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1 Introduction

This paper develops a generalized two-step maximum likelihood (ML) estimation

method and derives the asymptotics for impulse responses and forecast-error variance

decomposition in partially identified vector autoregressive models. Various empirical

studies have used impulse response analysis within the framework of vector autore-

gressive models since Sims (1980). For such analyses, Blanchard and Watson (1986),

Bernanke (1986), and Blanchard (1989) imposed contemporaneous short-run restric-

tions, while Blanchard and Quah (1989) used long-run restrictions for identification.

From the first-step ordinary least squares estimates, they estimated the structural

parameters using Cholesky decomposition, generalized method of moments (GMM),

or ML estimation in the second step. Gali (1992) is an exception, as an instrumental

variables method was adopted to estimate IS-LM models with short- and long-run

restrictions.

When partially identified models are considered, Cholesky decomposition can be

used to estimate just-identified block recursive models, while the GMM can be used

for over-identified models (see Eichenbaum and Evans, 1995; Bernanke and Mihov,

1998, among others). By contrast, two-step ML estimation is limited to fully identi-

fied models, since the second step of ML estimation involves the technically difficult

process of constructing the likelihood function. We resolve this difficulty, transform-

ing the reduced-form model in the second step. We provide a new ML estimation

method for partially identified models and derive its asymptotic properties. We also

suggest a likelihood ratio test for over-identifying restrictions in partially identified

models.

Our results can be applied to many empirical studies of impulse responses to
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a subset of structural shocks. For illustration, we provide a two-step ML estimation

of the block recursive VAR model that was used by Bernanke and Mihov (1998).

In addition, we extend their model to an open economy and investigate the effects

of monetary policy on exchange rates and term structures. We find that exchange

rates tend to overshoot and term structures have hump-shaped responses to monetary

policy shocks.

This paper is organized as follows. Section 2 develops ML estimation in VAR

models that are partially identified with short-run restrictions. Section 3 derives the

asymptotic properties of ML estimators, and Section 4 discusses the asymptotics of

impulse responses and forecast-error variance. Section 5 extends Bernanke and Mihov

(1998) to an open economy, and Section 6 contains our conclusions. Definitions and

properties of the matrices and operators used in the text are summarized in Appendix

A, while the proof of the lemma is provided in Appendix B. The data used for the

application are described in Appendix C.

2 Generalized ML Estimation in VAR Models par-

tially identified with Short-Run Restrictions

Suppose that an economy is described by an n-dimensional structural vector autore-

gressive (VAR) model1:

B(L)yt = Fet, (2.1)

where B(L) = B0−
∑p

i=1 BiL
i, et is a vector of structural shocks with a mean of zero

and variance In, L is the lag operator, and In is the n-dimensional identity matrix.

We estimate the model using the ordinary least squares method in the first step with

1For simplicity, we assume that yt is demeaned. This does not change our main results.
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the corresponding reduced-form model:

A(L)yt = εt, (2.2)

where A(L) = In−
∑p

i=1 AiL
i, and εt is white noise with a mean of zero and variance

Σ. From the first-step estimates, we estimate the structural parameters, B0 and

F using ML estimation in the second step, and construct the remaining structural

parameters and shocks using Bi = B0Ai for i = 1, · · · , p and et = F−1B0εt. Refer to

Giannini (1992) for details of the ML estimation and its asymptotics for VAR models

that are fully identified with short-run restrictions.

The VAR model in (2.1) is not econometrically identified in general. The block

recursive assumption starts by partitioning yt into three blocks as

yt =




y1t

y2t

y3t


 .

For example, y2t is a set of n2-dimensional policy indicators, and y1t includes n1

variables that are included in the information set when the Federal Reserve Bank (or

Fed) implements a monetary policy, while y3t contains n3 variables that are excluded

from the information set (n = n1 + n2 + n3). Alternatively, y1t does not respond to

a monetary policy shock contemporaneously, while y3t does. See Christiano, Eichen-

baum, and Evans (1999) and Keating (1999) for an extended theoretical background.

Throughout this paper, we assume that the second block of parameters and shocks

is of interest given the following block recursive assumption:2

2As Christiano, Eichenbaum, and Evans (1999) noted, this block recursive system includes general
classes of VAR models. For example, we may consider fully identified models with the choice of
n1 = 0 and n3 = 0.
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Assumption 2.1. B0 is block lower triangular and F is block diagonal:

B0 =




B11 0 0
(n1×n1) (n1×n2) (n1×n3)

B21 B22 0
(n2×n1) (n2×n2) (n2×n3)

B31 B32 B33
(n3×n1) (n3×n2) (n3×n3)




and F =




F11 0 0
(n1×n1) (n1×n2) (n1×n3)

0 F22 0
(n2×n1) (n2×n2) (n2×n3)

0 0 F33
(n3×n1) (n3×n2) (n3×n3)




.

Denote the second block of B0 using B̄0 ≡ [B21
... B22

... 0]. If F22 is the identity

matrix and B22 is just-identified and lower triangular in addition to Assumption 2.1,

then B̄0 is identifiable and estimable using Cholesky decomposition. Otherwise, we

may use ML estimation concentrating on the n2-dimensional second block of the

model:

B̄0A(L)yt = F22e2t.

It is impossible to estimate B̄0 directly because its information matrix is singular.

The lemma below suggests that the sub-model requires a certain transformation (or

diagonalization) for ML estimation. In particular, we multiply a transformation ma-

trix M by the reduced-form VAR model (2.2), which makes each block of transformed

innovations mutually orthogonal.

Lemma 2.1. Under Assumption 2.1, a block recursive VAR model with short-run

restrictions is partially identifiable and two-step ML estimable by choosing a block

lower triangular transformation matrix M such that

B0 = BdM,

where

Bd =




B11 0 0
0 B22 0
0 0 B33


 and M =




In1 0 0
M21 In2 0
M31 M32 In3


 ,
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where M21 = −Σ21Σ
−1
11 , M31 = −Σ31Σ

−1
11 +M32M21, and M32 = −(Σ32−Σ31Σ

−1
11 Σ12)(Σ22−

Σ21Σ
−1
11 Σ12)

−1.

Proof. See Appendix B.

Remark 2.1. Lemma 2.1 is also valid under the alternative assumption that B0 is block

diagonal and F is lower triangular. Consider the lower triangular matrix Q such that

F = QFd, where Fd is the block diagonal matrix of F. From B0εt = Fet it follows

that B∗
0εt = Fdet, where B∗

0 is a lower triangular matrix such that B∗
0 = Q−1B0. Note

that the transformed matrices B∗
0 and Fd satisfy Assumption 2.1. It is straightforward

to show B∗
0 = B0M with the choice of Q = B0M

−1B−1
0 . In particular, Q = M−1

when B0 = In. Therefore, we can use the same transformation matrix M for the ML

estimation under the alternative assumptions.

Once the structural VAR model is diagonalized after transformation, we can

concentrate on the ML estimation of B22 and F22 in the sub-system

B22M̄A(L)yt = F22e2t, (2.3)

where M̄ = [−Σ21Σ
−1
11

... In2

... 0], which is the second block of M. In particular, the

transformation matrix M̄ makes the second block innovations, ε̄2t = M̄εt, mutually

orthogonal to the first block innovations, ε1t. In what follows, we assume that the

second block of the model is partially identified by the following short-run restrictions:

Assumption 2.2. vec(B22) = Sbbs + sb and vec(F22) = Sf fs + sf .

For computational purposes, we define K22 = F−1
22 B22, Φ22 = B−1

22 F22, Λ22 =

[B22
... F22], λs = (b′s, f

′
s)
′, sλ = (s′b, s

′
f )
′, and denote the vectorization of the cor-

responding matrix with a lower case letter and the corresponding estimator with a
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caret. For example, b22 = vec(B22) and ˆ̄M = [−Σ̂21Σ̂
−1

11

... In2

... 0], where vec denotes

the column stacking operator. We write the short-run restrictions in a compact form:

λ22 = Sλλs + sλ, where Sλ =

[
Sb 0
0 Sf

]
,

and designate the sample size, T , commutation matrix, Kmn, duplication matrix, Dn,

elimination matrix, Ln, and matrix Nn = 1
2
(In2 +Knn) as defined by Magnus (1988).

See Appendix A for the definitions and properties of these matrices.

Finally, we assume that the second set of structural shocks, e2t, follows the

identical independent multivariate standard normal distribution:

Assumption 2.3. e2t ∼ IIN(0, In2)

The generalized two-step ML estimation (GMLE) of partially identified models

is proposed in the following theorem:

Theorem 2.1. (The GMLE of partially identified models with short-run restrictions)

Under Assumptions 2.1–2.3, a VAR model partially identified with short-run restric-

tions can be estimated by generalized maximum likelihood estimation using the

(a) Likelihood function:

L(B22,F22) = T log |B22| − T log |F22| − T

2
trace(B′

22F
′−1
22 F−1

22 B22
ˆ̄MΣ̂ ˆ̄M′) (2.4)

(b) Gradient:

g(B22,F22) = T

[
In2 ⊗ F′−1

22

−F−1
22 B22 ⊗ F′−1

22

] [
(In2 ⊗ F′22)vec(B′−1

22 )− ( ˆ̄MΣ̂ ˆ̄M′ ⊗ F−1
22 )vec(B22)

]
,

where ⊗ is the Kronecker product operator

(c) Information matrix:

IT (B22,F22) = 2T

[
B−1

22 F22 ⊗ F′−1
22

−In2 ⊗ F′−1
22

]
Nn2

[
F′22B

′−1
22 ⊗ F−1

22

... − In2 ⊗ F−1
22

]
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(d) Score algorithm:

λs,i+1 = λs,i + [IT (λs,i)]
−1g(λs,i),

where g(λs) = S′λg(B22,F22), IT (λs) = S′λIT (B22,F22)Sλ, and i denotes the iteration

step, and

(e) if B22 or F22 is over-identified, the over-identifying restrictions are testable using

a likelihood ratio test:

LRT = 2(Lu − Lr),

where Lu = −T
2

log | ˆ̄MΣ̂ ˆ̄M′| − n2T
2

, Lr = L(B̂22, F̂22), and LRT is asymptotically

χ2
(q)-distributed, where q is the number of over-identifying restrictions.

Proof. (a) Provided that the model is partially identifiable, we can concentrate on

the second block of the structural model

B̄0A(L)yt = F22e2t,

or

K̄0A(L)yt = e2t,

where K̄0 = F−1
22 B̄22M̄. As e2 is multivariate standard normally distributed, its p.d.f.

follows

f(e2) = (2π)−
1
2
n2T exp(−1

2

T∑
t=1

e′2te2t).

Therefore, from e2t = K̄0εt we get the p.d.f. of y

fy(y) = (2π)−
1
2
n2T exp(−1

2

T∑
t=1

ε′tK̄
′
0K̄0εt)|K̄0K̄

′
0|

T
2
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and the log-likelihood function

L(K̄0,A(L)) = constant +
T

2
log |K̄0K̄

′
0| −

1

2

T∑
t=1

ε′tK̄
′
0K̄0εt.

Consequently, the second-step log-likelihood function becomes

L(B22,F22, Â(L)) = constant +
T

2
log |K̄0K̄

′
0| −

1

2

T∑
t=1

ε̂′tK̄
′
0K̄0ε̂t

= constant + T log |K22| − T

2
trace(K′

22K22
ˆ̄MΣ̂ ˆ̄M′)

= constant + T log |B22| − T log |F22| − T

2
trace(B′

22F
′−1
22 F−1

22 B22
ˆ̄MΣ̂ ˆ̄M′).

(b) Taking the derivative of (2.4) with respect to Λ22 yields

∂L

∂vec(Λ22)′
=

∂L

∂vec(K22)′
∂vec(K22)

∂vec(Λ22)′
,

where

∂L

∂vec(K22)′
= T

[
vec(K′−1

22 )− vec(K22
ˆ̄MΣ̂ ˆ̄M′)

]′

= T
[
vec(K′−1

22 )− ( ˆ̄MΣ̂ ˆ̄M′ ⊗ In2)vec(K22)
]′

(2.5)

and

∂vec(K22)

∂vec(Λ22)′
=

[
∂vec(K22)

∂vec(B22)′
...

∂vec(K22)

∂vec(F22)′

]

=

[
In2 ⊗ F−1

22

... −B′
22F

′−1
22 ⊗ F−1

22

]
.

Therefore, the gradient becomes

g(B22,F22) =
∂L

∂vec(Λ22)

= T

[
In2 ⊗ F′−1

22

−F−1
22 B22 ⊗ F′−1

22

]
[(In2 ⊗ F′22)vec(B′−1

22 )− ( ˆ̄MΣ̂ ˆ̄M′ ⊗ F−1
22 )vec(B22)].

(c) From the second derivative of (2.5) with respect to K22

HT (K22) =
∂L2

∂vec(K22)∂vec(K22)′
= T

[
∂vec(K′−1

22 )

∂vec(K22)′

]′
− T ( ˆ̄MΣ̂ ˆ̄M′ ⊗ In2)

= −T
[
(K−1

22 ⊗K
′−1
22 )Kn2n2 + ( ˆ̄MΣ̂ ˆ̄M′ ⊗ In2)

]
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we get the information matrix

IT (K22) = −E(HT (K22)) = T
[
(K−1

22 ⊗K
′−1
22 )Kn2n2 + E( ˆ̄MΣ̂ ˆ̄M

′
)⊗ In2

]

= T
[
(K−1

22 ⊗K
′−1
22 )Kn2n2 + K−1

22 K′−1
22 ⊗ In2

]

= 2T (K−1
22 ⊗ In2)Nn2(K

′−1
22 ⊗ In2).

Therefore, the information matrix with respect to Λ22 becomes

IT (B22,F22) =
1

T
E(g(B22,F22)g(B22,F22)

′)

=

[
In2 ⊗ F′−1

22

−F−1
22 B22 ⊗ F′−1

22

]
1

T
E(g(K22)g(K22)

′)
[
In2 ⊗ F−1

22

... −B′
22F

′−1
22 ⊗ F−1

22

]

=

[
In2 ⊗ F′−1

22

−F−1
22 B22 ⊗ F′−1

22

]
IT (K22)

[
In2 ⊗ F−1

22

... −B′
22F

′−1
22 ⊗ F−1

22

]

= 2T

[
B−1

22 F22 ⊗ F′−1
22

−In2 ⊗ F′−1
22

]
Nn2

[
F′22B

′−1
22 ⊗ F−1

22

... − In2 ⊗ F−1
22

]
.

(d) A usual score algorithm applies, but the following transformation is necessary

because IT (B22,F22) is singular. From λ22 = Sλλs + sλ and

∂L

∂λ′s
=

∂L

∂λ′22

∂λ22

∂λ′s

= g(B22,F22)
′Sλ,

we get the gradient

g(λs) = S′λg(B22,F22)

and the information matrix

IT (λs) =
1

T
E(g(λs)g(λs)

′)

= S′λ
1

T
E(g(B22,F22)g(B22,F22)

′)Sλ

= S′λIT (B22,F22)Sλ.
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(e) We write the log likelihood function for the sub-system following Giannini (1992),

with some modifications

L(Σ) = −T

2
log| ˆ̄MΣ ˆ̄M′| − T

2
trace(( ˆ̄MΣ ˆ̄M′)−1 ˆ̄MΣ̂ ˆ̄M′).

Therefore, the log likelihood ratio becomes

LRT = 2(Lu − Lr),

where

Lu = L(Σ̂) = −T

2
log| ˆ̄MΣ̂ ˆ̄M′| − n2T

2
and

Lr = L(ΣML) = T log |B̂22| − T log |F̂22| − T

2
trace(B̂′

22F̂
′−1
22 F̂−1

22 B̂22
ˆ̄MΣ̂ ˆ̄M′)

from ˆ̄MΣML
ˆ̄M′ = (B̂′

22F̂
′−1
22 F̂−1

22 B̂22)
−1.

Example 2.1. (Bernanke-Mihov Model, n3 = 0)

It is straightforward to apply Theorem 2.1 to Bernanke and Mihov’s (1998) model

with the choice of n3 = 0. Suppose that B0 is block lower triangular and F is block

diagonal

B0 =

[
B11 0
B21 B22

]
, F =

[
F11 0
0 F22

]
,

where B21,B22 and F22 are the structural parameters of interest. Write B̄0 = B22M̄,

where M̄ = [−Σ21Σ
−1
11

... In2 ]. Provided that B22 and F22 are identifiable using short-

run restrictions, the sub-system is two-step ML-estimable, as shown in Theorem 2.1.

Alternatively, we may estimate B22 and F22 by solving

B22
ˆ̄MΣ̂ ˆ̄M′B′

22 = F22F
′
22

numerically for just-identified models or using the two-step GMM for over-identified

models, as in Bernanke and Mihov (1998).
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3 Asymptotics on ML estimators

It is often of interest to trace the dynamic responses and to decompose the forecast-

error variance of economic variables. In order to provide confidence intervals for

impulse responses, this section derives the asymptotic distribution of Φ̂0 = B̂−1
0 F̂.

Once its asymptotic distribution is provided, it is straightforward to derive asymp-

totics for impulse responses and forecast-error variance decomposition, as shown in

the next section.

We begin with the first-step OLS estimates. Let θ = (a′,σ′)′, where a =

vec(A1,A2, · · · ,Ap) and σ = vech(Σ), where vech is the column stacking operator

that stacks only the elements on and below the diagonal. It is well known that θ is

asymptotically normally distributed

√
T (θ̂ − θ)

d−→ N(0,Σθ),

where

Σθ =

[
Σa 0
0 Σσ

]
=

[
[E(xtx

′
t)]
−1 ⊗Σ 0

0 2D+
n (Σ⊗Σ)D+′

n

]
,

xt =
[
y′t−1,y

′
t−2, · · · ,y′t−p

]′
, and D+

n is the Moore-Penrose inverse of Dn, as defined

in Appendix A. Refer to Hamilton (1994) for its derivation and extended discussion.

Due to the block diagonal property of Σθ, the asymptotic distribution of the

second-step estimator of Φ0 depends on Σσ only, so that one may use the asymptotic

variance of Φ̂0 or Σσ for asymptotic distributions of impulse responses and forecast-

error variance decomposition. For example, Giannini (1992) uses the asymptotic

variance of Φ̂0 , while Lütkepohl (1990) uses Σσ. When partially identified models

are considered, it is convenient to use Σσ, because the transformation matrix used
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for ML estimation is a function of σ. Write

Φ0 =




Φ11 0 0
(n1×n1) (n1×n2) (n1×n3)

Φ21 Φ22 0
(n2×n1) (n2×n2) (n2×n3)

Φ31 Φ32 Φ33
(n3×n1) (n3×n2) (n3×n3)




, Σ =




Σ11 Σ12 Σ13
(n1×n1) (n1×n2) (n1×n3)

Σ21 Σ22 Σ23
(n2×n1) (n2×n2) (n2×n3)

Σ31 Σ32 Σ33
(n3×n1) (n3×n2) (n3×n3)




and denote σ∗ = (σ′
11,σ

′
21,σ

′
31, σ

′
22,σ

′
32,σ

′
33)

′. Let Σσ∗ be the asymptotic variance of

σ̂∗, where σii = vech(Σii) and σij = vec(Σij) if i 6= j. It is particularly interesting to

derive the asymptotic property of the second-step estimator of Φ̄0 = [0
... Φ′

22

... Φ′
32]

′.

From Φ0 = M−1B−1
d F, we can show that

Φ̄0 = M̃Φ22, (3.1)

where M̃ is the second-column block of M−1. Since M is lower block triangular, we

can write M̃ = [0
... In2

... −M′
32]

′, where M32 is defined in Lemma 2.1. For compu-

tational purposes, define Σ̄ = M̄ΣM̄′ = Σ22 −Σ21Σ
−1
11 Σ′

21, Σ̃ = Σ32 −Σ31Σ
−1
11 Σ′

21,

and write M32 = −Σ̃Σ̄
−1

in a compact form. In addition, denote σ̄ = vech(Σ̄) and

σ̃ = vec(Σ̃). Since Φ̄0 in (3.1) depends on M̃ and Φ22 we derive the asymptotic

variance of ˆ̃M in Lemma 3.1 below and that of Φ̂22 later in Theorem 3.1.

Lemma 3.1. (Asymptotic distributions of the first-step estimators)

(a)
√

T (σ̂∗ − σ∗) d−→ N(0,Gσ∗σΣσG
′
σ∗σ), where

Gσ∗σ =




D+
n1

0 0 0 0 0 0 0 0
0 1

2
Kn1n2 0 1

2
In2n1 0 0 0 0 0

0 0 1
2
Kn1n3 0 0 0 1

2
In3n1 0 0

0 0 0 0 D+
n2

0 0 0 0
0 0 0 0 0 1

2
Kn2n3 0 1

2
In3n2 0

0 0 0 0 0 0 0 0 D+
n3







Knn1 0 0
0 Knn2 0
0 0 Knn3


Dn.

(b)
√

T (ˆ̄σ − σ̄)
d−→ N(0, Ḡσσ∗Σσ∗Ḡ

′
σσ∗), where

Ḡσσ∗ =

[
D+

n2
(Σ21Σ

−1
11 ⊗Σ21Σ

−1
11 )Dn1

... − 2D+
n2

(Σ21Σ
−1
11 ⊗ In2)

... 0
... In2(n2+1)

2

... 0
... 0

]
.
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(c)
√

T (ˆ̃σ − σ̃)
d−→ N(0, G̃σσ∗Σσ∗G̃

′
σσ∗), where

G̃σσ∗ =

[
(Σ21Σ

−1
11 ⊗Σ31Σ

−1
11 )Dn1

...−Kn2n3(Σ31Σ
−1
11 ⊗ In2)

...−Σ21Σ
−1
11 ⊗ In3

... 0
... In3n2

... 0

]
.

(d)
√

T ( ˆ̄m− m̄)
d−→ N(0, Ḡmσ∗Σσ∗Ḡ

′
mσ∗), where

Ḡmσ∗ =




(Σ−1
11 ⊗Σ21Σ

−1
11 )Dn1 −Σ−1

11 ⊗ In2 0 0 0 0
0

n2
2×

n1(n1+1)
2

0n2
2×n2n1

0 0 0 0

0
n2n3×n1(n1+1)

2

0n2n3×n2n1 0 0 0 0


 .

(e)
√

T ( ˆ̃m− m̃)
d−→ N(0, G̃mσ∗Σσ∗G̃

′
mσ∗), where

G̃mσ∗ = Kn2n




0
n1n2×n(n+1)

2

0
n2

2×n(n+1)
2

Kn3n2

[
(Σ̄

−1 ⊗ In3)G̃σσ∗ − (Σ̄
−1 ⊗ Σ̃Σ̄

−1
)Dn2Ḡσσ∗

]


 .

Proof. See Appendix B.

As M̃ depends on Σ̄ and Σ̃, we first derive the asymptotic variances of ˆ̄Σ and

ˆ̃Σ in Lemma 3.1 (b) and (c), respectively, then we provide the asymptotic variance of

ˆ̃M in terms of Σσ∗ in Lemma 3.1 (e). The result of Lemma 3.1 (d) is used to derive

the asymptotic variance of ˆ̄B0 in Theorem 3.2 below. With the result of Lemma

3.1 (a), we can express the asymptotic variances of ˆ̄M and ˆ̃M in terms of Σσ using

√
T ( ˆ̄m−m̄)

d−→ N(0, ḠmσΣσḠ
′
mσ∗) and

√
T ( ˆ̃m−m̃)

d−→ N(0, G̃mσΣσG̃
′
mσ∗), where

Ḡmσ = Ḡmσ∗Gσ∗σ and G̃mσ = G̃mσ∗Gσ∗σ.

Now, we express the asymptotic variance of Φ̂22 in terms of Σσ. This requires

three steps. First, we compute the total derivative of Φ22 in terms of the second-step

ML estimator λ̂s in Lemma 3.2. Then, we derive the asymptotic variance of λ̂s in

Theorem 3.1, which is equivalent to inverse of the information matrix of λ̂s given

in Theorem 2.1. By writing the asymptotic variance of λ̂s in terms of Σσ, we can

simplify the expression of the asymptotic distribution of impulse responses in the next
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section. Finally, the asymptotic variance of ˆ̄Φ0 is derived in terms of Σσ in Theorem

3.2.

Lemma 3.2. (Total derivatives of the second-step inferred estimators)

(a) dk22 = Gkλdλs, where

Gkλ =

[
In2 ⊗ F−1

22

... −B′
22F

′−1
22 ⊗ F−1

22

]
Sλ.

(b) dφ22 = Gφλdλs, where

Gφλ =

[
−F′22B

′−1
22 ⊗B−1

22

... In2 ⊗B−1
22

]
Sλ.

(c) dvech(B−1
22 F22F

′
22B

′−1
22 ) = Gφφλdλs, where

Gφφλ = 2D+
n2

[
−B−1

22 F22F
′
22B

′−1
22 ⊗B−1

22

... B−1
22 F22 ⊗B−1

22

]
Sλ.

Proof. See Appendix B.

The results of Lemma 3.2 (a) and (b) are used to derive the asymptotic variance

of K̂22 and Φ̂22, respectively, in Theorem 3.2 below. Note, however, that these results

are expressed in terms of the asymptotic variance of the ML estimator, Σλs , rather

than Σσ. To express the asymptotic variance of λ̂s in terms of Σσ, we use the following

property

M̄ΣM̄′ = B−1
22 F22F

′
22B

′−1
22 ,

where the asymptotic variance of the left-hand side is a function of Σσ, while the

right-hand side is a function of Σλs from Lemma 3.2 (c). From these results, we

can state the asymptotic distributions of the ML estimator λ̂s in terms of Σσ in the

following theorem:

14



Theorem 3.1. (Asymptotic distributions of the second-step ML estimators)

√
T (λ̂s − λs)

d−→ N(0,GλσΣσG
′
λσ), where

Gλσ = G+
φφλḠσσ∗Gσ∗σ

Proof. It follows from Σ̄ = B−1
22 F22F

′
22B

′−1
22 that dσ̄ = dvech(B−1

22 F22F
′
22B

′−1
22 ). There-

fore, dσ̄ = Gφφλdλs from Lemma 3.2 (c). Since Gφφλ has a full column rank, we get

dλs = G+
φφλdσ̄, where dσ̄ = Ḡσσ∗dσ∗ = Ḡσσ∗Gσ∗σdσ. Finally, the delta method

yields Σλs = GλσΣσG
′
λσ.

Let Gbσ = [ Inbs

... 0 ]Gλσ, where nbs is the number of free parameters in B22.

With this notation, the asymptotic distributions of ˆ̄Φ0 and other inferred estimators,

such as ˆ̄B0 and ˆ̄K0, are given in the next theorem.

Theorem 3.2. (Asymptotic distributions of second-step inferred estimators)

(a)
√

T (k̂22 − k22)
d−→ N(0,GkσΣσG

′
kσ), where

Gkσ = GkλGλσ.

(b)
√

T (φ̂22 − φ22)
d−→ N(0,GφσΣσG

′
φσ), where

Gφσ = GφλGλσ.

(c)
√

T (ˆ̄b0 − b̄0)
d−→ N(0, ḠbσΣσḠ

′
bσ), where

Ḡbσ = (M̄′ ⊗ In2)SbGbσ + (In ⊗B22)Ḡmσ∗Gσ∗σ.

(d)
√

T (ˆ̄k0 − k̄0)
d−→ N(0, ḠkσΣσḠ

′
kσ), where

Ḡkσ = (M̄′ ⊗ In2)Gkσ + (In ⊗ F−1
22 B22)Ḡmσ∗Gσ∗σ.

(e)
√

T (ˆ̄φ0 − φ̄0)
d−→ N(0, ḠφσΣσḠ

′
φσ), where

Ḡφσ = (In2 ⊗ M̃)Gφσ + (Φ′
22 ⊗ In)G̃mσ∗Gσ∗σ.
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Proof. (a) From Lemma 3.2 and Theorem 3.1, we obtain dk22 = Gkλdλs = GkλGλσdσ.

(b) Similarly, dφ22 = Gφλdλs = GφλGλσdσ.

(c) From B̄0 = B22M̄, we can show that db̄0 = dvec(B22M̄) = (M̄′⊗ In2)dvec(B22)+

(In ⊗ B22)dvec(M̄). From Lemma 3.1 and Theorem 3.1, we get db̄0 = (M̄′ ⊗

In2)Sbdbs + (In ⊗B22)Ḡmσ∗dσ∗ =
[
(M̄′ ⊗ In2)SbGbσ + (In ⊗B22)Ḡmσ∗Gσ∗σ

]
dσ.

(d) From K̄0 = K22M̄, it follows that dk̄0 = dvec(K22M̄) = (M̄′ ⊗ In2)dvec(K22) +

(In ⊗K22)dvec(M̄). From Lemma 3.1 and 3.2, we obtain dk̄0 = [(M̄′ ⊗ In2)Gkσ +

(In ⊗ F−1
22 B22)Ḡmσ∗Gσ∗σ]dσ.

(e) Similar to the proof of (d). The delta method completes the proof.

Remark 3.1. When the model is just-identified, the result of Theorem 3.2 (e) can be

stated as
√

T (ˆ̄φ0 − φ̄0)
d−→ N(0, ḠφσΣσḠ

′
φσ), where

Ḡφσ = (F−1
22 B22M̄⊗ In)Dn + (In2 ⊗Σ)Kn2nḠkσ

from the relation Φ̄0 = ΣK̄′
0. Among others, King, Plosser, Stock, and Watson (1991)

used the relation Φ̄0 = ΣK̄′
0 for just-identified models. The first-step OLS estimator

Σ̂ can be used to obtain ˆ̄Φ0 = Σ̂ ˆ̄K′
0 because ΣML = ΣOLS for just-identified models,

where ΣOLS = Σ̂ and ΣML = Φ̂0Φ̂
′
0. Note that we need to estimate Φ̄0 using (3.1)

for over-identified models in which ΣML 6= ΣOLS.

4 Asymptotics of Impulse Responses and Forecast-

Error Variance Decompositions

This section provides the asymptotic distributions of impulse responses and forecast-

error variance decomposition, which are widely used as standard tools for economic

analysis in the applied VAR literature (see, e.g., Baillie, 1987; Runkle, 1987). Given
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that yt is covariance stationary, there exists a Wold representation

yt = Ψ(L)εt

and the corresponding structural moving average representation

yt = Φ(L)et,

where Ψ(L) = A(L)−1 =
∑∞

i=0 ΨiL
i, Ψ0 = In, Φ(L) = B(L)−1F =

∑∞
i=0 ΦiL

i, and

Φi = ΨiΦ0. In particular, i-step impulse responses to the second set of structural

shocks, e2t are given by

Φ̄i = ΨiΦ̄0.

It is often of interest to trace the accumulated responses

Ψci =
i∑

j=0

Ψj, Φ̄ci = ΨciΦ̄0

and the total accumulated responses

Ψ(1) =
∞∑

j=0

Ψj = A(1)−1, Φ̄(1) = Ψ(1)Φ̄0.

Let `p be the p-dimensional vector with ones and denote

A =




A1 A2 · · · Ap−1 Ap

In 0 · · · 0 0
0 In · · · 0 0
...

. . .
...

...
0 0 · · · In 0




and Jnp =

[
In

... 0n×n(p−1)

]
.

With this notation, the asymptotic distributions of the impulse responses are given

in the next theorem.

Theorem 4.1. Suppose
√

T (θ̂ − θ)
d−→ N(0,Σθ) and λ22 = Sλλs + sλ. Then
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(a)
√

Tvec(Ψ̂i −Ψi)
d−→ N(0,GΨaiΣaG

′
Ψai), i = 1, 2, · · · ,

where

GΨai =
∂vec(Ψi)

∂a′
=

i−1∑
j=0

Jnp(A
′)i−1−j ⊗Ψj;

(b)
√

Tvec(Ψ̂ci −Ψci)
d−→ N(0,GΨcaiΣaG

′
Ψcai), i = 1, 2, · · · ,

where

GΨcai =
∂vec(Ψci)

∂a′
=

i∑
j=0

GΨaj;

(c)
√

Tvec(Ψ̂(1)−Ψ(1))
d−→ N(0,GΨ1aΣaG

′
Ψ1a)

where

GΨ1a =
∂vec(Ψ(1))

∂a′
= `p

′ ⊗Ψ(1)′ ⊗Ψ(1);

(d)
√

Tvec( ˆ̄Φi − Φ̄i)
d−→ N(0, ḠΦaiΣaḠ

′
Φai + ḠΦσiΣσḠ

′
Φσi), i = 0, 1, 2, · · · ,

where

ḠΦai =
∂vec(Φ̄i)

∂a′
=

{
0, i = 0

(Φ̄
′
0 ⊗ In)GΨai, i = 1, 2, · · · and

ḠΦσi =
∂vec(Φ̄i)

∂σ′ = (In2 ⊗Ψi)Ḡφσ;

(e)
√

Tvec( ˆ̄Φci − Φ̄ci)
d−→ N(0, ḠΦcaiΣaḠ

′
Φcai + ḠΦcσiΣσḠ

′
Φcσi), i = 0, 1, 2, · · · ,

where

ḠΦcai =
∂vec(Φ̄ci)

∂a′
=

i∑
j=0

ḠΦaj and

ḠΦcσi =
∂vec(Φ̄ci)

∂σ′ =
i∑

j=0

ḠΦσj;
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(f)
√

Tvec( ˆ̄Φ(1)− Φ̄(1))
d−→ N(0, ḠΦ1aΣaḠ

′
Φ1a + ḠΦ1σΣσḠ

′
Φ1σ),

where

ḠΦ1a =
∂vec(Φ̄i)

∂a′
= (Φ̄

′
0 ⊗ In)GΨ1a and

ḠΦ1σ =
∂vec(Φ̄i)

∂σ′ = (In2 ⊗Ψ(1))Ḡφσ.

Proof. (a)–(c) See Lütkepohl (1990) Proposition 1.

(d) It follows from Φ̄i = ΨiΦ̄0 and Theorem 3.2 that dvec(Φ̄i) = (Φ̄
′
0⊗In)dvec(Ψi)+

(In2 ⊗Ψi)dvec(Φ̄0) = (Φ̄
′
0 ⊗ In)GΨaida + (In2 ⊗Ψi)Ḡφσdσ.

(e) Immediate from (d).

(f) Similar to the proof of (d).

The structural model considered in this paper includes general classes of VAR

models. The following corollary shows that the result of Lütkepohl (1990) is a special

case when the model is fully- and just-identified with recursive assumptions.

Corollary 4.1. Suppose that the model is just-identified and Φ0 is lower triangular.

Then,

ḠΦσi = (In ⊗Ψi)L
′
n [2LnNn(Φ0 ⊗ In)L′n]

−1
, i = 0, 1, · · · , s;

which is equivalent to Lütkepohl’s (1990) Proposition 1-(v).

Proof. Consider a fully identified model with n2 = n in which B0 = In, F = Φ0, and

M̄ = In. From Theorem 4.1 (d), we obtain GΦσi = (In ⊗Ψi)Ḡφσ = (In ⊗Ψi)Gφσ =

(In ⊗ Ψi)GφλGλσ, where Gφλ = Sλ and Gλσ = G+
φφλ = [2D+

n (Φ0 ⊗ In)Sλ]
−1

for

just-identified models. Moreover, Sλ = L′n because vec(Φ0) = L′nvech(Φ0) when Φ0

is lower triangular. The property of D+
n = LnNn completes the proof.
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We now derive the asymptotic distributions of forecast-error variance decompo-

sitions. Let w̄h,ij be the contribution of the j-th shock in e2t to the h-step forecast-

error variance of the i-th variable, yit, which is obtained using

w̄h,ij =
h−1∑
s=0

φ̄2
s,ij/MSEi(h), (4.1)

where MSEi(h) =
∑h−1

s=0 ι′iΨ
′
sΣΨsιi is the mean square error of the h-step forecast of

yit and ιi is the i-th column of In. For computational purposes, write the forecast-error

variance components (4.1) using the following matrices

W̄h = [w̄h,ij]n×n2
= WhΨW̄hΦ, (4.2)

where WhΨ =
[
(
∑h−1

s=0 ΨsΣΨ′
s)¯ In

]−1

, W̄hΦ =
∑h−1

s=0 (Φ̄s ¯ Φ̄s), and ¯ is the

Hadamard operator that just takes the product of corresponding pairs of entries.

See Appendix A for details. Following Giannini (1992), let Dv(M) = diag(vec(M))

be the square matrix with vec(M) on the diagonal. Using this notation, the asymp-

totic distributions of the forecast-error variance components are given in the next

theorem.

Theorem 4.2. Suppose
√

T (θ̂ − θ)
d−→ N(0,Σθ) and λ22 = Sλλs + sλ. Then,

√
Tvec( ˆ̄Wh − W̄h)

d−→ N(0, ḠwahΣaḠ
′
wah + ḠwσhΣσḠ

′
wσh),
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where

Ḡwah =
∂vec(W̄h)

∂a′
= 2(In2 ⊗WhΨ)

h−1∑
s=0

Dv(Φ̄s)ḠΦas

− 2(W̄′
hΦW′

hΨ ⊗WhΨ)Dv(In)Nn

h−1∑
s=0

(ΨsΣ⊗ In)GΨas and

Ḡwσh =
∂vec(W̄h)

∂σ′ = 2(In2 ⊗WhΨ)
h−1∑
s=0

Dv(Φ̄s)ḠΦσs

− (W̄′
hΦW′

hΨ ⊗WhΨ)Dv(In)
h−1∑
s=0

(Ψs ⊗Ψs)Dn.

Proof. Write dvec(W̄h) = (W̄′
hΦ ⊗ In)dvec(WhΨ) + (In2 ⊗WhΨ)dvec(W̄hΦ), where

dvec(WhΨ) = −(W′
hΨ ⊗WhΨ)dvec((

h−1∑
s=0

ΨsΣΨ′
s)¯ In)

= −(W′
hΨ ⊗WhΨ)Dv(In)

h−1∑
s=0

dvec(ΨsΣΨ′
s)

= −(W′
hΨ ⊗WhΨ)Dv(In)

h−1∑
s=0

[2Nn(ΨsΣ⊗ In)GΨasda + (Ψs ⊗Ψs)Dndσ] and

dvec(W̄hΦ) =
h−1∑
s=0

dvec(Φ̄s ¯ Φ̄s) =
h−1∑
s=0

2Dv(Φ̄s)dvec(Φ̄s) =
h−1∑
s=0

2Dv(Φ̄s)(ḠΦasda + ḠΦσsdσ).

The delta method after rearrangement completes the proof.

Similar to Corollary 4.1, the asymptotic distribution of the forecast-error vari-

ance decomposition in Lütkepohl (1990) is a special case when the model is fully- and

just-identified with recursive assumptions, as shown in the next corollary.

Corollary 4.2. Suppose that the model is just-identified and Φ0 is lower triangular.

Then, the asymptotic distribution of the (i, j)th component of Wh follows

√
T (ŵh,ij − wh,ij)

d−→ N(0,gwah,ijΣag
′
wah,ij + gwσh,ijΣσg

′
wσh,ij)
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which is equivalent to Lütkepohl’s (1990) Proposition 1-(v), where

gwah,ij =





0, h = 1

2
∑h−1

s=1 [MSEi(h)(ι′iΨsΦ0ιj)(ι
′
jΦ

′
0 ⊗ ι′i)GΨas

−(ι′iΨsΦ0ιj)
2
∑h−1

m=1(ι
′
iΨmΣ⊗ ι′i)GΨam]/MSEi(h)2, h > 1

gwσh,ij =

∑h−1
s=0 [2MSEi(h)(ι′iΨsΦ0ιj)(ι

′
j ⊗ ι′i)GΦσs

−(ι′iΨsΦ0ιj)
2
∑h−1

m=0(ι
′
iΨm ⊗ ι′iΨm)Dn]/MSEi(h)2, h ≥ 1

Proof. Consider a fully identified model with n = n2. From w̄h,ij = ι′iW̄hιj =

(ι′j ⊗ ι′i)vec(W̄h), it follows that

gwah,ij = (ι′j ⊗ ι′i)Gwah = 2(ι′j ⊗ ι′i)(In2 ⊗WhΨ)
h−1∑
s=0

Dv(Φ̄s)ḠΦas

− 2(ι′j ⊗ ι′i)(W̄
′
hΦW′

hΨ ⊗WhΨ)Dv(In)Nn

h−1∑
s=0

(ΨsΣ⊗ In)GΨas and

gwσh,ij = (ι′j ⊗ ι′i)Gwσh = 2(In2 ⊗WhΨ)
h−1∑
s=0

Dv(Φ̄s)ḠΦσs

− (W̄′
hΦW′

hΨ ⊗WhΨ)Dv(In)
h−1∑
s=0

(Ψs ⊗Ψs)Dn.

We can show that (ι′j⊗ι′i)(In⊗WhΨ)
∑h−1

s=0 Dv(Φ̄s) =
∑h−1

s=0
φs,ij

MSEi(h)
(ι′j⊗ι′i) and (ι′j⊗

ι′i)(W̄
′
hΦW′

hΨ⊗WhΨ)Dv(In) =
∑h−1

s=0

[∑h−1
m=0

φ2
m,ij

MSEm(h)2
(ι′i ⊗ ι′i)

]
. After incorporating

the property of (ι′i ⊗ ι′i)Nn = (ι′i ⊗ ι′i), the delta method completes the proof.

5 Application

To implement the generalized two-step ML estimation described in Section 2, we

extend Bernanke and Mihov (1998) to investigate the effects of monetary policy shocks

to exchange rates in an open economy. As Bernanke and Blinder (1992) proposed,

consider a structural VAR model

B0yt =

p∑
i=1

Biyt−i + Fet,
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where B0 is lower block triangular and F is block diagonal as defined in Assumptions

2.1 and 2.2, respectively. We consider three sets of variables in yt: a set of non-policy

variables, y1t, which are not affected by monetary policy shocks contemporaneously,

a set of policy indicators, y2t, which describe the stance of the Fed’s monetary pol-

icy, and a set of macroeconomic variables, y3t, which are influenced by monetary

policy shocks contemporaneously. In our application, y1t includes the industrial pro-

duction index, consumer price index, and world commodity price index; y2t includes

total reserves, non-borrowed reserves, and federal funds rates, as chosen by Bernanke

and Mihov (1998).3 We extend the model by considering exchange rates and term

structures in y3t. We may extend our method to an open economy model in which

exchange rates and term structures are considered as policy indicators (see, e.g., Fung

and Yuan, 1999). In such a case, the model falls into the same structure as Bernanke

and Mihov (1998) because there are no variables in y3t. For methodological purposes,

we consider exchange rates and term structures as non-policy variables to shed light

on the generality of our model.

Under Assumption 2.1, consider the second block of the structural VAR model

B22M̄yt =

p∑
i=1

B̄iyt−i + F22e2t,

and describe the market for bank reserves using

B22ε̄2t = F22e2t, (5.1)

where ε̄2t = M̄εt, which is the second set of innovations orthogonalized to the first set

of innovations, ε1t. Following Bernanke and Mihov (1998), we denote the innovation

3Bernanke and Mihov (1998) used real GDP and the GDP deflator at the monthly frequency
using interpolation.
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in the demand for total reserves εTR, the innovation in the demand for borrowed

reserves εBR, the innovation in the demand for non-borrowed reserves εNBR, and the

innovation in the federal funds rate εFFR. Bernanke and Mihov (1998) assumed that

the market is described by the following set of equations:4

(Demand for total reserves) ε̄TR = −αε̄FFR + ηded

(Demand for borrowed reserves) ε̄BR = βε̄FFR + ηbeb

(Demand for nonborrowed reserves) ε̄NBR = φded + φbeb + ηses,

where ed is a demand disturbance, eb is a disturbance to the borrowing function, and es

is the shock to monetary policy that we want to identify. Note that ε̄BR = ε̄TR− ε̄NBR

and all the equations are expressed in orthogonalized innovation forms. For ML

estimation, write the equations in the form of (5.1)




1 0 α
0 1 0
1 −1 −β







ε̄TR

ε̄NBR

ε̄FFR


 =




ηd 0 0
φd ηs φb

0 0 ηb







ed

es

eb


 .

The model is unidentified because seven unknowns need to be estimated from six

relations in B22M̄ΣM̄′B′
22 = F22F

′
22. Following Bernanke and Mihov (1998), we

consider four alternative models regarding restrictions on the monetary policy shock

es =
1

ηs

[
−(

φd

ηd

+
φb

ηb

)ε̄TR + (1 +
φb

ηb

)ε̄NBR − (α
φd

ηd

− β
φb

ηb

)ε̄FFR

]
. (5.2)

The alternative models are summarized as follows:

i) Bernanke and Blinder (1992) model (BB): φd

ηd
= 1, φb

ηb
= −1, es = − 1

ηs
(α + β)ε̄FFR;

ii) Christiano and Eichenbaum (1991) model (CE): φd

ηd
= 0, φb

ηb
= 0, es = 1

ηs
ε̄NBR;

iii) Strongin (1995) model (ST): α = 0, φb

ηb
= 0, es = − 1

ηs
(φd

ηd
ε̄TR + ε̄NBR); and

4We consider a simplified model in which the innovation to the discount rate is zero.
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iv) Just-identified model (JI): α = 0, es = 1
ηs

[
−(φd

ηd
+ φb

ηb
)ε̄TR + (1 + φb

ηb
)ε̄NBR + β φb

ηb
ε̄FFR

]
.

See Bernanke and Mihov (1998) for details.

The unrestricted VAR model is estimated over the sample period from January

1970 to June 2001 using monthly data obtained from the Federal Reserve Bank of

St. Louis. The industrial production index, the consumer price index, the world

commodity price index, and exchange rates (U.S/Canada) are taken as differences

using logarithms. The total and non-borrowed reserves are normalized using the

36-month moving average of the total reserves. The ten-year treasury bill rate less

three-month treasury bill rate is used for the term structure. Time plots of data for

levels and differences are shown in Figure 4.1. See Appendix C for a description of the

data. We choose 12 months as the lag length, although choosing shorter lag lengths

does not alter our main results.

The second-step ML estimates are given in Table 4.1. We begin with the over-

identification tests in Panel A. Bernanke-Blinder model and Strongin model are not

rejected at the 5% significance level, while Christiano-Eichenbaum model is rejected

at the 1% significance level. The ML estimates of B22 and F22 for the alternative

models are listed in Panel B. All the free parameters are significantly different from

zero at the 5% significance level. The long-run neutrality of money can be tested

using the estimates of Φ(1)12 in the fifth column of Panel E. The long-run neutrality

of money is not rejected for the Bernanke-Blinder, Christiano-Eichenbaum, or just-

identified models, while it is rejected for the Strongin model at the 5% significance

level.

Figure 4.2 shows the estimated dynamic responses of macroeconomic variables

and policy indicators to expansionary monetary policy shocks for the alternative mod-
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els. These results are robust for the model selected. The dynamic responses of output

have the usual humped shape. Output increases in the short run and starts to de-

crease after one or two years. The effects vanish in the long run, implying the long-run

neutrality of money. The dynamics of price are in sharp contrast with the results of

Bernanke and Mihov (1998). The results are subject to the ‘price puzzle’, in which

an expansionary monetary policy shock is followed by a subsequent fall in price as

pointed out by Sims (1992). The fall in price is significant for the first nine months and

is insignificant in the long horizon in the Bernanke-Blinder and just-identified models,

while it is insignificant for every horizon in the Christiano-Eichenbaum and Strongin

models. Although the world commodity price index is incorporated in the Fed’s infor-

mation set, as suggested by Sims (1992) and Leeper, Sims, and Zha (1996), the price

puzzle does not disappear when the industrial production index and the consumer

price index are used to measure output and overall price, respectively.5 The dynamic

responses of total reserves, non-borrowed reserves, and federal funds rates show the

liquidity effects in which expansionary monetary policy shocks are accompanied by

an increase in non-borrowed reserves and a fall in federal funds rates. Exchange rates

exhibit over-shooting behavior in the Bernanke-Blinder and the just-identified mod-

els. The dynamic responses of exchange rates are in sharp contrast with Eichenbaum

and Evans (1995), who found such evidence only with a twenty-month delay. In addi-

tion, Jang and Ogaki (2004) and Kalyvitis and Michaelides (2001) gave evidence for

instantaneous overshooting. The Christiano-Eichenbaum and Strongin models yield

5The price puzzle disappears when we use the quarterly real GDP and the GDP deflator for the
measure of output and overall price. As Bernanke and Mihov (1995) noted, it is “difficult to defend
[applying] the identification assumption of no feedback from policy to” the non-policy variables in
y1t at a quarterly frequency. One solution is to use interpolated monthly GDP data, as suggested
by Bernanke and Mihov (1995).
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the depreciation of the U.S. dollar after an expansionary monetary policy shock, but

the dynamic responses do not exhibit the overshooting behavior and are insignificant

over all time horizons. The dynamic responses of term structures show a humped

shape. An expansionary monetary policy shock yields an increase in term structures

for the first twenty months in the Bernanke-Blinder and just-identified models, while

the responses are insignificant in the Christiano-Eichenbaum and Strongin models.

The increase in term structures due to an expansionary policy shock is consistent

with the literature. See Evans and Marshall (1997) for an example.

Table 4.2 shows the forecast-error variance decompositions in the four alterna-

tive models. The policy indicator that includes the largest fraction of the forecast-

error variance attributed to the monetary policy shock varies across the four alter-

native models, as implied by (5.2). Note that 98% of the federal funds rates in

the Bernanke-Blinder model, 96% of the non-borrowed reserves in the Christiano-

Eichenbaum model, and 77% of the non-borrowed reserves in the Strongin model are

attributed to the monetary policy shock in the first month. In the just-identified

model, 55% of the non-borrowed reserves and 61% of the federal funds rates are

attributed to the monetary policy shock. The fraction of the exchange rates forecast-

error variance attributed to the monetary policy shock is relatively small, ranging

from 1% to 3% in the first month. The fraction after six months in the Bernanke-

Blinder model is at most 7%. As Faust and Rogers (2000) pointed out, it is not

attractive to exclude the exchange rates from the Fed’s information set. This result

is consistent with Jang and Ogaki (2004), who found that the fraction is relatively

small in recursive VAR models, while it is relatively large in vector error-correction

models with long-run restrictions.
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6 Concluding Remarks

This paper generalizes the existing VAR literature. First, it generalizes Giannini

(1992) to consider VAR models that are not necessarily fully identified. It shows that

partially identified models can be estimated using generalized two-step ML estima-

tion with a transformation matrix that diagonalizes the model. Second, generalizing

Lütkepohl (1990), this paper also derives the asymptotic distributions of impulse re-

sponses and forecast-error variance decomposition of general classes of VAR models.

In particular, it shows that the result of Lütkepohl (1990) is a special case when

the model is fully- and just-identified with recursive assumptions. Finally, as an ap-

plication, we extend Bernanke and Mihov (1998) to an open economy. We find that

exchange rates tend to overshoot and term structures show hump-shaped responses to

monetary policy shocks. One possible extension of this paper would be two-step ML

estimation of partially identified models with both short- and long-run restrictions.
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Appendix

A Definitions and properties

We follow the definitions used by Magnus (1988).

Definition A.1. (The commutation matrix) Kmnvec(A) = vec(A′) for any m × n

matrix A.

Definition A.2. (The matrix Nn) Nnvec(A) = 1
2
vec(A + A′) for any n× n matrix

A.

Definition A.3. (The duplication matrix Dn) Dnvech(A) = vec(A) for any sym-
metric n× n matrix A.

Definition A.4. (The elimination matrix Ln) Lnvec(A) = vech(A) for any lower
triangular n× n matrix A.

Definition A.5. (The Moore-Penrose inverse matrix A+) An n × m matrix A+

is the Moore-Penros inverse of a real m × n matrix if AA+A = A,A+AA+ =
A+, (AA+)′ = AA+, and (A+A)′ = A+A.

Definition A.6. (The Hadamard operator ¯) A¯B = [aijbij] for any m×n matrices
A and B.

Property A.1. (The commutation property)

(i) K′
mn = K−1

mn = Knm.

(ii) Kpm(A⊗B) = (B⊗A)Kqn for any m× n matrix A and p× q matrix B.

(iii) Kn1 = K1n = In.

Property A.2. (The property of Nn)

(i) Nn = 1
2
(In2 + Knn).

(ii) Nn = N′
n = N2

n.

(iii) NnKnn = Nn = KnnNn.

(iv) Nn(A⊗B)Nn = Nn(B⊗A)Nn.

(v) Nn(A⊗A)Nn = Nn(A⊗A) = (A⊗A)Nn.

Property A.3. (The duplication property)

(i) KnnDn = Dn = NnDn.
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(ii) D+
n Knn = D+

n = D+
n Nn.

(iii) DnD
+
n = Nn.

Property A.4. (The elimination property)

(i) LnL
′
n = In(n+1)

2

.

(ii) L+
n = L′n.

(iii) LnDn = In(n+1)
2

.

(iv) DnLnNn = Nn.

(v) D+
n = LnNn.

Property A.5. (The Moore-Penrose inverse matrix)

(i) A+ = (A′A)−1A′ if A has full-column rank.

(ii) A+ = A′(AA′)−1 if A has full-row rank.

Property A.6. (The Hadamard operator)

(i) A¯B = B¯A.

(ii) A¯ In = diag(A).

(iii) vec(A¯B) = vec(A)¯ vec(B) = Dv(A)vec(B) = Dv(B)vec(A).
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B Proof of Lemma

Lemma 2.1

Proof. Each block of the reduced-form VAR model becomes mutually orthogonalized
when the transformation matrix M is multiplied. Therefore, we can concentrate on
the second block of the model to estimate B22 and F22 from B22M̄ΣM̄′B′

22 = F22F
′
22,

where M̄ = [−Σ21Σ
−1
11

... In2

... 0]. Therefore, B22 and F22 are two-step ML estimable.
Finally, B21 is obtained by B21 = B22M21.

Lemma 3.1

Proof. (a) Write vec(Σ) = vec(Σ·1,Σ·2,Σ·3) = [vec(Σ·1)′, vec(Σ·2)′, vec(Σ·3)′]
′, where

vec(Σ·1) = Kn1nvec(Σ′
·1) = Kn1n




vec(Σ11)
vec(Σ′

21)
vec(Σ′

31)


 = Kn1n




Dn1 0 0
0 Kn2n1 0
0 0 Kn3n1







σ11

σ21

σ31


 .

Therefore,



σ11

σ21

σ31


 =




D+
n1

0 0
0 Kn1n2 0
0 0 Kn1n3


Knn1vec(Σ·1).

Similarly,



σ21

σ22

σ32


 =




In2n1 0 0
0 D+

n2
0

0 0 Kn2n3


Knn2vec(Σ·2) and




σ31

σ32

σ33


 =




In3n1 0 0
0 In3n2 0
0 0 Dn3


Knn3vec(Σ·3).

Therefore, from



I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 I 0 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 I 0 0 0
0 0 0 0 I 0
0 0 0 0 0 I







σ11

σ21

σ31

σ22

σ32

σ33




=




D+
n1

0 0 0 0 0 0 0 0
0 Kn1n2 0 0 0 0 0 0 0
0 0 Kn1n3 0 0 0 0 0 0
0 0 0 In2n1 0 0 0 0 0
0 0 0 0 D+

n2
0 0 0 0

0 0 0 0 0 Kn2n3 0 0 0
0 0 0 0 0 0 In3n1 0 0
0 0 0 0 0 0 0 In3n2 0
0 0 0 0 0 0 0 0 D+

n3







Knn1vec(Σ·1)
Knn2vec(Σ·2)
Knn3vec(Σ·3)




it follows that

dσ∗ =




D+
n1

0 0 0 0 0 0 0 0
0 1

2
Kn1n2 0 1

2
In2n1 0 0 0 0 0

0 0 1
2
Kn1n3 0 0 0 1

2
In3n1 0 0

0 0 0 0 D+
n2

0 0 0 0
0 0 0 0 0 1

2
Kn2n3 0 1

2
In3n2 0

0 0 0 0 0 0 0 0 D+
n3







Knn1 0 0
0 Knn2 0
0 0 Knn3


Dndσ.
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(b) Write dvec(Σ̄) = dvec(Σ22−Σ21Σ
−1
11 Σ′

21), where dvec(Σ̄) = Dn2dσ̄ and dvec(Σ21Σ
−1
11 Σ′

21) =
−(Σ21Σ

−1
11 ⊗Σ21Σ

−1
11 )Dn1dσ11 + 2Nn2(Σ21Σ

−1
11 ⊗ In2)dσ21. Therefore,

dσ̄ = D+
n2

(Σ21Σ
−1
11 ⊗Σ21Σ

−1
11 )Dn1dσ11 − 2D+

n2
(Σ21Σ

−1
11 ⊗ In2)dσ21 + dσ22

=

[
D+

n2
(Σ21Σ

−1
11 ⊗Σ21Σ

−1
11 )Dn1

... − 2D+
n2

(Σ21Σ
−1
11 ⊗ In2)

... 0
... In2(n2+1)

2

... 0
... 0

]
dσ∗.

(c) It follows from dvec(Σ̃) = dvec(Σ32 −Σ31Σ
−1
11 Σ′

21) that

dσ̃ = (Σ21Σ
−1
11 ⊗Σ31Σ

−1
11 )Dn1dσ11 −Kn2n3(Σ31Σ

−1
11 ⊗ In2)dσ21 − (Σ21Σ

−1
11 ⊗ In3)dσ31 + dσ32

=

[
(Σ21Σ

−1
11 ⊗Σ31Σ

−1
11 )Dn1

... −Kn2n3(Σ31Σ
−1
11 ⊗ In2)

... −Σ21Σ
−1
11 ⊗ In3

... 0
... In3n2

... 0

]
dσ∗.

(d) Write dvec(M̄) =
[−dvec(Σ21Σ

−1
11 )′,0,0

]′
, where dvec(Σ21Σ

−1
11 ) = −(Σ−1

11 ⊗
Σ21Σ

−1
11 )Dn1dσ11 + (Σ−1

11 ⊗ In2)dσ21. Therefore,

dm̄ =




(Σ−1
11 ⊗Σ21Σ

−1
11 )Dn1 −Σ−1

11 ⊗ In2 0 0 0 0
0

n2
2×

n1(n1+1)
2

0n2
2×n2n1

0 0 0 0

0
n2n3×n1(n1+1)

2

0n2n3×n2n1 0 0 0 0


 dσ∗.

(e) Write dvec(M̃) = Kn2ndvec(M̃′), where

dvec(M̃′) =




0n1n2×1

0n2
2×1

Kn3n2dvec(Σ̃Σ̄
−1

)


 .

It follows from (c), (d), and dvec(Σ̃Σ̄
−1

) = (Σ̄
−1 ⊗ In3)dσ̃ − (Σ̄

−1 ⊗ Σ̃Σ̄
−1

)Dn2dσ̄

that

dm̃ = Kn2n




0
n1n2×n(n+1)

2

0
n2

2×n(n+1)
2

Kn3n2

[
(Σ̄

−1 ⊗ In3)G̃σσ∗ − (Σ̄
−1 ⊗ Σ̃Σ̄

−1
)Dn2Ḡσσ∗

]


 dσ∗.

The delta method completes the proof.

Lemma 3.2

Proof. (a) Write dvec(K22) = dvec(F−1
22 B22) = (In2⊗F−1

22 )dvec(B22)+(B′
22⊗In2)dvec(F−1

22 ),
where dvec(B22) = Sbdbs and dvec(F−1

22 ) = −(F′−1
22 ⊗ F−1

22 )Sfdfs. Therefore,

dk22 =

[
In2 ⊗ F−1

22

... −B′
22F

′−1
22 ⊗ F−1

22

] [
Sb 0
0 Sf

] [
dbs

dfs

]

=

[
In2 ⊗ F−1

22

... −B′
22F

′−1
22 ⊗ F−1

22

]
Sλdλs.
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(b) It follows from Φ22 = K−1
22 that

dφ22 = −(K′−1
22 ⊗K−1

22 )dk22

=

[
−F′22B

′−1
22 ⊗B−1

22

... In2 ⊗B−1
22

]
Sλdλs.

(c) Write dvec(B−1
22 F22F

′
22B

′−1
22 ) = dvec(Φ22Φ

′
22), where dvec(Φ22Φ

′
22) = (Φ22 ⊗

In2)dφ22 + (In2 ⊗Φ22)Kn2n2dφ22 = 2Nn2(Φ22 ⊗ In2)dφ22. Therefore,

dvech(B−1
22 F22F

′
22B

′−1
22 ) = 2D+

n2
(Φ22 ⊗ In2)Gφλdλs

= 2D+
n2

[
−B−1

22 F22F
′
22B

′−1
22 ⊗B−1

22

... B−1
22 F22 ⊗B−1

22

]
Sλdλs.

The delta method completes the proof.

C Data

Monthly data from January 1970 to June 2001 are used. The world price index was
obtained from the International Financial Statistics CD-ROM and website. Other
data were obtained from the Federal Reserve Bank of St. Louis.

• y: U.S. industrial production index (1997 =100). Seasonally adjusted. Log
difference × 1200.

• p: U.S. consumer price index for all urban consumers. All items (1982–84=100).
Log difference × 1200.

• pc: The world non-fuel primary commodities price index (1995=100). The
world price index from January 1980 to June 2001 was obtained from the IFS
website (series 00176NFDZF). The world price index from January 1970 to
December 1979 was constructed by backward recursion using the growth rate
of series 00176AXDZF from the IFS CD-ROM. Log difference × 1200.

• TR: Board of governors’ total reserves (billions). Adjusted for changes in reserve
requirements. Normalized using the 36-month moving average of total reserves.

• NBR: Non-borrowed reserves of depository institutions (billions). Normalized
using the 36-month moving average of total reserves.

• FFR: Effective federal funds rates (%).

• er: U.S./Canada foreign exchange rates. Log difference × 1200.

• TS: Term structures. The 10-year treasury constant maturity rate less the 3-
month treasury bill secondary market rate.
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Figure 4.1: Plots of levels and differences in variables
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Figure 4.2: Impulse responses to monetary policy shock in alternative models

A. Bernanke-Blinder Model
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Note: We chose 12 as the lag length of VAR. Upper and lower bounds are calculated by 95%
confidence levels.
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Figure 4.2: (Continued)

B. Christiano-Eichenbaum Model
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Note: We chose 12 as the lag length of VAR. Upper and lower bounds are calculated by 95%
confidence levels.
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Figure 4.2: (Continued)

C. Strongin Model
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Note: We chose 12 as the lag length of VAR. Upper and lower bounds are calculated by 95%
confidence levels.
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Figure 4.2: (Continued)

D. Just-identified Model
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Note: We chose 12 as the lag length of VAR. Upper and lower bounds are calculated by 95%
confidence levels.
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Table 4.1: Parameter estimates

A. Over-identification test statistics
Model LR test (χ2

(1)
) p-value

Bernanke-Blinder Model (BB) 3.2909 0.0697
Christiano-Eichenbaum Model (CE) 75.2612∗∗ 0.0000

Strongin Model (ST) 3.0162 0.0824

B. ML estimates (B22,F22).
B22 (4,4) (5,4) (6,4) (4,5) (5,5) (6,5) α (5,6) β

BB 1.0000 0.0000 1.0000 0.0000 1.0000 -1.0000 -0.0028∗∗ 0.0000 -0.0123∗∗
(.) (.) (.) (.) (.) (.) (0.0010) (.) (0.0015)

CE 1.0000 0.0000 1.0000 0.0000 1.0000 -1.0000 0.0037∗∗ 0.0000 -0.0603∗∗
(.) (.) (.) (.) (.) (.) (0.0012) (.) (0.0054)

ST 1.0000 0.0000 1.0000 0.0000 1.0000 -1.0000 0.0000 0.0000 -0.0748∗∗
(.) (.) (.) (.) (.) (.) (.) (.) (0.0090)

JI 1.0000 0.0000 1.0000 0.0000 1.0000 -1.0000 0.0000 0.0000 -0.0309∗
(.) (.) (.) (.) (.) (.) (.) (.) (0.0125)

F22 ηd φd (6,4) (4,5) ηs (6,5) (4,6) φb ηb

BB 0.0081∗∗ 0.0081∗∗ 0.0000 0.0000 0.0040∗∗ 0.0000 0.0000 -0.0116∗∗ 0.0116∗∗
(0.0003) (0.0003) (.) (.) (0.0008) (.) (.) (0.0004) (0.0004)

CE 0.0085∗∗ 0.0000 0.0000 0.0000 0.0140∗∗ 0.0000 0.0000 0.0000 0.0232∗∗
(0.0004) (.) (.) (.) (0.0005) (.) (.) (.) (0.0021)

ST 0.0082∗∗ 0.0063∗∗ 0.0000 0.0000 0.0125∗∗ 0.0000 0.0000 0.0000 0.0286∗∗
(0.0003) (0.0007) (.) (.) (0.0005) (.) (.) (.) (0.0036)

JI 0.0082∗∗ 0.0063∗∗ 0.0000 0.0000 0.0106∗∗ 0.0000 0.0000 -0.0068∗ 0.0140∗∗
(0.0003) (0.0007) (.) (.) (0.0021) (.) (.) (0.0033) (0.0030)

C. Inferred parameter estimates (K22,Φ22).
K22 (4,4) (5,4) (6,4) (4,5) (5,5) (6,5) (4,6) (5,6) (6,6)

BB 123.8419∗∗ 0.0000 86.2670∗∗ 0.0000 0.0000 -86.2670∗∗ -0.3430∗∗ -2.3897∗∗ -1.0587∗∗
(4.9363) (.) (3.7719) (.) (.) (3.7719) (0.1279) (0.0899) (0.1354)

CE 117.4153∗∗ 0.0000 43.0950∗∗ 0.0000 71.1827∗∗ -43.0950∗∗ 0.4346∗∗ 0.0000 -2.5990∗∗
(5.6098) (.) (5.8491) (.) (2.6215) (5.8491) (0.1436) (.) (0.1052)

ST 122.5857∗∗ -61.7820∗∗ 34.9436∗∗ 0.0000 79.7121∗∗ -34.9436∗∗ 0.0000 0.0000 -2.6137∗∗
(8.7615) (18.8947) (6.6455) (.) (4.6738) (6.6455) (.) (.) (0.1074)

JI 122.5857∗∗ -27.5065 71.6292∗∗ 0.0000 48.7950∗ -71.6292∗∗ 0.0000 -1.4151∗ -2.2108∗∗
(4.6136) (23.2405) (15.1959) (.) (22.3573) (15.1959) (.) (0.6898) (0.4416)

Φ22 (4,4) (5,4) (6,4) (4,5) (5,5) (6,5) (4,6) (5,6) (6,6)

BB 0.0081∗∗ 0.0081∗∗ 0.0000 -0.0012∗∗ 0.0040∗∗ -0.4185∗∗ 0.0000 -0.0116∗∗ 0.0000
(0.0003) (0.0003) (.) (0.0004) (0.0007) (0.0157) (.) (0.0005) (.)

CE 0.0080∗∗ 0.0000 0.1331∗∗ 0.0008∗ 0.0140∗∗ -0.2195∗∗ 0.0013∗∗ 0.0000 -0.3625∗∗
(0.0004) (.) (0.0133) (0.0003) (0.0005) (0.0211) (0.0004) (.) (0.0195)

ST 0.0082∗∗ 0.0063∗∗ 0.0245 0.0000 0.0125∗∗ -0.1677∗∗ 0.0000 0.0000 -0.3826∗∗
(0.0006) (0.0013) (0.0210) (.) (0.0007) (0.0250) (.) (.) (0.0157)

JI 0.0082∗∗ 0.0063∗∗ 0.0595∗∗ 0.0000 0.0106∗∗ -0.3423∗∗ 0.0000 -0.0068∗ -0.2332∗
(0.0003) (0.0007) (0.0222) (.) (0.0021) (0.0726) (.) (0.0033) (0.1069)

Note: Standard errors are in parentheses. Statistics significantly different from zeros are denoted by
∗ or ∗∗ at a 5% or 1% significance level, respectively.
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Table 4.1: (Continued)

D. Inferred parameter estimates (B21,K21).
B21 (4,1) (5,1) (6,1) (4,2) (5,2) (6,2) (4,3) (5,3) (6,3)

BB 0.0000 0.0004∗∗ -0.0001 -0.0002 0.0007∗ -0.0010∗∗ 0.0000 0.0000 0.0000
(0.0001) (0.0001) (0.0001) (0.0002) (0.0004) (0.0003) (0.0000) (0.0000) (0.0000)

CE -0.0001 0.0004∗∗ 0.0008∗∗ -0.0002 0.0007∗ -0.0009 0.0000∗ 0.0000 -0.0001
(0.0001) (0.0001) (0.0002) (0.0002) (0.0004) (0.0006) (0.0000) (0.0000) (0.0001)

ST 0.0000 0.0004∗∗ 0.0011∗∗ -0.0002 0.0007∗ -0.0009 0.0000 0.0000 -0.0001∗
(0.0001) (0.0001) (0.0004) (0.0002) (0.0004) (0.0007) (0.0000) (0.0000) (0.0001)

JI 0.0000 0.0004∗∗ 0.0003 -0.0002 0.0007∗ -0.0010∗∗ 0.0000 0.0000 0.0000
(0.0001) (0.0001) (0.0003) (0.0002) (0.0004) (0.0004) (0.0000) (0.0000) (0.0000)

K21 (4,1) (5,1) (6,1) (4,2) (5,2) (6,2) (4,3) (5,3) (6,3)

BB 0.0046 0.0483∗∗ -0.0106 -0.0288 0.0018 -0.0838∗∗ 0.0030 -0.0060∗ 0.0008
(0.0088) (0.0086) (0.0088) (0.0259) (0.0259) (0.0262) (0.0024) (0.0024) (0.0024)

CE -0.0110 0.0251∗∗ 0.0366∗∗ -0.0278 0.0531∗ -0.0403 0.0048∗ -0.0006 -0.0048∗
(0.0089) (0.0085) (0.0087) (0.0259) (0.0260) (0.0265) (0.0024) (0.0024) (0.0024)

ST -0.0023 0.0293∗∗ 0.0399∗∗ -0.0287 0.0739∗∗ -0.0323 0.0039 -0.0026 -0.0052∗
(0.0084) (0.0087) (0.0088) (0.0260) (0.0270) (0.0267) (0.0024) (0.0024) (0.0024)

JI -0.0023 0.0463∗∗ 0.0181 -0.0287 0.0439 -0.0686∗ 0.0039 -0.0048 -0.0027
(0.0084) (0.0103) (0.0166) (0.0259) (0.0336) (0.0300) (0.0024) (0.0025) (0.0029)

E. Inferred parameter estimates (Φ(1)12).
Φ(1)12 (1,4) (2,4) (3,4) (1,5) (2,5) (3,5) (1,6) (2,6) (3,6)

BB -3.8435 3.3318 18.4644 3.0351 3.8829 17.8095∗ -3.4561 2.7872 -1.6416
(4.6629) (5.3453) (15.9874) (2.4312) (2.7705) (8.3285) (2.4027) (2.7431) (8.1972)

CE -6.5147 3.4611 10.9385 4.0590 0.0876 14.0809 -0.2138 5.7240 19.9722
(4.9011) (5.6180) (16.7990) (2.1539) (2.4823) (7.4671) (3.2081) (3.6598) (10.9493)

ST -4.4858 3.4791 17.2370 4.1220∗ -0.7735 9.6853 0.8707 5.1163 18.0410
(4.8215) (5.4624) (16.3082) (2.0593) (2.3740) (7.0881) (2.8041) (3.2151) (9.6221)

JI -4.5653 3.0121 15.5904 3.9293 2.0374 17.6389∗ -1.4856 4.7447 10.0388
(4.6780) (5.3625) (16.0491) (2.0831) (2.7330) (7.6031) (3.0677) (3.2856) (11.0858)

F. Inferred parameter estimates (Φ(1)22).
Φ(1)22 (4,4) (5,4) (6,4) (4,5) (5,5) (6,5) (4,6) (5,6) (6,6)

BB 0.5767∗ 0.4574∗ 8.4964 0.0587 0.0522 -2.6179 0.0921 0.0047 0.7201
(0.2923) (0.1976) (10.0252) (0.1537) (0.1045) (5.1902) (0.1497) (0.1011) (5.1398)

CE 0.5789 0.4197∗ 9.2849 0.0485 0.1035 -0.5335 0.2644 0.1805 0.5602
(0.3076) (0.2079) (10.5245) (0.1372) (0.0929) (4.5871) (0.2013) (0.1361) (6.8652)

ST 0.5865 0.4558∗ 8.7607 -0.0266 0.0430 -1.2119 0.1666 0.1097 -0.9869
(0.3007) (0.2028) (10.2455) (0.1284) (0.0865) (4.3844) (0.1752) (0.1183) (6.0167)

JI 0.5713 0.4458∗ 8.8508 0.0652 0.0938 -1.5394 0.1553 0.0696 -0.1814
(0.2929) (0.1980) (10.0452) (0.1350) (0.0880) (4.3391) (0.1769) (0.1222) (6.0555)

Note: Standard errors are in parentheses. Statistics significantly different from zeros are denoted by
∗ or ∗∗ at a 5% or 1% significance level, respectively.
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Table 4.1: (Continued)

G. Inferred parameter estimates (Φ32,Φ(1)32).
Φ32 (7,4) (8,4) (7,5) (8,5) (7,6) (8,6)

BB 0.1330 0.0185 1.3431∗ 0.1899∗∗ -0.9499 -0.0083
(0.5244) (0.0127) (0.5268) (0.0145) (0.5260) (0.0127)

CE -0.8246 -0.0474∗∗ 1.5917∗∗ 0.1104∗∗ 0.7276 0.1657∗∗
(0.5761) (0.0152) (0.5679) (0.0169) (0.5409) (0.0155)

ST -0.0712 0.0063 1.4053∗∗ 0.0847∗∗ 0.8607 0.1726∗∗
(0.5553) (0.0160) (0.5267) (0.0168) (0.5253) (0.0145)

JI -0.1497 -0.0094 1.6359∗∗ 0.1621∗∗ -0.0296 0.1004
(0.5292) (0.0162) (0.5256) (0.0338) (0.7289) (0.0521)

Φ(1)32 (7,4) (8,4) (7,5) (8,5) (7,6) (8,6)

BB 6.8452 2.6273 -0.3471 0.8138 0.2732 0.2134
(6.2844) (1.7919) (3.3059) (0.9447) (3.2682) (0.9286)

CE 6.7509 2.3499 0.7734 0.6948 1.8244 1.5748
(6.6018) (1.8840) (2.9522) (0.8485) (4.3325) (1.2347)

ST 6.9142 2.6127 0.0075 0.2843 0.6915 1.1752
(6.4208) (1.8316) (2.8078) (0.8007) (3.8055) (1.0834)

JI 6.8511 2.5054 0.3698 0.8571 0.5809 0.8408
(6.2958) (1.7959) (2.7854) (0.8303) (3.8190) (1.1184)

Note: Standard errors are in parentheses. Statistics significantly different from zeros are denoted by
∗ or ∗∗ at a 5% or 1% significance level, respectively.
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Table 4.2: Fraction of the forecast-error variance attributed to monetary policy shock

A. Bernanke-Blinder Model
Horizon y p pc TR NBR FFR er TS

1 0.00 0.00 0.00 0.02 0.08∗∗ 0.91∗∗ 0.02 0.38∗∗
(0.00) (0.00) (0.00) (0.01) (0.03) (0.03) (0.01) (0.04)

6 0.04∗ 0.06∗∗ 0.02 0.02 0.08∗∗ 0.53∗∗ 0.07∗∗ 0.36∗∗
(0.02) (0.02) (0.02) (0.02) (0.04) (0.07) (0.03) (0.07)

12 0.05∗∗ 0.05∗∗ 0.04∗ 0.02 0.04∗ 0.35∗∗ 0.06∗∗ 0.28∗∗
(0.03) (0.02) (0.02) (0.03) (0.03) (0.07) (0.02) (0.07)

36 0.05∗∗ 0.05∗∗ 0.05∗∗ 0.02 0.02 0.18∗∗ 0.07∗∗ 0.20∗∗
(0.02) (0.02) (0.02) (0.03) (0.02) (0.07) (0.02) (0.06)

60 0.05∗∗ 0.07∗∗ 0.05∗∗ 0.02 0.02 0.15∗∗ 0.07∗∗ 0.20∗∗
(0.02) (0.03) (0.02) (0.03) (0.02) (0.06) (0.02) (0.06)

B. Christiano-Eichenbaum Model

1 0.00 0.00 0.00 0.01 0.96∗∗ 0.25∗∗ 0.02 0.13∗∗
(0.00) (0.00) (0.00) (0.01) (0.02) (0.04) (0.02) (0.04)

6 0.05∗∗ 0.01 0.01 0.04 0.78∗∗ 0.18∗∗ 0.03 0.11∗∗
(0.02) (0.01) (0.01) (0.03) (0.08) (0.05) (0.02) (0.05)

12 0.08∗∗ 0.02 0.02 0.03 0.40∗∗ 0.10∗∗ 0.03∗ 0.08∗∗
(0.03) (0.01) (0.02) (0.04) (0.08) (0.03) (0.02) (0.04)

36 0.07∗∗ 0.01 0.03 0.01 0.17∗∗ 0.05∗∗ 0.03∗ 0.06∗∗
(0.03) (0.01) (0.02) (0.02) (0.05) (0.02) (0.02) (0.03)

60 0.07∗∗ 0.02 0.03 0.01 0.15∗∗ 0.04∗∗ 0.03∗∗ 0.06∗
(0.03) (0.01) (0.02) (0.02) (0.05) (0.02) (0.02) (0.03)

C. Strongin Model

1 0.00 0.00 0.00 0.00 0.77∗∗ 0.15∗∗ 0.02 0.08∗∗
(0.00) (0.00) (0.00) (0.00) (0.08) (0.04) (0.01) (0.03)

6 0.04∗ 0.01 0.01 0.00 0.61∗∗ 0.11∗∗ 0.02 0.07∗
(0.02) (0.01) (0.01) (0.01) (0.09) (0.04) (0.01) (0.04)

12 0.07∗∗ 0.02 0.02 0.00 0.31∗∗ 0.06∗∗ 0.02∗ 0.05∗
(0.03) (0.01) (0.01) (0.01) (0.07) (0.02) (0.01) (0.03)

36 0.06∗∗ 0.01 0.02 0.00 0.13∗∗ 0.03∗∗ 0.03∗ 0.04∗
(0.02) (0.01) (0.01) (0.01) (0.04) (0.01) (0.01) (0.02)

60 0.06∗∗ 0.01 0.02 0.00 0.12∗∗ 0.02∗∗ 0.03∗ 0.04∗
(0.02) (0.01) (0.01) (0.01) (0.04) (0.01) (0.01) (0.02)

D. Just-identified Model

1 0.00 0.00 0.00 0.00 0.55∗∗ 0.61∗∗ 0.03 0.28∗∗
(0.00) (0.00) (0.00) (0.00) (0.23) (0.25) (0.02) (0.11)

6 0.05∗∗ 0.03 0.02 0.04 0.46∗∗ 0.39∗∗ 0.04∗ 0.26∗∗
(0.02) (0.02) (0.02) (0.03) (0.18) (0.15) (0.02) (0.11)

12 0.08∗∗ 0.03∗ 0.02 0.04 0.24∗∗ 0.23∗∗ 0.04∗ 0.19∗∗
(0.03) (0.02) (0.02) (0.04) (0.09) (0.11) (0.02) (0.10)

36 0.07∗∗ 0.03 0.03 0.02 0.10∗∗ 0.11∗ 0.05∗∗ 0.14∗
(0.02) (0.02) (0.02) (0.03) (0.04) (0.07) (0.02) (0.07)

60 0.07∗∗ 0.04 0.03 0.02 0.09∗∗ 0.10 0.05∗∗ 0.14∗
(0.02) (0.03) (0.02) (0.03) (0.04) (0.06) (0.02) (0.07)

Note: Standard errors are in parentheses. Statistics significantly different from zeros are denoted by
∗ or ∗∗ at a 10% or 5% significance level, respectively.
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