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Abstract

This paper is concerned with specification for modelling financial leverage effect
in the context of stochastic volatility (SV) models. Two alternative specifications co-
exist in the literature. One is the Euler approximation to the well known continuous
time SV model with leverage effect and the other is the discrete time SV model of
Jacquier, Polson and Rossi (2004, Journal of Econometrics, forthcoming). Using a
Gaussian nonlinear state space form with uncorrelated measurement and transition
errors, I show that it is easy to interpret the leverage effect in the conventional
model whereas it is not clear how to obtain the leverage effect in the model of
Jacquier et al. Empirical comparisons of these two models via Bayesian Markov
chain Monte Carlo (MCMC) methods reveal that the specification of Jacquier et al
is inferior. Simulation experiments are conducted to study the sampling properties
of the Bayes MCMC for the conventional model.

JEL classification: C11, C15, G12
Keywords : Bayes factors; Leverage effect; Markov chain Monte Carlo; Nonlinear state

space models; Quasi maximum likelihood.

1 Introduction

Stochastic volatility (SV) models have gained much attention both in the option pricing

literature and financial econometrics literature (see Ghysels, Harvey and Renault (1996)
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and Shephard (1996) for reviews of SV models and their applications). For example,

Melino and Turnbull (1990) show that prices of European call options on currencies based

on the basic SV models are more accurate than those based on the Black-Scholes model.

Kim, Shephard and Chib (1998) provide evidence of better in-sample-fit of the basic

SV model relative to GARCH-type models. Despite these documented advantages, it is

known that the basic SV model can be too restrictive for many financial time series.

An important and well documented empirical feature in many financial time series

is the financial leverage effect (Black, 1976, Christie, 1982, and Engle and Ng, 1993).

When such an asymmetric feature is not permitted in the SV model, option prices could

be biased substantially (Hull and White, 1987). Motivated from this empirical evidence,

Harvey and Shephard (1996) propose a SV model with leverage effect which is termed the

asymmetric SV (ASV1 hereafter) model. This model is the Euler approximation to the

continuous time asymmetric SV model widely used in the option price literature; see for

example Hull and White (1987), Wiggins (1987), and Chesney and Scott (1989). Harvey

and Shephard fit the model to stock data using the quasi-maximum likelihood (QML)

method while Meyer and Yu (2000) fit it to a exchange rate series using a Bayesian Markov

chain Monte Carlo (MCMC) method. Both papers find overwhelming evidence of leverage

effect. Motivated from the same empirical evidence, Jacquier, Polson and Rossi (2004)

generalize the basic SV model by incorporating a feedback feature which is also termed

the leverage effect (ASV2 hereafter). A Bayesian MCMC approach is then developed

to estimate the ASV2 model and strong evidence of “leverage effect” is found in most

financial time series considered. Chan, Kohn and Kirby (2004) extend the specification

of Jacquier et al into a multivariate setting. Unfortunately, these two specifications are

not identical although both are claimed to be able to capture the leverage effect. They

differ in how the correlation of two error processes is modelled.

The main purpose of this paper is to compare these two alternative specifications.

The results obtained in the present paper show that the ASV2 model is inferior to the
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ASV1 model judged from both theoretical and empirical view points. Firstly, the ASV2

model is not consistent with the efficient market hypothesis because the model is not a

martingale difference sequence. Secondly, while it is clear to interpret the leverage effect

using a parameter in the ASV1 model, the strict interpretation of leverage is not obvious

in the ASV2 model. Finally, I find the ASV2 model is empirically inferior to the ASV1

model when S&P500 and Center for Research in Security Prices (CRSP) data are used.

To relate both SV models to the financial leverage effect, I derive a Gaussian nonlinear

state space representation for each model. I then fit them to two stock indices using a

Bayesian MCMC method. The main reason to choose the MCMC method for inferences

is due to a result obtained by Andersen, Chung and Sorensen (1999) in a Monte Carlo

study, where MCMC is found to be one of the most efficient tools for estimating the basic

SV model. This finding is not surprising since MCMC provides a fully likelihood-based

inference (Jacquier et al, 1994).

The remainder of the article is organized as follows. Section 2 compares the two

asymmetric SV models from theoretical view points. Section 3 discusses methods for

parameter estimation and for model comparison. The methods are then applied to actual

return series in Section 4. In Section 5, I present the sampling properties of MCMC for

the ASV1 model. Section 6 concludes.

2 Leverage Effect and Asymmetric Stochastic Volatil-

ity Models

The relationship between volatility and price/return has been a subject under the ex-

tensive study. The usual claim is that when there is bad news, which decreases the

price and hence increases the debt-to-equity ratio (i.e. financial leverage), this makes

the firm riskier and hence tends to cause an increase in future expected volatility. As a

result, the leverage effect must correspond to a negative relationship between volatility

and price/return. Black (1976) and Christie (1982) have found empirical evidence of this
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leverage effect, i.e., volatility tends to rise in response to bad news but fall in response to

good news. Christie (1982) provides a theoretical explanation of leverage effect under a

Modigliani/Miller economy.

Depending on how volatility is defined, various approaches have been suggested to

testing the leverage effect in the literature. By computing quarterly volatility from daily

data, Christie (1982) postulates a parametric form to relate volatility to return, enabling

a simple test of leverage effect. In the ARCH literature, often the conditional variance is

specified to be a function of the size as well as the sign of return (Glosten, Jagannathan

and Runkle, 1993 and Nelson, 1991). Then the asymmetric response of volatility to return

is tested by checking the significance of relevant coefficient. In the SV literature, Harvey

and Shephard (1996) relate the filtered volatility to the sign of return. In the present

paper I define the leverage effect by a negative relationship between E(ln σ2
t+1|Xt) and

Xt, where Xt is the return at period t and σ2
t the return volatility at period t.

In the option pricing literature, the asymmetric SV model is often formulated in terms

of stochastic differential equations. The widely used asymmetric SV model specifies the

following equations for the logarithmic asset price s(t) and the corresponding volatility

σ2(t),  ds(t) = σ(t)dB1(t),

d ln σ2(t) = α + β ln σ2(t)dt + σvdB2(t),
(2.1)

where B1(t) and B2(t) are two Brownian motions, corr(dB1(t), dB2(t)) = ρ and s(t) =

ln S(t) with S(t) being the asset price. When ρ < 0 we have the leverage effect.

In the empirical literature the above model is often discretized to facilitate estimation.

For instance, the Euler-Maruyama approximation leads to the discrete time ASV1 model: Xt = σtut,

ln σ2
t+1 = α + φ ln σ2

t + σvvt+1,
(2.2)

where Xt = s(t + 1)− s(t) is a continuously compounded return, ut = B1(t + 1)−B1(t),

vt+1 = B2(t+1)−B2(t), φ = 1+β. Hence, ut and vt are iid N(0, 1) and corr(ut, vt+1) = ρ.

4



This ASV1 model is estimated by a quasi maximum likelihood method in Harvey and

Shephard (1996) and by MCMC in Meyer and Yu (2000).

Comparing equation (2.2) with equation (8) in Jacquier et al (2004), I note a small

but important difference. Instead of assuming corr(ut, vt+1) = ρ, Jacquier et al adopt the

specification of corr(ut, vt) = ρ. One implication is, as argued in Harvey and Shephard

(1996), that the ASV1 model is a martingale difference sequence whereas ASV2 is not and

hence not even consistent with the efficient market hypothesis. This is obvious because

for the ASV1 model, we have

E(Xt+1|Xt, σt) = e
1
2
(α+ln σ2

t )E(e
1
2
σvvt+1)E(ut+1|Xt, σt) = 0.

However, for the ASV2 model, we have

E(Xt+1|Xt, σt) = e
1
2
(α+ln σ2

t )E(e
1
2
σvvt+1ut+1|Xt, σt) =

1

2
ρσve

1
2
(α+ln σ2

t )e
1
8
σ2

v ,

and then

E(Xt+1|Xt) = E[E(Xt+1|Xt, σt)] =
1

2
ρσv exp{ 2− φ

2− 2φ
α +

2− φ2

8− 8φ2
σ2

v}.

This quantity is different from zero unless ρ is zero. For example, using the empirical

estimates for S&P500 (see Table 1) and CRSP (see Table 3), I find E(Xt+1|Xt) = −0.035

and −0.063. These correspond respectively to an annual return of −8.75% and −15.75%.

These figures, particularly the latter one, seems economically substantial.

To fully understand the linkage of these two alternative specifications to the lever-

age effect, it is convenient to adopt a Gaussian nonlinear state space form with un-

correlated measurement and transition equation errors. To do this, denote wt+1 ≡

(vt+1 − ρut)/
√

1− ρ2 and rewrite equation (2.2) as Xt = σtut,

ln σ2
t+1 = α + φ ln σ2

t + ρσvσ
−1
t Xt + σv

√
1− ρ2wt+1,

(2.3)

where wt is iid N(0, 1) and corr(ut, wt+1) = 0. Obviously, E(ln σ2
t+1|Xt, σt) = α+φ ln σ2

t +

ρσvσ
−1
t Xt which implies that E(ln σ2

t+1|Xt) = α+ αφ
1−φ2 +ρσv exp(− σ4

v

4(1−φ2)2
+ σ2

vα
(1−φ2)(1−φ)

)Xt.
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This is a linear function in Xt and implies that, if ρ < 0 and holding everything else

constant, a fall in the stock price/return leads to an increase of E(ln σ2
t+1|Xt) and thus

the leverage effect is ensured.

Using the same approach, I rewrite equation (8) in Jacquier et al (2004) in the following

Gaussian nonlinear state space form: Xt = σtut,

ln σ2
t+1 = α + φ ln σ2

t + ρσvσ
−1
t+1Xt+1 + σv

√
1− ρ2wt+1,

(2.4)

where wt is iid N(0, 1) and corr(ut, wt) = 0. As a result, we have E(ln σ2
t+1|Xt, σt) =

α + φ ln σ2
t + ρσvE(σ−1

t+1Xt+1|Xt, σt). Because σ2
t+1 appears at both sides of the equation

and also because of the nonlinearity in σ−1
t+1Xt+1, it is not so easy, if not impossible, to

obtain the relationship between E(ln σ2
t+1|Xt) and Xt in analytical form, and hence not

clear how to interpret the leverage effect in the ASV2 model. This is in sharp contrast to

the ASV1 model where the interpretation of leverage effect is obvious.

3 Methods for Estimation and Model Comparison

3.1 Method for Estimation

Although in the literature many estimation methods have been suggested to fit the basic

SV model, only a subset was used to estimate asymmetric SV models. In this paper, a

Bayesian MCMC method is my choice for estimation and inferences. I refer readers to

Chib (2001) for a recent survey on MCMC in a general context.

Various MCMC algorithms have been proposed to sample the parameters in the con-

text of the basic SV model. An early example is the single-move Metropolis-Hastings (MH)

algorithm developed by Jacquier et al (1994). It has been shown in Kim et al (1998) that

for the basic SV model a single-move algorithm is not very efficient from a simulation

perspective because the components of {ln σ2
t } are highly correlated. To achieve better

simulation efficiency, Kim et al (1998) develop several multi-move algorithms, all based

on a log-squared transformation of return and an offset mixture approximation to a ln χ2
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distribution. The evidence of drastic reduction in simulation inefficiency is found when

estimating the basic SV model. The algorithms are further modified in Chib, Nardari and

Shephard (2002) to successfully estimate several more complex SV specifications. How-

ever, because the algorithms developed in Kim et al (1998) and Chib et al (2002) rely on

the log-squared transformation, such a transformation would lose the information on the

dependence between the two error terms (Harvey and Shephard, 1996) and hence these

algorithms are not directly applicable to the asymmetric SV models studied here.

In the present paper I make use of the all purpose Bayesian software package BUGS

to estimate asymmetric SV models and it does not require any transformation. Since the

full conditional distributions are not log-concave for the asymmetric SV models, a MH

updating step is needed. A drawback with BUGS is that the algorithm is single-move

and hence cannot be simulation-efficient. However, as in Meyer and Yu (2000), I also

found that the simulation inefficiency is less a problem for the asymmetric SV models

than that for the basic SV model (see Section 5 below). Furthermore, results obtained a

simulation study (see Section 6 below) clearly show that BUGS produces reliable results.

An advantage of using BUGS lies in its ease of implementation. For example, following

Meyer and Yu (2000), the ASV1 and ASV2 models can be rewritten, respectively, by

ht+1|ht, α, φ, σ2
v ∼ N(α + φht, σ

2
v),

Xt|ht+1, ht, α, φ, σ2
v , ρ ∼ N

(
ρ

σv

eht/2(ht+1 − α − φht), e
ht(1− ρ2)

)
,

and

ht|ht−1, α, φ, σ2
v ∼ N(α + φht−1, σ

2
v),

Xt|ht, ht−1, α, φ, σ2
v , ρ ∼ N

(
ρ

σv

eht/2(ht − α − φht−1), e
ht(1− ρ2)

)
,

where ht = ln σ2
t . These representations permit straightforward Bayesian MCMC param-

eter estimation using BUGS (see Meyer and Yu (2000) for details).

Regarding the prior distributions, for the parameters φ and σ2
v , I follow exactly the

prior specifications of Kim, Shephard and Chib (1998): σ2
v ∼ Inverse-Gamma(2.5,0.025)
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which has a mean of 0.167 and a standard deviation of 0.024 and φ∗ ∼ Beta-distribution

with parameters 20 and 1.5 which has a mean of 0.167 and a standard deviation of 0.86

and 0.11, where φ∗ = (φ + 1)/2. Following Meyer and Yu (2000), I assume µ ∼ N(0,25)

where µ = α/(1−φ). The correlation parameter ρ is assumed to be uniformly distributed

with support between -1 and 1 and hence is completely flat.

In all cases I choose a burn-in period of 10,000 iterations and a follow-up period of

100,000.1 The MCMC sampler is initialized by setting µ = 0, φ = 0.98, σ2
v = 0.025, and

ρ = −0.4. As it is important to check convergence to ensure that the sample is drawn from

the stationary distribution, all the results reported in this paper are based on samples

which have passed the Heidelberger and Welch convergence test for all parameters.

3.2 Methods for Model Comparison

The first method that I use to compare the two asymmetric SV models is via Bayes

factors. Specifically, I calculate the Bayes factors using the marginal likelihood approach

of Chib (1995). Chib’s method is only briefly summarized here but I refer readers to Chib

(1995) for further details.

Define m(y), f(y|z), π(z|y), π(z) to be the marginal likelihood of the model, the likeli-

hood of the model, the posterior distribution of the parameters, and the prior distribution

of the parameters, where y and z denote, respectively, the vectors of observations and pa-

rameters. Bayes’ theorem implies that

ln L = ln m(y) = ln f(y|z) + ln π(z)− ln π(z|y). (3.5)

Following the suggestion in Chib (1995), I calculate the log-marginal likelihood ln L at

the posterior means of parameters (say, z̄), which hence requires evaluation of ln f(y|z̄),

ln π(z̄) and ln π(z̄|y). Calculation of ln π(z̄) is trivial. An approximation to ln π(z̄|y) can

be obtained by using a multivariate kernel density estimate and this was suggested in Kim

1By iterating the BUGS algorithm for 1,100,000 times with the first 100,000 iterations discarded, I
find almost identical empirical results.
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et al (1998). The difficult part in the calculation of the log-marginal likelihood value lies

in the evaluation of the log-likelihood value at posterior means. This is because ln f(y|z)

has no analytical form for the SV models as it is marginalized over the latent states

{ln σ2
t }. In this paper I utilize a Monte Carlo method, that is a particle filter algorithm

proposed by Kitigawa (1996) with 50000 particles. This method is applicable to a broad

class of nonlinear non-Gaussian state space models with uncorrelated measurement and

transition errors.

To employ Kitagawa’s algorithm I rewrite ASV1 and ASV2 by, respectively, Xt = σtut,

ln σ2
t+1 = α + φ ln σ2

t + ρσvσ
−1
t Xt + σv

√
1− ρ2wt+1,

(3.6)

and  Xt = σt(
√

1− ρ2εt + ρ
σv

(ln σ2
t − α − φ ln σ2

t−1)),

ln σ2
t = α + φ ln σ2

t−1 + σvvt,
(3.7)

where wt+1 = (vt+1 − ρut)/
√

1− ρ2 and εt = (ut − ρvt)
√

1− ρ2. Hence corr(ut, wt+1) = 0

in equation (3.6) and corr(εt, vt) = 0 in equation (3.7).

An alternative way for comparing the two asymmetric SV models is to nest them into

a single model. To do so, consider the following specification, Xt = σtut,

ln σ2
t+1 = α + φ ln σ2

t + σv(ρ1ut + ρ2ut+1 +
√

1− ρ2
1 − ρ2

2wt+1),
(3.8)

where both ut and wt are iid N(0, 1) and corr(ut, wt+1) = 0. Define ρ1ut + ρ2ut+1 +√
1− ρ2

1 − ρ2
2wt+1 by vt+1. It can be seen that corr(ut, vt) = ρ2 and corr(ut, vt+1) = ρ1.

Hence in this model I allow correlation at both time lags, but with possibly different

degrees of correlation. When ρ1 = 0 we have the ASV2 model, but when ρ2 = 0 we have

the ASV1 model.

To make use of BUGS, I obtain the following state and observation equations for the
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encompassed model:

ht+1|ht, ht−1, α, φ, σ2
v ∼ N(α + φht + ρ1ρ2(ht − α − φht−1), σ

2
v(1− ρ2

1ρ
2
2)),

Xt|ht+1, ht, ht−1, α, φ, σ2
v , ρ1, ρ2, ∼ N

(
eht/2

σv(1 + ρ1ρ2)
(ρ2(ht − α − φht−1) +

ρ1(ht+1 − α − φht)), e
ht(1− ρ2

1 + ρ2
2

1 + ρ1ρ2

)

)
.

As to the prior distributions, I adopt the same specifications for µ, φ and σ2
v as before.

For both ρ1 and ρ2 I assume a uniform prior with support between -1 and 1.

To evaluate the log-likelihood value at the posterior means, I rewrite the model using

the following nonlinear state space form with uncorrelated errors, Xt = σt{
√

1−ρ2
1−ρ2

2

1−ρ2
1

et + ρ2

σv(1−ρ2
1)

(ln σ2
t − α − φ ln σ2

t−1 − σvρ1Xt−1σ
−1
t−1)}

ln σ2
t = α + φ ln σ2

t−1 + ρ1σvXt−1σ
−1
t−1 + σv

√
1− ρ2vt

,

where et is iid N(0, 1) and corr(et, vt) = 0.

4 Empirical Results

As argued in Section 2, the ASV1 model is theoretically appealing relative to the ASV2

model. However, ASV2 is not necessarily a worse model in practice and hence it is

interesting to compare the empirical performance of these two alternative specifications.

In this section I employ two stock indices to make empirical comparisons. The first series

contains 2022 daily returns of S&P500 from January 1980 to December 1987 while the

second one contains 2529 daily returns of CRSP from January 1986 to December 1995.

In Table 1 I summarize the results for the S&P500 from the two asymmetric SV mod-

els, including the posterior means, standard deviations, 95% Bayes confidence intervals,

simulation inefficiency factors for all the parameters, and the log marginal likelihood for

both models. Although the estimate of ρ in both models is significant, it is markedly

smaller in the ASV2 model. This suggests that if the leverage effect were estimated from

the ASV2 model, it would be underestimated in magnitude by about 20%. Using the

log marginal likelihood values I obtain the Bayes factor of ASV1 over ASV2 which is
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4836.758. This indicates decisive evidence in favor of ASV1 against ASV2.2 Simulation

inefficiency factors are of similar size to those reported in the literature when a single-

move algorithm is used (see, for example, Table 1 in Kim et al, 1998). For the purpose

of comparison, I also estimated the basic SV model in BUGS using the same dataset and

found evidence of better mixing in the asymmetric SV models. For example, in the basic

SV model the inefficient factor for σv is 263.29 which is 27% and 21% higher than that

in the two asymmetric SV models. This finding is consistent with that reached in Meyer

and Yu (2000).

Table 2 reports the estimation results for the S&P500 from the encompassed model,

including the posterior means, standard deviations, 95% Bayes confidence intervals, sim-

ulation inefficiency factors for all the parameters, and the log marginal likelihood value.

The posterior mean of ρ1 is -0.3006 while the posterior mean of ρ2 is -0.2211. They com-

pare to the posterior mean of -0.3179 in the ASV1 model and the posterior mean of -0.2599

in the ASV2 model. The 95% posterior credibility interval for ρ1 is [−0.4718,−0.1381]

which indicates the presence of a significant negative correlation between ut and vt+1.

The 95% posterior credibility interval for ρ2 is [−0.3915,−0.087] which suggests some

but weaker evidence of negative correlation between ut and vt. The marginal likelihood

values from the encompassed model and ASV2 differs by 3.86, which suggests substantial

evidence in favor of the encompassed specification against ASV2 according to Jeffrey’s

Bayes factor scale (see Chib et al (2002) Section 2.3). On the other hand, the marginal

likelihood values from the conventional specification and the encompassed model differs

by 1252.63 which suggests decisive evidence in favor of ASV1 against the encompassed

specification. The overall ranking of three models is the ASV1 model comes first, followed

by the encompassed A-SV model and then the ASV2 model.

2Although only results based on Chib’s method are reported here, I also calculate the harmonic
mean estimates of marginal likelihood proposed by Newton and Raftery (1994) and deviance information
criterion (DIC) proposed by Spiegelhalter, Best, Carlin and van der Linde (2002). Berg, Meyer and Yu
(2004) compare the performance of Chib’s method, harmonic mean estimate and DIC in the context of
SV models and find that both the harmonic mean estimate and DIC are effective tools for comparing SV
models. With these two alternative criteria, I still find strong evidence against the ASV2 model.

11



Table 3 summarizes the results for CRSP from the two competing models and the

encompassed model, including the posterior means, 95% Bayes confidence intervals for

all the parameters, and the log marginal likelihood values. All the main empirical results

are similar to before. For example, the posterior mean of ρ is smaller in ASV2 than

that in ASV1. In the encompassed model the posterior mean of ρ2 is much smaller than

that of ρ1 and also smaller than that in ASV2. The 95% posterior credibility interval for

ρ1 indicates the presence of a significant negative correlation between ut and vt+1. The

95% posterior credibility interval for ρ2 suggests some but weaker evidence of negative

correlation between ut and vt. Bayes factors indicate decisive evidence in favor of ASV1

and the encompassed model against ASV2. Although the encompassed model has the

largest marginal likelihood value, the evidence in favor of it against ASV1 is “not worth

more than a bare mention”. All the empirical results obtained from CRSP reinforce the

superiority of ASV1 over ASV2.

5 Simulation Results

Since the ASV2 specification is neither theoretically appealing nor empirically supported

by the real data, the sampling properties of the Bayes estimator reported in Jacquier et al

(2004) are not practically relevant. Although the sampling properties of Bayes estimator

for the continuous time asymmetric SV model are examined in Eraker, Johannes and

Polson (2003), to the best of my knowledge, the sampling properties remain unknown for

the ASV1 model. On the other hand, understanding the finite sample performance of

Bayes MCMC estimator is important from several aspects. First, it checks the reliability

of the proposed Bayes MCMC estimators for the ASV1 model, in particular for the new

parameter, ρ. Second, since more estimation tools have been developed to estimate the

discrete time asymmetric SV models than to the continuous time asymmetric SV model,

it is interesting to compare directly the performance of Bayes MCMC estimates with other

estimates in the discrete time context. In this section, sampling experiments are designed
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to obtain sampling properties of the proposed MCMC estimates for the ASV1 model.3

In the first experiment I use a similar parameter setting to that in Jacquier et al

(2004). 100 samples of 1000 observations are simulated from ASV1.4 Simulation results

such as the sample average and sample root mean square error (RMSE) are given in Table

4. The results indicate that the proposed Bayes MCMC method is quite reliable.

In the second experiment I adopt a same parameter setting as in Harvey and Shephard

(1996) and hence can compare the relative efficiency of the Bayes MCMC estimate to the

QML estimate of Harvey and Shephard (1996). Table 5 reports the means and RMSEs of

all the estimates. The simulation results for the QML estimates are obtained directly from

Harvey and Shephard (1996). My results are computed using 100 replications whereas

Harvey and Shephard’s results are based on 1000 replications. As expected, since MCMC

is a fully likelihood-based method, it always performs better than QML. For example,

relative efficiency of QML to MCMC are, in terms of the RMSE’s, 0.5633, 0.7071 and

0.5909 respectively for ρ, φ and ln σ2
v .

6 Conclusions

In this article, I link the two alternative asymmetric SV models to the leverage effect.

Given the definition of leverage effect, I show that the timing of the variables specified in

Jacquier et al (2004) is such that it is difficult, if not impossible, to interpret the leverage

effect, whereas the interpretation of leverage effect is straightforward in the conventional

model. Moreover, the empirical analysis clearly demonstrates that the model of Jacquier

et al is dominated by the conventional asymmetric specification. Simulations suggest that

the proposed MCMC method is reliable and outperforms QML.

3The sampling properties of Bayes MCMC estimates for the SV model with the fat-tailed error dis-
tribution have been obtained in Chib et al (2002).

4The number of replications is small here due to the high computational cost. However, a small
number of replications seems not uncommon in the SV literature. For example, Chib et al (2002) use 50
replications.

13



References

[1] Andersen, T., H. Chung and B. Sorensen (1999). Efficient method of moments esti-

mation of a stochastic volatility model: A Monte Carlo study. Journal of Econometrics

91, 61–87.

[2] Berg, A., R. Meyer and J. Yu (2004). Deviance information criterion for comparing

stochastic volatility models. Journal of Business and Economic Statistics, forthcoming.

[3] Black, F. (1976). Studies of stock market volatility changes. Proceedings of the

American Statistical Association, Business and Economic Statistics Section 177–181.

[4] Chan, D., Kohn, R., and C. Kirby (2004). Multivariate stochastic volatility with

leverage. University of New South Wales, Working Paper.

[5] Chesney, M. and L.O. Scott (1989). Pricing European currency options: A comparison

of the modified Black-Scholes model and a random variance model. Journal of Financial

and Quantitative Analysis 24, 267–284.

[6] Chib, S. (1995). Marginal likelihood from the Gibbs output. The Journal of the

American Statistical Association 90, 1313-1321.

[7] Chib, S. (2001). Markov Chain Monte Carlo methods: Computation and inference,

in Handbook of Econometrics, eds by J.J. Heckman, and E. Leamer, North-Holland,

Amsterdam. 5, 3569-3649.

[8] Chib, S., Nardari, F. and N. Shephard (2002). Markov Chain Monte Carlo methods

stochastic volatility models. Journal of Econometrics 108, 281–316.

[9] Christie, A.A. (1982). The stochastic behavior of common stodck variances. Journal

of Financial Economics 10, 407–432.

[10] Engle, R., Ng, V. (1993) Measuring and testing the impact of news in volatility.

Journal of Finance, 43, 1749-1778.

14



[11] Eraker, B., Johannes, M. and N. Polson (2003) The impact of jumps in volatility

and returns. Journal of Finance, 53, 1269-1300.

[12] Ghysels, E., Harvey, A. C., and Renault, E. (1996) Stochastic volatility. In Statistical

Models in Finance, eds. Rao, C.R. and Maddala, G. S., North-Holland, Amsterdam,

pp. 119–191.

[13] Glosten, L.R., Jagannanthan, R. and D. Runkle (1993) Relationship between the

expected value and the volatility of the nominal excess return on stocks. Journal of

Finance, 48, 1779-1802.

[14] Harvey, A.C. and N. Shephard (1996). The estimation of an asymmetric stochastic

volatility model for asset returns. Journal of Business and Economic Statistics 14,

429–434.

[15] Hull, J. and A. White (1987). The pricing of options on assets with stochastic

volatilities. Journal of Finance 42, 281–300.

[16] Jacquier, E., N.G. Polson and P.E. Rossi (1994). Bayesian analysis of stochastic

volatility models. Journal of Business and Economic Statistics 12, 371–389.

[17] Jacquier, E., N.G. Polson and P.E. Rossi (2004). Bayesian analysis of stochastic

volatility models with fat-tails and correlated errors. Journal of Econometrics, forth-

coming.

[18] Kim, S., N. Shephard and S. Chib (1998). Stochastic volatility: Likelihood inference

and comparison with ARCH models. Review of Economic Studies 65, 361–393.

[19] Kitagawa, G. (1996). Monte Carlo filter and smoother for Gaussian nonlinear state

space models. Journal of Computational and Graphical Statistics 5, 1–25.

[20] Melino, A. and S.M. Turnbull (1990). Pricing foreign currency options with stochastic

volatility. Journal of Econometrics 45, 239–265.

15



[21] Meyer, R. and J. Yu (2000). BUGS for a Bayesian analysis of stochastic volatility

models. Econometrics Journal, 3, 198–215.

[22] Nelson, D. (1991). Conditional heteroskedasticity in asset pricing: A new approach.

Econometrica, 59, 347–370.

[23] Newton, M. and A.E. Raftery (1994). Approximate Bayesian inferences by the

weighted likelihood bootstrap. Journal of the Royal Statistical Society, Series B,

56, 3–48 (with discussion).

[24] Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatility. In Cox,

D. R., Hinkley, D. V. and Barndorff-Nielson, O. E. (eds), Time Series Models in

Econometrics, Finance and Other Fields, pp. 1-67. London: Chapman & Hall.

[25] Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and A. van der Linde (2002). Bayesian

measures of model complexity and fit (with discussion). Journal of the Royal Statistical

Society, Series B, 64, 583-639.

[26] Wiggins, J.B. (1987) Option values under stochastic volatility: Theory and empirical

estimate. Journal of Financial Economics 19, 351–372.

16



Table 1: Empirical Results for S&P500

ASV1 ASV2

Mean SD 95% CI Ineff Mean SD 95% CI Ineff

φ .9720 .0091 (.9511, .9871) 131.46 .9769 .0081 (.9587, .9902) 141.48

σv .1495 .020 (.1139, .1928) 206.90 .1347 .0183 (.1031, .1759) 218.51

µ -.0688 .1278 (-.3077, .2012) 25.50 -.0246 .148 (-.2954, .2942) 39.70

ρ -.3179 .0855 (-.4749, -.1428) 96.35 -.2559 .0941 (-.4384, -.0730) 118.36

Log
Marg -2794.587 -2803.071

Table 2: Empirical Results of Encompassed Model for S&P500

Mean SD 95% CI Ineff

φ 0.9761 0.0082 (0.9571, 0.9893) 149.25

σv 0.1356 0.0178 (0.1057, 0.1737) 215.98

µ 0.0308 0.1401 (-0.2153,0.3385) 40.63

ρ1 -0.3006 0.086 (-0.4718, -0.1381) 63.68

ρ2 -0.2211 0.078 (-0.3915, -0.087) 58.10

Log Marg -2801.720
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Table 3: Empirical Results for CRSP

ASV1 ASV2 Encompassed Model

Mean 95% CI Mean 95% CI Mean 95% CI

φ .9565 (.9375, .9755) .9726 (.9557, .9854) .9602 (.9362, .9787)

σv .2398 (.1826, .3040) .1819 (.1400, .2322) .2199 (.1629, .2855)

µ -.441 (-.6239,-.2246) -.3218 (-.6053, .0094) -.3756 (-.6026, -.1053)

ρ or ρ1 -.3941 (-.5124,-.2574) -.2820 (-.4492,-.0945)

ρ or ρ2 -.3632 (-.5075,-.2124) -.1845 (-.3810, -.0491)

Log Marg -2987.312 -2991.987 -2986.438

Table 4: Simulations for MCMC Estimates of the ASV1 Model when the Sample Size is
1000

True Value Mean RMSE

ρ -0.6 -0.564 0.085

φ 0.95 0.945 0.0145

σv 0.26 0.254 0.037

µ 0 0.0066 0.152

Table 5: Simulations to Compare MCMC and QML Estimates of the ASV1 Model when
the Sample Size is 1000

MCMC QML

True Value Mean RMSE Mean RMSE

ρ -0.9 -0.8815 0.0445 -0.911 0.079

φ 0.975 0.9732 0.00495 0.974 0.007

ln σ2
v -4.605 -4.595 0.2086 -4.617 0.353
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