrium beliefs. That is, by carefully choosing the tie-breaking rules on and off the

equilibrium path, this equilibrium can be supportable even if the type difference is small.

Appendix B

A Separating Equilibrium under Unanimity.

Again, every proposer demands 1 in the third period and the continuation value for each

player in the third period is 1

3
, so that everyone votes for the second-period proposal yi if

and only if yi
j ≥ 1

3
δ. In the second period, under the skimming property and the intuitive

criterion, the reasonable beliefs after a rejection to the first-period proposal must be that

both player 2 and 3 are of H types. Therefore, the optimal second-period proposal for player

1 is (1 − 2

3
δ̄, 1

3
δ̄, 1

3
δ̄). Likewise, in a separating equilibrium, player 2 offers (1

3
δ̄, 1 − 2

3
δ̄, 1

3
δ̄) to
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1H, and (1

3
δ
¯
, 1− 1

3
δ̄− 1

3
δ
¯
, 1

3
δ̄) to 1L. It is analogous for player 3. Therefore, the continuation

values are V1(x
H) = V2(x

H) = V3(x
H) = 1

3
, and V1(x

L) = 1

3
− 2

9
δ̄ + 2

9
δ
¯
, V2(x

H) = V3(x
H) =

1

3
+ 1

9
δ̄ − 1

9
δ
¯
.

It can be shown that it is never optimal for player 1 of both types buy votes from only

2L and 3L in the first period. Consider the case that 1H buys votes from 2H and 3L, and

1L buys votes from 2H and 3H. Then xH = (1− 1

3
δ̄ − 1

3
δ
¯
, 1

3
δ̄, 1

3
δ
¯
) and xL = (1− 2

3
δ̄ − 2

9
δ̄2 +

2

9
δ̄δ
¯
, 1

3
δ̄ + 1

9
δ̄2 − 1

9
δ̄δ
¯
, 1

3
δ̄ + 1

9
δ̄2 − 1

9
δ̄δ
¯
). The incentive constraints are

1 − 2

3
δ̄ − 2

9
δ̄2 +

2

9
δ̄δ
¯
≥ 1

2
(1 − 1

3
δ̄ − 1

3
δ
¯
) +

1

2
· 1

3
δ
¯

(12)

1

2
(1 − 1

3
δ̄ − 1

3
δ
¯
) +

1

2
· 1

3
δ̄ ≥ 1 − 2

3
δ̄ − 2

9
δ̄2 +

2

9
δ̄δ
¯

(13)

The is a range of the parameters such that even when δ̄ and δ
¯

are very close, (12) and (13)

are both satisfied. Namely,
δ
¯
−3+

√
δ
¯

2−3δ
¯
+18

2
≤ δ̄ ≤ 4δ

¯
−9+

√
16δ

¯

2−72δ
¯
+225

8
.
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