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Abstract

The stochastic volatility (SV) model can be regarded as a nonlinear state

space model. This paper proposes the Laplace approximation method to

the nonlinear state space representation and applies it for estimating the SV

models. We examine how the approximation works by simulations as well

as various empirical studies. The Monte-Carlo experiments for the standard

SV model indicate that our method is comparable to the Monte-Calro Like-

lihood(MCL:Durbin and Koopman (1997)), Maximum Likelihood(Fridman

and Harris (1998)) and MCMC methods in the sense of mean square error

in finite sample. The empirical studies for stock markets reveal that our

method provides very similar estimates of coefficients to those of the MCL.

We show a relationship of our Laplace approximation method to importance

sampling.
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1 Introduction

The financial time series such as stock returns show heteroskedasticity. The

squared returns process exhibits pronounced serial correlation whereas the returns

process itself exhibits little or no serial correlation. The autoregressive conditional

heteroskedasticity (ARCH) model is one way of describing the financial time series

(Engel (1982), Bollerslev (1986) and Nelson (1991), among others). The ARCH

type models specify the volatility of the current return as a deterministic function

of the past observations and have been widely used in applied empirical research.

Alternatively, volatility may be modeled as an unobservable component fol-

lowing some latent stochastic process, such as an autoregressive model. Models of

this kind are called as stochastic volatility (SV) models (Taylor (1994), Andersen

(1994)). An appealing feature of the SV model is its close relationship to finan-

cial economic theories. The joint distribution of the security returns and trading

volumes was incorporated into the SV model (Clark (1973), Tauchen and Pitt

(1983)). The SV model was used to approximate the stochastic volatility diffu-

sion process for evaluating the option prices (Hull and White (1987) and Melino

and Turnbull (1990)).

Despite theoretical advantages, the SV models have not been popular as the

ARCH models in practical applications. The main reason is that the likelihood of

the SV models is not easy to evaluate unlike the ARCH models. The generalized

method of moments (GMM) is less efficient but not dependent on the likelihood

for estimating the SV models (Andersen and Sørensen (1996)).

Recent developments in Markov Chain Monte-Carlo (MCMC) methods have

increased the popularity of Bayesian inference in many fields of research includ-

ing the SV models. In their epoch making work Jacquire et al.(1994) applied a

Bayesian analysis for estimating the SV model. They proposed a method which

samples alternately parameters and unobservable volatilities. Shephard and Pitt

(1997) improved sampling technique for volatilities by approximating a joint den-

sity of multiple volatilities by the second order Taylor expansion. Kim et al.(1998)

extended the sampling technique of Shephard and Pitt (1997) and provided an

excellent method of sampling the parameters and volatilities.

The classical analysis based on the likelihood for estimating the SV model

has been extensively studied in the recent years. Danielson (1994) approximates
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the marginal likelihood of the observable process by simulating the latent volatil-

ity conditional on the available information. Shephard and Pitt (1997) gave an

idea of evaluating likelihood by exploiting sampled volatility. Durbin and Koop-

man(1997) explored the idea of Shephard and Pitt (1997) and evaluated the like-

lihood by Monte-Carlo integration. Sandmann and Koopman (1998) applied this

method for the SV model. The method of Monte-Calro maximum likelihood was

reviewed by Durbin and Koopman (2000) from both classical and Bayesian per-

spectives. Fridman and Harris (1998) and Watanabe (1999) integrated out the

latent volatilities by the numerical method of Kitagawa (1987) for evaluating the

likelihood. While their numerical methods give the likelihood to any degree of

accuracy depending on the computational costs, their algorithms are not easy to

extend to multivariate models.

The purpose of this paper is to propose the Laplace approximation (LA)

method to the nonlinear state space representation, and to show that the LA

method is workable for estimating the SV models including the multivariate SV

model and the dynamic bivariate mixture (DBM) model. The SV model can be

regarded as a nonlinear state space model. The LA method approximates the log-

arithm of the joint density of current observation and volatility conditional on the

past observations by the second order Taylor expansion around its mode, and then

applies the nonlinear filtering algorithm. This idea of approximation is found in

Shephard and Pitt (1997) and Durbin and Koopmann (1997). The Monte-Carlo

Likelihood (MCL: Sandmann and Koopman (1998)) is now a standard classical

method for estimating the SV models. It is based on importance sampling tech-

nique. Importance sampling is usually regarded as an exact method for maximum

likelihood estimation. We show that the LA method of this paper approximates

the weight function by unity in the context of importance sampling. We do not

need to carry out the Monte Carlo integration for obtaining the likelihood since the

approximate likelihood function can be analytically obtained. If one-step ahead

prediction density of observation and volatility variables conditional on the past

observations is sufficiently accurately approximated, the LA method is workable.

We examine how the LA method works by simulations as well as various em-

pirical studies. In order to investigate the finite sample properties of the LA

approach, we conduct Monte-Carlo experiments for the standard SV model. We
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compare the LA approach with the MCL, Maximum Likelihood (Fridman and Har-

ris (1998)) and MCMC in terms of the estimates of parameters and the smoothing

estimates of volatilities. The Monte-Carlo experiments reveal that our method is

comparable to the MCL, Maximum Likelihood and MCMC methods.

We apply this method to the univariate SV models with normal distribution or

t-distribution, the bivariate SV model and the dynamic bivariate mixture model,

and empirically illustrate how the LA method works for each of the extended mod-

els. The empirical results on the stock markets reveal that our method provides

very similar estimates of coefficients to those of the MCL. As a result, this paper

demonstrates that the LA method is workable through both simulation studies

and empirical studies. Naturally, the workability is limited to the cases examined

in this paper. But we believe the LA method is applicable to many SV models

based on our study of this paper.

The paper is organized as follows. Section 2 discusses the algorithm of the

LA approach to the nonlinear state space representation for the standard SV

model. Although we state the algorithm for the standard SV model for the clarity

of exposition, we emphasize that the algorithm is easily applicable to the more

complicated SV models. In Section 3, we conduct the Monte-Carlo experiments

to investigate the finite sample properties of the LA approach and compare the

LA with the MCL and MCMC methods. In Section 4, we examine how the

LA approach works when it is used for the actual stock market data. The LA

approach is applied to the four types of SV models: the univariate SV model

with either normal or t-distribution, the bivariate SV model and the DBM model

and compared with the MCL. Section 5 states concluding remarks. An analytical

relationship between the LA method and importance sampling technique is stated

in Appendix B.

2 The Laplace approximation to the nonlinear

state space representation

Section 2 discusses the algorithm of the LA approach to the nonlinear state

space representation for the univariate SV model with normal distribution. Al-

though we state the algorithm for the standard univariate SV model for the clarity

5



of exposition, we emphasize that the algorithm is easily extended to the more com-

plicated SV models.　

2.1 The univariate stochastic volatility model

We consider the univariate SV model proposed by Taylor(1986),

yt = exp(ht/2)εt , εt ∼ NID(0, 1) (1)

ht+1 = α + βht + ηt+1, ηt+1 ∼ NID(0, σ2
η) (2)

h1 ∼ N

(
α

1− β
,

σ2
η

1− β2

)
(3)

where σ2
t = exp(ht) is the volatility of yt. The log volatility ht is specified by the

AR(1) process with Gaussian innovation noise. The density functions of yt given

ht and of ht given ht−1 are respectively

f(yt|ht) =
1√
2π

exp

{
−y2

t

2
exp(−ht)− ht

2

}
(4)

f(ht|ht−1) =
1√

2πσ2
η

exp

{
−(ht − α− βht−1)

2

2σ2
η

}
. (5)

This model can be regarded as a nonlinear state space model. In order to

evaluate the likelihood, we have to integrate out the latent log volatilities.

2.2 Filtering and evaluation of the likelihood

To evaluate the likelihood, we need to carry out the filtering algorithm for t

= 1, ... , T given the initial distribution.

(i) one step ahead prediction of yt:

f(yt|Yt−1) =
∫ ∞

−∞
f(yt, ht|Yt−1)dht (6)

=
∫ ∞

−∞
f(yt|ht)f(ht|Yt−1)dht

where Yt = (yt, yt−1, ..., y1) for t = 1, ... , T and Y0 is empty.

(ii) updating of ht:

f(ht|Yt) = f(ht|yt, Yt−1) (7)

=
f(yt, ht|Yt−1)

f(yt|Yt−1)

=
f(yt|ht)f(ht|Yt−1)

f(yt|Yt−1)
,
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(iii) one step ahead prediction of ht:

f(ht+1|Yt) =
∫ ∞

−∞
f(ht+1, ht|Yt)dht (8)

=
∫ ∞

−∞
f(ht+1|ht)f(ht|Yt)dht.

If we have f(yt|Yt−1), t = 1, ..., T , we can calculate the log likelihood

L(θ|YT ) =
T∑

t=1

log f(yt|Yt−1). (9)

where θ = (α, β, ση).

It is difficult to solve the integrations in the equations (6) and (8) analytically,

because the SV model is not a linear Gaussian state space model. Kitagawa(1987)

suggested a linear spline technique for approximating the nonlinear filter. Fridman

and Harris(1998) and Watanabe(1999) applied this technique to the SV model.

We propose an alternative filtering algorithm which analytically evaluates the

integrations in (6) and (8). The LA approach is constructed from the following

two steps. First, we approximate log f(yt|ht)f(ht|Yt−1) up to the second order

Taylor expansion around the mode of f(yt|ht)f(ht|Yt−1), i.e.

`(ht) ≡ log f(yt|ht)f(ht|Yt−1) (10)

' `(h∗t ) +
1

2
`′′(h∗t )(ht − h∗t )

2,

where

h∗t = arg maxht
f(yt|ht)f(ht|Yt−1), t = 1, ..., T. (11)

The method of approximation in the equation (10) is the key idea of the LA

approach. This idea of approximation is found in Shephard and Pitt(1997, p656)

in the context of pseudo-dominating Metropolis sampler. From the equation (3),

we write the initial normal density of h1 as fN(h1|µ1|0, s2
1|0) where µ1|0 = µ/(1−β)

and s2
1|0 = σ2

η/(1− β2). Given µt|t−1 and s2
t|t−1, the second derivative in the right

hand side of (10) is expressed as

`′′(h∗t ) =
d2 log f(yt|h∗t )

dh2
t

− 1

s2
t|t−1

(12)

= −y2
t

2
exp(−h∗t )−

1

s2
t|t−1

.
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Second, instead of the algorithm of (6)-(8), we conduct the following filtering

algorithm.

(i) one step ahead prediction of yt:

f(yt|Yt−1) =
∫ ∞

−∞
f(yt|ht)f(ht|Yt−1)dht (13)

'
∫ ∞

−∞
exp



`(h∗t )−

1

2s2
t|t

(ht − µt|t)
2



 dht

=
√

2πs2
t|t exp(`(h∗t )),

where

µt|t = h∗t (14)

s2
t|t = −`′′(h∗t )

−1 (15)

(ii) updating of ht:

f(ht|Yt) =
f(yt|ht)f(ht|Yt−1)

f(yt|Yt−1)
(16)

' 1√
2πs2

t|t
exp(−`(h∗t )) exp



`(h∗t )−

1

2s2
t|t

(ht − µt|t)
2





= fN(ht|µt|t, s
2
t|t),

(iii)one step ahead prediction of ht:

f(ht+1|Yt) =
∫ ∞

−∞
f(ht+1|ht)f(ht|Yt)dht (17)

= fN(ht+1|µt+1|t, s
2
t+1|t),

where

µt+1|t = α + βµt|t (18)

s2
t+1|t = β2s2

t|t + σ2
η. (19)

One step ahead prediction of ht has the same expression as that of the standard

Kalman filter.

The distribution of ht and ht+1 conditional on Yt are normal for all t = 1,...,T,

and we can calculate the approximated likelihood. We have the estimates of

parameters of the SV models by maximizing the likelihood. The relationship

of the Laplace approximation of this paper to importance sampling is stated in

Appendix B.
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2.3 Smoothing of the volatility process

The approximation of smoothing density of ht can be also easily calcurated.

The smoothing density of ht is expressed as

f(ht|YT ) =
∫ ∞

−∞
f(ht, ht+1|YT )dht+1 (20)

= f(ht|Yt)
∫ ∞

−∞
f(ht+1|YT )f(ht+1|ht, Yt)

f(ht+1|Yt)
dht+1.

Since f(ht+1|YT ) and f(ht+1|Yt) are apporximated by normal density functions,

the integration of (20) can be analytically solved. The smoothing density of ht is

f(ht|YT ) ' fN(ht|µt|T , s2
t|T ) (21)

where

µt|T = µt|t + Jt(µt+1|T − µt+1|t) (22)

s2
t|T = s2

t|t + J2
t (s2

t+1|T − s2
t+1|t) (23)

Jt = βs2
t|t/s

2
t+1|t. (24)

Hence, the smoothing estimates of volatility are obtained by

σ2
t|T ≡ V ar(yt|YT ) (25)

= E(exp(ht)|YT )

= exp(µt|T + s2
t|T /2)

with variance

V ar(σ2
t|T ) = E(exp(2ht)|YT )− {E(exp(ht)|YT )}2 (26)

= exp(2µt|T + 2s2
t|T ){1− exp(−s2

t|T )}.

The smoothing estimates of the square root of volatility are also calculated by

σ∗t|T ≡ E(exp(ht/2)|YT ) (27)

= exp(µt|T /2 + s2
t|T /8)

with variance

V ar(σ∗t|T ) = exp(µt|T + s2
t|T /2){1− exp(−s2

t|T /4)}. (28)
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3 Simulation experiments

We conduct simulation experiments for the univariate SV model with normal

distribution to investigate the finite sample properties of the LA and to compare

the LA with Monte-Carlo likelihood (MCL), the maximum likelihood of Fridman

and Harris (1998) (F&H’s ML), and MCMC in terms of the estimation of param-

eters as well as the estimation of volatilities.

3.1 Monte-Carlo set-up

Following the design of Jaquire, et al.(1994) and Sandmann and Koopman(1998),

the nine sets of parameters are selected, thus facilitating direct comparison with

the MCL, F&H’s ML and MCMC methods. The values of the autoregressive pa-

rameter β are set to 0.90, 0.95, and 0.98. For each value of β, the value of ση are

selected so that the coefficient of variation (CV) of ht takes the values 10.0, 1.0,

and 0.1. The values of the location parameter α are chosen so that the expected

value of ht is E[ht] = 0.009.

We generate {ht}T
t=1 and {yt}T

t=1 that follow the SV model in the equations

(1)-(3), and estimate the parameters and calculate the smoothing estimates of

volatilities by using the LA approach. The sample size is T = 500 or 2000. We

maximize the likelihood function by using the simplex method at the first stage

and the Newton-Rapson method at the second stage. Numerical derivatives are

used throughout. Fortran 90 is used for programming. The computing time for

the number of simulated realizations of the process K = 500 and the length of

sample T= 500 takes about four minutes on Pentium 800MHz PCs for each set

of parameters.

3.2 Parameter Estimates

Results from the sampling experiments for T = 500 are presented in Table.1

which is divided into three panels in accordance with the CV. For each value of

CV the mean estimates for the LA, MCL, F&H’s ML, and MCMC estimators

are reported. The results of the MCMC, MCL, F&H’s ML estimators are re-

spectively taken from Table.7 of Jacquire et al.(1994), Table.2 of Sandmann and

Koopman(1998), and Table.1 of Fridman and Harris(1998). The entries denotes
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the mean estimate for each estimator, and the values in the parentheses denote

the root mean squared errors (RMSE).

We observe from Table.1 the following facts : (i) All four estimators exhibit

similar efficiency across most parameter values except for the MCL estimator in

the case of CV = 0.1. (ii) All four estimators deteriorate as CV decreases. For

CV = 0.1, The LA, F&H’s ML and MCMC estimators exhibit similar efficiency.

The MCL estimates of α are most efficient, but the MCL estimates of β are least

efficient in this region. (iii) In terms of bias, the LA and F&H’s ML have a

common property. In all nine cases, both the LA and F&H’s ML exhibit small

downward bias for estimating β, but upward bias for estimating α and ση. On the

other hand, in terms of the RMSE the F&H’s ML estimator of β are smaller than

the LA estimator for CV = 10 and 1, but the magnitudes of RMSE are reversed

for CV = 0.1.

Next, we examine the effects of increase in the sample size. Table.2 presents

the performance of the estimators in the case of T = 2000 and CV = 1.0. We

compare the LA with the MCL, MCMC, and NFML of Watanabe(1999). The

NFML is similar in idea to that of Fridman and Harris(1998). Fridman and Har-

ris(1998) does not carry out experiments for the present case. Table.2 shows the

means and the RMSE of the LA, MCL, NFML and MCMC. The N of the NFML

stands for the number of segments in numerical integration. Watanabe(1999) uses

the two numbers N = 25 and 50. The results of the MCL, NFML and MCMC

estimators are taken from Tables 3 of Sandmann and Koopman(1998), Table.1 of

Watanabe(1999) and Table.9 of Jacquire et al.(1994).

We observe from Table.2 the following facts : (i) The bias and the RMSE of

the LA are smaller than those in Table.1. This implies that the parameters are

more accurately estimated when the sample size increases. (ii) In terms of the

mean, the LA estimator is comparable to the NFML (N = 25), but the LA is

dominated by the NFML (N = 50) and MCL. However, in terms of the RMSE,

the LA dominates NFML (N = 25), and it is as good as the NFML (N = 50).

From the simulation experiments, we may conclude that the small sample

performance of the LA estimator is comparable to the MCL, F&H’s ML, NFML,

and the Bayesian MCMC methods for estimating the parameters.
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Table.1 Mean and root mean square error of the estimators :

T = 500

CV = 10 α β ση α β ση α β ση

TRUE -0.821 0.9 0.675 -0.411 0.95 0.484 -0.164 0.98 0.308

LA -0.905 0.880 0.727 -0.510 0.931 0.534 -0.259 0.965 0.343

(0.278) (0.037) (0.097) (0.226) (0.031) (0.089) (0.172) (0.023) (0.066)

F&H’s ML -0.896 0.890 0.685 -0.505 0.940 0.495 -0.100 0.986 0.320

(0.280) (0.034) (0.080) (0.180) (0.020) (0.070) (0.080) (0.010) (0.050)

MCL -0.837 0.915 0.579 -0.417 0.953 0.436 -0.166 0.977 0.290

(0.034) (0.025) (0.119) (0.021) (0.020) (0.077) (0.010) (0.020) (0.053)

MCMC -0.679 0.916 0.562 -0.464 0.940 0.460 -0.190 0.980 0.350

(0.220) (0.026) (0.120) (0.160) (0.020) (0.055) (0.080) (0.010) (0.060)

CV = 1.0 α β ση α β ση α β ση

TRUE -0.736 0.9 0.363 -0.368 0.95 0.26 -0.147 0.98 0.166

LA -0.926 0.872 0.422 -0.526 0.927 0.303 -0.278 0.961 0.200

(0.424) (0.059) (0.108) (0.390) (0.053) (0.089) (0.246) (0.034) (0.067)

F&H’s ML -0.870 0.880 0.370 -0.510 0.930 0.280 -0.090 0.987 0.180

(0.430) (0.050) (0.080) (0.306) (0.040) (0.070) (0.060) (0.015) (0.040)

MCL -0.745 0.897 0.325 -0.372 0.93 0.233 -0.148 0.97 0.161

(0.022) (0.100) (0.080) (0.011) (0.102) (0.075) (0.010) (0.071) (0.050)

MCMC -0.870 0.880 0.350 -0.560 0.920 0.280 -0.220 0.970 0.230

(0.340) (0.046) (0.067) (0.340) (0.046) (0.065) (0.140) (0.020) (0.080)

CV = 0.1 α β ση α β ση α β ση

TRUE -0.706 0.9 0.135 -0.353 0.95 0.096 -0.141 0.98 0.061

LA -1.227 0.827 0.178 -0.763 0.892 0.133 -0.489 0.931 0.099

(1.552) (0.217) (0.137) (1.161) (0.163) (0.115) (0.976) (0.136) (0.107)

F&H’s ML -1.360 0.810 0.160 -0.810 0.886 0.120 -0.537 0.924 0.088

(1.720) (0.240) (0.120) (1.150) (0.160) (0.090) (1.130) (0.160) (0.090)

MCL -0.709 0.443 0.156 -0.355 0.526 0.136 -0.142 0.572 0.113

(0.010) (0.770) (0.112) (0.010) (0.735) (0.108) (0.001) (0.726) (0.113)

MCMC -1.540 0.780 0.150 -1.120 0.840 0.120 -0.660 0.910 0.140

(1.350) (0.190) (0.082) (1.150) (0.160) (0.074) (0.830) (0.120) (0.099)

Note : The table shows the mean and the RMSE (in parentheses). These entries are calculated
from the K = 500 simulated samples with the T = 500 length of samples. MCL, F&H’s ML
and MCMC are respectively obtained from Table.2 of Sandmann and Koopman(1998), Table.1
of Fridman and Harris(1998) and Table.7 of Jacquire et al.(1994) respectively. The RMSE
of MCL is calculated from the bias and the standard deviation in Table.2 of Sandmann and
Koopman(1998).
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Table.2 Mean and root mean square error of the estimators :

T = 2000

Method α β ση α β ση α β ση

-0.736 0.9 0.363 -0.368 0.95 0.26 -0.147 0.98 0.166

LA -0.819 0.886 0.411 -0.427 0.940 0.293 -0.179 0.975 0.183

(0.161) (0.022) (0.045) (0.107) (0.015) (0.035) (0.065) (0.009) (0.026)

MCL -0.745 0.913 0.317 -0.372 0.954 0.239 -0.148 0.980 0.1584

(0.013) (0.024) (0.055) (0.011) (0.011) (0.037) (0.001) (0.010) (0.022)

NFML

N=25 -0.812 0.890 0.406 -0.426 0.942 0.294 -0.194 0.974 0.197

(0.199) (0.027) (0.068) (0.124) (0.017) (0.052) (0.083) (0.011) (0.043)

N=50 -0.766 0.895 0.368 -0.406 0.945 0.264 -0.178 0.976 0.169

(0.168) (0.023) (0.041) (0.106) (0.014) (0.032) (0.067) (0.009) (0.024)

MCMC -0.762 0.896 0.359

(0.150) (0.020) (0.034)

Note : The table shows the mean and the RMSE (in parentheses). These entries are calculated
from the K = 500 simulated samples with the T = 2000 length of samples for LA, MCL
and MCMC and from the K = 1000 with T = 2000 for NFML. The MCL, NFML and
MCMC are respectively obtained from Table.3 of Sandmann and Koopman(1998), Table.1 of
Watanabe(1999) and Table.9 of Jacquire et al.(1994). The N of NFML stands for the number
of segments in numerical integration.

3.3 Volatility Estimates

Next, the finite sample performance of the LA estimators of volatilities is

compared with that of the F&H’s ML and MCMC methods. Sandmann and

Koopman(1998) did not report the volatility estimates. Following Jacquier et

al.(1994), the criterion for evaluating the performance is the grand root mean

squared error(GRMSE),

GRMSE =

√√√√ 1

K(T − 199)

K∑

i=1

T−100∑

t=100

(σ2
i,t − σ̂2

i,t), (29)

where σ2
i,t is the true volatility simulated at the period t in the ith simulation and

σ̂2
i,t denotes the smoothing estimate of volatility given by the equation (25).

We observe from Table.3 the following facts : (i) The GRMSE of all the three

estimators decreases as CV decreases, and as the true value of β increases to 1.0.
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Table.3 GRMSE of volatility estimates :

β

0.90 0.95 0.98

CV = 10

LA 18.39 14.65 10.95

F&H’s ML 21.10 17.00 12.20

MCMC 22.10 18.70 12.50

CV = 1.0

LA 6.21 5.36 4.44

F&H’s ML 5.90 5.30 5.04

MCMC 6.00 5.30 5.10

CV = 0.1

LA 2.65 2.41 2.04

F&H’s ML 2.60 2.40 2.20

MCMC 2.60 2.46 2.27

Note : GRMSE × 10000 is displayed. These entries are calculated from the K =
500 simulated samples with the T = 500 length of samples. The F&H’s ML and
the MCMC are respectively obtained from Table.3 of Fridman and Harris(1998)
and Table.10 of Jacquire et al.(1994).

(ii) The GRMSE of the LA estimator are smallest among the three estimators for

the case of β = 0.98, but the GRMSE of the LA are largest for the case of β =

0.90. (iii) The GRMSE of the LA are smaller than those of the F&H’s ML for 5

cases out of the 9 cases, while the GRMSE of the LA are smaller than those of

the MCMC for 6 out of 9.

We calculated the GRMSE of volatility estimates for T = 2000, and compared

the results with NFML. The results is similar to the case of T = 500, although

we do not report it here.

Simulation experiments in Sections 3.2 and 3.3 reveals that the LA method is

comparable to the MCL, F&H’s ML and MCMC methods. The LA approach is

flexible and easily extended to the more complicated SV models as is shown in

Section 4.
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4 Comparison of the LA with MCL via empirical

studies on the stock markets

This section empirically illustrates how the LA approach works when it is

applied to the daily returns on the stock markets and compares the LA with the

MCL.

4.1 Univariate SV models

(i) The data set

The continuously compounded returns are calculated from the daily closing

prices for the Tokyo Stock Price Index (TOPIX) from January 4, 1995 to December

30, 2001. The sample size is 1578. Though yt is assumed to follow a stationary

process with zero mean and no autocorrelation in the simple SV model, the returns

on the stock prices often have weak autocorrelations. We remove the mean and

autocorrelations from the return series by using the first-order autoregression:

Rt = a + bRt−1 + ζt, ζt ∼ NID(0, σ2
ζ ) (30)

where Rt denotes the daily returns1).

Table.4 Estimation results of preliminary regression

Parameter a b σζ LB(12)

Estimate -0.009 0.074 1.565 19.304

Standard Error (0.032) (0.020) (0.037)

Note: White(1980)’s heteroskedasticity corrected standard errors are in
the parentheses. The last column denotes the heteroskedasticity corrected
Ljung-Box statistic for twelve lags of the residual autocorrelations which
is calculated from the method of Diebold(1988). Its p-values is 0.081.

Table.4 shows the estimated coefficients and their heteroskedasticity consistent

standard errors (White(1980)). Since the TOPIX returns have the significant first

order autocorrelation, we define yt as the residuals from the regression (30) in the

following analysis.

1) We estimated the AR models with lag lengths 1 through 4. The SBIC was maximized at

the lag length of 1.
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(ii) The SV model with normal distribution

We estimate the SV model in the equations (1)-(3) by maximizing the likeli-

hood function (9). We assume the consistency and the asymptotic normality of

the LA estimator even if we are not able to prove them.

Table.5 Estimates of the SV model

Parameter α β ση

LA 0.020 0.948 0.224

(0.008) (0.018) (0.043)

MCL 0.007 0.962 0.177

(0.005) (0.014) (0.032)

NFML 0.009 0.957 0.193

(0.006) (0.015) (0.035)

MCMC 0.195 0.952 0.202

Note: The standard errors of estimators are in the parentheses. The num-
ber of draws in the MCL is M = 5. The number of segments in the NFML
is N = 100. In the MCMC, we discard the first 1500 sample draws, and
we use the after 2500 sample draws to estimate parameters.

For the purpose of comparison, we calculate the estimates of the MCL, NFML

and MCMC in addition to the estimates of the LA. Table.5 shows the results2).

The estimators for all methods have virtually identical values excepts for the

estimate of α by the MCMC. The all estimates of β are significant and indicates

strong persistency of volatility.

We calculate the smoothing estimates of the standard deviations using the

formula in the equation (27). Figure.1 plots the smoothing estimates of the square

root of volatility by using the LA and the absolute values of yt. Although the

volatilities are not observable, one may think that the absolute returns reflect the

fluctuation of the volatilities. We can see that the smoothed estimates of squared

root of the volatilities (σ̂∗t|T ) move in correlation to the absolute returns. We also

calculated the smoothing estimates by using other methods. Since the graphs of

alternative methods are not distinguishable from the graph of the LA, we do not

2) The algorithms for the MCL, NFML and MCMC were written by using Fortran 90. The

entries in the parentheses stand for the standard errors.
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present them.

Figure.1 Smoothing estimates of square root of the volatility

and the absolute values of yt
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(iii) The SV model with t-distribution

It is widely known that the densities of many financial time series exhibit larger

kurtosis than that can be explained by the standard SV models with normal error

distribution. The SV model with a fat tail distribution have been proposed to

deal with this problem.

We examine the SV model with t-distribution. To estimate this type of SV

model, we have only to replace the equation (4) with

f(yt|ht) =
1√

π(ν − 2)

Γ[(ν + 1)/2]

Γ[ν/2]
e−ht/2

(
1 +

y2
t e
−ht

ν − 2

)− ν+1
2

(31)

where ν represents a parameter of degree of freedom and Γ[·] stands for the Gamma

function, and to replace the equation (12) with

`′′(h∗t ) = −ν + 1

2

{
y2

t

ν − 2
exp(−h∗t )

} {
1 +

y2
t

ν − 2
exp(−h∗t )

}−2

− 1

s2
t|t−1

. (32)
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Smoothing estimates of volatilities can be calculated in a similar manner to the

case of normal distribution. We use the data set in section 4.1 (i).

Table.6 Estimation results of the SV model with

t-distribution

Parameter α β ση 1/ν

LA 0.010 0.972 0.141 0.081

(0.005) (0.011) (0.029) (0.013)

MCL 0.005 0.978 0.123 0.088

(0.004) (0.009) (0.025) (0.011)

NFML 0.006 0.975 0.133 0.088

(0.004) (0.010) (0.027) (0.016)

Note: The standard errors are in the parentheses. The number of draws in the MCL is
M = 5. The number of segments in the NFML is N = 100.

Table.6 shows the estimates of parameters for the SV model with t-distribution.

This result is comparable to Sandmann and Koopman (1998). They estimated

the SV models with either normal or t-distribution. The estimate of 1/ν and

its standard error suggest that the error distribution of the process follows a fat

tail distribution. Comparing the estimates of this section with those in Table.5,

it turns out that the estimate of β with t-distribution is higher than that with

standard normal distribution. Sandmann and Koopman (1998) observed the same

result by using the data for the S&P500 stock index.

4.2 A multivariate SV model

We consider the multivariate SV model proposed by Harvey, Ruiz and Shep-

hard(1994). Let a p× 1 vector yt follow the stochastic process

yt = Σ
1/2
t εt , εt ∼ NID(0, Ip) (33)

where 0 is a p × 1 vector of zeros, Ip is a p × p identity matrix and Σt is a

p × p time-varying volatility matrix. The matrix Σt consists of a p × p time-

invariant correlation matrix R and a p × p time-varying scale matrix Ht =

diag(exp(h1t), ..., exp(hpt)) as,

Σt = H
1/2
t RH

1/2
t . (34)
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The p×1 vector ht = (h1t, ..., hpt)
′ is specified by the stationary VAR(1) process

with a Gaussian noise

ht+1 = a + Bht + ηt+1 , ηt+1 ∼ NID(0,Ση) (35)

h1 ∼ N((I−B)−1a,W) (36)

where a and B are respectively a p × 1 vector and a p × p matrix of coefficients

and Ση is a p × p covariance matrix of ηt. The covariance matrix of η1 satisfies

that

W = BWB′ + Ση (37)

The multivariate SV model defined by the equations (33)-(37) is a natural

extension of the univariate SV model defined by the equations (1) - (3). The

density function of yt given ht and that of ht+1 given ht are respectively

f(yt|ht) = (2π)−p/2|Σt|−1/2 exp
{
−0.5 y′tΣ

−1
t yt

}
(38)

f(ht+1|ht) = (2π)−p/2|Ση|−1/2 (39)

exp
{
−0.5 (ht+1 − a−Bht)

′Σ−1
η (ht+1 − a−Bht)

}
.

Replacing the equations (4) and (5) with the equations (38) and (39) respectively,

we can apply the LA approach to the multivariate SV model. The details of the

filtering and smoothing algorithms are stated in the Appendix.

We apply the above model to the daily returns of the NYSE Composite Index

and TOPIX for the purpose of numerical illustrations. The continuously com-

pounded returns are calculated from the daily closing prices for the TOPIX and

the NYSE Composite Index from January 4, 1995 to December 30, 2001. The

sample size is 1533 3). The returns on each index are respectively adjusted for the

AR(1) model by the same fashion as explained in Section 4, and the residuals are

used for analyzing the model 4). We define y1t as the returns on the US market

and y2t on the Japanese market.

Table.7 shows the estimates of the multivariate SV model. The contemporary

correlation of the returns between the US and Japanese markets is very small

3)If Japanese or US market closed on a day, we assume both two markets are closed on that

day.
4)We omit the estimation results of AR(1) model for the NYSE index to save the space.
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Table.7 Estimation results of the multivariate SV model

LA MCL

a1 0.031 0.011

(0.014) (0.011)

a2 0.042 0.019

(0.018) (0.012)

B11 0.998 0.997

(0.016) (0.013)

B12 -0.075 -0.053

(0.028) (0.021)

B21 0.012 0.010

(0.019) (0.014)

B22 0.909 0.938

(0.037) (0.025)

Ση11 0.065 0.043

(0.019) (0.012)

Ση12 0.066 0.040

(0.022) (0.013)

Ση22 0.082 0.049

(0.031) (0.016)

R12 0.105 0.091

(0.027) (0.024)

Note: The standard errors are in the parentheses. The number of draws
M = 5 in the MCL.
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(R12 = 0.105 for LA and = 0.091 for MCL). The eigenvalues of the matrix B

are 0.986, 0.921 for LA and 0.986, 0.946 for MCL, which observation implies

that the volatility process of the both markets are stationary but highly auto-

correlated. The correlation coefficient of the shocks to the volatility processes is

Ση12(Ση11Ση22)
−1/2 = 0.908 for LA and = 0.878 for MCL. High correlation coef-

ficient may indicate that the shock caused by an event simultaneously affects the

volatilities of the US and Japanese markets. Hence the volatility process of the

two markets are contemporaneously and strongly correlated. The both estimates

of LA and MCL give similar values for most of the parameters.

4.3 The dynamic bivariate mixture model

Tauchen and Pitt (1983) observed that the large fluctuations of returns have

a tendency to coincide with the large trading volumes. Andersen (1996), Lisen-

feld(1998) and Watanabe(2000) combined the model of Tauchen and Pitt (1983)

with the information flow to the market. In their models, the returns on the stock

and the trading volumes follow the system

yt|ht ∼ N( 0 , exp(ht)) (40)

Vt|ht ∼ N(µV exp(ht), σ
2
V exp(ht)) (41)

where Vt is the trading volume and exp(ht) is interpreted as the information flow

to the market. This model is called the dynamic bivariate mixture (DBM) model.

The DBM model is expressed by the equations (1)-(3) and

Vt = µV exp(ht) + σV exp(ht/2)εV t , εV t ∼ NID(0, 1). (42)

In order to estimate the parameters of the model, we have only to replace the

equation (4) with

f(yt, Vt|ht) =
1

2πσV

exp

{
−1

2

(
y2

t +
V 2

t

σ2
V

)
exp(−ht) (43)

+
µV Vt

σ2
V

− µ2
V

2σ2
V

exp(ht)− ht

}

and the equation (12) with

`′′(h∗t ) = −1

2

(
y2

t +
V 2

t

σ2
V

)
exp(−h∗t )−

µ2
V

2σ2
V

exp(h∗t )−
1

s2
t|t−1

, (44)
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and to apply the algorithm in Section 2.2. The smoothing estimates of the volatil-

ities are obtained by the same algorithm as the one in Section 2.3.

We apply the DBM model to the Japanese market, and investigate the re-

lationship of the returns on the TOPIX and the trading volumes. The trading

volume is measured in terms of one-billion shares traded during the day. The sam-

ple periods are the same as those used in Section 4.1. The residual returns from

the AR(1) process are analyzed by the same reason as explained in the previous

section.

Table.8 Estimation results of the DBM model

Parameter α β ση µv σv

LA 0.046 0.865 0.203 0.338 0.042

(0.009) (0.016) (0.008) (0.012) (0.004)

MCL 0.049 0.861 0.204 0.332 0.042

(0.009) (0.016) (0.008) (0.013) (0.004)

Note: Standard errors are in the parentheses.

Table.8 shows the estimates of parameters of the DBM model by the LA and

the MCL methods. The volatility persistence parameter is highly significant (β =

0.865(0.861) for LA(MCL)). However, the estimated values are lower than those of

the standard SV model reported in Table.5. The empirical result is conformable

to the studies of Andersen (1996) and Lisenfeld (1998) while we employed the

different method of estimation for the different data set from their studies. The

LA and MCL give almost identical estimates.

5 Concluding remarks

This paper proposed the Laplace approximation method to the nonlinear state

space representation and applied it for estimating the SV models.

This method approximates the logarithm of the joint density of current obser-

vation and volatility variables conditional on the past observations by the second

order Taylor expansion around its mode, and then applies the nonlinear filtering

algorithm. The MCL (Sandmann and Koopman(1998)) is now a standard clas-
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sical method for estimating the SV models. It is based on importance sampling

technique. Importance sampling is regarded as an exact method for maximum

likelihood estimation. We showed that the LA method of this paper approxi-

mates the weight function by unity in the context of importance sampling. We

do not need to carry out the Monte Carlo integration for obtaining the likelihood

since the approximate likelihood function can be analytically obtained. If one-

step ahead prediction density of observation and volatility variables conditional

on the past observations is sufficiently accurately approximated, the LA method

is workable.

We examined how the approximation works by simulations as well as various

empirical studies. We conducted the Monte-Carlo simulations for the univariate

SV model for examining the small sample properties and compared them with

other methods. Simulation experiments revealed that our method is compara-

ble to the MCL, Maximum Likelihood (Fridman and Harris (1998)) and MCMC

methods. We applied the LA method to the univariate SV models with normal

distribution or t-distribution, the bivariate SV model and the dynamic bivariate

mixture model, and empirically illustrated how it works for each of the extended

models. The empirical results on the stock markets revealed that our method

provides very similar estimates of coefficients to those of the MCL.

The interest of this paper is whether the LA method is workable for estimating

SV models in practice. We showed workability in two ways by comparing the

approximation with the MCL; first the simulation studies, second the empirical

studies. Naturally, the workability is limited to the cases we have examined. But

we believe the LA method is applicable to many SV models based on our study

of this paper.
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Appendix A : The LA algorithm for the multi-
variate SV model

We explain the algorithm of the LA approach for the multivariate SV model.

The algorithm follows the same lines as those in Sections 2.2 and 2.3.

A.1 Filtering, prediction and evaluation of the likelihood

Let the initial normal density in the equation (36) be

f(h1) = fN(h1|µ1|0,S1|0). (A.1)

where µ1|0 = (I−B)−1a and S1|0 = W. The joint density of (yt,ht) conditional

on the past observations is approximated by

`(ht) ≡ log f(yt|ht)f(ht|Yt−1) (A.2)

' `(h∗t ) +
1

2
(ht − h∗t )

′`′′(h∗t )(ht − h∗t ).

and

h∗t = arg maxh∗t
f(yt|ht)f(ht|Yt−1) (A.3)

for t = 1,...,T. Given µt|t−1 and St|t−1, the second derivative in (A.2) is expressed

as

`′′(ht) = −1

4

{
ỸtΣt(h

∗
t )
−1Ỹt + diag

((
y′tΣt(h

∗
t )
−1Ỹt

)
i

)}
− S−1

t|t−1 (A.4)

where Ỹt = diag(y1t, ..., ypt), H∗
t = diag(exp(h∗1t), ..., exp(h∗pt)), Σt(h

∗
t ) =

H
∗1/2
t RH

∗1/2
t , and

(
y′tΣt(h

∗
t )
−1Ỹt

)
i
is the i-th element of y′tΣt(h

∗
t )
−1Ỹt.

Then, we have the following algorithm.

(i) one step ahead prediction of yt:

f(yt|Yt−1) = (2π)p/2|St|t|1/2 exp {`(h∗t )} (A.5)

where

µt|t = h∗t (A.6)

St|t = −`′′(h∗t )
−1. (A.7)

(ii) updating of ht:

f(ht|Yt) = fN(ht|µt|t,St|t). (A.8)
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(iii)one step ahead prediction of ht:

f(ht+1|Yt) = fN(ht|µt+1|t,St+1|t) (A.9)

where

µt+1|t = a + Bµt|t (A.10)

St+1|t = BSt|tB
′ + Ση. (A.11)

The equations (A.5) - (A.11) exactly correspond to the equations (13)-(19) in

Section 2.2.

A.2 Smoothing of the volatility process

The approximated smoothing density of ht is expressed as

f(ht|YT ) = fN(ht|µt|T ,St|T ) (A.12)

where

µt|T = µt|t + Jt(µt+1|T − µt+1|t) (A.13)

St|T = St|t + Jt(St+1|T − St+1|t)J
′
t (A.14)

Jt = St|tB
′S−1

t+1|t. (A.15)

Then, smoothing estimates of volatility process is obtained by

σ2
it|T ≡ V ar(yit|YT ) = exp(µit|T + s2

it|T /2). (A.16)

with variance

V ar(σ2
it|T ) = exp(2µit|T + 2s2

it|T ){1− exp(−s2
it|T )}. (A.17)

where µit|T is the i-th element of µt|T and s2
it|T is the (i,i)-th element of St|T . The

equations (A.12) - (A.17) correspond to the equations (21)-(26) in Section 2.3.
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Appendix B : Relationship between the LA and
importance sampling

We state the relationship between the Laplace approximation and importance

sampling. Let us define y = (y1, ..., yT )′, h = (h1, ..., hT )′. The marginal density of

y is given as

f(y) =
∫

. . .
∫ T∏

t=1

f(yt|ht)fN(ht|ht−1)dh1...dhT . (B.1)

Recall that f(yt, ht|Yt−1) (one step ahead prediction of yt and ht conditional on

Yt−1) is approximated by

g(yt, ht|Yt−1) = g(yt|Yt−1)fN(ht|Yt), (B.2)

where g(yt|Yt−1) =
√

2πs2
t|t exp(`(µt|t)) and fN(ht|Yt) ∼ N(ht|µt|t, s2

t|t). See equa-

tions (10), (14) and (15). Then, we have

f(y) =
∫

. . .
∫ T∏

t=1

{
g(yt|Yt−1)

f(yt, ht|Yt−1)

g(yt, ht|Yt−1)
fN(ht|ht+1, Yt)

}
dh1...dhT . (B.3)

where fN(ht|ht+1, Yt) ∼ N(µ∗t|t+1, s
∗2
t|t+1), µ∗t|t+1 = µt|t +βs2

t|ts
−2
t|t+1(ht+1−µt+1|t) and

s∗2t|t+1 = s2
t|t(1− β2s2

t|ts
−2
t+1|t). Here, we define fN(hT |hT+1, YT ) = fN(hT |YT ).

Finally, we obtain

f(y) = g(y) Ẽ{W (h, y)}, (B.4)

where

g(y) =
T∏

t=1

g(yt|Yt−1), (B.5)

W (h, y) =
T∏

t=1

{
f(yt, ht|Yt−1)

g(yt, ht|Yt−1)

}
, (B.6)

and Ẽ{·} stands for the expectation with respect to the multivariate normal dis-

tribution conditinal on y :

fN(h|y) =
T∏

t=1

fN(ht|ht+1, Yt). (B.7)

Equation (B.6) can be interpreted as a formula of importance sampling with

importance density fN(h|y). However, since f(yt, ht|Yt−1) is not easy to evaluate,

equation(B.6) is not useful for importance sampling in practice.
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The LA approximates the weight function as W (h, y) ' 1. Hence, the marginal

density of y can be analytically obtained as f(y) ' g(y). If one step ahead predic-

tion density of (yt, ht) conditional on Yt−1 is sufficiently accurately approximated,

the LA method is workable.

27



References

Andersen, T.G., (1994), Stochastic autoregressive volatility : A framework for

volatility modeling, Mathematical Finance, 4, 75-102.

Andersen, T. G., (1996), Return Volatility and Trading Volume : An Information

Flow Interpretation of Stochastic Volatility, Journal of Finance, 51, No.1, 169-

204.

Andersen, T. G., and B. Sørensen, (1996), GMM Estimation of a Stochastic

Volatility Model: A Monte Carlo Study, Journal of Business and Economic

Statistics, 14, 328-352.

Bollerslev, T. (1986), Generalized Autoregressive Conditional Heteroskedasticity,

Journal of Econometrics, 31, 307-327.

Bollerrslev, T., (1987), A conditional heteroskedastic time series model for spec-

ulative prices and rates of return, Review of Economics and Statistics, 69,

542-547.

Clark, P., (1973), A subordinated stochastic process model with finite variance

for speculative process, Econometrica, 41,135-155.

Danielson, J., (1994), Stochastic Volatility in Asset Prices: Estimation with Sim-

ulated Maximum Likelihood, Journal of Econometrics, 61, 375-400.

Diebold, R.F., (1988), Empirical Modeling of Exchange Rate Dynamics, Springer-

Verlag, New York.

Durbin, J. and S. J. Koopman (1997), Monte Carlo maximum likelihood estima-

tion of non-Gaussian state space model, Biometrika, 84, 669-684.

Durbin, J. and S. J. Koopman (2000), Time series analysis of non-Gaussian ob-

servations based on state space models from both classical and Bayesian per-

spectives, Journal of Royal Statistical Society, B, 62, part1, 3-56.

Engle, R.F., (1982), Autoregressive Conditional Heteroskedasticity with Estimates

of the Variance of United Kingdom Inflation, Econometrica, 50, 987-1007.

Harvey, A. C., E. Ruiz and N. Shephard, (1994), Multivariate stochastic variance

models, Review of Economic Studies, 61, 247-264.

Fridman, M. and L. Harris, (1998), A Mximum Likelihood Approach for Non-

Gaussian stochastic Volatility Models, Journal of Business and Economic Statis-

tics, 16, 3, 284-291

28



Hull, J. and A. White, (1987), The pricing options on assets with stochastic

volatilities, Journal of Finance, 42, 281-300.

Jacquier, E., N. G. Polson and P. E. Rossi, (1994), Bayesian analysis of stochas-

tic volatility models, (with discussion) , Journal of Business and Economic

Statistics, 12, 371-417.

Kim, S., N. Shephard and S. Chib, (1998), Stochastic Volatility: Likelihood In-

ference and Comparison with ARCH Models, Review of Economic Studies, 65,

361-393.

Kitagawa, G., (1987), Non-Gaussian state-space modeling of nonstationary time

series, Journal of The American Statistical Association. 82, 1032-63, (with

discussion).

Lisenfeld, R., (1998), Dynamic Bivariate Mixture Models: Modeling the Behavior

of Prices and Trading Volume, Journal of Business and Economic Statistics,

16, 1, 101-109.

Melino, A. and S. M. Turnbull, (1990), Pricing foreign currency options with

stochastic volatility, Journal of Econometrics, 45, 239-265.

Nelson, D. B. (1991), Conditional Heteroskedasticity in Asset Returns: A New

Approach, Econometrica, 59, 347-370.

Sandmann, G. and S.J. Koopman, (1998), Estimation of Stochastic Volatility

Models via Monte Carlo Maximum Likelihood, Journal of Econometrics, 87,

No.2, 271-301.

Shephard, N. and M.K. Pitt, (1997), Likelihood analysis of non-Gaussian mea-

surement time series, Biometrika, 84, 653-667.

Taylor, S., (1986), Modeling Financial Time Series, John Wiley & Sons, New

York.

Taylor, S., (1994), Modeling Stochastic Volatility, Mathematical Finance, 4, 183-

204.

Tauchen, G. and M. Pitt, (1983), The price variability-volume relationship on

speculative markets, Econometrica, 51,485-505.

Watanabe, T., (1999), A non-linear filtering approach to stochastic volatility mod-

els with an application to daily stock returns, Journal of Applied Econometrics,

29



14, 101-121.

Watanabe, T., (2000), Bayesian Analysis of Dynamic Bivariate Mixture Models:

Can They Explain the Behavior of Returns and Trading Volume?, Journal of

Business and Economic Statistics, 18, No.2, 199-210.

White, H., (1980), A heteroskedastic-consistent covariance matrix and a direct

test for heteroskedasticity, Econometrica, 48, 817-838.

30


