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1 Introduction

This paper develops a generalized two-step maximum likelihood (ML) estimation
method and derives the asymptotics for impulse responses and forecast-error variance
decomposition in partially identified vector autoregressive models. Various empirical
studies have used impulse response analysis within the framework of vector autore-
gressive models since Sims (1980). For such analyses, Blanchard and Watson (1986),
Bernanke (1986), and Blanchard (1989) imposed contemporaneous short-run restric-
tions, while Blanchard and Quah (1989) used long-run restrictions for identification.
From the first-step ordinary least squares estimates, they estimated the structural
parameters using Cholesky decomposition, generalized method of moments (GMM),
or ML estimation in the second step. Gali (1992) is an exception, as an instrumental
variables method was adopted to estimate IS-LM models with short- and long-run
restrictions.

When partially identified models are considered, Cholesky decomposition can be
used to estimate just-identified block recursive models, while the GMM can be used
for over-identified models (see Eichenbaum and Evans, 1995; Bernanke and Mihov,
1998, among others). By contrast, two-step ML estimation is limited to fully identi-
fied models, since the second step of ML estimation involves the technically difficult
process of constructing the likelihood function. We resolve this difficulty, transform-
ing the reduced-form model in the second step. We provide a new ML estimation
method for partially identified models and derive its asymptotic properties. We also
suggest a likelihood ratio test for over-identifying restrictions in partially identified
models.

Our results can be applied to many empirical studies of impulse responses to
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a subset of structural shocks. For illustration, we provide a two-step ML estimation
of the block recursive VAR model that was used by Bernanke and Mihov (1998).
In addition, we extend their model to an open economy and investigate the effects
of monetary policy on exchange rates and term structures. We find that exchange
rates tend to overshoot and term structures have hump-shaped responses to monetary
policy shocks.

This paper is organized as follows. Section 2 develops ML estimation in VAR
models that are partially identified with short-run restrictions. Section 3 derives the
asymptotic properties of ML estimators, and Section 4 discusses the asymptotics of
impulse responses and forecast-error variance. Section 5 extends Bernanke and Mihov
(1998) to an open economy, and Section 6 contains our conclusions. Definitions and
properties of the matrices and operators used in the text are summarized in Appendix
A, while the proof of the lemma is provided in Appendix B. The data used for the

application are described in Appendix C.

2 Generalized ML Estimation in VAR Models par-
tially identified with Short-Run Restrictions

Suppose that an economy is described by an n-dimensional structural vector autore-

gressive (VAR) model®:
B(L)yt = Fet, (21)

where B(L) = Bo— Y7 | B,L", e, is a vector of structural shocks with a mean of zero
and variance I,,, L is the lag operator, and 1, is the n-dimensional identity matrix.

We estimate the model using the ordinary least squares method in the first step with

IFor simplicity, we assume that y, is demeaned. This does not change our main results.
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the corresponding reduced-form model:
A(L)yt = €4, (22)

where A(L) =1, —>" | A;L", and €, is white noise with a mean of zero and variance
3. From the first-step estimates, we estimate the structural parameters, By and
F using ML estimation in the second step, and construct the remaining structural
parameters and shocks using B; = BoA,; fori = 1,--- ,p and e, = F"'Bye,. Refer to
Giannini (1992) for details of the ML estimation and its asymptotics for VAR models
that are fully identified with short-run restrictions.

The VAR model in (2.1) is not econometrically identified in general. The block

recursive assumption starts by partitioning y, into three blocks as

Yt
Ye= ]| Y2
NET

For example, yo; is a set of no-dimensional policy indicators, and yy; includes n;
variables that are included in the information set when the Federal Reserve Bank (or
Fed) implements a monetary policy, while y3; contains ng variables that are excluded
from the information set (n = n; + ng + n3). Alternatively, y1; does not respond to
a monetary policy shock contemporaneously, while y3; does. See Christiano, Eichen-
baum, and Evans (1999) and Keating (1999) for an extended theoretical background.
Throughout this paper, we assume that the second block of parameters and shocks

is of interest given the following block recursive assumption:?

2 As Christiano, Eichenbaum, and Evans (1999) noted, this block recursive system includes general
classes of VAR models. For example, we may consider fully identified models with the choice of
ny =0 and n3 = 0.



Assumption 2.1. By is block lower triangular and F is block diagonal:

By 0 0 | [ Fy 0 0
(TL1><TL1) (TL1><TL2) (7’L1><TL3) (TL1><TL1) (TL1><TL2) (7L1><TL3)
B21 BQQ 0 0 F22 0
BO = (n2><n1) (n2><n2) (7’L2><n3) and F = (n2><n1) (n2><n2) (n2><n3)
Bs, Bs, B33 0 0 Fs3
(n3 ><n1) (n5 ><n2) (n5 ><n3) (n3><n1) (n5 ><n2) (n5 ><n3)

Denote the second block of By using By = [Ba; | By : 0]. If Fyy is the identity
matrix and B, is just-identified and lower triangular in addition to Assumption 2.1,
then By is identifiable and estimable using Cholesky decomposition. Otherwise, we
may use ML estimation concentrating on the ns-dimensional second block of the

model:
BoA(L)y: = Fases.

It is impossible to estimate B, directly because its information matrix is singular.
The lemma below suggests that the sub-model requires a certain transformation (or
diagonalization) for ML estimation. In particular, we multiply a transformation ma-
trix M by the reduced-form VAR model (2.2), which makes each block of transformed

innovations mutually orthogonal.

Lemma 2.1. Under Assumption 2.1, a block recursive VAR model with short-run
restrictions is partially identifiable and two-step ML estimable by choosing a block

lower triangular transformation matrix M such that

BO = BdM7
where
By, 0 O I, 0 O
Bd = 0 B22 0 and M = M21 In2 0 s
0 0 B33 M31 M32 Ing



where My, = —22121_11; Ms;, = —23121_11+M32M21; and Mgy = —(232—23121_11212)(222—

22121_11212)71.
Proof. See Appendix B. |

Remark 2.1. Lemma 2.1 is also valid under the alternative assumption that B is block
diagonal and F is lower triangular. Consider the lower triangular matrix Q such that
F = QF,, where Fj; is the block diagonal matrix of F. From Bge; = Fe; it follows
that Bje; = Fqe;, where B} is a lower triangular matrix such that Bj = Q~'B,. Note
that the transformed matrices B and F; satisfy Assumption 2.1. It is straightforward
to show B} = BoM with the choice of Q = B(M'B;'. In particular, Q = M™!
when By = I,,. Therefore, we can use the same transformation matrix M for the ML

estimation under the alternative assumptions.

Once the structural VAR model is diagonalized after transformation, we can

concentrate on the ML estimation of Boy and Fay in the sub-system
322MA(L)Yt = Faey, (2-3)

where M = [~X9, 2} i I,, © 0], which is the second block of M. In particular, the
transformation matrix M makes the second block innovations, €, = Me;, mutually
orthogonal to the first block innovations, €;;. In what follows, we assume that the

second block of the model is partially identified by the following short-run restrictions:
Assumption 2.2. vec(Bgy) = Syb, +s, and vec(Fa2) = Spfy + 5.

For computational purposes, we define Koy = F2_21B22, b,y = B2_21F22, Ayy =
[Bas : Faof, Ay = (b, f;), sy = (s},s})’, and denote the vectorization of the cor-

CREa]

responding matrix with a lower case letter and the corresponding estimator with a
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caret. For example, bgy = vec(Bsy) and M — [—22121_11 : I,,, : 0], where vec denotes

the column stacking operator. We write the short-run restrictions in a compact form:

X22 = Sud, +s,, where Sy = { Sy 0 }
0 Sy

and designate the sample size, T, commutation matrix, K,,,, duplication matrix, D,,,
elimination matrix, L,, and matrix N,, = 1 (L2 + K,,) as defined by Magnus (1988).
See Appendix A for the definitions and properties of these matrices.

Finally, we assume that the second set of structural shocks, es;, follows the

identical independent multivariate standard normal distribution:
Assumption 2.3. ey, ~ [IN(0,1,,)

The generalized two-step ML estimation (GMLE) of partially identified models

is proposed in the following theorem:

Theorem 2.1. (The GMLE of partially identified models with short-run restrictions)
Under Assumptions 2.1-2.3, a VAR model partially identified with short-run restric-

tions can be estimated by generalized maximum likelihood estimation using the

(a) Likelihood function:
T I —1p—1 VialV
L(BQQ, F22) = TlOg |B22| — TlOg |F22‘ — EtraCG(B22F22 F22 BQQMEM ) (24)

(b) Gradient:

I ® F/—l
By, Foo) =T e S22
g(Ba, Fa) [ —F221B22 ® F'221

where ® s the Kronecker product operator

(¢) Information matriz:

B, Fyy @ Fi'

IT(B227 F22) =2T |: _In2 ® F/251

} N, [F/22B,251 ®Fy  —L,® FQ‘;}
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(d) Score algorithm:
)\s,iJrl = As,i + [IT()\s,i)]_lg()\s,i)>

where g(As) = S\g(Bag, Fa2), Ir(As) = S\Ir(Bag, F22)Sy\, and i denotes the iteration
step, and
(e) if Bag or Foy is over-identified, the over-identifying restrictions are testable using

a likelihood ratio test:
LRT =2(L,— L,),

where L, = —%log\fdﬁlm’] — %, L, = L(BQQ,FQQ), and LRT is asymptotically

X%q)-distributed, where q is the number of over-identifying restrictions.

Proof. (a) Provided that the model is partially identifiable, we can concentrate on

the second block of the structural model
BOA(L)Yt = Fosey,
or
KOA(L)}’t = €y,

where K, = F;21]_322M. As ey is multivariate standard normally distributed, its p.d.f.

follows
T
Fleo) = (2m) 3 exp(— 3 ).
t=1
Therefore, from ey, = Koe; we get the p.d.f. of y
T
) = (2m) 3 exp(— 5 D7 R Koe) KoKy |
t=1
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and the log-likelihood function

T
_ T L 1 L
L(Ko,A(L)) = constant + 3 log |KoKj| — 5 Z €, K(Koe;.
t=1
Consequently, the second-step log-likelihood function becomes
T 1
L(Bay, Fay, A(L)) = constant + 3 log |KoKj| — 5 Z e K Koé;

t=1

T A A2
= constant + T'log |Ka| — Etrace(K'QQKQzMEM’)
T I p—-1p-1 VotV i
= constant + T log |Baos| — T log |Fas| — Etrace(BQQF22 F,, BoyMYM').

(b) Taking the derivative of (2.4) with respect to Ags yields
oL oL aVGC(KQQ)

8V6C<A22)/ N aVeC(Kgg)/ aVeC(Agg),’

where

oL

BN /
Grecicy = T [veelKEY) — vee(KMSM)

= T [vec(K}!) — (MEM © In2)vec(K22)]/ (2.5)

and

8vec(K22) 8V€C(K22) . 3V€C(K22)
(9V€C(A22)’ 0vec(B22)’ ’ aVeC(Fgg),

= |:In2 ® F2_21 - Bl22F/251 ® Fz_zl} :
Therefore, the gradient becomes

oL

g(B22, F22) m

L, ® F5! B S B
= T l _1;\2—212]322 (§;2F,251 ] (T, ® Fap)vec(By,') — (MEM' @ Fay'Jvec(Boy)].

(c) From the second derivative of (2.5) with respect to Koy

OL2 8V€C(K/251)
Hr(Ko) = Ovec(Kagg)ovec(Kay) [W

— T |(Kg @ Ky Ky, + (MEM @1,

!/
] ~T(MEM' ®1,,)
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we get the information matrix

/ BN
Ir(K) = ~E(Hr(K»)) = T|(Ky @Ky Koo, + EMEM) @11, |
= T [(Kg' © K YKo, + K Kp' 91,

- 2T(:K2_21 ® Inz)Nm (K/QEI & Inz)

Therefore, the information matrix with respect to Ass becomes

1

Ir (B, Fo) = fE(g(Bm, F23)g(Bos, Fzz)/)

L, @ F,' 1 1 o

= [ _]:;\2—212]322 Q;QF’Q? ] TE(g(Km)g(Km)/) [Inz ®Fy 1 —ByFy'® F221}
L, ® Fy,' - _ _

= [ —F2_212B22 Q;QF'le ] I (Ko22) |:In2 ®Fy | —ByLFy'® F221]

B, Fyy @ Fip'

} Ny, {FQQB’QJ ®Fy  —1,® FZJ} :

(d) A usual score algorithm applies, but the following transformation is necessary

because I7(Baga, Fog) is singular. From Mgy = S)As + s, and
oL OL 0y
IN 9N, ON
= g(Bm,Fm)/S/\,
we get the gradient

g(/\s) = Sl)\g(BQ% F22)

and the information matrix

IT()\S) = _E(g()‘s)g()\s)/)

= SI)\IT(BQ% Fy,)S,.
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(e) We write the log likelihood function for the sub-system following Giannini (1992),

with some modifications
T 2 o T 2 2 s
L(¥) = —510g|MEM | — Etrace((MEM) MXM').
Therefore, the log likelihood ratio becomes

LRT = 2(L,— L),

A T SN T
L, = L(E):—§10g|MEM’|—n27 and
A~ A~ T A~ A A~ A~ BN
L, = L(EML):T10g|B22|—Tlog|F22|—Etrace(B’QQF’Zg1F2_21B22M§]M’)
from MEMLM/ = (B/QQF/lef"Q_;BQQ)_l. I

Example 2.1. (Bernanke-Mihov Model, ng = 0)
It is straightforward to apply Theorem 2.1 to Bernanke and Mihov’s (1998) model
with the choice of n3 = 0. Suppose that By is block lower triangular and F is block

diagonal

_|Bu O | Fu O
BO_{Bm Bm}’F_{O ng]’

where Bop, Byy and Fay are the structural parameters of interest. Write By = BgsM.,
where M = [~X5; 27} | L,,]. Provided that By, and Fyy are identifiable using short-
run restrictions, the sub-system is two-step ML-estimable, as shown in Theorem 2.1.

Alternatively, we may estimate Boy and Foy by solving
BQQMﬁM/BIQQ - FQQFIQQ

numerically for just-identified models or using the two-step GMM for over-identified

models, as in Bernanke and Mihov (1998).
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3 Asymptotics on ML estimators

It is often of interest to trace the dynamic responses and to decompose the forecast-
error variance of economic variables. In order to provide confidence intervals for
impulse responses, this section derives the asymptotic distribution of o, = Bo_ .
Once its asymptotic distribution is provided, it is straightforward to derive asymp-
totics for impulse responses and forecast-error variance decomposition, as shown in
the next section.

We begin with the first-step OLS estimates. Let 8 = (a’,0')', where a =
vec(Aq, Ay, -+ ,A,) and o = vech(X), where vech is the column stacking operator
that stacks only the elements on and below the diagonal. It is well known that @ is

asymptotically normally distributed

VT(0 - 0) -5 N(0,%,),

where
s [Za 0 ]_ [Exx)]'oX% 0
1o %, | 0 2D (X @ Z)D; |’
Xt = [Yi_1:Yi_0: ,yg_p}/, and D;" is the Moore-Penrose inverse of D,,, as defined

in Appendix A. Refer to Hamilton (1994) for its derivation and extended discussion.

Due to the block diagonal property of ¥4, the asymptotic distribution of the
second-step estimator of ®, depends on 3, only, so that one may use the asymptotic
variance of ®, or ¥, for asymptotic distributions of impulse responses and forecast-
error variance decomposition. For example, Giannini (1992) uses the asymptotic
variance of ®, , while Liitkepohl (1990) uses X,. When partially identified models

are considered, it is convenient to use ¥, because the transformation matrix used

11



for ML estimation is a function of o. Write

@y 0 0 Yoo Y X
(TL1 an) (n1 ><1’L2) (TLl ><TL3) (TLl ><TL1) (TL1 ><7’L2) (TLl ><TL3)
Pd, — ¢21 ¢22 0 3 — 221 222 E23
0— (n2xni1) (n2xn2) (n2xng) ) - (n2xn1) (n2xn2) (naxngz)
@31 (1)32 ¢33 Z331 232 Z33
(n3xni1) (naxnz) (n3xng) (n3xni) (naxnz) (n3xnz)

and denote o* = (0}, 0%, 0%y, 0%, 04y, 043)'. Let 3+ be the asymptotic variance of
0", where o; = vech(X;;) and o;; = vec(X;;) if i # j. It is particularly interesting to
derive the asymptotic property of the second-step estimator of ®q = [0 : ®), : ®%,]".

From ®, = M~'B'F, we can show that
@0 - M@QQ, (31)

where M is the second-column block of M. Since M is lower block triangular, we
can write M = [0 : I,,, © — Mj,]’, where Ms, is defined in Lemma 2.1. For compu-
tational purposes, define & = MEIM' = £y — 39,3713, 3 = B3 — g X112,
and write M, = —X% " in a compact form. In addition, denote & = vech(X) and
& = vec(X). Since ®q in (3.1) depends on M and ®,, we derive the asymptotic

variance of l\Q/I in Lemma 3.1 below and that of <i>22 later in Theorem 3.1.

Lemma 3.1. (Asymptotic distributions of the first-step estimators)

(a) VT(6* — %) 4, N(0,Gy+2,G..,), where

(D 0 0 0O 0 O 0O 0 O
0iK 0 i1 0 O 0 0 0
2 nin2 2-n2mni K O 0
1 1 nni
Gorg = 0 0 3Kun, 0O 0+ 0 3lngn, 00 0 K,,, O D,.
0 0 0 0 Df 0 0O 0 0 0 0K
0 0 0 0 0:iK,,, 0 3L, 0 nns
| 0 0 0 0O 0 O 0 0 D |

() VT (6 — &) % N(0, Goo-Z,-G._.), where

Goor = |Df (20131 @ 20137 )Dy, © — 2D (X' ®1L,,) £ 0 f Luyinyen) £ 05 0] .
2
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(c) VT (& — &) N N(0, G020+ G. ), where

Goor = |(ZaZ]] @ X ) Doyt — Kigny (231277 @ L) — Ty X' @ L, 00 1,0 0]

(d) VT(m — m) -5 N(0, G- So-G'. ), where

' @3y E)D,, - '®L, 0 0 0 0
Gmﬂ* = Ongxw OngX’ngnl 0 00O
ngngxw 0ﬂ2n3><n2n1 0 0 0 0

(e) VT (1 — 1) 2, N(0,Gpo-24-G' ), where

1
nmx%

Proof. See Appendix B. |

As M depends on ¥ and X, we first derive the asymptotic variances of 3 and
i‘ in Lemma 3.1 (b) and (c), respectively, then we provide the asymptotic variance of
M in terms of 3.+ in Lemma 3.1 (e). The result of Lemma 3.1 (d) is used to derive
the asymptotic variance of ]§0 in Theorem 3.2 below. With the result of Lemma
3.1 (a), we can express the asymptotic variances of M and 1\2/1 in terms of X, using
VT (m-m) -5 N(0, Gpp oG ) and VT (f—10) -5 N(0, Gy So G’ ), where
G = GiosGoso and Gy = Ginos Goso-

Now, we express the asymptotic variance of &, in terms of X,. This requires
three steps. First, we compute the total derivative of ®45 in terms of the second-step
ML estimator A, in Lemma 3.2. Then, we derive the asymptotic variance of A, in
Theorem 3.1, which is equivalent to inverse of the information matrix of s given
in Theorem 2.1. By writing the asymptotic variance of A, in terms of 3, We can
simplify the expression of the asymptotic distribution of impulse responses in the next
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section. Finally, the asymptotic variance of %0 is derived in terms of X, in Theorem

3.2.

Lemma 3.2. (Total derivatives of the second-step inferred estimators)

(a) dkas = GyrdAs, where

Gy = [Im ®Fy | —BLFL'® F;j] S,.
(b) depyy = GyrdXs, where

Gy = {—F’22B’2§1 ®By i L, ® B;;} S,.
(¢) dvech(By, FaouFhyBi') = GypradAs, where

Gusy = 2DF | =B F»F,. B @B P BolFy @B S
PPN — ng 92 Fool 09 Boy™ @ Byy 1 Bay oy @ By A

Proof. See Appendix B. |

The results of Lemma 3.2 (a) and (b) are used to derive the asymptotic variance
of Ky and @22, respectively, in Theorem 3.2 below. Note, however, that these results
are expressed in terms of the asymptotic variance of the ML estimator, 3, rather

than 3,. To express the asymptotic variance of A, in terms of X, we use the following

property

where the asymptotic variance of the left-hand side is a function of 3, while the
right-hand side is a function of 3,  from Lemma 3.2 (c). From these results, we
can state the asymptotic distributions of the ML estimator X, in terms of X, in the

following theorem:
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Theorem 3.1. (Asymptotic distributions of the second-step ML estimators)

\/T(S\s —As) -, N(0,G )\, X2,G),), where

Proof. Tt follows from ¥ = By, FooF),Bh,! that do = dvech(Bj,) FaoF5,Bh,'). There-
fore, do = GyprdAs from Lemma 3.2 (c). Since Gygy has a full column rank, we get
dAy = G%/\d&, where do = G,p+do* = Gyp+Gy-pdo. Finally, the delta method

yields 3, = G2, G, . |

Let Gy = [ 1, : 0 ]G),, where ny, is the number of free parameters in Bos.
With this notation, the asymptotic distributions of &)0 and other inferred estimators,

such as By and Ky, are given in the next theorem.

Theorem 3.2. (Asymptotic distributions of second-step inferred estimators)

(0) VT (kg — ka2) 4, N(0,Gy2,G), ), where

Gro = GG,
() VT (s = p2) == N(0, Gy 20 GYy,), where

Gy = Gy Gy
(¢) VT (by — by) = N(0,G, %, Gy,), where

Gy = (M’ @ L,,)S,Gue + (I, ® Baz) Gior G
(d) \/T(f(o — ko) -5 N (0, Go 2, Gl ), where
Gro = (M' ®L,,)Gro + (I, ® F33 B2)Goe G
(e) ﬁ(a’o — ) S N(0, Gwzaéiﬁa); where
Goo = (In, ® M)Gyo + (@) @ 1) G Gioep
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Proof. (a) From Lemma 3.2 and Theorem 3.1, we obtain dkss = GprdAs = GG, do.
(b) Similarly, dgpgy = GprdAs = GprGisdo.

(c) From By = By;M, we can show that dby = dvec(By,M) = (M’ ® 1, )dvec(Bagsy) +
(I, ® Byg)dvec(M). From Lemma 3.1 and Theorem 3.1, we get dby = (M’ ®
L,,)Sdb, + (I, ® Bg)Gpordo™ = [(M' @ 1,,)SpGir + (I, ® B22) G Gy | do.

(d) From Ky = KM, it follows that dky = dvec(Ky»M) = (M ® 1,,,)dvec(Kay) +
(I, ® Kg)dvec(M). From Lemma 3.1 and 3.2, we obtain dkg = (M’ ® L,,,)Gyy +
(I, ® F3y B22) G+ G| dor.

(e) Similar to the proof of (d). The delta method completes the proof. |

Remark 3.1. When the model is just-identified, the result of Theorem 3.2 (e) can be

stated as \/T(é&o — @) N N(0,G4,X,Gl,), where
Gyo = (F3 BoyM ®1,)D,, + (I, @ £)K,,,Gio

from the relation ®, = XK). Among others, King, Plosser, Stock, and Watson (1991)
used the relation ®, = XK for just-identified models. The first-step OLS estimator
3 can be used to obtain i)o = ﬁ]K’O because X, = Yo for just-identified models,
where ;s = 3 and X7 = ioi';. Note that we need to estimate ®, using (3.1)

for over-identified models in which 3, # 3ors.

4 Asymptotics of Impulse Responses and Forecast-
Error Variance Decompositions

This section provides the asymptotic distributions of impulse responses and forecast-
error variance decomposition, which are widely used as standard tools for economic

analysis in the applied VAR literature (see, e.g., Baillie, 1987; Runkle, 1987). Given
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that y; is covariance stationary, there exists a Wold representation
y: = ¥(L)e
and the corresponding structural moving average representation
y: = ®(L)ey,

where W(L) = A(L)™ = 3% WL, Wy =1, ®(L) = B(L)"'F = %, &L, and

®, = ¥, P,. In particular, i-step impulse responses to the second set of structural

shocks, ey are given by

P, =V, P
It is often of interest to trace the accumulated responses

‘Ilci - Z ‘Ilja @ci = ‘Ilciéo
=0

and the total accumulated responses

V(1) = i U, =A1)", @) =T(1)D,.

Let £, be the p-dimensional vector with ones and denote

(AL Ay - A, A,
I, 0 --- 0 0
A= 0 I, -- 0 0 and J,,, = |:In : Onxn(p—1) } .
i 0 o .- I, 0 |

With this notation, the asymptotic distributions of the impulse responses are given

in the next theorem.

Theorem 4.1. Suppose vT(0 — ) 2, N(0,3) and Aga = SxAs + sx. Then
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(a)

where

(b)

where

(c)

where

(d) /Tvec(

where

\/TVGC(\iIi — ‘IJZ> i> N(O, G\I,M-EGG(I,M-), 1= 1, 2, s

Ovec(¥;) - i1
Guai = — ;an (A)~1 ¥,

VTvec(W,; — U) -5 N0, GueaiZaGlyny), i=1,2,-

Ovec(¥(1))
Gyl o £, @¥(1) @ ¥(1)
& ) i) N(Oa G@aizaé'&)ai + G@Uizaéébo-i)a 1= 07 17 27 Tty
G Ovec(®;) [ 0, i=0
Pl T 02 | (@ 91,)Gya, i=1,2,--
_ P. _
G@Uz’ = &/L(Z) = (Ing & \IIZ)G¢>0'7

Oo’

(¢) VTvec(®y — ®ui) —= N(0, GoeniZaGlous + GoeriZoCGlni):

where

Gocai = 8vec ZG‘I’“J and

_ avec
GCIDCJZ' = Z G‘I'oj )
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i=0,1,2,--,



(f) VTvec(®(1) — B(1)) -2 N(0, Gp10XaGly, + Goto T CGlory ),

where

Gorla = 0w (‘ii) ®1,)Gyi, and

- Ovec(®;) -

Goo = —— =L, @P(1))Gys-
o1 oo’ ( ® ( )) ¢

Proof. (a)—(c) See Liitkepohl (1990) Proposition 1.
d) It follows from ®; = ;& and Theorem 3.2 that dvec(®;) = (®, 1, )dvec(¥;) +

(
(I, ® ;)dvec(®g) = (B, @ I,,)Gyaida + (I, ® ¥;)Gypdo.
(e) Immediate from (d).

(

f) Similar to the proof of (d). |

The structural model considered in this paper includes general classes of VAR
models. The following corollary shows that the result of Liitkepohl (1990) is a special

case when the model is fully- and just-identified with recursive assumptions.

Corollary 4.1. Suppose that the model is just-identified and ® is lower triangular.

Then,
Gooi = (I, ® ¥,)L! [2L,N,(® @ L)L, i=0,1,---,s;
which is equivalent to Liitkepohl’s (1990) Proposition 1-(v).

Proof. Consider a fully identified model with ny = n in which Bg =1,,, F = ®(, and
M = I,,. From Theorem 4.1 (d), we obtain Ggs; = (I, ® ‘Ili)quU = (I, @¥,)Gy, =
(I, ® ¥;)GyrGro, where Ggy = Sy and Gy, = G, = [2D/(®, ®1,)S,]™" for
just-identified models. Moreover, Sy = L] because vec(®() = L] vech(®;) when ®,
is lower triangular. The property of D}t = L, N,, completes the proof. |
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We now derive the asymptotic distributions of forecast-error variance decompo-
sitions. Let wy,;; be the contribution of the j-th shock in ey to the h-step forecast-

error variance of the ¢-th variable, y;;, which is obtained using

h—1

Whij = > G2/ MSE;(h), (4.1)
s=0

where MSE;(h) = S2"0 /¥’ W 4, is the mean square error of the h-step forecast of

yir and ¢; is the i-th column of I,,. For computational purposes, write the forecast-error

variance components (4.1) using the following matrices

W), = [wy, 4] = W,sWia, (4.2)

nxng

where Wiy = |(X'2, ©.29) 01, _1, Wie = Y0 (®, 0 ®,), and ® is the
Hadamard operator that just takes the product of corresponding pairs of entries.
See Appendix A for details. Following Giannini (1992), let D,(M) = diag(vec(M))
be the square matrix with vec(M) on the diagonal. Using this notation, the asymp-
totic distributions of the forecast-error variance components are given in the next

theorem.
Theorem 4.2. Suppose \/T(é —0) LN N(0,3) and A9y = S)As + sy. Then,

VTvec(W), — W) 5 N (0, GuonSaGlp + GuonZoGl),

woh
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~ Ovec(W bl - =
Gwah - a(a, h) = 2(In2 & Wh\y) Dv(q)s)G(I)as
s=0
h—1
- 2(W;l¢‘w;t‘1/ ® Wh‘P)Dv(In)Nn (\I’sz X In)G\IJas and
s=0
~ Ovec(W bl
Gwah - 8( B h) - 2(In2 ®Wh\11) Dv(q)s)GCDos
g s=0
B h—1
— (WieWiy @ Wiy)D,(1,) ) (¥, @ ¥,)D,
s=0

Proof. Write dvec(W},) = (Wi ® L,)dvec(Wyy) + (L, ® Wy )dvec(We), where

h—1
dvec(Wyy) = —(Wjy ® Wh\y)dVGC((Z UI0)o6L,)
s=0
h—1
= —(Wjy @ Wyy)Dy(I,) Z dvec(¥ ,XW)
s=0
h—1

s=0
h—1 h—1 h—1
dvec(Wye) = Z dvec(®, © ®,) = 2D, (®,)dvec(®,) = Z 2D, (®,)(Gpasda + Gogsdo).
s=0 s=0 s=0
The delta method after rearrangement completes the proof. |

Similar to Corollary 4.1, the asymptotic distribution of the forecast-error vari-
ance decomposition in Liitkepohl (1990) is a special case when the model is fully- and

just-identified with recursive assumptions, as shown in the next corollary.

Corollary 4.2. Suppose that the model is just-identified and ®q is lower triangular.

Then, the asymptotic distribution of the (i, ), component of W, follows

N d
ﬁ<wh,ij - wh,ij) — N(0> gwah,ijzagiuah,ij + gwah,z’jzag;}gh,iﬂ
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which is equivalent to Liitkepohl’s (1990) Proposition 1-(v), where

0, h=1
Suwahij — 2 Zg;l [MSE;(h) (LQ\I’S(I)OLJ‘)(L;‘(I)B ® t;)Gyas
— (0 Pot;)? Y0 (T ® 1) Guam [MSE;(h)?, h>1
S RMSE () (W, (¢ @ )G,
Buahiij (T Boe;)? S (U, @ UW,,)D,) /MSEi(h)2,  h>1
Proof. Consider a fully identified model with n = ny. From wy,;; = L;thj =

(¢ @ ¢f)vec(Wy), it follows that

>

~1
Suwah,ij = (L; & L;)Gwah = 2(‘/; & L;)<In2 & Wh\Il) Dv(és)c‘ﬂbas

s

f
o

7

L

— 2 @ ) (WhgWhy @ W) Dy(L)N, S (8,2 @ 1,,)Guas and

s

Il
o

>
—_

Swoh,ij = (l’; X LDGwah = Q(Inz & Wh\If) Dv((i)s)(?'@ms

S

Il
o

>
—_

- (V_V;ubw;ulf ® Wh\II)Dv(In) (‘Ijs ® lI’S)Dn'

S

We can show that (¢} ®¢;)(I, @ Why) S Dy (®) =) #J(h)(lx; ®¢;) and (L) ®

Il
o

_ 2
L) (Wi Why @ Wi ) Dy (L) = 3070 (S0 ot (1] @ L;>] After incorporating

the property of (¢ ® ¢])N,, = (¢ ® ¢}), the delta method completes the proof.

5 Application

To implement the generalized two-step ML estimation described in Section 2, we
extend Bernanke and Mihov (1998) to investigate the effects of monetary policy shocks
to exchange rates in an open economy. As Bernanke and Blinder (1992) proposed,

consider a structural VAR model

p
Boy: = Z Biy;—i + Fe,

=1
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where By is lower block triangular and F is block diagonal as defined in Assumptions
2.1 and 2.2, respectively. We consider three sets of variables in y;: a set of non-policy
variables, y1;, which are not affected by monetary policy shocks contemporaneously,
a set of policy indicators, yo;, which describe the stance of the Fed’s monetary pol-
icy, and a set of macroeconomic variables, ys;, which are influenced by monetary
policy shocks contemporaneously. In our application, y; includes the industrial pro-
duction index, consumer price index, and world commodity price index; yo; includes
total reserves, non-borrowed reserves, and federal funds rates, as chosen by Bernanke
and Mihov (1998).> We extend the model by considering exchange rates and term
structures in y3;. We may extend our method to an open economy model in which
exchange rates and term structures are considered as policy indicators (see, e.g., Fung
and Yuan, 1999). In such a case, the model falls into the same structure as Bernanke
and Mihov (1998) because there are no variables in ys3;. For methodological purposes,
we consider exchange rates and term structures as non-policy variables to shed light
on the generality of our model.
Under Assumption 2.1, consider the second block of the structural VAR model
p
By,My, = Z Biyi_; + Fasey,
i=1

and describe the market for bank reserves using
Bos€y = Fozey, (5.1)

where € = Me,, which is the second set of innovations orthogonalized to the first set

of innovations, €;;. Following Bernanke and Mihov (1998), we denote the innovation

3Bernanke and Mihov (1998) used real GDP and the GDP deflator at the monthly frequency
using interpolation.
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in the demand for total reserves erg, the innovation in the demand for borrowed
reserves egg, the innovation in the demand for non-borrowed reserves eyggr, and the
innovation in the federal funds rate eppr. Bernanke and Mihov (1998) assumed that

the market is described by the following set of equations:*

(Demand for total reserves) €rR = —Q€pppr -+ N4€q
(Demand for borrowed reserves) €gr = PEerrr + Meyp
(Demand for nonborrowed reserves) €xpr = ¢q€q + Opep + Nses,

where ey is a demand disturbance, ¢, is a disturbance to the borrowing function, and e,
is the shock to monetary policy that we want to identify. Note that éggr = érr —€nBRr
and all the equations are expressed in orthogonalized innovation forms. For ML
estimation, write the equations in the form of (5.1)

1 0 « eTR na 0 0

€d
0 1 0 ENBR | = | @4 Ms b €s
1 -1 —ﬂ gFFR 0 0 Ul (&)

The model is unidentified because seven unknowns need to be estimated from six
relations in BoyMEM'B), = FouF),. Following Bernanke and Mihov (1998), we

consider four alternative models regarding restrictions on the monetary policy shock

L[ b o o ba o
68_773 (Ud+77b)ETR+(1+77b)ENBR (Cknd nb)EFFR . (52)

The alternative models are summarized as follows:
i) Bernanke and Blinder (1992) model (BB): % =1, =—1e= —%(a + B)érrr;
ii) Christiano and Eichenbaum (1991) model (CE):

— b — _ 1= .
_07__07 65_77_S€NBR7

iif) Strongin (1995) model (ST): o = 0,2 =0, e, = —L (2erp + expr); and

4We consider a simplified model in which the innovation to the discount rate is zero.
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iv) Just-identified model (JI): v = 0, &5 = - | —(24 4 L)erp + (1 + L)enpr + fLeppp)| -
See Bernanke and Mihov (1998) for details.

The unrestricted VAR model is estimated over the sample period from January
1970 to June 2001 using monthly data obtained from the Federal Reserve Bank of
St. Louis. The industrial production index, the consumer price index, the world
commodity price index, and exchange rates (U.S/Canada) are taken as differences
using logarithms. The total and non-borrowed reserves are normalized using the
36-month moving average of the total reserves. The ten-year treasury bill rate less
three-month treasury bill rate is used for the term structure. Time plots of data for
levels and differences are shown in Figure 4.1. See Appendix C for a description of the
data. We choose 12 months as the lag length, although choosing shorter lag lengths
does not alter our main results.

The second-step ML estimates are given in Table 4.1. We begin with the over-
identification tests in Panel A. Bernanke-Blinder model and Strongin model are not
rejected at the 5% significance level, while Christiano-Eichenbaum model is rejected
at the 1% significance level. The ML estimates of Bgy and Fao for the alternative
models are listed in Panel B. All the free parameters are significantly different from
zero at the 5% significance level. The long-run neutrality of money can be tested
using the estimates of ®(1);5 in the fifth column of Panel E. The long-run neutrality
of money is not rejected for the Bernanke-Blinder, Christiano-Eichenbaum, or just-
identified models, while it is rejected for the Strongin model at the 5% significance
level.

Figure 4.2 shows the estimated dynamic responses of macroeconomic variables

and policy indicators to expansionary monetary policy shocks for the alternative mod-
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els. These results are robust for the model selected. The dynamic responses of output
have the usual humped shape. Output increases in the short run and starts to de-
crease after one or two years. The effects vanish in the long run, implying the long-run
neutrality of money. The dynamics of price are in sharp contrast with the results of
Bernanke and Mihov (1998). The results are subject to the ‘price puzzle’, in which
an expansionary monetary policy shock is followed by a subsequent fall in price as
pointed out by Sims (1992). The fall in price is significant for the first nine months and
is insignificant in the long horizon in the Bernanke-Blinder and just-identified models,
while it is insignificant for every horizon in the Christiano-Eichenbaum and Strongin
models. Although the world commodity price index is incorporated in the Fed’s infor-
mation set, as suggested by Sims (1992) and Leeper, Sims, and Zha (1996), the price
puzzle does not disappear when the industrial production index and the consumer
price index are used to measure output and overall price, respectively.® The dynamic
responses of total reserves, non-borrowed reserves, and federal funds rates show the
liquidity effects in which expansionary monetary policy shocks are accompanied by
an increase in non-borrowed reserves and a fall in federal funds rates. Exchange rates
exhibit over-shooting behavior in the Bernanke-Blinder and the just-identified mod-
els. The dynamic responses of exchange rates are in sharp contrast with Eichenbaum
and Evans (1995), who found such evidence only with a twenty-month delay. In addi-
tion, Jang and Ogaki (2004) and Kalyvitis and Michaelides (2001) gave evidence for

instantaneous overshooting. The Christiano-Eichenbaum and Strongin models yield

5The price puzzle disappears when we use the quarterly real GDP and the GDP deflator for the
measure of output and overall price. As Bernanke and Mihov (1995) noted, it is “difficult to defend
[applying] the identification assumption of no feedback from policy to” the non-policy variables in
y1: at a quarterly frequency. One solution is to use interpolated monthly GDP data, as suggested
by Bernanke and Mihov (1995).

26



the depreciation of the U.S. dollar after an expansionary monetary policy shock, but
the dynamic responses do not exhibit the overshooting behavior and are insignificant
over all time horizons. The dynamic responses of term structures show a humped
shape. An expansionary monetary policy shock yields an increase in term structures
for the first twenty months in the Bernanke-Blinder and just-identified models, while
the responses are insignificant in the Christiano-Eichenbaum and Strongin models.
The increase in term structures due to an expansionary policy shock is consistent
with the literature. See Evans and Marshall (1997) for an example.

Table 4.2 shows the forecast-error variance decompositions in the four alterna-
tive models. The policy indicator that includes the largest fraction of the forecast-
error variance attributed to the monetary policy shock varies across the four alter-
native models, as implied by (5.2). Note that 98% of the federal funds rates in
the Bernanke-Blinder model, 96% of the non-borrowed reserves in the Christiano-
Eichenbaum model, and 77% of the non-borrowed reserves in the Strongin model are
attributed to the monetary policy shock in the first month. In the just-identified
model, 55% of the non-borrowed reserves and 61% of the federal funds rates are
attributed to the monetary policy shock. The fraction of the exchange rates forecast-
error variance attributed to the monetary policy shock is relatively small, ranging
from 1% to 3% in the first month. The fraction after six months in the Bernanke-
Blinder model is at most 7%. As Faust and Rogers (2000) pointed out, it is not
attractive to exclude the exchange rates from the Fed’s information set. This result
is consistent with Jang and Ogaki (2004), who found that the fraction is relatively
small in recursive VAR models, while it is relatively large in vector error-correction

models with long-run restrictions.
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6 Concluding Remarks

This paper generalizes the existing VAR literature. First, it generalizes Giannini
(1992) to consider VAR models that are not necessarily fully identified. It shows that
partially identified models can be estimated using generalized two-step ML estima-
tion with a transformation matrix that diagonalizes the model. Second, generalizing
Liitkepohl (1990), this paper also derives the asymptotic distributions of impulse re-
sponses and forecast-error variance decomposition of general classes of VAR models.
In particular, it shows that the result of Liitkepohl (1990) is a special case when
the model is fully- and just-identified with recursive assumptions. Finally, as an ap-
plication, we extend Bernanke and Mihov (1998) to an open economy. We find that
exchange rates tend to overshoot and term structures show hump-shaped responses to
monetary policy shocks. One possible extension of this paper would be two-step ML

estimation of partially identified models with both short- and long-run restrictions.
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Appendix

A Definitions and properties

We follow the definitions used by Magnus (1988).

Definition A.1. (The commutation matriz) K,,vec(A) = vec(A’) for any m x n
matriz A.

Definition A.2. (The matriz N,) N,vec(A) = svec(A + A') for any n x n matriz
A.

Definition A.3. (The duplication matriz D,,) D,vech(A) = vec(A) for any sym-
metric n X n matriz A.

Definition A.4. (The elimination matriz L, ) Lyvec(A) = vech(A) for any lower
triangular n X n matriz A.

Definition A.5. (The Moore-Penrose inverse matric A™) An n x m matric A™
is the Moore-Penros inverse of a real m X n matriz if AATA = AJATAAT =
AT, (AAY) = AA*, and (ATA) = A*A.

Definition A.6. (The Hadamard operator ®) A®B = [a;;b;;] for any m xn matrices
A and B.

Property A.1. (The commutation property)

(i) K., =K 1 =K,,.

(1)) Kpm(A @ B) = (B® A)K,, for any m x n matriz A and p X ¢ matriz B.
(iii) Ko = Kin = L,.
Property A.2. (The property of N,,)

(i) Np = 2(L2 + Kyp,).

(i) N, = N/ = N2,
(iii) N, Ko = N, = K,,,N,..

(iv) N,(A ® B)N,, =N, (B ® A)N,,.

(v) N,(A® AN, =N, (A® A)=(A® A)N,,.
Property A.3. (The duplication property)

(i) KDy = D, = N, D,..
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(i1) DK, =D} =D;N,,.

(iii) D,D} = N,,.

Property A.4. (The elimination property)
(i) L,L, = LL(nTH).

(1) L} =L.

(iii) LyDy = Lo
(iv) D, L,N, = N,,.

(v) D =L,N,.

Property A.5. (The Moore-Penrose inverse matriz)
(i) AT = (A'A)TA’ if A has full-column rank.
(i) AT = A/(AA) if A has full-row rank.

Property A.6. (The Hadamard operator)

(i) AOB=B®OA.
(1)) A ©I, = diag(A).
(111) vec(A ® B) = vec(A) ® vec(B) = D,(A)vec(B)
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B Proof of Lemma

Lemma 2.1

Proof. Each block of the reduced-form VAR model becomes mutually orthogonalized
when the transformation matrix M is multiplied. Therefore, we can concentrate on
the second block of the model to estimate Byy and Fay from BooMEM'BYL, = FooF,,

where M = [-X9, 21" i I,, | 0]. Therefore, By and Fyy are two-step ML estimable.
Finally, B21 is obtained by B21 e BQQMQl. I

Lemma 3.1

Proof. (a) Write vec(X) = vec(X.1, X, B.3) = [vec(.1), vec(,)', vec(X 3)']’, where
VeC(Ell) Dn1 0 0 011
vee(X) = Ky pvee(X)) =Koy | vee(Ey) | =Kupn | 0 Ky, O o
vec(Xy,) 0 0 K, O3
Therefore,
011 D;’l—l 0 0
oy | = 0K, ., O K, vee(X).
031 0 O Kn1n3
Similarly,
[ 021 In2n1 0 0 031 In3n1 0 0
oy | = 0 Df 0 K, n,vec(X2) and o3 | = 0 L., O K n,vee(X.3).
| 039 0 0 Kn2n3 033 0 0 :Dn3
Therefore, from
T 000 0 0] Df' 0 0 00 0 0 0 0 ]
010000 - 0K,,, 0 0 0 0 0 0 O
00IO0O0TO 0 a“ 0 0K,,,0 0O 0O 0 0 O
0I 0000 021 0o 0 0I,,0 O 0O 0 O K, vec(X 1)
000TIO0TO0 031 =| 0 0 0o oD/, 0 0 O O K, vec(Z o)
0000O0TIO 022 0 0 0 0 0K,,, 0 0 O K, vee(Xs)
00IO0O0O 032 0o 0 0 00 O01I,00O0
000O0TO]|"L"%- 0 0 0 00 O 0I,,0
|0 000O0T | | 0 0 0 0 0 0 0 0D
it follows that
[Df © 0 0 0 0 0 0 0 ]
0iKnyn, 0 3L,,0 O 1 0O 0 O K 0 o
. | 0 0 iK,,, 0 0 0 i, 0 0 "
@=19 0 0o oD, 0 0 0 O gK(")”QKO Dndo
0 O 0 0 03K,, 0 3,0 s
0 0 0 0 0 0O 0 0 Df |




(b) Write dvec(X) = dvec(Zgy— 301 271 25, ), where dvec(X) = D,,,de and dvec(3q, 2,1 35,) =
— (03 ® 1 377)Dy,dory + 2N, (3227 ® L, )dos. Therefore,

de = D) (Zn2] @ T XD, doy; — 2D (S]] ® L, )dosr + doss

- {D;(zmzl—f ® X0 2D, | —2D) (21X ®1L,,) 10 Luyeyn (0 0] do*.
2

(c) It follows from dvec(X) = dvec(Bs; — X5 X7'X5,) that
do = (22121_11 & E3121_11)]:)md0'11 - Kn2n3(23121_11 ®1L,,)dosy — (22121_11 ®1,,)dos + dosy

— {(2212111 R 2 Dy, f Koy (B2 ®1,) F — XX @1, 10 L, 0} do*.

(d) Write dvec(M) = [—dvec(EglEil)’,0,0},, where dvec(EZ9;X7]) = — (2] ®
33Dy doyy + (27 @ 1,,)doy;. Therefore,
(B @ 2)D,, ¥ ®L, 0 0 0 0
dm = Ongxw Ongxnzm 000 0| g5*
n2n3><"1("21+1) On2n3><n2n1 0 00O

(e) Write dvec(M) = K,,,,dvec(M’), where

dvec(M') = 0,21

1 o1

It follows from (c), (d), and dvec(EE ") = (X' ®@ I,)de — (' @ S D, do
that
nin X7n<n2+l>
dim =K, 0,2, ntnin) do*.
Koons | (57 @ 1) Goor = (57 @ 55 7)Dy, G |
The delta method completes the proof. |

Lemma 3.2

Proof. (a) Write dvec(Kyy) = dVeC(F2_21B22) = (In2®F2_21)dvec(ng)—l—(B’22®In2)dvec(Fz_Ql),
where dvec(Byy) = Sydb, and dvec(F5y) = —(Fi' @ Fuy' )Sdf,. Therefore,

1 - _ _ Sy O db,
dkyy = |:In2 ® F221 T ]3/22]?/221 ® F221:| |: Ob Sf :| |: df, :|
= {Inz ®@F5 | —BLFL'® FQ;} Sads.
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(b) Tt follows from ®9y = K, that
Ay, = —(Ki' @ Ky, )dks
— {_F’ZQB’QQ1 ® By, i 1, ® By | SadA,.
(c) Write dvec(Byy FoFbBhy') = dvec(®yn®),), where dvec(®y®),) = (P ®
L, )dpy; + (In, ® ®22)Koyn,dgy = 2Ny, (Por ® L, )depyy. Therefore,
dvech(By, FooFo,Bh') = 2D/ (R @ 1,,)GprdAs
= 2D, [—B;QIFQQF;QB;EI ® By : By Fay ® Byy' | SadA..

The delta method completes the proof. |

C Data

Monthly data from January 1970 to June 2001 are used. The world price index was
obtained from the International Financial Statistics CD-ROM and website. Other
data were obtained from the Federal Reserve Bank of St. Louis.

e y: U.S. industrial production index (1997 =100). Seasonally adjusted. Log
difference x 1200.

e p: U.S. consumer price index for all urban consumers. All items (1982-84=100).
Log difference x 1200.

e pc: The world non-fuel primary commodities price index (1995=100). The
world price index from January 1980 to June 2001 was obtained from the IF'S
website (series 00176NFDZF). The world price index from January 1970 to
December 1979 was constructed by backward recursion using the growth rate
of series 00176 AXDZF from the IFS CD-ROM. Log difference x 1200.

e TR: Board of governors’ total reserves (billions). Adjusted for changes in reserve
requirements. Normalized using the 36-month moving average of total reserves.

e NBR: Non-borrowed reserves of depository institutions (billions). Normalized
using the 36-month moving average of total reserves.

e FFR: Effective federal funds rates (%).
e er: U.S./Canada foreign exchange rates. Log difference x 1200.

e TS: Term structures. The 10-year treasury constant maturity rate less the 3-
month treasury bill secondary market rate.
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Figure 4.2:

Impulse responses to monetary policy shock in alternative models

A. Bernanke-Blinder Model
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Figure 4.2: (Continued)

B. Christiano-Eichenbaum Model
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Figure 4.2: (Continued)

C. Strongin Model
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Figure 4.2: (Continued)

D. Just-identified Model
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Table 4.1: Parameter estimates

A. Over-identification test statistics

Model LR test (X?l)) p-value
Bernanke-Blinder Model (BB) 3.2909 0.0697
Christiano-Eichenbaum Model (CE) 75.2612** 0.0000
Strongin Model (ST) 3.0162 0.0824
B. ML estimates (Bag, Fas).

Boo (474) (574) (674) (475) (575) (675) o (576) /3
BB 1.0000 0.0000 1.0000 0.0000 1.0000 -1.0000 -0.0028** 0.0000 -0.0123**
0 () 5 0 () () (0.0010) () (0.0015)
CE 1.0000 0.0000 1.0000 0.0000 1.0000 -1.0000 0.0037** 0.0000 -0.0603**
0 0 () 0 0 () (00012) () (0.0054)
ST 1.0000 0.0000 1.0000 0.0000 1.0000 -1.0000 0.0000 0.0000 -0.0748**
0 0 8 0 0 0 0 () (0.0090)

JI 1.0000 0.0000 1.0000 0.0000 1.0000 -1.0000 0.0000 0.0000 -0.0309*
0 () () 0 () () 0 () (0.0125)

Fa» n ¢ (6,4) (4,5) n° (6,5) (4,6) ¢° 7
BB 0.0081** 0.0081** 0.0000 0.0000 0.0040** 0.0000 0.0000 -0.0116** 0.0116**
(0.0003)  (0.0003) 0 () (0.0008) 0 () (0.0004)  (0.0004)
CE 0.0085** 0.0000 0.0000 0.0000 0.0140** 0.0000 0.0000 0.0000 0.0232**
(0.0004) 0 0 () (0.0005) 0 0 () (0.0021)
ST  0.0082** 0.0063** 0.0000 0.0000 0.0125** 0.0000 0.0000 0.0000 0.0286**
(0.0003)  (0.0007) ) () (0.0005) 0 0 () (0.0036)
JI  0.0082** 0.0063** 0.0000 0.0000 0.0106** 0.0000 0.0000 -0.0068 0.0140**
(0.0003)  (0.0007) 0 () (0.0021) 0 () (0.0033)  (0.0030)

C. Inferred parameter estimates (Koo, ®o2).

Koo (4,4) (5,4) (6,4) (4,5) (5,5) (6,5) (4,6) (5,6) (6,6)
BB 123.8419** 0.0000 86.2670**  0.0000 0.0000 -86.2670**  -0.3430**  -2.3897** -1.0587**
(4.9363) () (3.7719) 0 () (37719)  (0.1279)  (0.0899)  (0.1354)
CE 117.4153** 0.0000 43.0950**  0.0000 71.1827**  -43.0950** 0.4346** 0.0000 -2.5990**
(5.6098) () (5.8491) () (26215)  (5.8491)  (0.1436) () (0.1052)
ST 122.5857** -61.7820** 34.9436**  0.0000 79.7121*%*  -34.9436** 0.0000 0.0000 -2.6137**
(8.7615)  (18.8947)  (6.6455) () (4.6738)  (6.6455) 0 () (0.1074)
JI 122.5857**  -27.5065 71.6292**  0.0000 48.7950* -71.6292** 0.0000 -1.4151* -2.2108**
(4.6136)  (23.2405)  (15.1959) () (22.3573)  (15.1959) () (0.6898)  (0.4416)

$oo (4,4) (5,4) (6,4) (4,5) (5,5) (6,5) (4,6) (5,6) (6,6)
BB 0.0081** 0.0081** 0.0000 -0.0012** 0.0040**  -0.4185** 0.0000 -0.0116** 0.0000
(0.0003)  (0.0003) () (0.0004)  (0.0007)  (0.0157) () (0.0005) 0
CE 0.0080** 0.0000 0.1331** 0.0008* 0.0140**  -0.2195** 0.0013** 0.0000 -0.3625**
(0.0004) () (0.0133)  (0.0003)  (0.0005)  (0.0211)  (0.0004) () (0.0195)
ST 0.0082** 0.0063** 0.0245 0.0000 0.0125**  -0.1677** 0.0000 0.0000 -0.3826**
(0.0006)  (0.0013)  (0.0210) () (0.0007)  (0.0250) ) () (0.0157)

JI  0.0082** 0.0063** 0.0595** 0.0000 0.0106**  -0.3423** 0.0000 -0.0068 -0.2332*
(0.0003)  (0.0007)  (0.0222) () (0.0021)  (0.0726) () (0.0033)  (0.1069)

Note: Standard errors are in parentheses. Statistics significantly different from zeros are denoted by

*

or

*ok

at a 5% or 1% significance level, respectively.
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Table 4.1: (Continued)

D. Inferred parameter estimates (Ba1, Ko1).

B2 (471) (571) (671) (472) (5,2) (672) (473) (573) (673)
BB 0.0000 0.0004** -0.0001 -0.0002 0.0007* -0.0010** 0.0000 0.0000 0.0000
(0.0001) (0.0001) (0.0001) (0.0002) (0.0004) (0.0003) (0.0000) (0.0000) (0.0000)
CE -0.0001 0.0004** 0.0008** -0.0002 0.0007* -0.0009 0.0000* 0.0000 -0.0001
(0.0001) (0.0001) (0.0002) (0.0002) (0.0004) (0.0006) (0.0000) (0.0000) (0.0001)
ST  0.0000 0.0004** 0.0011** -0.0002 0.0007* -0.0009 0.0000 0.0000 -0.0001*
(0.0001) (0.0001) (0.0004) (0.0002) (0.0004) (0.0007) (0.0000) (0.0000) (0.0001)
JI  0.0000 0.0004** 0.0003 -0.0002 0.0007* -0.0010** 0.0000 0.0000 0.0000
(0.0001) (0.0001) (0.0003) (0.0002) (0.0004) (0.0004) (0.0000) (0.0000) (0.0000)
Ko (41) (5,1) (6,1) (42) (5:2) (6,2) (43) (5:3) (6,3)
BB 0.0046 0.0483** -0.0106 -0.0288 0.0018 -0.0838** 0.0030 -0.0060* 0.0008
(0.0088) (0.0086) (0.0088) (0.0259) (0.0259) (0.0262) (0.0024) (0.0024) (0.0024)
CE -0.0110 0.0251** 0.0366** -0.0278 0.0531* -0.0403 0.0048* -0.0006 -0.0048*
(0.0089) (0.0085) (0.0087) (0.0259) (0.0260) (0.0265) (0.0024) (0.0024) (0.0024)
ST -0.0023 0.0293** 0.0399** -0.0287 0.0739** -0.0323 0.0039 -0.0026 -0.0052*
(0.0084) (0.0087) (0.0088) (0.0260) (0.0270) (0.0267) (0.0024) (0.0024) (0.0024)
JI  -0.0023 0.0463** 0.0181 -0.0287 0.0439 -0.0686* 0.0039 -0.0048 -0.0027

(0.0084)  (0.0103)  (0.0166)  (0.0259)  (0.0336)  (0.0300)  (0.0024)  (0.0025)  (0.0029)

E. Inferred parameter estimates (®(1)12).
(12 (1,4) (24) (3:4) (1,5) (2,5) (3,5) (1,6) (2,6) (3,6)

BB -3.8435 3.3318 18.4644 3.0351 3.8820  17.8095*  -3.4561 2.7872 -1.6416
(4.6629)  (5.3453)  (15.9874)  (2.4312)  (2.7705)  (8.3285)  (2.4027)  (2.7431)  (8.1972)
CE -6.5147 3.4611 10.9385 4.0590 0.0876  14.0809  -0.2138 5.7240 19.9722
(4.9011)  (5.6180)  (16.7990)  (2.1539)  (2.4823)  (7.4671)  (3.2081)  (3.6598)  (10.9493)
ST -4.4858 3.4791 17.2370 41220 -0.7735 9.6853 0.8707 5.1163 18.0410
(4.8215)  (5.4624)  (16.3082)  (2.0593)  (2.3740)  (7.0881)  (2.8041)  (3.2151)  (9.6221)
JI -4.5653 3.0121 15.5904 3.9293 2.0374  17.6389*  -1.4856 4.7447 10.0388
(4.6780)  (5.3625)  (16.0491)  (2.0831)  (2.7330)  (7.6031)  (3.0677)  (3.2856)  (11.0858)

F. Inferred parameter estimates (®(1)a2).

®(1)22 (4,4) (5,4) (6,4) (4,5) (5,5) (6,5) (4,6) (5,6) (6,6)
BB 0.5767*  0.4574* 8.4964 0.0587 0.0522  -2.6179 0.0921 0.0047 0.7201
(0.2923)  (0.1976)  (10.0252)  (0.1537)  (0.1045)  (5.1902)  (0.1497)  (0.1011)  (5.1398)

CE  0.5789 0.4197* 9.2849 0.0485 0.1035  -0.5335 0.2644 0.1805 0.5602
(0.3076)  (0.2079)  (10.5245)  (0.1372)  (0.0929)  (4.5871)  (0.2013)  (0.1361)  (6.8652)

ST  0.5865 0.4558* 8.7607  -0.0266 0.0430  -1.2119 0.1666 0.1097  -0.9869
(0.3007)  (0.2028)  (10.2455)  (0.1284)  (0.0865)  (4.3844)  (0.1752)  (0.1183)  (6.0167)

J 05713 0.4458* 8.8508 0.0652 0.0938  -1.5394 0.1553 0.0696  -0.1814

(0.2929)  (0.1980)  (10.0452)  (0.1350)  (0.0880)  (4.3391)  (0.1769)  (0.1222)  (6.0555)

Note: Standard errors are in parentheses. Statistics significantly different from zeros are denoted by

* *ok

or ** at a 5% or 1% significance level, respectively.
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Table 4.1: (Continued)

G. Inferred parameter estimates (@32, ®(1)32).

P32 (774) (874) (775) (875) (776) (876)
BB 0.1330 0.0185 1.3431* 0.1899** -0.9499 -0.0083
(0.5244) (0.0127) (0.5268) (0.0145) (0.5260) (0.0127)
CE -0.8246 -0.0474** 1.5917** 0.1104** 0.7276 0.1657**
(0.5761) (0.0152) (0.5679) (0.0169) (0.5409) (0.0155)
ST -0.0712 0.0063 1.4053** 0.0847** 0.8607 0.1726**
(0.5553) (0.0160) (0.5267) (0.0168) (0.5253) (0.0145)
JI -0.1497 -0.0094 1.6359** 0.1621** -0.0296 0.1004
(0.5292) (0.0162) (0.5256) (0.0338) (0.7289) (0.0521)
¢(1)32 (774) (874) (775) (875) (776) (8a6)
BB 6.8452 2.6273 -0.3471 0.8138 0.2732 0.2134
(6.2844) (1.7919) (3.3059) (0.9447) (3.2682) (0.9286)
CE 6.7509 2.3499 0.7734 0.6948 1.8244 1.5748
(6.6018) (1.8840) (2.9522) (0.8485) (4.3325) (1.2347)
ST 6.9142 2.6127 0.0075 0.2843 0.6915 1.1752
(6.4208) (1.8316) (2.8078) (0.8007) (3.8055) (1.0834)
JI 6.8511 2.5054 0.3698 0.8571 0.5809 0.8408
(6.2958) (1.7959) (2.7854) (0.8303) (3.8190) (1.1184)

Note: Standard errors are in parentheses. Statistics significantly different from zeros are denoted by

* * 3k

or ** at a 5% or 1% significance level, respectively.
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Table 4.2: Fraction of the forecast-error variance attributed to monetary policy shock

A. Bernanke-Blinder Model

Horizon Y p pc TR NBR FFR er TS
1 0.00 0.00 0.00 0.02 0.08** 0.91** 0.02 0.38**
(0.00) (0.00) (0.00) (0.01) (0.03) (0.03) (0.01) (0.04)
6 0.04* 0.06** 0.02 0.02 0.08** 0.53** 0.07** 0.36**
(0.02) (0.02) (0.02) (0.02) (0.04) (0.07) (0.03) (0.07)
12 0.05** 0.05** 0.04* 0.02 0.04* 0.35** 0.06** 0.28**
(0.03) (0.02) (0.02) (0.03) (0.03) (0.07) (0.02) (0.07)
36 0.05** 0.05** 0.05** 0.02 0.02 0.18** 0.07** 0.20**
(0.02) (0.02) (0.02) (0.03) (0.02) (0.07) (0.02) (0.06)
60 0.05** 0.07** 0.05** 0.02 0.02 0.15** 0.07** 0.20**
(0.02) (0.03) (0.02) (0.03) (0.02) (0.06) (0.02) (0.06)
B. Christiano-Eichenbaum Model
1 0.00 0.00 0.00 0.01 0.96** 0.25%* 0.02 0.13**
(0.00) (0.00) (0.00) (0.01) (0.02) (0.04) (0.02) (0.04)
6 0.05** 0.01 0.01 0.04 0.78** 0.18** 0.03 0.11**
(0.02) (0.01) (0.01) (0.03) (0.08) (0.05) (0.02) (0.05)
12 0.08** 0.02 0.02 0.03 0.40** 0.10** 0.03* 0.08**
(0.03) (0.01) (0.02) (0.04) (0.08) (0.03) (0.02) (0.04)
36 0.07** 0.01 0.03 0.01 0.17** 0.05** 0.03* 0.06**
(0.03) (0.01) (0.02) (0.02) (0.05) (0.02) (0.02) (0.03)
60 0.07** 0.02 0.03 0.01 0.15** 0.04** 0.03** 0.06*
(0.03) (0.01) (0.02) (0.02) (0.05) (0.02) (0.02) (0.03)
C. Strongin Model
1 0.00 0.00 0.00 0.00 0.77** 0.15*%* 0.02 0.08**
(0.00) (0.00) (0.00) (0.00) (0.08) (0.04) (0.01) (0.03)
6 0.04* 0.01 0.01 0.00 0.61** 0.11** 0.02 0.07*
(0.02) (0.01) (0.01) (0.01) (0.09) (0.04) (0.01) (0.04)
12 0.07** 0.02 0.02 0.00 0.31** 0.06** 0.02* 0.05*
(0.03) (0.01) (0.01) (0.01) (0.07) (0.02) (0.01) (0.03)
36 0.06** 0.01 0.02 0.00 0.13** 0.03** 0.03* 0.04*
(0.02) (0.01) (0.01) (0.01) (0.04) (0.01) (0.01) (0.02)
60 0.06** 0.01 0.02 0.00 0.12** 0.02** 0.03* 0.04*
(0.02) (0.01) (0.01) (0.01) (0.04) (0.01) (0.01) (0.02)
D. Just-identified Model
1 0.00 0.00 0.00 0.00 0.55** 0.61** 0.03 0.28**
(0.00) (0.00) (0.00) (0.00) (0.23) (0.25) (0.02) (0.11)
6 0.05** 0.03 0.02 0.04 0.46** 0.39** 0.04* 0.26**
(0.02) (0.02) (0.02) (0.03) (0.18) (0.15) (0.02) (0.11)
12 0.08** 0.03* 0.02 0.04 0.24** 0.23** 0.04* 0.19**
(0.03) (0.02) (0.02) (0.04) (0.09) (0.11) (0.02) (0.10)
36 0.07** 0.03 0.03 0.02 0.10** 0.11* 0.05** 0.14*
(0.02) (0.02) (0.02) (0.03) (0.04) (0.07) (0.02) (0.07)
60 0.07** 0.04 0.03 0.02 0.09** 0.10 0.05** 0.14*
(0.02) (0.03) (0.02) (0.03) (0.04) (0.06) (0.02) (0.07)

Note: Standard errors are in parentheses. Statistics significantly different from zeros are denoted by

*

* 3k

or

at a 10% or 5% significance level, respectively.
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