Testing Weak Exogeneity in Cointegrated System

February 6, 2004

Pu Chen, Hsiao Chiying
Faculty of Economics
Bielefeld University
33501 Bielefeld, Germany
January 2004

Abstract

This paper develops a limiting theory for Wald tests of weak exogeneity in error correction models (ECMs). It is well known that Wald statistics on cointegrated systems may involve nonstandard distribution and nuisance parameters, if $I(1)$ variables are not negligible in the statistics. To overcome this problem we construct a new statistic that takes only the $I(0)$ components of a Wald statistic into account and thus results in a valid χ^{2} criterion. Applying this procedure to test weak exogeneity in ECMs we obtain a simple and direct χ^{2} test.

Keyword : Error correction model, Exogeneity, Wald testest, VAR, Cointegration.

JEL Classification: C32, C12

1 Introduction

Vector error correction models (VECM) have now become standard tools to explore the relation among I(1) variables in econometrics. Research interest has also been paid to partial systems of VECM^{1} that are conditioned on a subset of the variables. The motivation for such a partial model rather than a full system is manifold: One can decrease the dimension of the system analyzed; the results are sometimes easier to interpret; there are explicit structures in the partial system that helps to understand the data; and sometimes economists are particularly interested in the parameters of a partial model conditioned on some other variables. In these cases one would like to model a partial system.

However, valid inference based on a partial system can only be conducted when the conditioning variables are weakly exogenous ${ }^{2}$ for the parameters of the partial system. Standard procedures ${ }^{3}$ to test weak exogeneity of the conditioning variables have to be based on the estimated cointegration vectors. This implies that cointegration analysis of the whole system has to be done before weak exogeneity can be tested. I. Habro (1998) suggest to carry out the full system reduced rank regression first to get a valid estimate of the cointegration vectors, and then test weak exogeneity.

In this paper we present two procedures to test weak exogeneity in a cointegrated system without estimating the cointegration vectors. In section 2 we review weak exogeneity in VECM. In section 3 we develop the test procedures. In section 4 we outline some potential applications.

2 Weak Exogeneity in VECM

2.1 Condition for Weak Exogeneity of $y_{2 t}$

We present a cointegration system (CIS) of y_{t} with h cointegration relations in a VECM:

$$
\begin{equation*}
\Delta y_{t}=J_{1} \Delta y_{t-1}+J_{2} \Delta y_{t-2}+J_{k-1} \Delta y_{t-k+1}+J_{k} y_{t-1}+u_{t} \tag{2.1}
\end{equation*}
$$

where y_{t} is an $n \times 1$ vector of variables, $J_{i}(i=1, . ., k-1)$ are $n \times n$ matrices of parameters; $J_{k}=B A^{\prime}, B$ and A are $h \times n$ vectors of parameters; u_{t} is $n \times 1$ vector of residuals with $u_{t} \sim \operatorname{iid} N\left(0, \Sigma_{u}\right)$.

[^0]Following I. Habro (1998) we partition y_{t} into $\left(y_{1 t}^{\prime}, y_{2 t}^{\prime}\right)^{\prime}$, where $y_{1 t}$ and $y_{2 t}$ are $g \times 1$ and $(n-g) \times 1$ vectors respectively, and $g \geq h$. Partitioning the parameter matrices conformably we have:
$\binom{\Delta y_{1 t}}{\Delta y_{2 t}}=\binom{J_{1,1}}{J_{1,2}} \Delta y_{t-1}+\ldots+\binom{J_{k-1,1}}{J_{k-1,2}} \Delta y_{t-k+1}+\binom{B_{1}}{B_{2}} A^{\prime} y_{t-1}+\binom{u_{1 t}}{u_{2 t}}$,
where $E\binom{u_{1 t}}{u_{2 t}}\left(\begin{array}{ll}u_{1 t} & u_{2 t}\end{array}\right)^{\prime}=\left(\begin{array}{ll}W_{11} & W_{12} \\ W_{21} & W_{22}\end{array}\right)$.
We transform (2.2) by premultiplying it with

$$
\left(\begin{array}{cc}
I & -W_{12} W_{22}^{-1} \tag{2.3}\\
0 & I
\end{array}\right)
$$

and obtain:

$$
\begin{equation*}
\Delta y_{1 t}=J_{0,1}^{*} \Delta y_{2 t}+J_{1,1}^{*} \Delta y_{t-1}+\ldots+J_{k-1,1}^{*} \Delta y_{t-k+1}+B_{1}^{*} A^{\prime} y_{t-1}+u_{1 t}^{*} \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\Delta y_{2 t}=J_{1,2} \Delta y_{t-1}+\ldots+J_{k-1,2} \Delta y_{t-k+1}+B_{2} A^{\prime} y_{t-1}+u_{2 t} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{gathered}
E\binom{u_{1 t}^{*}}{u_{2 t}}\left(\begin{array}{ll}
u_{1 t}^{*} & u_{2 t}
\end{array}\right)^{\prime}=\left(\begin{array}{cc}
W_{11}^{*} & 0 \\
0 & W_{22}
\end{array}\right), \\
J_{0,1}^{*}=W_{12} W_{22}^{-1}, \\
J_{i, 1}^{*}=J_{i, 1}-W_{12} W_{22}^{-1} J_{i, 2} \quad \text { for } i=1, \ldots k-1, \\
B_{1}^{*}=B_{1}-W_{12} W_{22}^{-1} B_{2} .
\end{gathered}
$$

For weak exogeneity of $y_{2 t}$ for the parameter in the partial system (2.4) we have the following theorem:

Proposition 2.1 (Weak exogeneity of $y_{2 t}$ for the partial VECM) The variable $y_{2 t}$ is weakly exogenous for the parameters in (2.4) if and only if $B_{2}=0$.

Proof: See Johansen (1992)
Comments: $B_{2}=0$ implies that the cointegrated variables $A^{\prime} y_{t-1}$ do not appear in the regression equation of (2.5), i.e. we do not need to consider the marginal process (2.5) to estimate the cointegration relations in (2.4). This is essentially the meaning of weak exogeneity.

Testing weak exogeneity of $y_{2 t}$ results in testing $H_{0}: B_{2}=0$ in the regression equation (2.5). A standard procedure is to estimate first the cointegration matrix \hat{A} by applying reduced rank regression in (2.1), then carry out a F - test to (2.5) using $\hat{A}^{\prime} y_{t-1}$ as regressors.

2.2 Implication of Weak Exogeneity of $y_{2 t}$ in the VECM

Comparing (2.1) with (2.2) we have

$$
J_{k}=\left(\begin{array}{ll}
J_{11} & J_{12} \\
J_{21} & J_{22}
\end{array}\right)=\binom{B_{1} A^{\prime}}{B_{2} A^{\prime}}=\left(\begin{array}{ll}
B_{1} A_{1}^{\prime} & B_{1} A_{2}^{\prime} \\
B_{2} A_{1}^{\prime} & B_{2} A_{2}^{\prime}
\end{array}\right),
$$

where A_{1} and A_{2} are $h \times h$ and $(n-h) \times h$ matrices; B_{1} and B_{2} are $g \times h$ and $(n-g) \times h$ matrices respectively. $B_{2}=0$ implies $J_{2}=\left(J_{21}, J_{22}\right)=0$. And $J_{2}=0$ implies $B_{2}=0$. Hence we can test $B_{2}=0$ by testing $J_{2}=0$.
On the other hand if A_{1}^{\prime} is invertible, we have $B_{2}=J_{21} A_{1}^{-1^{\prime}}$, then $J_{21}=0$ implies $B_{2}=0$. In this case we can test $B_{2}=0$ by testing $J_{21}=0$. In following we present two procedure to test the hypothesis $H_{0}: J_{2}=0$ and $H_{0}: J_{21}=0$ respectively.

3 Test of Weak Exogeneity

3.1 Test of $J_{21}=0$ in case of invertable A_{1}

The technique used here is basically adopted from Toda and Phillips (1993), where they look at the Wald statistic for the null hypothesis on the parameter of the VAR in level. Following Toda and Phillips (1993) it is not difficult to conclude that the Wald statistic for testing $H_{0}: J_{21}=0$ is $\chi^{2}((n-g) h)$ distributed. Following are the technical details:
Let $\Phi:=\left(J_{1}, J_{2}, \ldots J_{k}\right), x_{t}=\left(\begin{array}{c}\Delta y_{t-1} \\ \vdots \\ \Delta y_{t-k+1} \\ y_{t-1}\end{array}\right)$,
$\Delta Y^{\prime}=\left(\Delta y_{1}, \Delta y_{2}, \ldots \Delta y_{T}\right), X^{\prime}=\left(x_{1}, x_{2}, \ldots x_{T}\right)$, and $U^{\prime}=\left(u_{1}, u_{2}, \ldots u_{T}\right)$ we can write the VECM (2.1):

$$
\begin{equation*}
\Delta y_{t}=\Phi x_{t}+u_{t} \tag{3.6}
\end{equation*}
$$

The OLS of (3.6) is:

$$
\begin{equation*}
\hat{\Phi}=\Delta Y^{\prime} X\left(X^{\prime} X\right)^{-1} \tag{3.7}
\end{equation*}
$$

The hypothesis $J_{21}=0$ can be formulated as

$$
\begin{equation*}
H_{0}: S_{1}^{\prime} \Phi S=0 \quad \text { or } \quad\left(S_{1}^{\prime} \otimes S^{\prime}\right) \operatorname{vec}(\Phi)=0 \tag{3.8}
\end{equation*}
$$

with $S_{1}=\binom{0_{g \times(n-g)}}{I_{n-g}}$ is a $n \times(n-g)$ matrix, $S=\left(e_{k} \otimes S_{2}\right), e_{k}^{\prime}=(0, \ldots, 0,1)$ is a $k \times 1$ vector with only the last element equal to one, S_{2} is an $n \times h$ matrix $S_{2}=\binom{I_{h}}{0} \cdot{ }^{4} \operatorname{vec}(\Phi)$ stack rows of matrix Φ into a column vector. We have $\operatorname{vec}\left(J_{21}\right)=\left(S_{1}^{\prime} \otimes S^{\prime}\right) \operatorname{vec}(\Phi) . S_{1}^{\prime} \otimes S^{\prime}$ is an $(n-g) h \times n n k$ matrix, i.e. we are testing $(n-g) h$ restrictions on the parameter matrix Φ.
Define an invertible $n k \times n k$ matrix $H=\left(\left[\begin{array}{c}I_{k-1} \\ 0_{1 \times(k-1)}\end{array}\right] \otimes I_{n}, e_{k} \otimes A, e_{k} \otimes A_{\perp}\right)$, where A_{\perp} is an $n \times(n-h)$ matrix with full column rank and $A^{\prime} A_{\perp}=0$. Let $z_{t}=H^{\prime} x_{t}$ and $Z^{\prime}=H^{\prime} X^{\prime}$. We obtain for z_{t} :

$$
z_{t}=\left(\begin{array}{c}
\Delta y_{t-1} \\
\vdots \\
\Delta y_{t-k+1} \\
A^{\prime} y_{t-1} \\
A_{\perp}^{\prime} y_{t-1}
\end{array}\right) .
$$

Let $z_{1 t}$ denote the $I(0)$ part of z_{t} and $z_{2 t}$ denote the $I(1)$ part. Then $z_{1 t}=\left(\Delta y_{t-1}^{\prime}, \cdots, \Delta y_{t-k+1},\left(A^{\prime} y_{t-1}\right)^{\prime}\right)^{\prime}$ and $z_{2 t}=A_{\perp}^{\prime} y_{t-1}$. Following Lemma 2 in Toda and Phillips (1993) we have:

[^1]\[

$$
\begin{align*}
\frac{1}{T} \sum_{t=1}^{T} z_{1 t} z_{1 t}^{\prime} & \xrightarrow{P} \Sigma_{1} \tag{3.9}\\
\frac{1}{\sqrt{T}} \sum_{t=1}^{T} z_{1 t} u_{t}^{\prime} & \xrightarrow{L} N_{0} \tag{3.10}\\
\frac{1}{T} \sum_{t=1}^{T} z_{2 t} u_{t}^{\prime} & \xrightarrow{L} \int_{0}^{1} B_{2 t} d B_{0 t}^{\prime} \tag{3.11}\\
\frac{1}{T} \sum_{t=1}^{T} z_{2 t} z_{1 t}^{\prime} & \xrightarrow{L} \int_{0}^{1} B_{2 t} d B_{1 t}^{\prime}+\Sigma_{21}+\Lambda_{21} \tag{3.12}\\
\frac{1}{T^{2}} \sum_{t=1}^{T} z_{2 t} z_{2 t}^{\prime} & \xrightarrow{L} \int_{0}^{1} B_{2 t} B_{2 t}^{\prime} d t \tag{3.13}\\
\frac{1}{T} \sum_{t=1}^{T} z_{2 t} u_{t}^{\prime}\left(\frac{1}{T} \sum_{t=1}^{T} z_{2 t} u_{t}^{\prime}\right)^{-1} & \xrightarrow{L} \int B_{2 t} d B_{0 t}^{\prime}\left(\int B_{2 t} B_{2 t}^{\prime} d t\right)^{-1} \tag{3.14}
\end{align*}
$$
\]

where $\Sigma_{1}, \Sigma_{21}, \Lambda_{21}$ are matrices of constants; N_{0} is a $(n(k-1)+h) \times n$ normally distributed random matrix; $B_{i t}, i=1,2,3$ are Brownian motions. ${ }^{5}$
We have the Wald statistic for the hypothesis H_{0} in (3.8):

$$
\begin{align*}
F l & =\left[\left(\left(S_{1}^{\prime} \otimes S^{\prime}\right) \operatorname{vec}(\hat{\Phi})\right)^{\prime}\left[\left(S_{1}^{\prime} \otimes S^{\prime}\right)\left(\hat{\Sigma}_{u} \otimes\left(X^{\prime} X\right)^{-1}\left(S_{1} \otimes S\right)\right]^{-1}\left(S_{1}^{\prime} \otimes S\right) v e c(\hat{\Phi})\right]\right. \\
& =\operatorname{tr}\left[\left(S_{1}^{\prime} \hat{\Phi} S\right)\left(S^{\prime}\left(X^{\prime} X\right)^{-1} S\right)^{-1}\left(S^{\prime} \hat{\Phi}^{\prime} S_{1}\right)\left(S_{1}^{\prime} \hat{\Sigma}_{u} S_{1}\right)^{-1}\right] \tag{3.15}
\end{align*}
$$

where $\hat{\Sigma}_{u}$ is the consistent OLS estimator of the covariance matrix of the residuals. Using (3.7) we have under H_{0} :

$$
S_{1}^{\prime} \hat{\Phi} S=S_{1}^{\prime} U^{\prime} X\left(X^{\prime} X\right)^{-1} S .
$$

Inserting this into (3.15) we get:

$$
\begin{equation*}
F l=\operatorname{tr}\left[S_{1}^{\prime} U^{\prime} X\left(X^{\prime} X\right)^{-1} S\left(S^{\prime}\left(X^{\prime} X\right)^{-1} S\right)^{-1} S^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} U S_{1}\left(S_{1}^{\prime} \hat{\Sigma}_{u} S_{1}\right)^{-1}\right] \tag{3.16}
\end{equation*}
$$

[^2]Replacing $X^{\prime}=H^{-1^{\prime}} Z^{\prime}$ in (3.16) we get:

$$
\begin{equation*}
F l=\operatorname{tr}\left[S_{1}^{\prime} U^{\prime} Z\left(Z^{\prime} Z\right)^{-1} H^{\prime} S\left(S^{\prime} H\left(Z^{\prime} Z\right)^{-1} H^{\prime} S\right)^{-1} S^{\prime} H\left(Z^{\prime} Z\right)^{-1} Z^{\prime} U S_{1}\left(S_{1}^{\prime} \hat{\Sigma}_{u} S_{1}\right)^{-1}\right] \tag{3.17}
\end{equation*}
$$

For any full rank $h \times h$ matrix K_{T} we have:

$$
\begin{equation*}
F l=\operatorname{tr}\left[S_{1}^{\prime} U^{\prime} Z\left(Z^{\prime} Z\right)^{-1} H^{\prime} S K_{T}\left(K_{T}^{\prime} S^{\prime} H\left(Z^{\prime} Z\right)^{-1} H^{\prime} S K_{T}\right)^{-1} K_{T}^{\prime} S^{\prime} H\left(Z^{\prime} Z\right)^{-1} Z^{\prime} U S_{1}\left(S_{1}^{\prime} \hat{\Sigma}_{u} S_{1}\right)^{-1}\right] \tag{3.18}
\end{equation*}
$$

We choose the scaling matrix Υ_{T} :

$$
\Upsilon_{T}=\left(\begin{array}{cc}
\sqrt{T} I_{n(k-1)+h} & 0 \\
0 & T I_{n-h}
\end{array}\right)
$$

Inserting the scaling matrix into (3.18) we get:

$$
\begin{align*}
F l= & \operatorname{tr}\left(S_{1}^{\prime} U^{\prime} Z \Upsilon_{T}^{-1}\left(\Upsilon_{T}^{-1} Z^{\prime} Z \Upsilon_{T}^{-1}\right)^{-1} \Upsilon_{T}^{-1} H^{\prime} S K_{T}\left(K_{T}^{\prime} S^{\prime} H \Upsilon_{T}^{-1}\left(\Upsilon_{T}^{-1} Z^{\prime} Z \Upsilon_{T}^{-1}\right)^{-1} \Upsilon_{T}^{-1} H^{\prime} S K_{T}\right)^{-1}\right. \\
& \left.K_{T}^{\prime} S^{\prime} H \Upsilon_{T}^{-1}\left(\Upsilon_{T}^{-1} Z^{\prime} Z \Upsilon_{T}^{-1}\right)^{-1} \Upsilon_{T}^{-1} Z^{\prime} U S_{1}\left(S_{1}^{\prime} \hat{\Sigma}_{u} S_{1}\right)^{-1}\right) \tag{3.19}
\end{align*}
$$

To see the asymptotical distribution of $F l$ we have the following proposition.

Proposition 3.1

$$
\begin{gathered}
\Upsilon_{T}^{-1} Z^{\prime} Z \Upsilon_{T}^{-1} \xrightarrow{L}\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \int B_{2} B_{2}^{\prime}
\end{array}\right) \\
\Upsilon_{T}^{-1} Z^{\prime} U \xrightarrow{L}\binom{N_{0}}{\int B_{2} d B_{0}^{\prime}}
\end{gathered}
$$

where Σ_{1} is an $m \times m$ constant matrix, $m=n(k-1)+h$.

Proof: These results follow directly from Lemma 2 of Toda and Phillips (1993).

Notice that

$$
\left.\begin{array}{rl}
S^{\prime} H & =\left(\begin{array}{ll}
e_{k}^{\prime} \otimes\left(\begin{array}{ll}
I_{h} & 0
\end{array}\right)_{h \times n}
\end{array}\right)\binom{I_{k-1}}{0}_{k \times(k-1)} \otimes I_{n}, e_{k} \otimes A, e_{k} \otimes A_{\perp}
\end{array}\right)
$$

where A_{h} and $A_{\perp h}$ are the first h rows of A and A_{\perp} respectively.
Choosing $K_{T}=\left(\sqrt{T} I_{h}\right)$ we have

$$
K_{T}^{\prime} S^{\prime} H \Upsilon_{T}^{-1} \rightarrow\left(0, A_{h}, 0\right)=\left(A_{h}^{*}, 0\right)
$$

where A_{h}^{*} denotes the $h \times(n(k-1)+h)$ matrix $\left(0, A_{h}\right)$.
Taking limit and inserting the results above into (3.19) we get:

$$
\begin{align*}
& F l \xrightarrow{L} \operatorname{tr}\left(S_{1}^{\prime},\left(N_{0}^{\prime},\left(\int B_{2} d B_{0}^{\prime}\right)^{\prime}\right)\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \int B_{2} B_{2}^{\prime}
\end{array}\right)^{-1}\binom{A_{h}^{*^{\prime}}}{0}\right. \tag{3.20}\\
& {\left[\left(A_{h}^{*}, 0\right)\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \int B_{2} B_{2}^{\prime}
\end{array}\right)^{-1}\binom{A_{h}^{*^{\prime}}}{0}\right]^{-1}} \\
& \left.\left(A_{h}^{*}, 0\right)\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \int B_{2} B_{2}^{\prime}
\end{array}\right)^{-1}\binom{N_{0}}{\int B_{2} d B_{0}} S_{1}\left(S_{1}^{\prime} \Sigma_{u} S_{1}\right)^{-1}\right) \\
& =\operatorname{tr}\left(S_{1}^{\prime} N_{0}^{\prime} \Sigma_{1}^{-1} A_{h}^{*^{\prime}}\left(A_{h}^{*} \Sigma_{1}^{-1} A_{h}^{*^{\prime}}\right)^{-1} A_{h}^{*} \Sigma_{1}^{-1} N_{0} S_{1}\left(S_{1}^{\prime} \Sigma_{u} S_{1}\right)^{-1}\right) \\
& =\operatorname{tr}\left(\operatorname{vec}\left(A_{h}^{*} \Sigma_{1}^{-1} N_{0} S_{1}\right)^{\prime}\left(\left(A_{h}^{*} \Sigma_{1}^{-1} A_{h}^{*^{\prime}}\right) \otimes\left(S_{1}^{\prime} \Sigma_{u} S_{1}\right)\right)^{-1} \operatorname{vec}\left(A_{h}^{*} \Sigma_{1}^{-1} N_{0} S_{1}\right)\right) .
\end{align*}
$$

We have

$$
\operatorname{vec}\left(A_{h}^{*} \Sigma_{1}^{-1} N_{0} S_{1}\right)=A_{h}^{*} \Sigma_{1}^{-1} \otimes S_{1}^{\prime} \operatorname{vec}\left(N_{0}\right) \sim N\left(0, A_{h}^{*} \Sigma_{1}^{-1} A_{h}^{*^{\prime}} \otimes S_{1}^{\prime} \Sigma_{u} S_{1}\right)
$$

Therefore, for the asymptotic distribution of the Wald statistic in (3.20) we have the following theorem.

Theorem 3.2 If Rank $\left(A_{1}\right)=h$ then the Wald statistic in (3.15) has asymptotically a $\chi^{2}((n-g) h)$ distribution.

Proof: See the discussion above.
Comments: $\operatorname{Rank}\left(A_{1}\right)=h$ means that the first h elements in y_{t} should be sufficiently cointegrated such that the $h \times h$ matrix A_{1} has full rank. Then the Wald test statistic will have a $\chi^{2}((n-g) h)$ distribution. A similar result is obtained in Toda and Phillips (1993) for testing of Granger causality in levels vector autoregressions (VAR's) with cointegrated relations. If the first h elements of y_{t} are insufficiently cointegrated such that A_{1} is not invertable, then the inverse matrix in the second line of (3.20) does not exist. consequently we may not be able to apply this theorem to test weak exogeneity of $y_{2 t}$. We turn to these cases in the next section.

3.2 Testing $J_{2}=0$

The basic problem in testing $J_{2}=0$ is that the corresponding Wald statistic has a nonstandard distribution and depends on nuisance parameters in general^{6}, therefore it is difficulty to conduct a reliable statistic to test $J_{2}=0$. Our situation does not seem so hopeless, because we do not actually want to test $J_{2}=0$ but to test weak exogeneity of $y_{2 t}$.

Under the assumption that the cointegration system has h cointegrating relations and $y_{2 t}$ is weakly exogenous, we have $J_{2}=B_{2} A^{\prime}$ and $\operatorname{rank}(A)=h$ i.e. there exits a $h \times h$ submatrix in A^{\prime} with rank h. Hence there exits a corresponding $(n-g) \times h$ submatrix in J_{2}. whose Wald statistic will have a standard $\chi^{2}((n-g) h)$ distribution, as shown in the last subsection. We could test weak exogeneity of $y_{2 t}$ by looking at the Wald statistics of a certain $(n-g) \times h$ submatrix of J_{2}., if we knew that the corresponding submatrix of A would have rank h. This gives us a hint that we do not need to look at every component of J_{2}, it is sufficient to look at those components of J_{2}. that correspond to $I(0)$ combinations of y_{t}. In other words, we need only to look at the Wald statistic of J_{2}. in its $I(0)$ directions but not the $\mathrm{I}(1)$ direction that would have resulted in a nonstandard distribution. In following we construct a statistic that modifies the Wald statistic of J_{2}. by looking only at its $I(0)$ directions.

To prepare the main presentation we provide two auxiliary lemmas first.
Lemma 3.3 Let Σ_{x} be an $h \times h$ full rank positive definite matrix and A be an $n \times h$ matrix with $\operatorname{rank}(A)=h(n>h)$. Let $\Sigma_{y}=A \Sigma_{x} A^{\prime}, P_{y}$ is the matrix of eigenvectors of Σ_{y} and Λ_{h} is the diagonal matrix of non-zero eigenvalues of Σ_{y}. Then:

$$
\Sigma_{x}^{-1}=A^{\prime} P_{y}\left(\begin{array}{cc}
\Lambda_{h}^{-1} & 0 \\
0 & 0
\end{array}\right) P_{y}^{\prime} A .
$$

Proof: Using the definition of eigenvector and eigenvalue we have:

$$
\begin{gathered}
P_{y}^{\prime} \Sigma_{y} P_{y}=P_{y}^{\prime} A \Sigma_{x} A^{\prime} P_{y}=\Lambda_{y}=\left(\begin{array}{cc}
\Lambda_{h} & 0 \\
0 & 0
\end{array}\right), \\
\left(\begin{array}{cc}
\Lambda_{h}^{-1} & 0 \\
0 & 0
\end{array}\right) P_{y}^{\prime} A \Sigma_{x} A^{\prime} P_{y}\left(\begin{array}{cc}
\Lambda_{h}^{-1} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
I_{h} & 0 \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

Now we define $P_{y h}^{*}:=P_{y}\binom{\Lambda_{h}^{-\frac{1}{2}}}{0}_{n \times h}$. Then

$$
\binom{P_{y h}^{x^{\prime}}}{0}_{n \times n} A \Sigma_{x} A^{\prime}\left(\begin{array}{ll}
P_{y h}^{*} & 0
\end{array}\right)_{n \times n}=\left(\begin{array}{cc}
P_{y h}^{*^{\prime}} A \Sigma_{x} A^{\prime} P_{y h}^{*} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
I_{h} & 0 \\
0 & 0
\end{array}\right)_{n \times n} .
$$

[^3]Note that $P_{y h}^{*^{\prime}} A$ is a $h \times h$ matrix with rank h. Thus we can invert it and get

$$
\Sigma_{x}=\left(P_{y h}^{*^{\prime}} A\right)^{-1}\left(A^{\prime} P_{y h}^{*}\right)^{-1}
$$

Therefore

$$
\begin{aligned}
\Sigma_{x}^{-1} & =A^{\prime} P_{y h}^{*} P_{y h}^{*^{\prime}} A=A^{\prime} P_{y}\binom{\Lambda_{h}^{-\frac{1}{2}}}{0}_{n \times h}\left(\begin{array}{ll}
\Lambda_{h}^{-\frac{1}{2}} & 0
\end{array}\right)_{h \times n} P_{y}^{\prime} A \\
& =A^{\prime} P_{y}\left(\begin{array}{cc}
\Lambda_{h}^{-1} & 0 \\
0 & 0
\end{array}\right) P_{y}^{\prime} A .
\end{aligned}
$$

Lemma 3.4 Let $\hat{\Sigma}_{y} \xrightarrow{P} \Sigma_{y}$ and \hat{P}_{y} is the matrix of the eigenvectors of $\hat{\Sigma}_{y}$. $\hat{\Lambda}_{h}$ is the matrix of the h largest eigenvalues of $\hat{\Sigma}_{y}$. Then $\hat{P}_{y} \xrightarrow{P} P_{y}$ and $\hat{\Lambda}_{h} \xrightarrow{P} \Lambda_{h}$.

Proof:
Because eigenvalues are continuous function of the corresponding matrix, we have:

$$
\begin{gathered}
\hat{\Sigma}_{y} \xrightarrow{P} \Sigma_{y} \Rightarrow \hat{P}_{y} \xrightarrow{P} P_{y} \\
\hat{\Sigma}_{y} \xrightarrow{P} \Sigma_{y} \Rightarrow \hat{\Lambda}_{y} \xrightarrow{P} \Lambda_{y} \Rightarrow \hat{\Lambda}_{h} \xrightarrow{P} \Lambda_{h}
\end{gathered}
$$

For the further calculations we introduce the following notations. We write $\left\{X_{t}\right\}_{t>0}=o_{p}\left(T^{-\alpha}\right)$ if $\operatorname{plim} \frac{X_{T}}{T^{-\alpha}}=0$ for the random sequence $\left\{X_{t}\right\}_{t>0}$. And we write $\left\{X_{t}\right\}_{t>0}=O_{p}^{T \rightarrow \infty}\left(T^{-\alpha}\right)$ if there exists a random variable X such that $\frac{X_{T}}{T^{-\alpha}} \xrightarrow{L} X$ for the random sequence $\left\{X_{t}\right\}_{t>0}$.

Lemma 3.5

$$
o_{p}(1) O_{p}(1)=o_{p}(1) .
$$

Especially, for $\alpha>0$, we have

$$
T^{-\alpha} O_{p}(1)=o_{p}(1) .
$$

Proof:
The first equality follows directly from Slutzky theorem. The second equality is a special case of the first with $T^{-\alpha} \rightarrow 0 \Rightarrow T^{-\alpha} \xrightarrow{P} 0$.

Example 1:
From Proposition 3.1 we have:

$$
\frac{1}{T} \sum_{t=1}^{T} z_{1 t} z_{1 t}^{\prime} \xrightarrow{P} \Sigma_{1} .
$$

We can rewrite this equation as follows:

$$
\frac{1}{T} \sum_{t=1}^{T} z_{1 t} z_{1 t}^{\prime}-\Sigma_{1}=o_{p}(1)
$$

Example 2

$$
\begin{aligned}
& \binom{\frac{1}{\sqrt{T}} \sum_{t=1}^{T} z_{1 t} u_{t}^{\prime}}{\frac{1}{T} \sum_{t=1}^{T} z_{2 t} u_{t}^{\prime}}^{\prime}\left(\begin{array}{cc}
\frac{1}{T} \sum_{t=1}^{T} z_{1 t} z_{1 t}^{\prime} & \frac{1}{T^{\frac{2}{3}}} \sum_{t=1}^{T} z_{1 t} z_{2 t}^{\prime} \\
\frac{1}{T^{\frac{2}{3}} \sum_{t=1}^{T} z_{2 t}^{\prime} z_{1 t}} & \frac{1}{T^{2}} \sum_{t=1}^{T} z_{2 t} z_{2 t}^{\prime}
\end{array}\right)^{-1} \\
= & \binom{\frac{1}{\sqrt{T}} \sum_{t=1}^{T} z_{1 t} u_{t}^{\prime}}{\frac{1}{T} \sum_{t=1}^{T} z_{2 t} u_{t}^{\prime}}^{\prime}\left(\begin{array}{cc}
\sum_{1}+o_{p}(1) & o_{p}(1) \\
o_{p}(1) & \frac{1}{T^{2}} \sum_{t=1}^{T} z_{2 t} z_{2 t}^{\prime}
\end{array}\right)^{-1} \\
= & \binom{\frac{1}{\sqrt{T}} \sum_{t=1}^{T} z_{1 t} u_{t}^{\prime}}{\frac{1}{T} \sum_{t=1}^{T} z_{2 t} u_{t}^{\prime}}^{\prime}\left(\begin{array}{cc}
\left(\Sigma_{1}^{-1}+o_{p}(1)\right. & o_{p}(1) \\
o_{p}(1) & \left(\frac{1}{T^{2}} \sum_{t=1}^{T} z_{2 t} z_{2 t}^{\prime}\right)^{-1}+o_{p}(1)
\end{array}\right) \\
= & \left(\begin{array}{ll}
\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} z_{1 t} u_{t}^{\prime}\right)^{\prime} \Sigma_{1}^{-1}+o_{p}(1), & \left.\left(\frac{1}{T} \sum_{t=1}^{T} z_{2 t}^{\prime} u_{t}^{\prime}\right)^{\prime}\left(\frac{1}{T^{2}} \sum_{t=1}^{T} z_{2 t} z_{2 t}^{\prime}\right)^{-1}+o_{p}(1)\right) \\
= & \left(\begin{array}{ll}
\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} z_{1 t} u_{t}^{\prime}\right)^{\prime} \Sigma_{1}^{-1}+o_{p}(1), & O_{p}(1)+o_{p}(1)
\end{array}\right)
\end{array}\right)
\end{aligned}
$$

The second equality follows from Lemma 2 of Toda and Phillips (1993). The third equality follows from the fact that:

$$
\left(\begin{array}{cc}
\Sigma_{1}+o_{p}(1) & o_{p}(1) \\
o_{p}(1) & \frac{1}{T^{2}} \sum_{t=1}^{T} z_{2 t} z_{2 t}^{\prime}
\end{array}\right)\left(\begin{array}{cc}
\Sigma_{1}^{-1}+o_{p}(1) & o_{p}(1) \\
o_{p}(1) & \left(\frac{1}{T^{2}} \sum_{t=1}^{T} z_{2 t} z_{2 t}^{\prime}\right)^{-1}+o_{p}(1)
\end{array}\right)=I+o_{p}(1) .
$$

The last equality follows from Lemma 2 of Toda and Phillips (1993).

For the OLS estimation of the VECM (3.6) we have:

$$
\begin{aligned}
& \hat{\Phi}-\Phi \\
= & U^{\prime} X\left(X^{\prime} X\right)^{-1} \\
= & U^{\prime}\left(Z H^{-1}\right)\left(H^{-1^{\prime}} Z^{\prime} Z H^{-1}\right)^{-1} \\
= & U^{\prime} Z\left(Z^{\prime} Z\right)^{-1} H^{\prime} \\
= & U^{\prime} Z \Upsilon_{T}^{-1}\left(\Upsilon_{T}^{-1} Z^{\prime} Z \Upsilon_{T}^{-1}\right)^{-1} \Upsilon_{T}^{-1} H^{\prime} \\
= & \binom{\frac{1}{\sqrt{T}} \sum_{t=1}^{T} z_{1 t} u_{t}^{\prime}}{\frac{1}{T} \sum_{t=1}^{T} z_{2 t} u_{t}^{\prime}}^{\prime}\left(\begin{array}{cc}
\frac{1}{T} \sum_{t=1}^{T} z_{1 t} z_{1 t}^{\prime} & \frac{1}{T^{3}} \sum_{t=1}^{T} z_{1 t} z_{2 t}^{\prime} \\
\frac{1}{T^{\frac{3}{2}}} \sum_{t=1}^{T} z_{2 t}^{\prime} z_{1 t} & \frac{1}{T^{2}} \sum_{t=1}^{T} z_{2 t} z_{2 t}^{\prime}
\end{array}\right)^{-1}\left(\begin{array}{cc}
\frac{1}{\sqrt{T}} I_{n(k-1)+h} & 0 \\
0 & \frac{1}{\sqrt{T}} A^{\prime} \\
0 & \frac{1}{T} A_{\perp}^{\prime}
\end{array}\right) \\
= & \left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}+o_{p}(1), O_{p}(1)+o_{p}(1)\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{T}} I_{n(k-1)+h} & 0 \\
0 & \frac{1}{\sqrt{T}} A^{\prime} \\
0 & \frac{1}{T} A_{\perp}^{\prime}
\end{array}\right) \\
= & {\left[\frac{1}{\sqrt{T}}\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{n(k-1)}+o_{p}\left(\frac{1}{\sqrt{T}}\right),\right.} \\
& \left.+\frac{1}{\sqrt{T}}\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{h} A^{\prime}+o_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\frac{1}{T}\right) A_{\perp}^{\prime}+o_{p}\left(\frac{1}{T}\right) A_{\perp}^{\prime}\right]
\end{aligned}
$$

Here $\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{n(k-1)}$ and $\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{h}$ are the first $(n(k-1))$ and last h columns of the matrix $\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)$ respectively.
For testing weak exogeneity we are only interested in $\hat{J}_{k}-J_{k}$ i.e. the last n columns of $\hat{\Phi}-\Phi$. Looking at the last n columns of the last equation only, we have:

$$
\hat{J}_{k}-J_{k}=\left[\frac{1}{\sqrt{T}}\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{h} A^{\prime}+o_{p}\left(T^{-1 / 2}\right)+O_{p}\left(\frac{1}{T}\right) A_{\perp}^{\prime}+o_{p}\left(\frac{1}{T}\right) A_{\perp}^{\prime}\right] .
$$

It follows that

$$
\begin{equation*}
\sqrt{T}\left(\hat{J}_{k}-J_{k}\right)=\left[\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{h} A^{\prime}+o_{p}(1)+O_{p}\left(\frac{1}{\sqrt{T}}\right) A_{\perp}^{\prime}+o_{p}\left(\frac{1}{\sqrt{T}}\right) A_{\perp}^{\prime}\right] . \tag{3.21}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\sqrt{T}\left(\hat{J}_{k}-J_{k}\right)\binom{A^{\prime}}{A_{\perp}^{\prime}}^{-1}=\left[\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{h}+o_{p}(1), O_{p}\left(\frac{1}{\sqrt{T}}\right)+o_{p}\left(\frac{1}{\sqrt{T}}\right)\right] . \tag{3.22}
\end{equation*}
$$

Now we look only at some h columns of $\sqrt{T}\left(\hat{J}_{k}-J_{k}\right)$ denoted by $\sqrt{T}\left(\hat{J}_{k, h}-J_{k, h}\right)$. Similar to (3.21) we have
$\sqrt{T}\left(\hat{J}_{k, h}-J_{k, h}\right)=\left[\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{h} A_{h *}^{\prime}+o_{p}(1)+O_{p}\left(\frac{1}{\sqrt{T}}\right) A_{\perp h *}^{\prime}+o_{p}\left(\frac{1}{\sqrt{T}}\right) A_{\perp h *}^{\prime}\right]$.
where $A_{h *}$ and $A_{\perp h *}$ denote the h selected rows of the A and A_{\perp} matrix respectively. Because A has rank h there exists at least one submatrix $A_{h *}$ that is invertible. From now on we denote such invertible submatrix by $A_{h *}$ and the corresponding h columns of J_{k} by $J_{k, h}$. According to this definition we have:
$\sqrt{T}\left(\hat{J}_{k, h}-J_{k, h}\right) A_{h^{*}}^{\prime-1}=\left[\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{h}+o_{p}(1)+O_{p}\left(\frac{1}{\sqrt{T}}\right)+o_{p}\left(\frac{1}{\sqrt{T}}\right)\right]$

For simplicity of presentation but without loss of generality we consider testing the weak exogeneity of the last variable $Y_{n t}$. In this case i.e. $n-g=1$. We have the following hypothesis:

$$
H_{0}: J_{k, n h^{*}}=0 \quad H_{1}: J_{k, n h^{*}} \neq 0
$$

where $J_{k, n h^{*}}$ denotes a $1 \times h$ submatrix of of the last row of J_{k}. The problem of carrying out the test is that we do not know A, henceforth we do not know the position of the $J_{k, n h^{*}}$ that corresponds to an invertible $A_{h^{*}}$. Consequently we can not calculate the Wald statistic, although we know that this Wald statistic would have a $\chi^{2}(h)$ distribution. We solve this problem by calculating a statistic that is asymptotically equivalent to the Wald statistic of $\hat{J}_{k, n h^{*}}$. For this reason we look at the Wald statistic of $\hat{J}_{k, n h^{*}}-J_{k, n h^{*}}$. Under H_{0} we have:

$$
\begin{align*}
& W a \operatorname{ald}\left(\hat{J}_{k, n h^{*}}-J_{k, n h^{*}}\right) \\
= & \operatorname{Wald}\left(\hat{J}_{k, n h^{*}}\right) \tag{3.25}\\
= & \operatorname{Wald}\left(\sqrt{T}\left(\hat{J}_{k, n h^{*}}\right)\right) \\
= & \sqrt{T}\left(\hat{J}_{k, n h^{*}}\right) \operatorname{Var}^{-1}\left(\sqrt{T}\left(\hat{J}_{k, n h^{*}}\right)\right) \sqrt{T}\left(\hat{J}_{k, n h^{*}}\right)^{\prime} \\
= & \sqrt{T}\left(\hat{J}_{k, n h^{*}}\right) A_{h *}^{\prime-1} \operatorname{Var}^{-1}\left(\left(T^{-1 / 2} \sum u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{n h}\right) A_{h *}^{-1} \sqrt{T}\left(\hat{J}_{k, n h^{*}}\right)^{\prime} \\
& +\sqrt{T}\left(\hat{J}_{k, n h^{*}}\right) o p(1) \sqrt{T}\left(\hat{J}_{k, n h^{*}}\right)^{\prime} \\
= & \left(\left(T^{-1 / 2} \sum u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{n h}+o_{p}(1)\right)\left(\operatorname{Var}\left(\left(T^{-1 / 2} \sum u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{n h}\right)\right)^{-1} \\
& \left(\left(T^{-1 / 2} \sum u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{n h}^{\prime}+o_{p}(1)\right)+o_{p}(1) \\
= & \left(T^{-1 / 2} \sum u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{n h}\left(\operatorname{Var}\left(\left(T^{-1 / 2} \sum u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{n h}\right)\right)^{-1}\left(T^{-1 / 2} \sum u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{n h}^{\prime}+o_{p}(1)
\end{align*}
$$

Here $\left(T^{-1 / 2} \sum u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{n h}$ denotes the last row of $\left(T^{-1 / 2} \sum u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{h}$.
Let $\hat{\Sigma}_{J_{k, n}}{ }^{7}$ be a consistent estimator of \sqrt{T} times the covariance matrix of the OLS estimator of the last row of $J_{k}: \operatorname{Var}\left(\sqrt{T}\left(\hat{J}_{k, n}-J_{k, n}\right)\right)$ and $\hat{P}_{J_{k, n}}$ be the matrix of the eigenvectors such that

$$
\hat{P}_{J_{k, n}}^{\prime} \hat{\Sigma}_{J_{k, n}} \hat{P}_{J_{k, n}}=\hat{\Lambda} .
$$

We choose the h greatest eigenvalues of $\hat{\Lambda}$ and denote it as $\hat{\Lambda}_{h}$. Let

$$
\hat{P}_{J_{k, n}}^{*}=\hat{P}_{J_{k, n}}\binom{\hat{\Lambda}_{h}^{-\frac{1}{2}}}{0} .
$$

According to (3.21) we have:

$$
\begin{equation*}
\operatorname{Var}\left(\sqrt{T}\left(\hat{J}_{k, n}-J_{k, n}\right)\right)=A \operatorname{Var}\left(\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{n h}\right) A^{\prime}+o_{p}(1) \tag{3.26}
\end{equation*}
$$

Using Lemma 3.3 and Lemma 3.4 we have:

$$
A^{\prime} \hat{P}_{J_{k, n}}\left(\begin{array}{cc}
\hat{\Lambda}_{h}^{-1} & 0 \tag{3.27}\\
0 & 0
\end{array}\right) \hat{P}_{J_{k, n}}^{\prime} A=\operatorname{Var}^{-1}\left(\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{n h}\right)+o_{p}(1)
$$

[^4]Now we look at following statistic:

$$
\begin{aligned}
& \sqrt{T}\left(\hat{J}_{k, n}-J_{k, n}\right) \hat{P}_{J_{k, n}}^{*} \hat{P}_{J_{k, n}}^{*^{\prime}} \sqrt{T}\left(\hat{J}_{k, n}-J_{k, n}\right)^{\prime} \\
& =\sqrt{T}\left(\hat{J}_{k, n}-J_{k, n}\right) \hat{P}_{J_{k, n}}\left(\begin{array}{cc}
\hat{\Lambda}_{h}^{-1} & 0 \\
0 & 0
\end{array}\right) \hat{P}_{J_{k, n}}^{\prime} \sqrt{T}\left(J_{k, n}-J_{k, n}\right)^{\prime} \\
& =\sqrt{T}\left(\hat{J}_{k, n}-J_{k, n}\right)\binom{A^{\prime}}{A_{\perp}^{\prime}}^{-1}\binom{A^{\prime}}{A_{\perp}^{\prime}} \hat{P}_{J_{k, n}}\left(\begin{array}{cc}
\hat{\Lambda}_{h}^{-1} & 0 \\
0 & 0
\end{array}\right) \hat{P}_{J_{k, n}}^{\prime}\left(\begin{array}{ll}
A & A_{\perp}
\end{array}\right) \\
& \left(\begin{array}{ll}
A & A_{\perp}
\end{array}\right)^{-1} \sqrt{T}\left(\hat{J}_{k, n}-J_{k, n}\right)^{\prime} \\
& =\left[\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{n h}+o_{p}(1), O_{p}\left(\frac{1}{\sqrt{T}}\right)+o_{p}\left(\frac{1}{\sqrt{T}}\right)\right] \\
& \left(\begin{array}{c}
A^{\prime} \hat{P}_{J_{k, n}}\left(\begin{array}{cc}
\hat{\Lambda}_{h}^{-1} & 0 \\
0 & 0
\end{array}\right) \hat{P}_{J_{k, n}}^{\prime} A \\
A^{\prime} \hat{P}_{J_{k, n}}\left(\begin{array}{cc}
\hat{\Lambda}_{h}^{-1} & 0 \\
0 & 0
\end{array}\right) \hat{P}_{J_{k, n}}^{\prime} A_{\perp} \\
A_{\perp}^{\prime} \hat{P}_{J_{k, n}}\left(\begin{array}{cc}
\hat{\Lambda}_{h}^{-1} & 0 \\
0 & 0
\end{array}\right) \hat{P}_{J_{k, n}}^{\prime} A
\end{array} A_{\perp}^{\prime} \hat{P}_{J_{k, n}}\left(\begin{array}{cc}
\hat{\Lambda}_{h}^{-1} & 0 \\
0 & 0
\end{array}\right) \hat{P}_{J_{k, n}}^{\prime} A_{\perp}\right) ~ \$ \\
& {\left[\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{n h}+o_{p}(1), O_{p}\left(\frac{1}{\sqrt{T}}\right)+o_{p}\left(\frac{1}{\sqrt{T}}\right)\right]^{\prime}} \\
& =\left(T^{-1 / 2} \sum u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{n h}\left(\operatorname{Var}\left(\left(T^{-1 / 2} \sum u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{n h}\right)\right)^{-1}\left(T^{-1 / 2} \sum u_{t} z_{1 t}^{\prime} \Sigma_{1}^{-1}\right)_{n h}^{\prime}+o_{p}(1)
\end{aligned}
$$

Comparing the equation above with (3.25) we get:

$$
W \operatorname{Wald}\left(\hat{J}_{h, k}-J_{h, k}\right)-\sqrt{T}\left(\hat{J}_{k, n}-J_{k, n}\right) \hat{P}_{J_{k, n}}^{*} \hat{P}_{J_{k, n}}^{* \prime} \sqrt{T}\left(\hat{J}_{k, n}-J_{k, n}\right) \xrightarrow{P} 0 \text { (3.28) }
$$

This implies that although we cannot calculate the Wald statistic for $\hat{J}_{k, n h^{*}}$ we are able to calculate an asymptotically equivalent statistic:

$$
\sqrt{T}\left(\hat{J}_{k, n}-J_{k, n}\right) \hat{P}_{J_{k, n}}^{*} \hat{P}_{J_{k, n}}^{*^{\prime}} \sqrt{T}\left(\hat{J}_{k, n}-J_{k, n}\right) .
$$

Using this statistic we can test weak exogeneity of $y_{n t}$. We summarize this result in the following theorem.

Theorem 3.6 For the $H_{0}: J_{k, n h^{*}}=0$, the Wald statistic is asymptotically equivalent to the statistic $\left.\sqrt{T}\left(\hat{J}_{k, n}-J_{k, n}\right)\right)_{J_{k, n}}^{*} \hat{P}_{J_{k, n}}^{*} \sqrt{T}\left(\hat{J}_{k, n}-J_{k, n}\right)$; and they have asymptotic $\chi^{2}(h)$ distribution.

For the general case of testing of weak exogeneity of the $(n-g) \times 1$ variable $y_{2 t}$ we have the hypothesis:

$$
H_{0}: J_{2 h^{*}}=0 \quad H_{1}: J_{2 h^{*}} \neq 0
$$

where $J_{2 h^{*}}$ is an $(n-g) \times h$ submatrix of J_{2}. Let $\hat{\Sigma}_{J_{2}}$ be a consistent estimator of \sqrt{T} times the covariance matrix of the OLS estimator of $J_{2}: \operatorname{Var}\left(\sqrt{T} \hat{J}_{2}\right)$. Let $\hat{P}_{J_{2}}$ be the matrix of eigenvectors such that

$$
\hat{P}_{J_{2}}^{\prime} \hat{\Sigma}_{J_{2}} \hat{P}_{J_{2}}=\hat{\Lambda}
$$

We choose the $h(n-g)$ greatest eigenvalues of $\hat{\Lambda}$ and denote it as $\hat{\Lambda}_{h}(n-g)$. Let $\hat{P}_{J_{2}}^{*}=\hat{P}_{J_{2}}\left(\begin{array}{cc}\hat{\Lambda}_{h(n-g)}^{-\frac{1}{2}} & 0 \\ 0 & 0\end{array}\right)$. Similar to the case of testing weak exogeneity of one variable we have the following theorem:

Theorem 3.7 For the $H_{0}: J_{2 h^{*}}=0$, the Wald statistic is asymptotically equivalent to the statistic $\sqrt{T} v e c\left(\hat{J}_{2}-J_{2}\right)^{\prime} \hat{P}_{J_{2}}^{*} \hat{P}_{J_{2}}^{*^{\prime}} \sqrt{T} \operatorname{vec}\left(\hat{J}_{2}-J_{2}\right)$, and they have asymptotically $\chi^{2}(h(n-g))$ distribution.

4 Concluding Remarks

In this paper we present two alternative procedures to test for weak exogeneity in a cointegrated system. This procedure can be applied to test the weak exogeneity before the cointegration analysis and thus makes it possible to reduce the dimension of the problem in cointegration analysis. For future research it is planed to explore the performance of this test procedures and to study its relevance for empirical research.

References

Engle, R., Hendry, D. F., and Richard, J.-F. (1983). Exogeneity. Econometrica, 51:277-304.
I. Habro, S. Jahansen, B. N. A. R. (1998). Asymptotic Inference on Cointegrating Rank in Partial Systems. Journal of BusinessBEconomic Statistics, 16:388-399.

Johansen, S. (1992). Testing Weak Exogneity and the Order of Cointegration in U.K. Money Demand Data. Journal of Policy Modeling, 14:313334.

Toda, H. Y. and Phillips, P. (1993). Vector autoregression and causality. Econometrica, 61:1367-1393.

[^0]: ${ }^{1}$ see I. Habro (1998)
 ${ }^{2}$ For a detailed discussion about exogeneity see Engle, Hendry, and Richard (1983)
 ${ }^{3}$ see Johansen (1992)

[^1]: ${ }^{4} S_{1}$ and S pick out the rows and columns of the parameters in Φ that are to be tested under H_{0}.

[^2]: ${ }^{5}$ See Lemma 2 in Toda and Phillips (1993) for details. The last equation is not listed in the Lemma 2 of Toda and Phillips (1993). It can be easily conducted from the third and the fifth equations above.

[^3]: ${ }^{6}$ See ? for detailed discussion.

[^4]: ${ }^{7}$ A ready candidate of the consistent estimator is $T \hat{\sigma}_{n}^{2}\left(X^{\prime} X\right)_{n n}^{-1}$, where $\left(X^{\prime} X\right)_{n n}^{-1}$ denoted the low right $n \times n$ block of $\left(X^{\prime} X\right)^{-1}$ and $\hat{\sigma}_{n}^{2}$ is the OLS estimator of the variance of the residual in the last equation of the VECM.

