


1 Introduction

Panel (longitudinal) data is a stack of cross-sectional data observed over time for the same cross-sectional

units, such as individual identiers. Since panel data enables us to follow an individual’s history over the

time periods, it is a natural extension of cross-sectional data which is only observed at a specic time period.

For a simple rationale for panel data use, consider an example1 of studying health plan type choice between

HMO and non-HMO; a cross-sectional data (say year 1996) showing a half of the population selected

HMO and the other half did not. This nding can be interpreted as (A) each individual has an identical

and independent probability of 50% to choose HMO type plan, or (B) a half of the population is born to

choose a HMO plan and the other half is born not to choose a HMO plan. The case (A) implies that frequent

switching behaviors are expected whereas the case (B) implies that no switching behaviors are expected at

all. Obviously, both of the interpretations are two extreme possibilities (probably the reality is somewhere

in between these two cases), however, we cannot empirically deny these possibilities unless we have another

cross-sectional data (say year 1997) of the same population, that is a panel data structure.

In addition, the methodology used for panel data has some benets for two important problems of cross-

sectional data analysis; unobserved heterogeneity and omitted variable bias. Since a typical cross-sectional

data analysis is built on the homogeneity of the given sample, unobserved heterogeneity is always a potential

critique for most cross-sectional analyses. On the other hand, panel data model can control for unobserved

heterogeneity by parametrizing it as either xed effect or random effect. Furthermore, we can test the

validity of heterogeneity by comparing a panel data model and a corresponding pooled cross-sectional data

model. For random effect modeling, a pooled cross-sectional model assumes no correlation in the error

1 See Ben-Polath (1973) for the original example of female labor force participation.
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term as in the classical linear regression theory, whereas a random effect panel data model allows correlated

error terms for the observations from the same individual. Therefore, the pooled cross-sectional model is

a nested specication of the random effect panel data model and a test can be easily set up by using either

error sum of squares (F-test) or log likelihoods (Â2 test) depending on the estimation scheme. Similar tests

are also available for xed effect modeling.2

Controlling for unobserved heterogeneity helps to achieve more accurate prediction. As an extension to

the previous example of health plan type choice, we can consider a panel data model with two years 1996

and 1997. This model allows Jane Doe’s choice at 1996 and her choice at 1997 to be correlated and so

to be John Doe’s choice at 1996 and his choice at 1997.3 Hence, if we admit the past choices are useful

information to predict the current choice, panel data model is at least intuitively appealing methodology

(we will have a perfect forecast for the 1997 choices if the case (B) is true). On the other hand, the panel

data model is no better than the pooled cross-sectional model if the case (A) is true.

Another benet of panel data analysis methodology is solving omitted variable bias, unless the omitted

variable is time varying. Once we control for the unobserved heterogeneity by either xed effect or random

effect modeling, we cannot distinguish anything time invariant from xed effect or random effect parameter.

Therefore, we do not have to worry about any time invariant omitted variable4. On the other hand, this ben-

et is also a weakness of panel data model since we need additional stratications of the analysis whenever

we are interested in the effect of observable time invariant variable such as gender, race, etc. For example,

2 For example, Greene (1997) p.617.
3 If we have more than 3 time series observations (T ¸ 3), we can use panel data model with a time series error structure

to rene these correlations to be a causal relationship, i.e. only the past affects the future not vice versa.
4 This can be very useful in health economics research; for example, the general health of individual, say healthy (low risk

prole) vs. non-healthy (high risk prole), cannot be observed but need to be considered in the model then panel data

model can be a good solution.
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if the health plan type choice difference between female employees and male employees is a question of

interest, we need two separate panel data models by each gender to compare them5.

Selection bias is an inevitable problem in many empirical researches, especially for the ones using a

retrospective data. Since the retrospective data is not randomized for the research objective, any data-

driven conclusion cannot be generalizable beyond the data set. Therefore, the conclusions which might be

closely related to the data selection process, is subject to selection bias. Even though there are difculties

in practice, the importance of selection bias in panel (longitudinal) data is no less than in the case of cross-

sectional data. Especially, many health economics data set has a panel data structure and the observability

is related to the individual choice, for instance, a typical health insurance claims data.

Selection bias problem was extensively considered in the health plan type choice between Health Main-

tenance Organization (HMO) and Preferred Provider Organization (PPO), or between HMO and Fee For

Service (FFS). For instance, Eggers (1980), Dowd, et al. (1996), and Riley, et al. (1996) were the selection

bias studies on Medicare enrollees. Also Hellinger (1995) had a nice review article on selection bias studies

related to HMO vs. PPO choice in general. Most of these studies showed that HMO plan enrollees are

healthier than PPO or FFS plan enrollees, which implies that any projections solely based on one type of

plan is subject to a selection bias.

Selection bias modeling is also closely related to the concepts of “risk adjustment6” and “adverse se-

lection.” Risk adjustment is nothing but capturing different health status (risk) of individuals to explain
5 In a cross-sectional analysis, we can also test the coefcient differences between two gender group by Chow test but it

is impossible in panel data analysis unless jointly testing coefcient differences and validity of heterogeneity.
6 Risk adjustment captures selection bias by new variables such as Adjusted Average Per Capita Cost (AAPCC), Principal Inpa-

tient Patient-Diagnostic Cost Group (PIP-DCG), Diagnostic Cost Group (DCG), Hierarchical Condition Categories (HCC),

etc. Therefore, these methodologies can be viewed as correcting an omitted variable (true health status) bias by a set of instru-

mental variables in econometrics language.
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outcomes such as medical expenditures, mortality rate, and so on. Therefore, these studies seek for a rem-

edy of more general type of bias7 in terms of missing information. Hence, various risk factors are identied

and many different risk measures are developed in this line. Iezzoni (1997) and Van de Ven and Ellis (2000)

summarized various studies related to this issue. Adverse selection or hidden information is more familiar

word for the economists and there are also many researches in this aspect, for example, van de Ven and van

Vliet (1995), Neudeck and Podczeck (1996), Ettner (1997), Altman, Cutler and Zeckhauser (1998), and

many others.

Another interesting application of selection bias modeling is on medical expenditure estimation. Since

a medical expenditures data set is typically skewed and the coefcient can be easily interpreted as an elas-

ticity, a log transformation of expenditure variable is widely used8. However, we cannot take logarithm

on zeros. Therefore, we need a model to separate zero expenditure observations and positive expenditure

observations, such as two part model (Cragg, 1971) or sample selection9 model (Heckman, 1976, 1979).

The two part model estimates a selection equation and a main equation independently whereas the sample

selection model considers both equations jointly. If the proportion of zeros is small, one part model (Duan,

1983) or a model without a log transformation can be used. Also there are important estimation issues aris-

ing if the proportion of zeros is small, for instance, the choice of probit model in the rst stage of sample

selection model and two part model becomes signicant.

7 Risk adjustment is dealing with mostly individual risk or closely stratied group’s risk. However, it is equivalent to selection

model if we consider different risk of two groups separated by a selection equation.
8 In addition, there could be an efciency gain from reducing noises by using a lognormal specication. Duan et al. (1983) said

the HIS data achieves this gain (the relative efciency of log transformed model over raw model is greater than one).
9 Selection bias can be modeled in many different ways, but one way to classify selection bias models is separating by sample

selection models and self selection models. According to Maddala (1985a), a sample selection model employ a selection

equation written in a reduced form while a self selection model employ one in a structural form.
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There were serious debates on the choice between two part model and sample selection model (Duan et

al., 1983, Hay and Olsen, 1984, Duan et al., 1984, Maddala, 1985a, Duan et al., 1985, Maddala, 1985b).

Since the two part model, which has a long history, was adapted as the empirical model for the RAND

Health Insurance Experiment (HIE), the same RAND researchers were actively participated for the advo-

cacy of two part model (Jones, 2000). However, many econometricians believe selection bias is an important

problem to be considered. The two part model seemed to have an edge over the sample selection model,

since Manning et al. (1987) and Hay et al. (1987) found the better performance of the two part model

through a Monte Carlo simulation. However, Leung and Yu (1996) showed these simulation results does

not hold for a simulation design with enough variations in independent variables. Hence, they argued that

the specic simulation design, which created the collinearity between the inverse Mill’s ratio and the vari-

ables in the main regression, generated favorable result for the two part model against the sample selection

model in Manning et al. They also mentioned that it may also be the case in Hay et al. Hence, it is more

meaningful to highlight distinctive advantages of each model than to argue one model is better than the

other.

For a cross-sectional data, Duan et al. (1984, 1985) made a good distinction between a two part mod-

eling and sample selection modeling. The former used for the Health Insurance Experiment (HIE) is better

for a conditional question of their interest, the average medical expenditures of the people who have spent

nonzero amount (subject to selection bias if we want to interpret the result for everybody in the sample). On

the contrary, the econometricians are more interested in an unconditional question, the average medical ex-

penditures of everybody in the sample including people with zero expenditure (selection bias is corrected).

For panel data, the conditional and unconditional question distinction of Duan et al. is not very useful, since
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the non-zero expenditure population is varying over time. For instance, panel data two part modeling has

to treat this individual differently for each year if an individual had zero expenditure in one year and some

positive expenditure in the next year. Therefore, two part model is not necessarily even preferred to one

part model in panel data. Jones (2000) also made a good distinction between a two part model and a sample

selection model. He recommended two part model for “genuine zeros” and sample selection model for non-

observable responses. The term “genuine zeros” implies that zero observations in a dependent variable is not

missing observations, whereas non-observable responses refer to missing observations. Non-observability

can be resulted from many different reasons, for instance, deductible truncates observable claims data to be

above deductible level. In our data, non-observability of medical expenditures was from each individual’s

choice of the health plan type between HMO and PPO. Therefore, this data is more suitable for a sample

selection model according to Jones (2000).

In addition to the comparison with two part model, there are some additional differences between cross-

sectional sample selection model and the panel data sample selection model in this paper. Especially, the

nonparametric panel data selection model in this paper is free from a critique by Duan et al. (1983, 1984),

Heckman’s sample selection model is dependent on bivariate normality assumption. Since we are consider-

ing a nonparametric estimation of the main equation coefcients, we do not need a distributional assumption

between the selection equation and the main equation nor a parametric specication of the selection equa-

tion.10 This advantage of nonparametric estimation is especially important for applied researches, since a

misspecication problem can always affect the validity of conclusion but a nonparametric specication is

less vulnerable to any misspecication problem than a parametric specication. However, a large data set

10 Instead, we need a mild conditional exchangeability condition (See footnote under equation (6) in Model section for more

details).
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is required for nonparametric estimations due to a slow convergence rate in asymptotic normality.

Another important issue related to a panel data selection model for medical expenditure is regarding het-

eroskedasticity and log transformation. The log-transformed dependent variables have to be retransformed

for the easier interpretations and policy conclusions. However, the retransformation formula (for example,

Duan (1983)) includes the variance parameter which cannot be consistently estimated by an ordinary model

under heteroskedasticity. Manning (1998) showed various cases with the bias resulted from heteroskedas-

ticity and there were also some suggestions for alternative modeling (Mullahy, 1998, Ai and Norton, 2000).

This is especially important for panel data sample selection models and even for the cross-sectional sample

selection models using LIML estimation (Manning, 1998), since these models introduce heteroskedasticity

in their selection bias correction procedures. To summarize, the costs of using log transformation in panel

data selection models need additional steps to recover correct retransformed values and careful considera-

tions for interpretation (since zero expenditure population is varying).

The two important estimation issues for empirical health economics, panel data and selection bias, are

traditionally treated separately (not only in health economics). Since it is mathematically complex to com-

bine these two issues together, a large burden of computer programming and a set of strong distributional

assumptions are need for the combination. The model presented in this paper can be estimated with a

common statistical software such as STATA or LIMDEP.11 Also the statistical assumptions needed for the

model in this paper is relatively weaker than the other methods.

This paper is organized as follows, Section 2 explains the data for our analysis, Section 3 introduces

a panel data model of health plan type choice and a nonparametric panel data sample selection model of

11 Unfortunately, there is no specic command to perform the whole model presented here, but a relatively simple programming

can achieve the correct estimation results. Every estimation results in this paper is generated by STATA 7.0.
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medical expenditure, Section 4 summarizes estimation results, and Section 5 concludes with some remarks.

2 Data

This paper used a data set provided by the University of Southern California (USC) benet ofce. This

data set includes two subsets, the employee data and the claims data, they can be connected through encoded

ID number. The claims data is only observable for the people who chose PPO plan. Therefore, any conclu-

sion based on the claims data is only valid for PPO plan holders at the specic time and any extension of this

conclusion to all the employees is subject to selection bias. The time range of data set is two years, 1996

and 1997. There are 8,543 employees for the year 1996, 8,596 employees for the year 1997, and 12,615

employees for the two years (some of them have only one year data). These numbers include people who

chose only supplemental coverage or cash compensation for their already existing outside health insurance

coverage (may be covered by their spouse’s health plan). Since we cannot observe these outside health plan

characteristics, these people are not included in the analysis. After excluding these outside plan holders

and coding error data, we get 7,743 employee data and 7,762 data for year 1996 and 1997, respectively.12

Combining these two data yields 6,644 employees in a two year balanced panel data and 8,861 employees

in the two year unbalanced panel data (balanced panel data plus 1,099 employees for the single year 1996

only and 1,118 employees for the single year 1997).

Available health plans were three HMO plans and two PPO plans, all ve plans offered in both years. The

two PPO plans are offered by the university network, which includes the services by USC faculty physicians

12 There were seven coding errors for the age variable, two coding errors for the experience variable and one data for 1998 which

might be a coding error of the date variable.
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at the USC hospitals13, while the three HMO plans are all outside organizations: Kaiser Permanente (KP),

CaliforniaCare (CC)14 and Pacicare (PC)15. The two university network plans are PPO type plans but the

coverage and the preferred rates are different: one is a basic coverage plan (NET 1) and the other is a more

extensive coverage plan (NET 2).

There were two major changes in the design of health plans offered by the university in 1997. Both

changes were applicable to university network plan holders only. The rst change was made on the de-

ductible of university network plans (PPO): there was no deductible for the direct services from the univer-

sity in 1996 but $100 per person and $300 per family annual deductible was introduced from 1997. Also the

annual deductible of services rendered by all the other preferred provider groups in the university network

plan, was increased from $100 to $150 per person and from $300 to $450 per family. The second change

was the increase in premiums of the basic coverage university network plan (NET 1) while all the other

plan premiums stayed the same. The limitation of this data set is that we cannot distinguish any effects of

the deductible change and the premium change since we are using a data for only two years (two different

benet designs).

In Table 1, we can see that there is not much difference in means between whole data and balanced panel

data. Only one notable difference is the mean of the DHMO variable in the 1997 whole sample and the mean

of the 1997 balanced sample, which indicates that the dominant number of newly hired employees of 1997

data chose HMO as their rst health plan to start at USC. This makes sense since if they do not have enough

information about each health plan then why not start with a less expensive plan? One important variable we

13 USC hospitals have more than 2000 beds and it is one of the biggest teaching hospital.
14 This is a Blue Cross/ Blue Shield(BCBS) descendent.
15 The business of this plan is somehow connected to CaliforniaCare so that the provider network is identical for the USC

employees.
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do not have is the household income or household wealth. Since we do not have even employee salary, we

leave it for the panel data model to deal with as an omitted variable. If this variable did not vary much from

1996 to 1997, our result is free from the omitted variable bias. Also some results from the previous literature

show the effect of income on the choice of health plan type is small (Barringer and Mitchell, 1994). Table 2

shows the basic structure of health plan choices for the unbalanced panel data. If we consider the balanced

panel data only (for 6,644 employees), only 3.3 percent of employees switched their plans to another plan

and 2.4 percent of employees switched the type of the plan (i.e. HMO vs. PPO). From Table 3, we can see

the coverage structure is very stable for those who use this health benet,16 94% of employees in balanced

panel data (the rst nine cells from the upper left corner) did not change coverage type and 80% of the all

employees did not changed their coverage choice from 1996 to 1997. The biggest two changes in balanced

panel data are from single coverage (1, SINGLE) to employee plus one dependent coverage (2, PLUS ONE)

and employee plus one dependent coverage category to family coverage (3, FAMILY).

3 Model

Similar to the Heckman’s cross-sectional sample selection model (Heckman, 1976, 1979), this model

also has two steps. The rst step is to estimate a health plan type choice (selection equation) and the

second step is to estimate medical expenditures (main equation). An example diagram showing the idea

is in Figure 1. There might be some variables affecting both the choice of health plan type choice and the

medical expenditure, but they are not required to be included. We included only the statistically signicant

variables in the estimation results. Another application of the model is presented in Figure 2. As the health

16 People who are not associated with outside option, i.e. balanced panel data.
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plan type choice above, a prescription ll up decision can truncate a sample of drug expenditures. In this

case, a selection equation of prescription ll up decision and a main equation of drug expenditure can be

modeled similarly. Grootendorst (1997) applied a panel data tobit model on the drug expenditures which is

truncated by deductible limit not by a selection equation.

In the rst step, a reduced form econometric model for multi-period health plan type choice between

HMO vs. PPO can be written as follows,17

y¤it = ¯xit + "it; i = 1; :::;N ; t = 1; :::; Ti (1)

yit = 1 if y¤it > 0

= 0 otherwise, (2)

where y¤it is the unobserved propensity to join a HMO type plan by individual i at time t, and yit.= DHMO

denotes the choice of health plan type whether HMO (DHMO=1) or PPO (DHMO=0), xit is a k-dimensional

vector of observable variables including demographics and health plan characteristics. "it is an error term.

Ti = 1 for all i implies usual cross-sectional Limited Dependent Variable (LDV) model, which is commonly

used in health economics literature. For example, Ellis (1985) used a logit model to analyze employee plan

choice, Hornbrook et al. (1989) examined selectivity and selection bias using a probit version; Buch-

mueller (1995) used a probit model for comparing the effects of employer provided health insurance types

on health status. Also Buchmueller and Feldstein (1997), employed a probit model to study employees’

behavior of switching health plans (a dichotomous variable of switch as the dependent variable). Other

health economics applications of cross-sectional probit model can be also found in log-transformed med-

17 There are many structural form models which can result in this reduced form model. For example, a choice model between

price vs. quality can be well t into the situation (HMO vs. PPO).
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ical expenditure estimation with a good proportion of zero expenditures (two part model and Heckman’s

sample selection model both use probit regression in the rst step).

For the panel data estimation (Ti > 1 for some i), a random effect probit model is considered by the

following error structure18 on "it,

"it = ui + Àit

ui » N(0; ¾2u); Àit » iid N(0; 1); ui ? Àit (3)

where ui is an unobserved heterogeneity among individuals (which is time invariant), Àit denotes an un-

derlying innovation, and ? indicates independent relationship. This model is more general than pooled

cross-sectional model since the error terms for each individual are correlated through the common ui (every

error terms are independent in pooled cross-sectional model). In econometric sense, allowing intertemporal

correlation for each individual (panel data model) is better than including the past choice (yit¡1) in the

equation (a modication to cross-sectional model), since the latter introduces endogeneity bias.

An alternative panel data binary choice model can be found in two directions; xed effect modeling or

logit specication. However, Chamberlain (1984) and Hsiao (1986) explained that the xed effect probit

models do not provide a consistent estimator of ¯ since there is an incidental parameter ui. This notori-

ous incidental parameter problem resulted from the fact that the number of parameter to estimate increases

faster or at the same rate as the sample size N increases.19 Logit specication is an attractive choice since

18 In this paper, identifying restrictions are already imposed on the variance of innovations (¾2v = 1). Alternative identifying

assumption can be made as ¾2u + ¾2v = 1:
19 Generally, increasing the sample size N to a large enough number yields an efciency gain, but the incidental parameter

problem is an exception.
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it provides both xed effect20 and random effect models, however, the choice between logit and probit, is

not simple in panel data analysis.21 Unlike the cross-sectional data case (a univariate distribution), normal

distribution (probit) and logistic distribution (logit) is not that similar in panel data (a multivariate distri-

bution). Therefore, the relative performance of each specication is the only measure for the specication

choice. Since the probit specication showed a better prediction of the actual choices in our data, we did

not use a logit specication.

According to Mundlak (1978), random effect model can be viewed as an inference with respect to

population whereas xed effect model can be viewed as an inference conditioning on the given sample as a

draw from the population. This guided our choice of panel data modeling; random effect for the health plan

type choice and the xed effect for the medical expenditure model, we believe we have enough variables to

model the health plan type choice (which is also a relatively simple problem) for the whole population but

we are less certain for medical expenditure since there are many factors affecting the estimation procedure

such as distributional assumption, heteroskedasticity, and so on.

To estimate above equation, we follow Butler and Moft (1982). This method utilizes Gauss-Hermite

20 The Conditional Maximum Likelihood (CMLE) of Chamberlain (1980) can be used for the xed effect logit model, but

it is inefcient since it does not reect any consistent choices (i.e. people who did not switch health plan type), which

is more than 96%.in our balance panel data.
21 Only the tail probability is slightly different in cross-sectional case, so the choice of probit or logit does not yields signicantly

different result. Amemiya (1981) showed a conversion formula between the coefcients from each specication.
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quadrature22 to evaluate inner integrals in our likelihood function.23

L = ¦Ni=1P [yi1 = bi1; yi2 = bi2; :::; yiTi = biTi)

¼ ¦Ni=1
1p
¼

KX
k=1

wkg(ak) : Gaussian-Hermite Integration (4)

where bit = 0 or 1 only,wk is a quadrature weight, ak is called a quadrature abscissa, g(ri) =¦Tit=1©[(2dit¡

1) (¯xit + ¾u
p
2ri)], and © is the standard normal cumulative distribution function. Once wk’s and ak’s

are provided, this likelihood function can be easily maximized with respect to ¯.24 Generally, we need

higher K to achieve good approximation as Ti grows higher and ½ = ¾2u=(1 + ¾
2
u) gets larger. Butler

and Moft(1982) method has a simple implication on testing the existence of random effect. Since there

exists an equicorrelation25 parameter due to the random effect coefcient (¾2u in equation (3)), we can test

the signicance of this equicorrelation parameter to judge whether there exists a valid random effect. The

estimated results are presented in Table 4 and Table 5.

A panel data analysis model considering both unobserved heterogeneity and selection bias has to over-

come severe26 nonlinearity and nuisance parameter problem in the model. In the panel data sample selection

models, maximum likelihood estimation needs more statistical distributional assumptions since unobserved

heterogeneity parameter (such as ui) also appears in the distribution of underlying error term ("it). For

22 Gaussian-Hermite Integration formula:R1
¡1 e

¡r2g(r)dr »=PK
k=1wkg(ak)

23 See Ahn (2000) or Greene (1997) for more details.
24 The tabulated values of wk and ak can be found in Table 25.10 of Abramovitz and Stegun (1972).
25 The random effect panel data model specied as (3) has a multi-period defect called equicorrelation. Since there is no

additional parameter introduced to model the decay of correlation as time periods gets further, the intertemporal correlation is

same for any two time periods.
26 Severe in a sense that nonlinearity from selection bias can not be differenced out in a similar way to cross-section data case, i.e.

time-varying nonlinear component.
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example, a random effect sample selection models need to specify a joint distribution of four arguments:

two underlying error terms from a selection equation and a main equation, two random effect (unobserved

heterogeneity) parameters (Hsiao, 2001). There have been several solutions suggested for this problem,

however, they are either dependent on strong distributional assumptions or parametric specication of the

selection equation, which implies they are vulnerable to misspecication problem. Baltagi (1995) has a nice

summary on these studies. Kyriazidou (1997) proposed to use nonparametric kernel weight for correcting

selection bias, so that no bivariate normality assumption between the selection equation and the main equa-

tion, is required. Since this estimation methodology does not require a parametric specication of selection

process (typically written as a probit regression equation), it is especially useful for applied researches,

where a misspecication is always an issue.

In the second step, we applied aforementioned Kyriazidou’s panel data selection model in our medical

expenditure estimation as follows,27

Eit = ditE
¤
it

= dit(w
¤
it° + ±

¤
i + »

¤
it)

= wit° + ±i + »it; i = 1:::N; t = 1; 2 (5)

dit = Ifxit¯ + ui ¡ Àit ¸ 0g (6)

whereEit is the medical expenditure of individual i at time t. dit is the health plan type choice variable (=1-

yit). E¤it is a latent variable only observed for dit = 1. w¤it is a vector of explanatory variables including

health status and age (w¤it and xit may have common variables). ±¤i and ui are unobserved heterogeneity

27 t = 1 is for 1996 data and t = 2 is for 1997 data. It can be generalized for t > 2.
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coefcients but we assume ±¤i to be a xed effect parameter while we keep ui as a random effect parameter.28

Now We can rewrite (5) as

Eit = wit° + ±i + ¸it + !it (7)

where ¸it denotes sample selection parameter. !it = »it ¡ ¸it and it satises E (!itj di1 = 1; di2 = 1;

xi1; xi2; w
¤
i1; w

¤
i2; ui; ±

¤
i ) = 0. If this was a cross-section version, Heckman(1976) can be applied and we

substitute ¸ by the inverse Mill’s ratio. To estimate ° consistently, Kyriazidou(1997) proposed the following

estimator29;

°̂ = [
NX
i=1

Ã̂iN ¢w
0
i¢wiÁi]

¡1[
NX
i=1

Ã̂iN ¢w
0
i¢EiÁi] (8)

where ¢ is the difference operator (¢wi = wi2 ¡ wi1), Ái is a trimming dummy variable dened as Ái =

di1di2 so Ái = 1 implies that individual i chose PPO type plans for both years. Ã̂iN is a weight estimated

nonparametrically as it declines to zero as the difference¢xi ^̄ increases. More specically,

Ã̂iN =
1

hN
K (

¢xi ^̄

hN
) (9)

whereK is a univariate kernel density function30 and hN is a bandwidth parameter which satises limN!1

hN = 0. The intuition of this estimator is “differencing out nuisance parameter nonparametrically.” If an

observation i satises xi1¯ = xi2¯ and Ái = 1, we can easily difference out the sample selection parameter

28 This is different from Kyriazidou (1997). Her original model assumes xed effect for both individual specic coefcients.

Consequently, her conditional exchangeability condition should be modied as the distribution of (»¤i1,»¤i2,Ài1j ui1,Ài2jui2) is

identical for same vector of (xi1,xi2,w¤i1,w¤i2,ui,±¤i ).
29 This estimator can be also used for a tobit specication, but x and w should not have any variable in common for a tobit

specication.
30 The precise form should be K (¡¢xi ^̄

hN
), since ^̄ is the coefcient vector obtained from HMO choice probit regression.

However,K(²) is a symmetric function,K(¢xi ^̄) =K(¡¢xi ^̄).
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¸it. Therefore, we use a kernel weights to penalize the observations far away from xi1¯ = xi2¯, i.e. the

highest weights for ¢xi1¯ = 0 and the weights declines to zero as ¢xi1¯ increases. This estimator is

shown to achieve consistency and asymptotic normality. Since we need the consistency of ^̄ to build the

consistency of °̂, it is important to check the correlation between x and u in our random effect setup.31

One convenient feature of this model is that it can be easily estimated by a weighted least square re-

gression32 with weights being equal to
q
jÃ̂iN j and using only the people who enrolled in PPO plans for

both years (3260 employees). However, we have to use the White heteroskedasticity consistent standard

errors in this estimation since we introduced a heteroskedasticity in selection bias correction procedure. The

important advantage of this model is that it does not require a parametric specication of selection process

(6); instead it only requires a consistent estimator for the selection process. This consistent estimator can

be obtained by other methods such as the nonparametric methods of Manski (1987) or Horowitz (1992).

Also there are important remarks on this estimator. Even though the Kyriazidou’s estimator achieves

the asymptotic normality convergence arbitrarily close to
p
N rate, nonparametric estimators have slower

convergence than parametric estimators, i.e. nonparametric estimators need a larger data set to achieve

same rate of convergence.33 Closely related to this, there is a disadvantage of using the estimator suggested

in this paper; the desired °̂ is asymptotically biased. We can choose hN such that an asymptotically un-

biased estimator is obtained. However, the rate of convergence to normality is slower than asymptotically

31 ui’s can be easily calculated from a panel regression of residuals from a Maximum Likelihood Estimation of (4) on i.

In our data, all the correlations between u and each independent variable are lower than 0.4.
32 For T = 2 case, it reduces to a cross-sectional regression (since the estimator only depends on the difference of two periods).

For a general T > 2, (T ¡ 1) dimensinal panel data weighted regression should be used.
33 For example, a parametric estimator with sample size 100 has the convergence rate to normal,

p
100 = 10. To achieve

the same rate, for example, Horowitz (1992) nonparametric estimator, which has 5
p
N2 convergence rate, needs

p
105 ¼

316 observations.
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biased estimators.34 Therefore, a bandwidth yielding the fastest rate of convergence to normality is used for

estimation purpose and the asymptotic bias is corrected later. To correct the asymptotic bias, Kyriazidou

suggested a “plug-in” method similar to Bierens (1987).

e° = b° ¡N ¡ (1¡ ±)(r+1) =(2(r+1)+1)b°±
1¡N ¡ (1¡ ±)(r+1) =(2(r+1)+1) (10)

where b° is from (8) with hN = hN ¡1=(2(r+1)+1), b°± is the same estimator with window width hN; ± =

hN ¡ ±=(2(r+1)+1) instead of hN , ± 2 (0; 1).35 Note that ± close to 1 implies b°± is close to the original

estimator b°. Another unsolved problem in the nonparametric estimator is the efciency. As we actually

used the observations chose PPO for the two years in our estimation (3260 out of 8861), efciency loss is

an avoidable problem for panel data selection models.

As a summary, the second step estimation can be done in the following order:

Step 1. Estimate a consistent estimator ^̄

Step 2-1. Run a weighted least square regression to achieve °̂

Step 2-2. Run an auxiliary WLS with ± (0.1 suggested) to get b°±
Step 2-3. Using (10) to correct asymptotic bias and report ~° along with

White heteroskedasticity consistent standard error from Step 2-1

34 Compare to the case of variance estimator in Maximum Likelihood Estimator. This estimator is biased but more efcient

than Ordinary Least Squares Estimator.
35 In our estimation, we used a sixth order bias reducing kernelK6(¢), h = 1, ± = 0:1 from her original paper.
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4 Estimation Results

We used the unbalanced panel data of 8,861 employees in the analysis. As mentioned in the previous

section, our model is composed of two different steps: the rst step of health plan type choice and the

second step of medical expenditure estimation using a sample selection model. This methodology enables

us to draw a conclusion for an average employee whether she or he choose HMO type plan or PPO type

plan.

In the analysis, the premium variable is normalized by the cheapest premium in the same coverage cate-

gory so that the amount reects opportunity cost to switch to the cheapest plan (RPrem: relative premium).36

For the PPO plan holders, the RPrem can be interpreted as willingness to stay in the current PPO plan.37 In

the estimation, all the plan characteristics of each plan are represented by premium of each health plan since

they are perfectly correlated with each other for given number of dependent coverage. This was pointed out

as a defect of using single rm analysis in Feldman et al. (1989). So we cannot consider separately price

elasticity and cross price elasticity typically in this kind of single rm data. This is why we need to generate

a relative premium variable which is a combination of both own premium and the other type plan premium.

We used the number of quadrature approximation point,K = 30 to estimate the random effect panel data

probit model (4). The estimation results are shown in Table 4. The effect of relative premium is negative,

as expected, and the square term is positive but signicantly small. These can be summarized as there is

a negative nonlinear effect of relative premium (in a reasonable range) on the propensity to choose HMO

type plan. The experience term shows a small preference for HMO plans among employees with longer

36 An alternative can be normalizing by the average premium of HMO plans for the same coverage category, but this may

generate unwanted negative values for the cheaper HMO plan holders.
37 Ahn (2000) used this property to show a simulated probability with respect to the change in willingness to pay amount.
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experience at USC. From the negative coefcient of AGE variable, we can infer that the aged employees

prefer PPO type plans. The effect of coverage (a proxy for the number of insured) shows strong preference

to HMO type. To summarize, young employees with a large number of dependents prefer HMO type plans,

which is similar to Ellis (1985) and many others from health economics literature. Also this result ts well

to a price vs. quality comparison in health plan type choice. A young employee with many dependents

prefers a HMO type plan (price advantage) while a old employee without any dependent prefers a PPO type

plan (quality advantage). For the validity check of random effect parameter, a Likelihood Ratio (LR) test on

the signicance of ½ was performed. The comparison between the maximized likelihood of pooled cross-

sectional probit model and the one from proposed random effect panel data model are used to build the

LR test (two times the positive difference between the two likelihoods) on ½. If ½ is signicantly different

from zero, this supports the existence of random effect. We found that random effect parameter was highly

signicant. Ahn (2000) showed an asymmetric behavior between HMO and PPO plan holders by simulated

probabilities of switch by the increase of relative premium and deductible.38 However, this was based on

only two years data without any signicant change, the probabilities for a large premium and deductible

increase is questionable.

Table 5 shows the prediction success table of this model. It seems that the panel data probit model

predicts almost perfectly whether the choice of health plan type is PPO or HMO. However, this is not

that surprising since only 162 people actually switched their health plan types (and we missed about 50).

From the example in the introduction section, we knew this data set is close to Case (B) and the correlation

between the current choice and the past choice plays a great role in the prediction.

38 There is a limitation that we cannot distinguish an increase in premium and an increase in deductible, since both of them

are changed at once and we have only two years data.
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Two clinical variables reecting the sum of chronic comorbidity conditions for each household were

included in the second step estimation; Charlson Comorbidity Index (CCI) and Principal In-Patient Diag-

nostic Cost Group (PIPDCG).39 These two variables are similar in some sense but they are developed for

the different purposes.40 Also note that our CCI was not adjusted by age factor, since we have a separate

AGE variable.

Table 6 shows the comparison between the estimation result from the panel data selection model and the

results from the xed effect model without correcting selection bias.41 Even though the total charge is not

the true cost but we believe that it is a good proxy for the true health resource utilization. Also notice that we

did not take a logarithm on the total charge variable. This case is easier for the interpretation of estimation

results and simpler for the formation of model. To take log transformation, we need to separate out zero

total charges from the positive total charges by an additional nonparametric sample selection model.42 Since

a parametric sample selection model in panel data is sensitive for the choice of underlying distribution,

whether multivariate logit or multivariate probit.43 Also if the reason to take logarithm is to reduce noise

as stated in Duan et al. (1983), panel data models include unobserved heterogeneity term in the model to

capture whether they are really a noise or signicant information (if extreme values are observed for an

39 The conversion of diagnostic codes to PIPDCG is based on Health Care Financing Administration le ICD2DCG.XLS

(http://www.hcfa.gov/stats/hmorates/aapccpg.htm).
40 See Charlson et al. (1987) and Ash et al. (1989).
41 For comparison purpose, all the results are based on the same set of variables, which are statistically signicant at 5%.for

the selection model for both females and males.
42 Note that a two part model cannot be a choice for panel data. Since the positive expenditure population is varying over

time and the zero expenditures are more likely non-observable responses (below deductible) rather than “genuine zeros”

(See Jones, 2000).
43 As explained earlier, these two distributions are not similar whereas they are pretty close except for the tail parts in univariate

case. Therefore, even in a single year cross-sectional data, our data would generate quite different results for logit and

probit specication, since there is a small proportion of zeros, 9% and 11% for 1996 and 1997, respectively.
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individual repeatedly, that cannot be a noise). In the actual estimation of selection model, we used a sixth

order bias reducing kernel (which showed the best performance in Kyriazidou’s Monte Carlo simulation):44

K(v) = 1:5 exp(¡v2=2) + 0:1 exp(¡v2=18)(1=
p
9)¡ 0:6 exp(¡v2=8)(1=

p
4) (11)

with an initial bandwidth hN = N ¡1=13 and ± = 0:1 for correcting the asymptotic bias as in (10).45

The estimation results show the expected patterns. There are signicant nonlinear effect of age on the

total charge, which can be interpreted as older people use more health care resources but it is increasing with

a diminishing rate. Hospitalization (Inpatient days) is a signicant predictor of total charge. Comorbidity

increases total charge but the way we build comorbidity condition (taking the sum of observed comorbidi-

ties of each household member) resulted insignicance of Coverage variable (a proxy for the number of

household members).

All the three FE selection model results are based on the same ^̄ from the rst step estimation. Therefore,

we did not assume any different health plan type choice behavior by gender. From the comparison by

gender, we can see the differences; age effect is much less for the females and the contribution of two

comorbidity variables are much less for the females, and nally the effect of inpatient days are much bigger

for the females. Therefore, we can conclude that there was a signicant difference in health resource

utilization by gender.

The usual FE model is based on the xed effect estimator without correcting for the selection bias.

44 The general multivariate formula to construct bias reducing kernel can be found in Bierens (1987). Also note that a higher

order bias reducing kernel can have small negative values for a large argument (See Härdle, 1990, Chapter 4).
45 For the sample including both females and males, the raw estimator (°̂) was 8429.65, -100.18, 1821.97, 218.78, 1164.51 for

AGE, AGE2, InDays, CCI, and PIPDCG, respectively. The corresponding asymptotic bias corrected estimator (~°) from

Table 6 is 8333.47, -99.06, 1755.06, 209.54, 1155.02 for AGE, AGE2, InDays, CCI, and PIPDCG, respectively. Note

that the standard error is not changed by this asymptotic bias correction.
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Therefore, the results of usual FE model reects only the characteristics of PPO plan holders. When we

compare the selection models with the usual FE models, the sign of coefcient estimates did not change

but the magnitudes are somewhat different. The effect of Inpatient days and the effect of CCI are reduced

by selection bias correction while the effect of age and PIPDCG are increased. The difference for the

effect of age can be interpreted as the effect of age becomes more substantial for an average employee after

considering the fact that the older people chose PPO plan (See Table 4). The other differences may be from

the asymmetric inuence of underlying factors like age on the health plan type choice.

5 Concluding Remarks

In this paper, we showed a selection bias correction for the medical expenditure estimation in panel

data setup, based on the choice between HMO and PPO. The choice behavior was estimated with a high

accuracy since our data was very stable and there was no systematic changes for the time periods. Also the

results were consistent with the general perception of HMO plans and PPO plans. In other words„ HMO

plan holders care more about medical costs while PPO plan holders care more about the quality of service.

Since the PPO plans in our data set are offered by an Academic Health Center, which is generally believed

to offer a better quality service in terms of technology, this comparison of price vs. quality makes more

sense. The panel data methodology was especially useful for predicting health plan type choice because of

the high correlation between the current choice and the past choice in our data.

The traditional issue of selection bias was discussed in terms of the different risk levels between different

types of health care plans. When HMO’s started to become popular, there was a concern that HMO’s were

accepting the lower risk group of people and as a result, an employer does not save medical cost (called
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cream skimming). The Health Care Financing Administration (HCFA) has a similar problem to set a risk

adjustment rates for Medicare managed care organizations. Since the Medicare data set (for example,

Medicare Current Beneciary Survey (MCBS)) has a large number of observations, it would be ideal to

apply a nonparametric sample selection model like the one explained in this paper. Nonparametric modeling

avoids any parametric specication so that it is less vulnerable to a misspecication problem, which is

critical in applied researches. However, nonparametric models have slower rate of convergence to the

normal distribution than parametric counter parts. To achieve a similar convergence rate, the nonparametric

model needs much larger data set than the corresponding parametric model. Obviously, the natural panel

structure of Medicare data set would appeal for the nonparametric panel data selection model.

For other applicable health data set, any data set has a panel data structure and a poor set of explanatory

variables appeal for a panel data analysis methodology. The omitted individual specic (time invariant)

explanatory variable can be controlled by either a xed effect model or a random effect model. After con-

trolling for these effects, the estimated coefcients for the available variables would have better predictive

power than the popular cross-sectional approaches in health economics.

Even though we used a random effect model for the choice of health plan type, a xed effect model

can be applied with many new econometric techniques such as simulation based estimations (for example,

Hajivassiliou and Ruud, 1994) or Manski’s maximum score estimator (Manski, 1987), which is suggested

in Kyriazidou’s original paper. However, the choice between random effect modeling and xed effect mod-

eling in panel data analysis should be determined by a type of research question. The prevailing Hausman

test to determine xed effect against random effect is for testing specications not modeling. If one nds a

xed effect model specication is meaningful by this test, she can also include time average of independent
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variables in the random effect model to deal with possible correlation between unobserved heterogeneity

parameter and independent variables (Chamberlain, 1980, 1984).
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Table 1. Descriptive Statistics46

Health Plan Choice Estimation Whole Data Balanced Panel
Variable Description ’96Data

(N =7743)
’97Data
(N =7762)

’96Data
(N=6644)

’97Data
(N=6644)

DHMO Dummy variable for HMO 0:502 0:497 0:502 0:502
AGE Age of employee 42:278

(11:640)
42:335
(11:636)

42:698
(11:353)

43:698
(11:353)

Working% Working Status (full time = 100) 97:230
(11:560)

96:459
(12:704)

97:393
(11:373)

96:502
(12:728)

EX Experience at USC (in months) 10:073
(8:280)

10:167
(8:362)

10:424
(8:221)

11:424
(8:221)

Coverage Number of people covered
(Single=1, Plus One=2, Family=3)

1:959
(0:864)

1:973
(0:867)

2:003
(0:863)

2:024
(0:861)

PREM Monthly Premium 48:373
(37:975)

50:586
(35:803)

49:531
(38:436)

52:212
(36:980)

DFEMALE Dummy variable for female = 1 0:481 0:485 0:526 0:526

Total Charge Estimation
(Data from PPO plan holders)

’96Data
(N =3848)

’97Data
(N =3902)

’96Data
(N =3260)

’97Data
(N =3260)

TCharge Total Charge 9356:89
(38550:97)

8690:71
(39007:59)

9347:52
(36498:43)

9739:68
(39929:97)

InDays Inpatient Days 0:78
(6:06)

0:81
(7:46)

0:76
(6:07)

0:91
(7:91)

CCI Charlson Comorbidity Index 3:56
(16:87)

3:38
(20:08)

3:42
(14:21)

3:93
(21:88)

PIP-DCG Principal Inpatient Diagnostic Cost Group
(by the HCFA denition)

2:66
(6:28)

2:13
(5:96)

2:69
(6:29)

2:42
(6:32)

AGE Same as above 43:88
(11:77)

43:93
(11:73)

44:44
(11:43)

45:44
(11:43)

46 Mean is rounded at 1/1000 and standard Deviation is in the parentheses.
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Table 2. Employee Choice of Health Plans
Whole Population ’97 Plans
’96 Plans Net_1 Net_2 Kaiser Pacicare CA_Care Outside Total
Net_1 3157 0 29 11 12 528 3737
Net_2 5 98 0 0 0 13 116
Kaiser 67 0 2470 11 7 383 2938
Pacicare 25 0 6 568 9 107 715
CA_Care 17 0 4 2 134 66 223
Cygna 1 0 3 6 2 2 14
Outside 533 3 387 86 109 3754 4872
Total 3272 98 2512 598 164 4853 12615

Note: 162 employee changed type (HMO vs. PPO) of plan (2.4%) and 217 employee changed their plan

to different plan (3.3%) in the balanced panel of 6644 employees (excluding the employees associated with

the outside options, 4872 and 4853 employees for 1996 and 1997, respectively). Also Cygna is completely

discontinued from 1997.
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Table 3. Change of Plan Coverage
’97 Coverage

’96 Coverage Single Plus One Family Outside Total
Single 2319 120 25 592 3056
Plus One 61 1520 112 256 1949
Family 7 71 2409 251 2738
Outside 638 213 267 3754 4872
Total 3025 1924 2813 4853 12615
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Table 4. Estimation Result of Random Effect Panel Probit Model
(Gaussian Quadrature Approximation)47

Dependent Variable: DHMO
N = 8861
Indepedent Variables Estimate p-value
Constant ¡0:3601

(¡2:21)
0.027

RPrem ¡0:1979
(¡26:09)

< 0.001

RPrem2 0:0004
(25:25)

< 0.001

EX 0:0327
(6:09)

< 0.001

Coverage 0:9093
(11:66)

< 0.001

AGE ¡0:0190
(¡4:30)

< 0.001

½ (randomeffect)
[S:D]

0:6463
[0:0321]

See LR-test below

Log Likelihood -1527.6561
Wald test 713.71 > Â25 < 0.001
LR test: ½ = 0 1677.98 > Â21 < 0.001

47 t-values (standard normal test can be used in a large sample) are in parentheses and standard error is in brackets for ½.

Minimum precision of p-values is at 1/1000. 30 quadrature points used for Gauss-Hermite quadrature approximation.
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Table 5. Prediction Success Table
(Based on Panel Data Model from Table 4)

Predicted Choice observed
count

Observed Choice PPO HMO
PPO 7759 0 7759
HMO 50a 7696 7746
Predicted Count 7809 7696 15505

a.All fty wrong predictions are from year 1996 sample. No wrong prediction at all for 1997 sample.
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Table 6. Panel Selection Model Medical Expenditure Estima-
tion (t-values are in parentheses)

A sixth order bias reducing kernel
K(v) = 1:5 exp(¡v2=2) + 0:1 exp(¡v2=18)(1=p9)¡ 0:6 exp(¡v2=8)(1=p4) was used along

with two different bandwidth hN =N ¡ 1=13 and hN = N ¡0:1=13 for asymptotic bias correction as
in (10).

Model FE Selection Model Usual FE Model
Data Female Male Both Female Male Both
AGE 6023:68s

(2:87)
9573:87
(1:67)

8333:47
(2:27)

s 2397:24
(1:08)

6789:03
(1:73)

4171:05
(1:77)

AGE2 ¡59:99s
(¡2:73)

¡125:39
(¡1:88)

¡99:06
(¡1:98)

s ¡33:84
(25:12)

¡70:32
(¡1:73)

¡48:81
(¡1:92)

InDays 4387:96s
(5:91)

1503:05s
(2:25)

1755:06s
(2:35)

4754:12s
(69:76)

2718:93s
(28:40)

3478:16
(53:88)

s

CCI 27:20
(0:40)

330:59
(0:89)

209:54
(1:99)

s 288:46
(11:43)

s 413:58s
(6:24)

389:94
(12:23)

s

PIPDCG ¡195:31
(¡0:70)

1962:97s
(2:02)

1155:02
(2:28)

s ¡43:21
(¡0:58)

694:89s
(5:38)

316:91
(3:97)

s

R2 0.667 0.323 0.351 0.787 0.411 0.576
F-statistic 5961.50 4.48 13.21 1272.96 226.94 787.55

s: signicant at 5% level
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Figure 1: An Example Diagram of Medical Cost Estimation and Health Plan Type Choice
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Figure 2: An Example Diagram of Prescription Fill Up Decision and Drug Cost Estimation
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