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1.   Introduction

The well-behaved (downward sloping and consistent to the consumer surplus)

Marshallian demand function forms a basis of the partial equilibrium analysis both in

positive and normative perspectives, since the downward slopness and some other

regularity conditions imply that there exists a competitive equilibrium uniquely in the

partial equilibrium market and the consistency to the consumer surplus enable us to

evaluate alternative policies in the market by means of the consumer surplus measure.

It is well-known that Marshallian demand functions are well-behaved only if they

are defined for neutral goods, i.e., the case of quasi-linear utility functions.   This paper

considers a possibility that Marshallian demand functions for normal goods become well-

behaved when the initial income is sufficiently large.   As a main result, this paper

provides necessary and sufficient conditions for a standard utility function under which the

derived Marshallian demand function becomes well-behaved for sufficiently large income

levels.   Moreover, a formula is provided to compute the well-behaved demand function

directly from the utility function.

In the next section, some basic concepts such as utility function, Marshallian demand

function,  equivalent variation  and  compensating variation are introduced in a simple two-

good setting where one good is a specific good and the other good is money (numeraire),

and the well-behavedness of Marshallian demand function is specified by two conditions:

(i) Downward slopness ; (ii) Consistency to the consumer surplus, and a well-known fact

for the well-behavedness is stated as Proposition 1 that the well-behaved Marshallian

demand function derived only from a quasi-linear utility function, i.e., the specific good is a

neutral good.

In section 3, a weaker concept of well-behavedness of Marshallian demand function

is proposed.    Specifically, if a Marshallian demand function has a limit function when

initial income is sufficiently large and if the limit function is well-behaved, then we call the

Marshallian demand function  “asymptotically well-behaved demand function”.   If a
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demand function is asymptotically well-behaved, then income effects are very small when

the initial income is sufficiently large, which can be recognized as a formalization and proof

of Marshall's assertion that income effects are very small when its budget share is

sufficiently small.1 

As a main result of this paper, necessary and sufficient conditions are provided for a

standard utility function under which the derived Marshallian demand function is

asymptotically well-behaved.  The necessary and sufficient conditions are the

replaceability and the regularity at the limit.   The replaceability condition for utility

function is that an amount of the specific good is replaceable by some fixed amount of

numeraire, independent from the initial consumption level of  numeraire.   This condition

implies that the marginal rate of substitution between the two goods are bounded when

the consumption level of numeraire is sufficiently large.   The regularity condition is that

the limit marginal rate of substitution has smoothness properties, which is a technical

condition.   Under the two conditions, our main result implies that we can justify the well-

behaved Marshallian demand function even for strictly normal goods if initial income is

sufficiently large.   Moreover, our main result also implies that we can not drop these

conditions for the well-behavedness.

In section 4, a formula is provided to compute the limit demand function directly from

the utility function.   Moreover, a numerical example is presented.

                             

1  For Marshall's original arguments on the smallness of income effects, see Chipman (1990).  Vives

(1987 and 1999, Chapter 3) has shown the smallness of income effects if the number of commodities

are sufficiently large,  but his setting is essentially different from ours.
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2.   Globally  well-behaved  demand  functions

There are two types of consumption goods, x-good and y-good: x  is a specific good and  y

is numerare.   Letting  X = Y = ℜ+, the consumption set is given by  X×Y = ℜ+
2 .   Let us

consider a consumer whose initial endowment of y-good is  I > 0  and the preferences are

represented by a smooth (twice continuously differentiable) utility function  U(x, y).   We

assume the following standard conditions:

Monotonicity:  Ux(x, y) > 0  and  Uy(x, y)  > 0  for all  (x, y) ≥    (0, 0).1

Strict quasi-concavity: 2·Ux(x,y)·Uy(x,y)·Uxy(x,y)  –  [Ux(x,y)]2·Uyy(x,y)  –  [Uy(x,y)]2·Uxx(x,y)  >  0  for

all  (x, y) á (0, 0).

Normalize the price of numerare as  1, and denote the price of x-good by  p > 0.   For each

p, I > 0,  Marshallian demand function  D(p, I)  is defined by

     D(p, I)   =    argmax  U(x, I – px),  where  B(p, I) = { (x, y) ∈ X×Y: p·x + y ≤ I }.
                                 x ∈ B(p, I) 

For price  p > 0 and utility level u ∈ U(X×Y), 2 the expenditure function  e(p, u)  is defined by

              e(p, u)  =    min   pz + w,    where  F(u) = { (z, w) ∈ X×Y: U(z, w) ≥ u }.
                              (z, w) ∈ F(u)

For a pair of prices  p0, p1  with  p0  > p1  and  initial income  I > 0,  the  equivalent variation

EV(p0, p1, I)  and  compensating variation  CV(p0, p1, I)  are defined by

              EV(p0, p1, I)  =  e(p0 , u1)  –  I    and    CV(p0, p1, I)  =  I –  e(p1 , u0),

where  ui = U(D(pi, I),  I – piD(pi, I))   for  i = 0, 1.   The pair of prices (p0, p1)  is called

regular  if  not only  (D(p0, I),  I – p0D(p0, I))  and  (D(p1, I),  I – p1D(p1, I)), but also the

minimizers for  e(p0 , u1)  and   e(p1 , u0)  are strictly positive vectors.

                                   

1  The partial derivatives Ux(0, y) and Uy(x, 0) at the boundary should be regarded as the right

partial derivatives  Ux
+(0, y)  and  Uy

+(x, 0), respectively.

2   U(X×Y)  is the range of  U, i.e.,  U(X×Y) = { u ∈ ℜ :  u = U(x, y) for some  (x, y) ∈ X×Y }.    
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A standard definition of well-behaved Marshallian demand function is given as follows:

Definition: A Marshallian demand function  D(p, I)  is called  well-behaved  at  I > 0  if

D(p, I)  has the following properties:

(Downward slopeness): D(p, I) > D(p+δ, I)   for all  p  with D(p, I) > 0  and all  δ > 0.

(Consistency to the consumer surplus):  ∫+∞   p    D(p, I)dp <  +∞   for all p > 0,3 and

           EV(p0, p1, I)  =  ∫p0 p1 D(p, I)dp  =  CV(p0, p1, I)    for all regular  (p0, p1)  with  p0  > p1.

A Marshallian demand function  D(p, I)  is called  globally  well-behaved  if  D(p, I)  is well-

behaved at all  I > 0.

The downward slopeness means that  D(p, I)  is a decreasing function, which is an

important condition when one proves the existence and uniqueness of a competitive

equilibrium in a partial equilibrium market model.   The consistency to the consumer

surplus implies that the consumer surplus is well-defined and it coincides with the finite

integral of demand function.   The following proposition is well-known:

Proposition 1: Suppose that a utility function  U(x, y)  is monotone and strictly quasi-

concave.   Then the Marshallian demand function  D(p, I)  is globally well-behaved if and

only if x-good is a neutral good, i.e., U(x, y)  satisfies that

          ∂MRS(x, y)/∂y  =  Uy(x,y)·Uxy(x,y) – Ux(x,y)·Uyy(x,y)  =  0   for all  (x, y) á (0, 0),

where  MRS(x, y)  is the marginal rate of substitution of x-good for y-good at  (x, y)  defined

by  MRS(x, y)  =  Ux(x,y)/Uy(x,y) .

                            

3    ∫ +∞   p    D(p, I)dp  =  lim q →+∞ ∫ q      p  D(p, I)dp.
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3.  Asymptotically  well-behaved  demand  functions  for  normal  goods

In the previous section, we observe that the well-behaved demand functions are derived

only from a class of quasi-linear utility functions and then the well-behaved demand

functions can be applicable only for neutral goods, which is too restrictive.

In this section, we will show that the (almost) well-behaved demand functions can be

derived even under the condition that x-good is a normal good.    At first, we additionally

assume the following condition:

Normal good:  ∂MRS(x, y)/∂y = Uy(x,y)·Uxy(x,y) – Ux(x,y)·Uyy(x,y) > 0  for all (x, y) á (0, 0).

This condition is equivalent to ∂D(p, I)/∂I > 0 (whenever D(p, I) > 0).   Then the

asymptotically  well-behaved  demand  function is defined as follows:

Definition: A Marshallian demand function  D(p, I)  is called  asymptotically  well-behaved 

if  there exists a real valued function  d(p)  on  P ≡ ℜ++ such that:

(Uniform convergence): D(p, I)  converges to  d(p)  uniformly on compacta in  P  as  I → +∞ .

(Downward slopeness):  d(p) > d(p+δ)   for all  p  with  d(p) > 0  and all  δ  > 0.

(Consistency to the limit consumer surplus):  ∫+∞   p    d(p)dp <  +∞   for all p > 0  and

            limI→+∞EV(p0, p1, I)  =  ∫p0 p1 d(p) dp  =  limI→+∞CV(p0, p1, I)     for all  p0  > p1 > 0.

In other words, a Marshallian demand function  D(p, I)  is called asymptotically well-

behaved if  D(p, I)  has the well-behaved limit function  d(p).   The uniform convergence

implies that

            limI→+∞[D(p, I+δ ) – D(p, I) ] =  0   and   limI→+∞ p·D(p, I)/I = 0   for any  p, δ  > 0.

Hence income effects on the Marshallian demand function converge to  0  as  I → +∞   in

the marginal and average senses.
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In order to characterize the asymptotically well-behaved demand function, we

introduce two conditions.   The first one is the following condition:

Replaceability: For any  x ∈ X, there exists  Kx ≥ 0  such that

             U(0,y+Kx)  ≥  U(x, y)    for all  y ∈ Y.

This condition means that an additional amount of x-good is (uniformly) replaceable for

some amount of y-good, independent of the consumption level of y-good.   Then we have

the following lemma:

Lemma 1: Suppose that  U(x, y)  is monotone and strictly quasi-concave, and that x-good is

a normal good.   Moreover, suppose that  U(x, y)  satisfies the replaceability.   Then

(i)      limy→+∞MRS(x, y)  =  limy→+∞Ux(x,y)/Uy(x,y)  <  +∞   for all  x > 0, and

(ii)   σ(x) ≡ limy→+∞MRS(x, y)  is continuous for almost all  x > 0  and  σ(x)  is weakly

decreasing on  x  >  0.

The second condition is the following condition:

Regularity at the limit:  σ(x)  is continuous for all  x > 0  and decreasing on  x > 0.

The main result of this paper is the following proposition:

Proposition 2: Suppose that a utility function U(x, y) is monotone and strictly quasi-

concave, and that x-good is a normal good, i.e., U(x, y)  satisfies the normal good condition.

Then the Marshallian demand function  D(p, I)  is asymptotically well-behaved if and only

if  U(x, y)  satisfies the replaceability and the regularity at the limit.
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4.  Direct  derivation  of  the  limit  demand  function

This section provides a formula to compute the limit demand function directly from a

utility function   U.   The main result of this section is the following proposition:

Proposition 3: Suppose that a utility function  U(x, y)  is monotone and strictly quasi-

concave, and that x-good is a normal good.   Moreover, suppose that  U(x, y)  satisfies the

following two conditions:

(i)    lim 
y → +∞[ U(x, y) – U(0, y)]  <  +∞   and   0  <    lim

y → +∞U
y
(0, y)  <  +∞.

( ii)    h( x )   ≡         
   lim

y → + ∞   
[   U ( x ,  y)   −  U( 0 ,  y)   ]   

lim  
y → + ∞ 

U 
y 
( 0 ,   y )   

  

     is twice differentiable and  h′′(x)  <  0  on  x > 0.

Then the Marshallian demand function  D(p, I)  is asymptotically well-behaved, and the

limit demand function  d(p)  is given by

                d(p)  =   f–1(p)       if   p ∈  (0, p*);

                         =   0              otherwise,

where  f = h′  and   p*  ≡  limx→+0 f(x). 

Let us consider the utility function  U(x, y)  =  log(x+1) + log(y+1) + y.   Since  U

satisfies (i) in Proposition 3  and   h(x)  =  log(x+1),  h′(x)  =  1/(x+1)  and  h′′(x)  = – 1/(x+1)2

<  0.   Hence it holds by Proposition 3 that

              d(p)  =   1/p  –  1              if   p ∈  (0, 1];

                       =   0                         otherwise.

If  p = 0.5,  then  d(p)  =  d(0.5)  =  1  and  the  income  expansion  path  is given by

  x   =   y 

  y + 2     
   or   y =   2 x 

  1 − x     
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For given initial income level  I > 0, the original Marshallian demand of x-good is

determined by the intersection of the income expansion path and the budget line,  0.5x +  y

=  I.   Hence we have that

  lim
I → + ∞ 

  D ( 0 . 5 ,  I)   =   lim
I → + ∞ 

I −   0 . 5 x 

  ( I −   0 . 5 x ) + 2   
  =   lim

y → + ∞ 

y 
  y + 2   

  =   1 , 

x = 1

Income expansion path

x

y

Figure  1

          0

  

which implies that  d(0.5) = 1  is the  vertical asymptote  of the income expansion path.

See the following  figure:

The above example tells us that there exists a utility function which satisfies all conditions

for the asymptotically well-behaved demand function.
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5.  Proofs

Proof of Proposition 1:  Suppose that  U  is monotone and strictly quasi-concave.   It is

well-known that if  ∂MRS(x, y)/∂y = 0  for all  (x, y) á (0, 0),  then  D(p, I)  is globally  well-

behaved.   For example, see Mas-Colell, et. al.  (1995, Section 3.I, page 83).   Conversely, if

D(p, I)  is globally  well-behaved, we will prove that  ∂MRS(x, y)/∂y = 0 for all  (x, y) á

(0, 0).   Suppose that  ∂MRS(x*, y*)/∂y > 0  for some  (x*, y*) á (0, 0).   Set  p* =

MRS(x*, y*) > 0, u* = U(x*, y*)  and  I* = e(p*, u*) > 0.   Then it holds that  ∂D(p*, I*)/∂I >

0.   Hence there is an open rectangular  Q  in  ℜ++
2   such that   (p*, I*) ∈ Q   and    ∂D(p, I)/∂I

> 0  for all  (p, I) ∈ Q.   Moreover it holds that

          ∂2e(p*, u*)/∂p∂u  =  [ ∂D(p*, I*)/∂I ] · [ ∂e(p*, u*)/∂u].

Since   ∂e(p*, u*)/∂u > 0, there exists an open rectangular  Q*  in  ℜ++
2    such that

          (p*, u*) ∈ Q   and    ∂2e(p, u)/∂p∂u > 0   for all  (p, u) ∈ Q*.

Then there is  p1 > p*  such that:

           (p*, p1)  is regular;

           (p1, u1) ∈ Q*,  where  u1 =  U(D(p1, I),  I – p1D(p1, I))  <  u*.

Then it holds that  ∂e(p, u*)/∂p >  ∂e(p, u1)/∂p  for all p ∈ (p*, p1),  which implies

            EV(p*, p1, I)  –  CV(p*, p1, I)  =   ∫ 
p*

 p1 [ ∂e(p, u*)/∂p –  ∂e(p, u1)/∂p ] dp >  0.

This is a contradiction.   Similarly we can derive a contradiction in case of  ∂MRS(x*, y*)/∂y

<  0.                                                                                                                                    QED

In order to prove Lemma 1, Propositions 2 and 3, we need a concept and a claim: Suppose

that  U  is monotone and strictly quasi-concave.   For each  x  ≥ 0, there exists unique  Ix ≥ 0

such that  U(0, Ix) = U(x, 0).   For given  I  ≥  Ix, the  Hicksian  surplus  for adding  x ≥ 0

units of x-good in terms of y-good (numerare)  is defined by the amount of y-good  c  such

that   U(0, I) = U(x, I – c).   We denote the surplus by  S(x; I).   Mathematically, S(x; I)  is a

parametric representation of the indifference curve starting from (0, I).   If  U  is monotone

and strictly quasi-concave,  S(x; I)  is well-defined for all  x ≥ 0, I ≥ Ix.
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Claim 1: Suppose that U is monotone and strictly quasi-concave, and that x-good is a

normal good.    Then the following statements hold:

(0)      For any  x > 0, I > Ix,  S(x; I)  is twice continuously differentiable for  x  and

            it holds that   S′(x; I)  >  0   and    S′′(x; I) <  0.

(i)       If  U(x*, y*) = U(x, y)  with  x* > x,  then  U(x*, y*+δ)  >  U(x, y+δ)  for all δ > 0.

(ii)      S(x; I+δ)  >  S(x; I)   for all  x > 0, I ≥ Ix  and all  δ > 0.

(iii)      S′(x; I+δ)  >  S′(x; I)   for all  x > 0, I ≥ Ix  and all  δ > 0.   

Proof of Claim 1: (0)  This is a direct consequence of the Implicit Function Theorem.

(i)  Suppose  U(x*, y*) = U(x, y)  with  x* > x, and fix any  δ > 0.   If  U(x*,y*+δ)  >

U(x, y+α)  for all α > 0, then,  setting α = δ,   it holds that  U(x*, y*+δ) > U(x, y+δ), which

implies (i)  holds.   If  U(x*, y*+δ) = U(x, y+α)  for some α > 0, there remains to show  α > δ.

By  the strictly quasi-concavity of  U, there is a concave indifference path  I: [x, x*] → Y

connecting  (x, y)  and  (x*, y*), i.e.,  I(x) = y  and  I(x*) = y*.   Similarly, there is a concave

indifference path  J: [x, x*] → Y  connecting  (x, y+α)   and  (x*, y*+δ).   It holds by the

monotonicity of  U  that  y  >  y*  and  y+α >  (y*+δ) .   Then we have that

           y – y*    =  ∫ x x* | I(x)/dx | dx  =  ∫ x x* MRS(x, I(x)) dx  ;                                               (1)

           y+α – (y*+δ)   =   ∫ x x* |J(x)/dx | dx   =  ∫ x x* MRS(x , J(x)) dx.                                     (2)

Since   ∂MRS(r, s)/∂y  >  0  for all  (r, s) á (0, 0), and since  I(x)  <  J(x)  by the monotonicity

and  δ  > 0,  we have that  MRS(x, I(x))  <  MRS(x, J(x))  for all  x ∈ (x, x*),  which implies

that  ∫ x 
x* MRS(x, I(x)) dx  <   ∫ x x* MRS(x , J(x)) dx.   Hence we have by (1) and (2) that  y – y*

<  y+α – (y*+δ)   and  α  >  δ .

(ii)  Fix any  x > 0, I ≥ Ix  and  δ > 0.    It holds by the definition of  S that  U(x, I – S(x; I)) =

U(0, I).   Then it holds by Claim 1(i) that  U(x, I – S(x; I)+δ)  >  U(0, I+δ).   Moreover it holds

by the definition of  S  that  U(x, I+δ – S(x; I+δ))  =  U(0, I+δ).   Hence we have that  U(x, I+δ

– S(x; I))  >  U(x, I+δ – S(x; I+δ)), which implies  I+δ – S(x; I)  >  I+δ – S(x; I+δ)  and  S(x; I+δ)

>  S(x; I).
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(iii)  For given any  x > 0, I ≥ Ix  and  δ > 0, set  y =  I – S(x; I).    Since  S′(x; I) = MRS(x, y)

and  S′(x; I+δ) = MRS(x, y+β)  for some positive  β < δ  by Claim 1(i).   Since  ∂MRS(x, y)/∂y

>  0  by the normal good condition, it holds that  S′(x; I+δ)  =  MRS(x, y+β)  >  MRS(x, y)  =

S′(x; I).                                                                                                                                    QED

Proof of Lemma 1: (i)  Suppose  limI→+∞S′(x, I)  = +∞  for some  x > 0.   Since  S ′(x; I)  is

increasing for I by Claim 1(iii),   we can set  I* ≥  Ix  such that

            I  >  I*  ⇒  S′(x; I)  >  (2/x)Kx  ,

where  Kx  is the real number in the condition of replaceability.   Then it holds that 

            I > I*  ⇒  (x/2) S′(x; I) > Kx   ⇒  S(x; I) > Kx

                                                                                            ⇒  U(x , I − Kx)  >  U(x, I – S(x; I))  =  U(0, I).

Hence  U(x, I)  > U(0,  I+Kx)  for all I  >  max(I*, Kx),  which contradicts with the selection

Kx.   Thus  limI→+∞S′(x; I)  < +∞  for all x > 0.   Setting  σ(x)  =  limI→+∞S′(x; I)  for all x > 0,

we have that  limy→+∞MRS(x, y)  =  limy→+∞ S′(x; y+S(x; I))  =  σ(x)   for all x > 0.

(ii)   Since  S′(x; I)  is decreasing with respect to  x  for given  I  by Claim 1(0),  we have that

σ(x) = limI→+∞S′(x; I)  is weakly decreasing with respect to  x.  Then it holds by Royden

(1988, Theorem 3, Ch. 5, page 100)  that  σ(x)  is differentiable for almost all  x > 0, and

then σ(x)  is continuous for almost all  x > 0.                                                                   QED

Proof of Proposition 2: We need the following lemma proved in Appendix:

Lemma 2:  Suppose that U is monotone and strictly quasi-concave, and that x-good is a

normal good.

(a)  If  U  satisfies the replaceability, then  limI→+∞S(x; I) < +∞  for all x ≥ 0.

Denote  s(x) = limI→+∞S(x; I)  for all x ≥ 0.   If  U  satisfies the replaceability  and the

regularity at the limit, then it holds that:

(b)   σ(x) = s′(x)  for all  x > 0.
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(c)   For any  p > 0, there exists  x*(p) > 0  uniquely such that

                    s(x*(p)) – px*(p)   >   s(x) – px   for all  x ≠  x*(p) .

(d)  Let  p*  =  limx→+0 s′(x)  >  0. (It is possible p* =+∞).   Then it holds that

                    x*(p)  =  σ –1(p)   for all   p <  p*.

(e)    limI→+∞D(p, I)  ≡  d(p)  < +∞   and   d(p)  =  x*(p)   for any  p > 0.

(f)    d(p)  is downward slope and consistent to the limit consumer surplus.

Let us start the proof of Proposition 2.   Suppose that U is monotone and strictly quasi-

concave, and that x-good is a normal good.   If  U  satisfies the two additional conditions,

then it follows from Lemma 2(e, f) that the limit demand function  d(p)  is well-defined and

well-behaved.   The uniformity of convergence holds by Dini’s Theorem (Lang, 1969,

Theorem 2, page 325).   Conversely,  suppose that  D(p, I)  is asymptotically well-behaved.

Let  d(p)  be the limit demand function.   We need a claim:

Claim 2 :   limp→+0 d(p) = +∞.

Proof :  By the normality, it suffices to prove  limp→+0 D(p, I) = +∞  for all  I > 0.   Suppose

limp→+0D(p, I) = a < +∞  for some  I > 0.   Set b = MRS(a+1, 0) > 0.   Since D(p, I)  is

increasing as  p→+0,  it holds that  limp→+0 MRS(D(p, I), I  –  pD(p, I) )  =  0, which implies

MRS(D(p*, I) , I – p*D(p*, I) ) <  b  for some  p*  > 0.   Then it holds by the quasi-concavity

that  MRS(a+1, c) <  MRS(D(p*, I) , I  –  p*D(p*, I))   for some   c  >  0  such that  U(a+1, c)

= U(D(p*, I) , I  –  p*D(p*, I)).   Hence   MRS(a+1, c)  <   b = MRS(a+1, 0), which contradicts

with the normality.                                                                                                           QED

Since  d(p)  is decreasing, it holds by Claim 2 that the inverse  d–1(x)  is well-defined for all

x > 0.   We need a claim:

Claim 3 :  limI→+∞S′(x; I) ≡ σ(x) < +∞  and  σ(x) = d–1(x)   for all  x > 0.

Proof :  Set  p = d–1(x).   Suppose  σ(x) > d–1(x)  or  σ(x) = +∞  for some  x > 0.   Since

limI→+∞S′(x; I)  >  p, it holds that  D(p, I)  >  x   for some  I  and  limI→+∞D(p, I)  =  d(p)  >  x,
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which contradicts with  p = d–1(x).

Suppose  σ(x)  <  d–1(x)   for some   x > 0.   Since  σ(x) < p  implies  limI→+∞S′(x; I) < p,

there exists  ε  ∈ (0, p)   such that   S′(x; I) < p – ε  for all  I.   Hence  D(p – ε, I)  ≤  x   for all

I  and   d(p – ε)  ≤  x = d(p), which contradicts with the downward slopeness.             QED

Since  d(p)  is continuous by the continuity of D(p, I) and uniform convergence, and since

d(p)  is decreasing by the downward slopeness,  it follows from Claim 3 that  σ(x)  is

continuous and decreasing on  x > 0, and then U  satisfies the regularity.   There remains to

prove that  U  satisfies the replaceability .   Fix any  x* > 0.  It holds by the Fundamental

Theorem of Calculas that

           ∫ x*     1/m S′(x; Ix*+n) dx  =  S(x*; Ix*+n) – S(1/m; Ix*+n)  for all  m = 1, 2 ··· and all  n = 1, 2 ···. 

By the definition of (improper) Riemann integral, continuity of  S(x; Ix*+n)  on [0, x*]  and

S(0; Ix*+n) = 0, we have that

           ∫ x*     0   S′(x;  Ix*+n) dx  =  limm→+∞ ∫ x*     1/m  S′(x;  Ix*+n) dx  =  S(x*;  Ix*+n)   for all  n.

Since  { S′(x; Ix*+n) }n  is monotone on  (0, x*]  by Claim 1(iii), and since the limit function

σ(x) = d–1(x)  is Riemann integrable on [0, x*], it holds that:

         { S(x*; n) }n  is monotone;

         S(x*; Ix*+n)  =  ∫ x*     0   S′(x;  Ix*+n) dx  ≤   ∫ x*     0    d
–1(x) dx  <  +∞   for all  n.

Setting   ∫ x*     0   d
–1(x) dx +  Ix* = Kx* , we have that

            Ix* ≤  Kx*   and    S(x*; Ix*+w)  ≤  Kx*      for all  w ≥ 0.                                       (3)

It holds by the definition  S(x*; z)  that

           U(0, z) = U(x*, z – S(x*; z))     for all  z  ≥   Ix* .                                                  (4)

Thus, for any  y ≥ 0, setting  z = y+Kx*  and  w = Kx*+ y –  Ix*, it holds by (4) and (3) that

          U(0, y+Kx*)  =  U(x*, y+Kx* –  S(x*; y+Kx*))  ≥  U(x*, y+Kx* – Kx*) = U(x*, y).    QED

Proof of Proposition 3: Suppose that  U  satisfies all the condition in Proposition 3.

Then the following lemma holds:
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Lemma 3:  (i)  U satisfies the replaceability.   (ii)  Set  Y(x, I) ≡ I – S(x; I), then it holds that

           S(x; I)  =  f–1[U(x, Y(x, I))]  –  Y(x, I) ,

where  f  is a function defined by  f(y) = U(x, y)  for all  y ≥ 0.

Lemma 3 is proved in Appendix .   By Lemma 3(i)  and Lemma 2(a), it holds that

            lim
I→+∞S(x; I) ≡ s(x) < +∞   for all x ≥ 0,

which implies   lim
I→+∞Y(x, I)   =  lim

I→+∞[ I –  S(x; I)]  =   +∞   for all x ≥ 0.   Then it holds

by this and Lemma 3(ii) that

            lim
I→+∞S(x; I)  =    lim

y → +∞  [ f–1(U(x, y)) – y ].                                                          (5)

Since   lim
y → +∞

 f ′(y) < +∞  by   lim
y → +∞ U

y
(0, y)  < +∞, it holds by Mean Value Theorem that

             lim
y → +∞ 

f ′′(y)  =  0.                                                                                                      (6)

Hence it follows from Taylor’s Formula and Inverse Function Theorem that

            f–1(U(x, y)) – y  =  f–1( [ U(x, y) – U(0, y) ] + U(0, y) )  –  y

                                   =  f–1(U(0, y) ) + [ U(x, y) – U(0, y) ]/f ′(y)

                                                                     +  [ U(x, y) – U(0, y) ]2 f ′′(y+ξ)/2[f ′(y)]3  –  y

                                   =  [ U(x, y) – U(0, y) ]/f ′(y) + [ U(x, y) – U(0, y) ]2 f ′′(y+ξ)/2[f ′(y)]3

where  ξ ∈ [0, U(x, y) – U(0, y)].   Thus we have by (5), (6) and the condition (i) in

Proposition 3 that

     s(x)   =     lim
I→+∞

S(x; I)

                =    lim
y → +∞

[ f–1(U(x, y)) – y ]  =    lim
y → +∞

[ U(x, y) – U(0, y) ]/f ′(y)

                                                                    

          
=   

    lim
y → + ∞   

  [   U ( x ,  y)   −  U( 0 ,  y)   ]      

lim  
y → + ∞ 

U 
y 
( 0 ,   y )     

     .       

Since  h′(x) = s′(x)  is continuous and decreasing on  x > 0 by condition (ii) in Proposition 3,

U satisfies the regularity at the limit and  d(p)  is given by  h′(x) = s ′(x) = p.                QED   
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Appendix  

Proof of Lemma 2: (a)  Fix any  x ≥ 0.   It holds by the replaceability that there exists  Kx

≥ 0  such that

           U(0,  I –  S(x; I) + Kx)  ≥  U(x,  I – S(x; I))      for all  I > Ix.

Since   U(x,  I – S(x; I)) = U(0, I), we have that  U(0,  I –  S(x; I) + Kx)  ≥  U(0, I)   and

            I –  S(x; I) + Kx   ≥   I    for all  I >  Ix.

Hence it holds that  Kx  ≥  S(x; I)  for all  I >  λ(x).   Since  S(x; I)  is increasing with respect

to  I  by Claim 1(ii), it holds that  limI→+∞S(x; I)  < +∞.

(b)  By the definitions of  σ(x)  and  s(x), it holds that

             limn→+∞S′(x; Ix+n) = σ(x)   and   limn→+∞S(x; Ix+n) = s(x)    for all x > 0.

Fix any  x  and select a compact interval [a, b] with a < x < b.    Since  σ(x)  is continuous on

[a, b] by the regularity and each  S′(x; Ix+n)  is continuous for  x   on [a, b] by Claim 1(0),

and since the convergence  { S′(x; Ix+n) }n  is monotone on [a, b] by Claim 1(iii), it holds by

Dini’s Theorem (Lang, 1969, Theorem 2, page 325) that the convergence of  { S′(x; Ix+n) }n 

is a uniform convergence on  [a, b].   Hence it holds by Lang (1969, Theorem 12, page 117)

that  σ(x) = s ′(x)  on (a, b).   Thus it holds that  σ(x) = s ′(x)  for all  x  > 0.

(c)  If  limx→+0 s′(x) = +∞, the assertion (c) holds by the regularity and Lemma 2(b).   We

consider the case of limx→+0 s′(x) ≡ A < +∞.   Since  σ(x) = s ′(x)  is decreasing for x, and since

{ S′(x; λ(x)+n) }n monotonically converges to  s ′(x)  for each  x > 0, it holds that

            S′(x, Ix+n)  ≤  A    for all  x > 0  and all  n = 1, 2  ··· .

Since  S(x, Ix+n)  is continuous on  [0, x]  and continuously differentaible on  (0, x), we have

that

           S(x, Ix+n)  =  ∫ x     0   S′(z, Ix+n) dz   ≤    ∫ x     0   A dz  = [ Az ] x     0  =  Ax.

For any  ε > 0, if  0 < x < ε/A, then  S(x, Ix+n)  ≤  Ax  ≤  εA/A  = ε  for all  n > 0.    Hence

           s(x)   =   limn→+∞S(x; Ix+n)   ≤    ε,

which implies that  s(x)  is continuous at  x = 0, since  s(0) = 0.    Since  s(x)  is continuous
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on  x > 0  by Lemma 2b,  s(x)  is a continuous function on  x ≥ 0.   Hence the assertion (c)

holds by the regularity and Lemma 2b.

(d)  It holds by Lemma 2b and the regularity  that  s(x)  is monotone and concave on (0, +∞).

Hence for any  p < p*, it holds that   s′(x(p)) − p = 0, which implies that   s′(x*(p)) = p  and

σ(x*(p)) = p.   Thus we have that  x*(p)  =  σ –1(p).

(e)   Set  x* = x*(p)  for p > 0.   Then it holds that

                s(x*) – px*  >  s(x) – px    for all  x ≠ x*.

We need the following claims:

Claim 4:  If  s(x*) – px*  >  s(x) – px, then there exists  I0  > 0  such that

           I  >  I0    ⇒   U(x*, I − px* )  >  U(x  , I − px  ).

Proof:  By  s(x*) – px*  >  s(x) – px,  it holds that there exists  I*  > 0  such that

           I  >  I*    ⇒    S(x*; I) – px*  >  S(x; I)  – px.                                                             (7)

It holds by C1 that there are two real numbers  a  and  b  such that

          U(x*, I+a − [a+px* ])  =  U(x*, I − px* )  =  U(0, I+a)   and

          U(x, I+b − [b+px  ])  =  U(x, I − px  )  =  U(0, I+b ),

which implies that  a+px* = S(x*; I+a)  and  b+px = S(x; I+b).   Hence we have by (7) that

           I  >  max (I*, I+a, I+b)  ⇒  a >  b

                                                  ⇒  U(x*, I − px* ) = U(0, I+a)  > U(0, I+b) = U(x, I − px  ).  QED

Claim 5:  limI→+∞D(p, I)  <  +∞.

Proof:  If  limI→+∞D(p, I)  = +∞,  then there exists  I*  >  p(x*+1)  such that

           I  >  I*  ⇒  D(p, I)  >  x*+1  and  U(D(p, I), I − pD(p, I))  >  U(x*, I − px*).

It holds by the quasi-concavity of  U  that  U(x*+1, I − p(x*+1))  >  U(x*, I − px*)   for all  I >

I*,  which contradicts with Claim 4.   Hence   limI→+∞D(p, I)  <  +∞.                            QED
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Set  lim
I→+∞D(p, I) ≡ b  in Claim 5, and suppose that  b ≠ x*.   By Claim 4, there exists

I1  >  px*  >  0  such that

           I  >  I1   ⇒   U(x*, I − px*)  >  U(b, I − pb).

It holds by the continuity of  U  and  lim
I→+∞D(p, I) ≡ b that there exists  I2  > I1 such that

           I  >  I2   ⇒   U(x*, I − px*)  ≥  U(D(p, I), I − pD(p, I)),

which contradicts with the uniqueness of  D(p, I).

(f)  limp→+0 d(p) = +∞  holds by  limx→+∞ σ(x)  =  0.   The proof of downward slopeness is

very easy.   Let us prove the consistency to the limit consumer surplus.    If  limx→+0 s′(x) <

+∞ , then  d(p*) = 0 for some  p* > 0 and  d(p)  is continuous on  [p, p*]  for all  p < p*.

Hence

             ∫+∞   p    d(p)dp =  ∫p*   p    d(p)dp  <  +∞   for all  p < p*.

In case of  limx→+0 s′(x)  = +∞,  fix any  p > 0 and set  x* > 0 such that   s ′(x*)  = p.   Then it

holds by the replaceability that

         0  ≤   ∫ x*  x*/m S′(x; Ix+n) dx  =  S(x*; Ix+n) – S(x*/m; Ix+n)  ≤   Kx*   for all  m > 1.

Since  S′(x, n)  uniformly converges to  s′(x)  for all x ∈ [x*/m, x*], it holds that

          limn→+∞ ∫ x*  x*/m S′(x; Ix+n) dx  =  ∫ x*  x*/m  s′(x) dx   ≤   Kx* for all  m > 1,

which implies that

         limm→+∞ ∫ x*  x*/m s′(x) dx  =  ∫x* 
0   s′(x) dx   ≤   Kx*.

Thus it holds by Lemma 2 (b, c) that

            ∫x* 
0  s′(x) dx  – px*   =    ∫ x     0   d

–1(x) dx  –  px*   =    ∫+∞   p    d(p)dp   <   +∞.

Finally, we will show that

            lim
I→+∞EV(p0, p1, I)  =  ∫p0 

p1
 d(p) dp  =  lim

I→+∞CV(p0, p1, I)     for all p0  > p1 > 0.

Set  d(p0) = x0   and   d(p1) = x1,  then it holds that

           ∫p0 
p1

 d(p) dp  =  [ s(x1) – px1]  –  [ s(x0)  – px0] .                           (8)
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Let  (x(I), y(I))  be the expenditure minimizer corresponding to EV(p0, p 1, I).   Then it holds

that

            EV(p0, p1, I)  =   y(I) + p0[x(I) – D(p0, I)].

As  I →  +∞,  it holds that   [x(I) – D(p0, I)]  →  0  and  y(I)  →  A, where  A  is given by

        A =  lim
I→+∞WTA(D(p1, I) – D(p0, I) ; D(p0, I), I – p1D(p1, I))  –  [p1D(p1, I) –p0 D(p0, I)]

            =  lim
I→+∞WTA(x1 – x0 ; x0, I)   –    (p1x1 – p0 x0)

            =  lim
I→+∞ 

[ S(x1; I) – S(x0; I) ] –  (p1x1 – p0 x0)  =  [ s(x1) – px1]  –  [ s(x0)  – px0].

Note that WTA(∆x ; x, y)  is defined by a real number  e  ≥ 0  such that

            U(x, y+e) = U(x+∆x, y).

Hence we have by (8) that

            lim
I→+∞EV(p0, p1, I)  =  [ s(x1)  – px1]  –  [ s(x0)  – px0]  =  ∫p0 

p1
 d(p) dp.

Similarly, we have that

            lim
I→+∞ CV(p0, p1, I)  =   [ s(x1)  – px1]  –  [ s(x0)  – px0]  =  ∫p0 

p1
 d(p) dp.        QED

Proof of Lemma 3: (i)  By the condition (i) in Proposition 3, there is a real number  y* > 0

such that:

               sup 
y ∈ [y*, +∞)

[ U(x, y) – U(0, y) ]  <     lim
y → +∞

 [ U(x, y) – U(0, y) ] + 1   and

                inf 
y ∈ [y*, +∞) 

U
y
(0, y)  >  [ lim

y → +∞ U
y
(0, y) ]/2  >  0.

Since  [0, y*]  is compact  and  U  is smooth, we may set:

           b =       sup 
y ∈ [0, +∞) 

[ U(x, y) – U(0, y) ]   <   +∞ ;                                                          (9)

           a =        inf 
y ∈ [0, +∞)

U
y
(0, y)  >  0;                                                                                     (10)

Then it holds by (9) that  U(x, y)  –  U(0, y)  ≤  b  for all  y ≥ 0, which implies that

          U(x, y)  ≤  U(0, y) + b.                                                                                             (11)
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Furthermore, it holds by (10) that

          U(0, y+b/a) – U(0, y)  =  ∫ 
y 
   y+(b/a) U

t
(0, t) dt   ≥   ∫ 

y 
   y+(b/a)a dt  =  a[y+(b/a)] – ay  =  b,

which implies that

           U(0, y) + b ≤  U(0, y+b/a).                                                                                       (12)

We have by (11) and (12) that  U(0, y+b/a)  ≥  U(x, y)  for all y ≥ 0.  

(ii)  Since  U(0, I) = U(x, I – S(x; I)) = U(x, Y(x, I)), it holds that U(0, I) = U(x, Y(x, I)), which

implies  f–1(U(0, I))  =  f–1[U(x, Y(x, I))].   Since f–1(U(0, I)) = I  by  f(I) = U(0, I), it holds that

I =  f–1[U(x, Y(x, I))].   Hence we have that

          S(x; I)  =  I –  I + S(x; I)  =  I – Y(x, I)  =  f–1[U(x, Y(x, I))]  –  Y(x, I).                QED
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