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1 Introduction

Turn taking is widely observed in both field and laboratory settings. This pa-
per studies when and how turn taking can be supported as an equilibrium
outcome when the players interact repeatedly. An example of the importance
of turn-taking behavior concerns the use of common-pool resources (CPRs)
such as fisheries, irrigation systems, and forests. In communities that depend
heavily on such resources for their economic livelihood, failure to resolve prob-
lems related to the use and preservation of these resources can lead to signifi-
cant welfare loss, violent conflicts, and even murder. One conflict of this type
is illustrated by the game of CPR assignment in Ostrom et al. (1994, pp.
58-61). This game captures, in the simplest fashion, a situation in which two
fishermen independently decide to go to one of two fishing spots in their com-
munity. The good spot has a value of h, and the bad spot has a value of l,
where h > l > 0. If the two choose different spots, each will obtain the respec-
tive value of the spot. If they choose the same spot, they will split the value
of the spot equally. In this situation, which spot will each fisherman choose if
they interact repeatedly?

In the situation described above, there are two asymmetric outcomes–(Good
Spot, Bad Spot) and (Bad Spot, Good Spot)–that maximize the sum of the
two players’ payoffs. One might expect that eventually some sort of turn-taking
scheme, in which the fishermen take turns going to the good spot, will develop
as a solution mitigating the CPR dilemma. In fact, Berkes (1992) reports that
fishermen in Alanya, Turkey, employ a turn-taking scheme to allocate fishing
spots. A similar rotation scheme in the use of an irrigation system has also
been adopted in Spain and the Philippines (Ostrom, 1990).

Turn-taking schemes that mitigate conflict and enable people to engage in
intertemporal sharing of the gain from cooperation are also observed in other
settings. For example, faculty members in a department may use turn taking
to resolve the question of who will serve as the departmental representative on
a university committee. Soldiers in a military operation often take turns to per-
form the more dangerous tasks (see, for example, Bergerud, 1993). Politicians
may engage in vote-trading by taking turns voting for each other’s preferred
choice (Riker, 1982).

Different researchers have also observed turn-taking behavior in laboratory
repeated games. In an experiment motivated by the observed importance of
turn taking in the field discussed in Ostrom (1990), Prisbrey (1992, chapter
1) reports that in a repeated symmetric game that has two asymmetric joint-
payoff-maximizing outcomes, twenty-one out of twenty-four pairs of subjects
succeed in establishing (and subsequently maintaining) turn taking to achieve
joint-payoffmaximization within five periods. In a study of intergroup conflicts
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that involve different versions of a repeated public-good game, Bornstein et
al. (1997) observe that a significant percentage of subjects use the turn-taking
strategy.

Although turn taking has been observed in a variety of settings, there appears
to be surprisingly little systematic analysis of this phenomenon. 1 This paper
represents a step toward such analysis. Our objective is to provide a theoretical
analysis of a benchmark model of equilibrium turn-taking behavior. However,
it is not immediately clear what are the ingredients of the benchmark model
in understanding turn-taking behavior, given that we observe people taking
turns in a wide variety of settings. After searching for common elements in
various examples, we propose the following characteristics for the benchmark
model. First, it is obvious that turn taking happens in an intertemporal setting.
Second, turn taking is less likely to be observed in situations in which joint-
payoff maximization in a particular period requires that all players take the
same action but is more likely to be observed when joint-payoff maximization
requires that players take different actions (such as a player going to the good
fishing spot while her opponent going to the bad spot in the example presented
above). Third, the study of turn taking becomes particularly interesting in
settings that involve conflicts, that is, in settings in which the turns that the
players take include good and bad turns.

Capturing these observations, the benchmark model we consider involves a set-
ting in which (a) two symmetric players interact repeatedly and each player
chooses between two possible actions in every period, (b) a player’s current-
period payoff depends only on the current actions of both players, 2 and (c)
two asymmetric outcomes of the stage game are joint-payoff-maximizing. In
short, we consider a class of infinitely repeated games where the stage game is a
symmetric two-player game with a pair of asymmetric joint-payoff-maximizing
outcomes. From now on, we refer to these joint-payoff-maximizing outcomes
as efficient outcomes and to the class of repeated games mentioned above as
“repeated games with asymmetric efficient outcomes.” A game with asym-
metric efficient outcomes is an example of the type of game that has been
referred to as a “mixed-motive game” by Schelling (1960) and as a “game
of mixed interests” by Friedman (1994). In subsequent sections, we further

1 There is, however, some related work in the repeated game literature that con-
siders strategies that have turn-taking features. We discuss these papers in Section
6.
2 That is, current action does not affect future payoffs through some kinds of “state
variables” (such as capital or the amount of a natural resource remaining) in the
model we consider. Of course, as is typical in the repeated game literature (e.g.,
Fudenberg and Maskin, 1986), any player can still take the history of actions of
both players into account when setting her strategy. Thus, a player’s current action
can affect future actions (of both players), and thus has an indirect effect on the
players’ future payoffs.
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classify these games according to whether the asymmetric efficient outcomes
are Nash equilibria of the stage game. There are interesting differences in the
analyses of these two cases.

Specifically, we consider infinitely repeated games where the stage game is
given in the left-hand panel of Table 1. Let T (Tough) and S (Soft) be the
two possible actions of a player in any period. Each player obtains the same
payoff t if both choose the same action T , and each obtains payoff s if both
choose S. On the other hand, a player obtains payoff h if she chooses T and
the other player chooses S. In this case, the other player obtains a lower payoff
l. Reflecting that the two asymmetric outcomes of the stage game are efficient,
we assume h + l > max {2t, 2s}. Examples of games belonging to this class
include the battle of the sexes, the game of chicken, the best-shot public-good
game (studied in Harrison and Hirshleifer, 1989), 3 (a particular version of)
the prisoner’s dilemma, and the game of CPR assignment.

At first glance, one may think that the question of whether turn taking can be
supported as some kind of subgame-perfect equilibrium in this class of repeated
games is relatively straightforward–the Folk Theorem in repeated games with
discounting suggests that the answer to this question is a resounding “yes”
(see, for example, Friedman, 1971; Fudenberg and Maskin, 1986; Abreu, 1988.)
However, the analysis of equilibrium turn-taking behavior is not as simple as it
appears. In particular, while either one of the two turn-taking sequences X =
{(T, S) , (S, T ) , (T, S) , (S, T ) , ...} and Y = {(S, T ) , (T, S) , (S, T ) , (T, S) , ...}
in which the sum of the two players’ payoffs is maximized can be supported as
an equilibrium when the discount factor is sufficiently high, the players have
conflicting preferences between these sequences, with each player preferring
the one in which she takes the good turn first. In this setting, the well-known
problem of multiple equilibria associated with the Folk Theorem in repeated
games manifests itself in the form of being silent regarding how the players
may resolve their conflict regarding who gets to start with the good turn.
Furthermore, as we demonstrate later, one has to investigate whether any
player will defect from the equilibrium turn-taking path, especially when she
is supposed to take the bad turn.

In the class of repeated games with asymmetric efficient outcomes, three major
issues have to be resolved. First, how do the players get onto a joint-payoff-
maximizing turn-taking path? Second, who gets to start with the good turn
first along this path? Third, how are potential deviations deterred? In this
paper, we consider a simple strategy–to be called the “turn taking with inde-
pendent randomizations” (TTIR) strategy–that resolves these three issues.

In the TTIR strategy that we describe in more detail later, players randomize

3 In a best-shot public-good game, the level of public good produced equals the
maximum contribution made by the players.
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between T and S in the beginning period and also if a symmetric outcome is
observed in the period preceding the current one, or they rotate between the
two asymmetric outcomes if one of them is observed in the period preceding
the current one. An important feature of the TTIR strategy is that a player’s
behavior in any period depends on only a relatively small set of important
variables instead of on the entire history of play. Moreover, because the mixed-
interest game considered in this paper is symmetric, it is reasonable to expect
that the equilibrium of this game satisfies the symmetry-invariance principle
suggested in Harsanyi and Selten (1988), which requires that the equilibrium
be invariant to re-labeling of the players; see also Bhaskar (2000). Thus, we
consider the symmetric equilibrium when the players use the TTIR strategy.

The TTIR strategy has a number of attractive features. First, it ensures ex
ante equality in the two (symmetric) players’ payoffs. Second, for the class
of repeated games with asymmetric efficient outcomes, the punishment in
the TTIR strategy is less severe than the punishment in some other subgame-
perfect equilibrium strategies, such as the grim strategy employed in Friedman
(1971). Third, and most important, by restricting our attention to the TTIR
strategy, we are able to show that the subgame-perfect equilibrium, if it exists,
is unique. This uniqueness result enables us to derive interesting and easily
interpretable comparative static results.

In the TTIR strategy, randomization serves the multiple roles of getting the
players onto a joint-payoff-maximizing turn-taking path, resolving the question
of who gets to start with the good turn first along this path, and deterring
players from deviating from equilibrium behavior. When a player is supposed
to take the bad turn according to the equilibrium strategy, she may have
the incentive to defect so as to capture a short-term gain. To balance the
incentive consideration and the efficiency consideration in an intertemporal
setting, the value of the probability of randomization has to satisfy a “fixed
point” requirement. Characterizing the equilibrium turns out to be a nontrivial
problem. Despite the fact that the mapping that determines the fixed point
of the probability of randomization is not always a contraction mapping, we
find that whenever a TTIR subgame-perfect equilibrium exists, it is unique.

This paper is organized as follows. Sections 2 introduces the model and dis-
cusses the assumptions. Section 3 describes the TTIR strategy and the as-
sociated incentive conditions. It also presents results useful for subsequent
analysis. Section 4 considers the repeated game in which the two asymmet-
ric joint-payoff-maximizing outcomes are Nash equilibria of the stage game.
Section 5 performs the corresponding analysis for the repeated game in which
the two joint-payoff-maximizing outcomes are not Nash equilibria of the stage
game. It also characterizes players’ behavior along the equilibrium turn-taking
path and performs comparative static analysis. In Section 6, we discuss related
work, compare the TTIR strategy to other subgame-perfect equilibrium strate-
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gies, and investigate the welfare properties of the TTIR equilibrium. Section
7 provides a summary and suggests some directions for future research. Some
proofs are relegated to the Appendix.

2 The Model

We consider a symmetric two-by-two infinite-horizon repeated game with dis-
counting. In every period of the game, each of the two players (called 1 and
2) chooses (perhaps randomly) between two actions: playing T or playing S.
When making a new decision, say in period n (n ≥ 0), player i (i = 1, 2) max-
imizes her intertemporal payoff (which is defined as the discounted sum of the
stream of her current and future stage-game payoffs):

∞X
m=n

δm−nUi (x1m, x2m) , (1)

where δ ∈ (0, 1) is the common discount factor, xim (xim = T or S) is the
choice of player i at period m, and Ui (x1m, x2m) is the current-period payoff
of player i when player 1 chooses x1m and her opponent chooses x2m. The
players’ payoffs in the stage game, Ui (x1, x2), given in Table 1, are represented
by

Ui (T, T ) = t, Ui (S, S) = s,

U1 (T, S) = U2 (S, T ) = h, U1 (S, T ) = U2 (T, S) = l,
(2)

where i = 1, 2, and h, l, s, and t are finite real numbers. (Whenever there is
no confusion, the time subscript is ignored.) It is assumed that each player
observes both players’ actions (but not strategies) in every period.

In this paper, we analyze repeated games with the following assumptions:

h > l, (3)

h+ l > 2s, (4)

and
h+ l > 2t. (5)

Since interesting turn-taking behavior consists of good and bad turns, we
assume condition (3), which states that if the two players choose different
actions, their payoffs will be different. Without loss of generality, we assume
that h (which may be interpreted as “high”) is larger than l (which may
be interpreted as “low”). When assumption (3) holds, then among the two
asymmetric outcomes (T, S) and (S, T ), each player prefers choosing T while
the other player is choosing S. The specification in (3) implicitly defines the
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labels T and S for any given game. For example, T represents Good Spot
and S represents Bad Spot for the game of CPR assignment in the above
framework.

Assumption (3) eliminates the pure coordination game (Case 1 of Table 2)
from our analysis. An example of a pure coordination game is driving on one
particular side of the road. It should be clear that while in principle the turn-
taking strategy can be used to support an efficient outcome of this game (at
least in an environment without uncertainty, as in Section 2 of Crawford and
Haller, 1990), there are other “more natural” mechanisms (such as always
driving on the left-hand side of the road) leading to an equally efficient out-
come. Imposing assumption (3) eliminates this game from our analysis, but
all the remaining examples in Table 2 are consistent with this assumption.

The other two assumptions, (4) and (5), compare the sum of the players’
payoffs in the symmetric outcomes with the sum of those in the asymmetric
outcomes. These assumptions ensure that the players’ total payoff in the two
asymmetric outcomes is higher than that in the two symmetric outcomes. 4 If
one of these assumptions is not satisfied, then turn taking is less likely to be
supported as an equilibrium outcome even if the players are patient enough.
For example, assumption (4) is not satisfied in an assurance game (Case 2
of Table 2), and the efficient stage-game outcome is (S, S). For the repeated
assurance game, turn taking between (T, S) and (S, T ) is an inferior outcome
when compared with reaching (S, S) in every period (if that is achievable). As
our purpose in this paper is to analyze the turn-taking phenomenon, assump-
tions (4) and (5) are natural ones to be imposed.

Summing up, the focus of our analysis is repeated symmetric games with
asymmetric efficient outcomes, that is, games with assumptions (3) to (5).
As illustrated in Table 2, depending on the relative ranking of the payoff
parameters, the specification with assumptions (3) to (5) captures many well-
known games that have been analyzed in the literature.

Before analyzing this class of repeated games, it is helpful to summarize well-
known results about these games when the players interact once. There are
two different cases: t < l and t > l. (While the analysis of the borderline case
t = l is different from the above two cases for the stage game, the analysis of
this case is the same as that of t < l for repeated interaction. Thus, we do not
consider this borderline case when the players interact once.)

When t < l, the two asymmetric joint-payoff-maximizing outcomes (T, S) and

4 Alternatively, one can rewrite assumption (4) as h+l2 > s and interpret it as saying
that a player prefers being equally likely to reach the two asymmetric outcomes to
reaching the symmetric outcome (S, S) with certainty. A similar alternative inter-
pretation holds for assumption (5).
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(S, T ) are pure-strategy Nash equilibria of the stage game. There is also a
symmetric mixed-strategy equilibrium with each player choosing Tough with
probability h−s

h+l−s−t . Key examples for the t < l case of games with asymmetric
efficient outcomes include (a) the battle of sexes, (b) the game of chicken,
which has been used by Farrell (1987) to study issues of market entry, (c) the
best-shot public-good game studied by Harrison and Hirshleifer (1989), and
(d) a particular version of the game of CPR assignment studied by Ostrom et
al. (1994) when h < 2l, that is, when the bad spot is not too inferior compared
to the good spot.

On the other hand, when t > l, there is a unique Nash equilibrium, (T, T ),
for the stage game, and the two asymmetric joint-payoff-maximizing outcomes
are not Nash equilibria. Examples for the t > l case of games with asymmetric
efficient outcomes include (a) a particular version of the prisoner’s dilemma
employed by Dixit and Skeath (1999, Figure 11.2) to study the issue of col-
lective action in building an irrigation project, 5 (b) another version of the
game of CPR assignment studied by Ostrom et al. (1994) with h > 2l, that
is, when the good spot is “sufficiently more attractive” than the bad spot,
and (c) the stage game of the laboratory repeated game studied by Prisbrey
(1992) described above.

3 Turn Taking with Independent Randomizations

We analyze the equilibrium of a symmetric two-by-two infinitely repeated
game with asymmetric efficient outcomes (i.e., with conditions (1) to (5).)
This game will be denoted as G∞, and the one-shot version will be denoted
as G. The equilibrium concept adopted is subgame perfection. The analysis
turns out to be partially similar but also partially different for the t ≤ l and
t > l cases. This section looks at issues common to both cases, and the next
two sections focus on the two cases individually.

We now make clear three major assumptions in our analysis. First, we assume
in this paper that there is no communication between the players in any period,
either before or after they take actions. Turn taking is observed in experimental

5 Dixit and Skeath (1999, Figures 11.1 and 11.2) consider two games, each of which
satisfies the two usual key properties of the prisoner’s dilemma, namely, that Defect
is the dominant strategy for both players, and the outcome (Cooperate, Cooperate)
Pareto dominates (Defect, Defect). In the first game, (Cooperate, Cooperate) is
the joint-payoff-maximizing outcome. This is the case upon which most analyses of
the prisoner’s dilemma concentrate, and we refer to it as the “standard” prisoner’s
dilemma. In the other case (their Figure 11.2), the two asymmetric outcomes–that
is, when one player defects and the other cooperates–maximize the players’ total
payoff.

7



and field settings in which there is no communication possibility between the
players, but it is also observed in environments in which the players are able to
communicate; for example, Berkes (1992) describes how fishermen draw lots to
assign fishing spots, which can be modeled as the use of correlated strategies
(Aumann, 1974). In general, coordination problems can be mitigated by useful
precedents when the players interact repeatedly (as in Crawford and Haller,
1990; Bhaskar, 2000; Lau, 2001) and/or by some forms of communication (such
as nonbinding preplay communication in Farrell, 1987). As there are a large
number of possible ways to model communication in this setting, it is useful to
first study equilibrium turn-taking behavior in an environment in which the
players cannot communicate or correlate their strategies. (Crawford and Haller
(1990) and Bhaskar (2000) also make this assumption.) In this environment,
any benefit accrued to the players of game G∞ in mitigating conflict is purely
due to turn taking in repeated interaction and not to communication. 6 After
analyzing turn-taking behavior in this benchmark case, we can introduce cheap
talk or correlated strategies and examine their implications. 7

Second, we consider a simple strategy–the TTIR strategy–that we believe
is a natural one when there is no communication between the players. As
mentioned in the introduction, the TTIR strategy possesses several desirable
features in game G∞. Section 3.1 describes the TTIR strategy in detail, and
Section 6 compares it to other strategies and provides justification for its use.

Third, we analyze the symmetric subgame-perfect equilibrium of this repeated
symmetric game (as in Crawford and Haller, 1990; Bhaskar, 2000) when the
players use the TTIR strategy. The equilibrium is referred to as the symmetric
TTIR subgame-perfect equilibrium or simply the TTIR equilibrium.

3.1 The TTIR Strategy

The TTIR strategy specifies the following: (a) In the beginning period, the
players will independently randomize between T and S. Denote the probability
of choosing T as p. 8 For meaningful TTIR strategy, p is restricted to lie in the

6 For similar reasons, we do not consider how reciprocal fairness (e.g., Rabin, 1993,
Fehr and Gächter, 2000) could affect turn-taking behavior in this paper. We believe
it is better to pursue such line of investigation in another project, and then compare
its findings to those obtained in our benchmark model.
7 In an ongoing project, we examine the implications of cheap talk or correlated
strategies in the repeated game of CPR assignment.
8 More generally, one can define pi (i = 1, 2) as the probability that player i chooses
T in the randomization phase. In the symmetric subgame-perfect equilibrium, the
equilibrium values of p1 and p2 are equal. To avoid heavy use of notations, we
specify from the beginning that both players use the same strategy. There is no loss
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open interval (0, 1), since the players cannot reach an asymmetric outcome if
both choose p = 0 (i.e., action S) or p = 1 (i.e., action T ). (b) As long as the
randomization yields the symmetric outcome of either (T, T ) or (S, S), the
randomization phase will continue. (c) Whenever randomization “succeeds”
in getting the players to the asymmetric outcome of either (T, S) or (S, T ),
the game will switch to the turn-taking phase in which each player chooses
her opponent’s action in the previous period. If no player defects from this
strategy, the turn-taking phase will continue. (d) Any defection by a single
player (or by both players) during the turn-taking phase will trigger a switch
back to the randomization phase, and this randomization phase will continue
until randomization succeeds in getting the players to the asymmetric outcome
of either (T, S) or (S, T ) again. (e) Once randomization succeeds in getting the
players to either asymmetric outcome, the players will again behave according
to steps (c) and (d).

In many existing papers examining the strategies supporting subgame-perfect
equilibria of repeated games (such as the standard prisoner’s dilemma), the
authors analyze two phases of the game: the cooperative phase and the punish-
ment phase (see, for example, Friedman, 1971; Fudenberg and Maskin, 1986).
The underlying idea is that the strategies in the cooperative phase induce
behavior leading to an efficient outcome, if the players cooperate. To prevent
the players from deviating from the cooperative phase, the low payoff in the
punishment phase is used as a deterrent.

In a broad sense, the TTIR strategy includes the cooperative and punishment
features as well. However, there is a major difference. In the cooperative phase
of the repeated standard prisoner’s dilemma, the efficient outcome is usually
reached immediately. In that game, the efficient path that the players want
to sustain involves (S, S) in each period, where S represents Cooperate. It
is a unique path, and it is in both players’ interest to attain it. Thus, it
is not surprising to see that the authors focus on strategies in which the two
players reach (S, S) immediately in the cooperation phase. On the other hand,
for the repeated game with asymmetric efficient outcomes analyzed in this
paper, an efficient path involves the asymmetric outcomes (T, S) and (S, T )
in the stage game and there are multiple efficient paths. Even though the
two players may want to “cooperate” to reach an efficient path, they have
conflicting preferences regarding the possible efficient paths. For example, a
player prefers a turn-taking path in which she takes her good turn (choosing T ,
with the opponent choosing S) first to a path in which the other player takes
the good turn first. There are thus both coordination and conflict problems in
this repeated game with asymmetric efficient outcomes (G∞).

Because of the need to deal with this coordination-cum-conflict problem in the

of generality since we consider only symmetric equilibrium in this paper.
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initial periods, it is helpful to extend the familiar cooperation-and-punishment
framework to one with three phases for game G∞: the initial “getting to effi-
cient outcome” phase (or simply the initial phase), the cooperative phase, and
the punishment phase.

For the TTIR strategy studied in this paper, the players use the turn-taking
strategy in the cooperative phase and independent randomizations in both the
initial and punishment phases. In particular, in the symmetric equilibrium,
both players use the same randomized strategy in the initial phase as well as
after any player deviates. (A similar idea has been employed by Crawford and
Haller, 1990; Bhaskar, 2000; and Lau, 2001.) Whether the TTIR strategy con-
stitutes an equilibrium depends on the incentive conditions, which we consider
in the next two subsections.

3.2 Players’ Behavior in the Turn-Taking Phase

Define VH as the player’s intertemporal payoff at a period in which the player
plays Tough and her opponent plays Soft, with the expectation that the equi-
librium TTIR strategy (if it exists) will be chosen by the players forever.
Similarly, define VL as the player’s intertemporal payoff at a period in which
the player plays Soft and her opponent plays Tough, with the expectation that
the equilibrium TTIR strategy will be chosen by the players forever. Finally,
define V ∗ as a player’s (expected) intertemporal payoff at the initial period or
any period such that both players’ actions were the same in the previous pe-
riod, with the expectation that the equilibrium TTIR strategy will be chosen
by the players forever. Note that V ∗, which is the same for the two symmetric
players and which is determined endogenously (according to (10) below), is
referred to as the value of the game.

The two value functions of the turn-taking phase are given by

VH = h+ δVL =
h+ δl

1− δ2
, (6)

and

VL = l + δVH =
l + δh

1− δ2
. (7)

To ensure that (6) and (7) hold, we need to verify that the players will not
deviate from the equilibrium strategy. Because of the stationary structure
of the infinite-horizon repeated game, it is necessary to check only two no-
deviation conditions for the turn-taking phase, one at the player’s good turn
and the other at her bad turn.

First, if the actions of players i and j were S and T , respectively, in the
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previous period, then, assuming that the equilibrium TTIR strategy will be
used by both players in the future (and also by her opponent in the current
period), player i will not deviate from the equilibrium strategy in the current
period when

VH − (s+ δV ∗) = (h− s) + δ (VL − V ∗) > 0. (8)

The no-deviation condition (8) can be understood as follows. If player i chooses
T now and both players continue to use the equilibrium strategy, then her
intertemporal payoff is given by VH , which can be decomposed as the sum of
current and future payoffs (h + δVL) according to (6). On the other hand, if
player i chooses S now, the current payoff is s, since both players will end up
playing Soft. Moreover, both players choosing the same action in the current
period will trigger them to use the strategies of the randomization phase in
the next period. As a result, player i’s intertemporal payoff by deviating in the
current period is given by s+ δV ∗. Player i will not deviate from the strategy
of the turn-taking phase if (8) is satisfied. 9

Similarly, if the actions of players i and j were T and S, respectively, in the
previous period, then assuming that the equilibrium TTIR strategy will be
used by both players in the future (and also by her opponent in the current
period), player i will not deviate from the equilibrium strategy in the current
period when

VL − (t+ δV ∗) = (l − t) + δ (VH − V ∗) > 0. (9)

3.3 Players’ Behavior in the Randomization Phase

Now, examine the beginning of the game (or any period such that both players’
actions in the previous period were the same). If both players use the TTIR
strategy forever, it is easy to see that the game will “re-start” in the next period
if and only if both players choose the same action in the current period. As
a result, the intertemporal payoff matrix of the game (when viewed at period
0) is given by Table 3. For example, if both players choose action T in period
0, then each player’s current-period payoff is t. Moreover, each player’s future
payoff (when discounted back to the current period) is δV ∗ since the game
will re-start in the next period.

9 It can be shown that if (8) holds, then choosing T also dominates choosing any
mixed strategy for player i when player j chooses S. Consider player i’s strategy of
choosing T with probability r where 0 < r < 1. The corresponding intertemporal
payoff of player i is rVH + (1− r) (s+ δV ∗). It is easy to see that if (8) holds, then
the above intertemporal payoff is strictly less than VH .
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Denote the equilibrium value of the probability of choosing T in the random-
ization phase as p∗ (and the equilibrium probability of choosing S as 1− p∗).
Note that p∗ is the equilibrium probability, in contrast to p, which is an arbi-
trary probability in the interval (0, 1). When both players use the equilibrium
mixed strategy in the randomization phase, it can be deduced from Table 3
that, provided that (8) and (9) are satisfied, the equilibrium probability of
randomization (p∗) and the value of the game (V ∗) are jointly determined by

V ∗ = p∗ (t+ δV ∗) + (1− p∗)VH = p∗VL + (1− p∗) (s+ δV ∗) . (10)

In a mixed-strategy equilibrium, a player chooses a strategy to make the other
player indifferent between playing Tough and Soft. For example, player 1
chooses p∗ (in the randomization phase) to ensure that for player 2 the second
equality of (10) holds. This equality leads to

p∗ =
VH − s− δV ∗

(VH − s− δV ∗) + (VL − t− δV ∗)
. (10a)

3.4 Useful Results

This subsection groups together the results that are useful for the t ≤ l and
t > l cases of game G∞. Lemma 1 to Lemma 5 hold for all stage-game payoff
parameters satisfying (2) to (5) and all δ ∈ (0, 1).

Lemma 1 The two value functions of the turn-taking phases are related by

VH + VL =
h+ l

1− δ
, (11)

and

VH − VL = h− l
1 + δ

> 0. (12)

Lemma 2

h+ l

2
− U (p) = p2

Ã
h+ l

2
− t

!
+ (1− p)2

Ã
h+ l

2
− s

!
> 0, (13)

where

U (p) = p2 (t) + (1− p)2 (s) + p (1− p) (h+ l) (14)

is a player’s expected current-period payoff in the randomization phase, if both
players choose T with probability p, an arbitrary number in the interval (0, 1).
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Lemma 3

VH + VL
2

− V (p) = 1n
1− δ

h
p2 + (1− p)2

io "h+ l
2
− U (p)

#
> 0, (15)

where

V (p) =
p2t+ (1− p)2 s+ p (1− p) (VH + VL)

1− δ
h
p2 + (1− p)2

i =
U (p) + δp (1− p) (VH + VL)

1− δ
h
p2 + (1− p)2

i
(16)

is a player’s intertemporal payoff at the randomization phase if both players
choose T with probability p.

Lemma 4 For any p ∈ (0, 1),

VH >
VH + VL

2
> V (p) . (17)

Lemma 5 For the repeated game G∞,

VH − s− δV (p) > 0 (8a)

for all δ ∈ (0, 1) and all p ∈ (0, 1). In particular, (8a) holds for p = p∗ (if it
exists), and thus the no-deviation condition (8) at a player’s good turn of the
equilibrium path is satisfied for all δ ∈ (0, 1).

Lemma 1 relates VH and VL of the turn-taking phase of the TTIR strategy.

Lemma 2 has an intuitive interpretation. The term U (p) represents each
player’s payoff when both players randomize independently, and h+l

2
repre-

sents each player’s payoff if it is possible for them to correlate their strategies.
The difference represents the loss of current-period payoff associated with inde-
pendent randomizations when compared to correlated strategies. Independent
randomizations are costly because there is a positive probability that the play-
ers may reach the symmetric outcomes (T, T ) or (S, S) and may therefore fail
to maximize their total payoff.

Lemma 3 is the (nontrivial) intertemporal analog of Lemma 2: the relative
loss of intertemporal payoff in using independent randomized strategies when
compared to using correlated strategies. When the players both play T with
probability p and S with probability 1− p, then the randomization phase will
continue with probability p2+(1− p)2. Therefore, the effective discount factor
will be δ

h
p2 + (1− p)2

i
in (15) during the randomization phase. Note that the

value of the game, V ∗, is related to function V (p) by

V (p∗) = V ∗. (16a)

13



Lemma 4 is obtained by combining (12) and (15). With the players using the
TTIR strategy, the repeated game G∞ includes, probabilistically, some of the
beginning periods in which the two players turn out to choose the same action,
(T, T ) or (S, S). Therefore, V (p) is smaller than VH .

The no-deviation condition (8) is related to whether a player will defect when
she is supposed to take the good turn. It is not surprising to see from Lemma
5 that (8) holds for all δ ∈ (0, 1).

3.5 Key conditions that determine the TTIR equilibrium, and the remaining
tasks

As given in subsection 3.3, if both no-deviation conditions (8) and (9) are sat-
isfied, then p∗ and V ∗ are related according to (10). To examine the conditions
under which turn taking arises as a subgame-perfect equilibrium of game G∞,
we focus our attention on p∗ (the equilibrium probability of randomization).

There are two ways that we can eliminate V ∗ to obtain a relationship with p∗

only. Both are useful in the analysis. First, substituting (16) and (16a) into
(10a) lead to

p∗ =
VH − s− δ

½
(p∗)2t+(1−p∗)2s+p∗(1−p∗)(VH+VL)

1−δ[(p∗)2+(1−p∗)2]

¾
VH + VL − s− t− 2δ

½
(p∗)2t+(1−p∗)2s+p∗(1−p∗)(VH+VL)

1−δ[(p∗)2+(1−p∗)2]

¾ , (10b)

where VH and VL depend on δ, h, and l only. Equation (10b) can be interpreted
as follows. Think of p∗ on the left-hand side of (10b) as the probability that
both players choose T in the current period (at the randomization phase), and
p∗ on the right-hand side as the probability that both players choose T in the
future if the game re-starts. When the no-deviation conditions (8) and (9) are
satisfied, then it can be deduced from Table 3 that the equilibrium probability
of randomization (p∗) in the current period is given by the right-hand term
of (10a), which involves the value of the game, since the game may re-start
in the future. As V (p∗) = V ∗ in (16a) makes clear, a player’s continuation
payoff V ∗ depends on (future) p∗. The equilibrium condition (10b) can be
regarded as a consistency condition between current and future probabilities
of randomization of this infinitely repeated game with discounting. Note that
(10b) is non-linear in p∗.

Second, (10) leads to

V ∗ =
p∗t+ (1− p∗)VH

1− δp∗
=
p∗VL + (1− p∗) s
1− δ (1− p∗) . (10c)
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Substituting (6) and (7) into the second equality of (10c) and simplifying give

a (p∗)2 + bp∗ + c = 0, (18)

where the coefficients a, b, and c are related to the fundamental parameters
(stage-game payoff parameters and the discount factor) according to

a = δ [(1 + δ) (t− s)− (h− l)] , (18a)

b =
³
1− δ2

´
t+ (1 + δ)2 s− h− (1 + 2δ) l, (18b)

and
c = h+ δl − (1 + δ) s. (18c)

In summary, for a given game G∞, a TTIR equilibrium exists if there exists
a p∗ ∈ (0, 1) that simultaneously satisfy (8), (9) and (10), where (8) and (9)
are the no-deviation conditions (during the turn-taking phase), and (10) is
the equilibrium randomization condition (during the randomization phase).
Moreover, the TTIR equilibrium is unique if there exists only one p∗ ∈ (0, 1)
that satisfies these three conditions.

As the no-deviation condition (8) at the good turn always holds according
to Lemma 5, our remaining tasks are to examine under what circumstances
the no-deviation condition (9) at the bad turn holds, as well as whether p∗,
defined in (10)–or equivalently, (10b) or (18)–exists in the interval (0, 1) and
is unique. The analysis differs for the t ≤ l and t > l cases, as the underlying
structure of the game is different in these two cases.

4 The t ≤ l Case: The Asymmetric Outcomes are Nash Equilibria
of the Stage Game

The analysis of no-deviation condition (9) for the t ≤ l case is straightfor-
ward. Because of t ≤ l and Lemma 4, it is easy to see that l − t ≥ 0 and
δ [VH − V (p)] > 0 for all p ∈ (0, 1). The result is summarized in the following
Lemma.

Lemma 6 For the repeated game G∞ with t ≤ l,

VL − t− δV (p) = (l − t) + δ [VH − V (p)] > 0 (9a)

for all δ ∈ (0, 1) and all p ∈ (0, 1). In particular, (9a) holds for p = p∗ (if it
exists), and thus the no-deviation condition (9) at a player’s bad turn of the
equilibrium path is satisfied for all δ ∈ (0, 1).
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For the t ≤ l case of game G∞, a player will not defect when she is supposed
to take the bad turn, because by adhering to the equilibrium strategy, she will
have both a current gain of l− t and a future gain of δ [VH − V (p)]. The fact
that taking a bad turn still gives the player a higher (or at least the same)
current-period payoff when compared to defecting is important for under-
standing why the turn-taking equilibrium can be supported for any discount
factor.

Because (8a) and (9a) are satisfied for all δ ∈ (0, 1) and all p ∈ (0, 1) when
t ≤ l, what remains in showing that a unique TTIR equilibrium exists is to
show that there exists a unique p∗ ∈ (0, 1) satisfying (10). In the Appendix, we
use the Brouwer’s Fixed Point Theorem to show that when t ≤ l, the TTIR
equilibrium exists for all δ ∈ (0, 1). We also show that the TTIR equilibrium is
unique, and obtain the closed-form solution for p∗ (the equilibrium probability
of randomization).

Proposition 1 For the repeated game G∞ with t ≤ l, the strategy profile in
which both players adopt TTIR constitutes a subgame-perfect equilibrium for
all δ ∈ (0, 1). Moreover, the TTIR equilibrium is unique. The unique value of
p∗ in the interval (0, 1) is related to the fundamental parameters–through the
relationships in (18a) to (18c)–according to

p∗ =
−c
b

(19)

when a = 0, or according to

p∗ =
−b−√b2 − 4ac

2a
(20)

when a 6= 0.

5 The t > l Case: The Asymmetric Outcomes are Not Nash Equi-
libria of the Stage Game

The derivation of the conditions under which turn taking can be supported as
the equilibrium for the repeated game G∞ in which the asymmetric efficient
outcomes are not Nash equilibria of the stage game is more difficult but also,
arguably, more interesting than the case in which the asymmetric efficient
outcomes are Nash equilibria of the stage game.
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5.1 A Major Difference When Compared to the t ≤ l Case

The earlier analysis of the equilibrium of the stage game for the t > l case
is helpful in understanding the turn-taking equilibrium of the corresponding
repeated game. In a one-shot interaction, T is the dominant strategy for both
players. Thus, neither of the asymmetric outcomes (T, S) and (S, T ) is a Nash
equilibrium for the stage game, even though each outcome yields a larger total
payoff than the Nash equilibrium (T, T ) under assumption (5).

The importance of the inequality t > l is also reflected in the no-deviation
condition (9) of the repeated game G∞. When considering whether to defect
from a bad turn (choosing S when her opponent chooses T ), a player knows
that there will be future gain (as δ [VH − V (p)] > 0, according to Lemma 4)
in adhering to the equilibrium strategy. However, there is now a current loss
if the player does so, as t > l. There is a trade-off between current loss and
future gain. It is this trade-off that distinguishes the analysis of this case from
that of the t ≤ l case.

5.2 The Turn-Taking Equilibrium

As the proof for the case t ≤ l (in Section 4) is relatively straightforward, it
may appear that it would also be easy to obtain the conditions under which (9)
holds for the t > l case by expressing the equilibrium probability of random-
ization (p∗) and the value of the game (V ∗) in terms of the discount factor (δ)
and the stage-game payoff parameters (h, l, s, and t). For example, one may
think of using the closed-form solution for p∗ similar to (19) and (20) for the
t ≤ l case. However, while (19) and (20) hold for all discount factors δ ∈ (0, 1)
for the t ≤ l case, they will only hold for sufficiently high discount factors
when t > l, as we shall show later. Therefore, we need to first determine the
range of discount factors in which (19) and (20) hold when t > l.

In the analysis of game G∞ with t > l, we proceed as follows. We first con-
jecture that there exists a critical discount factor δTT ∈ (0, 1) such that for
all δ ∈ (δTT , 1), a unique TTIR equilibrium exists. 10 We then show that if a
unique TTIR equilibrium exists for all δ ∈ (δTT , 1), the function p∗ (δ) must
be strictly decreasing in δ. These results enable us to determine the value of

10 Conjecturing that the TTIR equilibrium exists in the interval (δTT , 1), instead
of assuming more generally that the equilibrium may exist in a region consisting of
several disconnected intervals, is consistent with most results in the repeated game
literature. Had we initially allowed for the possibility of disconnected intervals, we
could still subsequently use Lemma 7 to conclude that the TTIR equilibrium only
exists in one interval and the interval is (δTT , 1).
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δTT as a function of the payoff parameters of the stage game. We then close
our proof by showing that for all δ ∈ (δTT , 1), there in fact exists a unique
p∗ (δ) that simultaneously satisfy (8), (9), and (10). Using this approach, we
are able to study how p∗ (δ) behaves as a function of δ and understand its
economic intuition. (Note that whenever appropriate, we state explicitly the
dependence of p∗ on δ.)

Assuming that a unique TTIR equilibrium exists for all δ ∈ (δTT , 1), we
now investigate how p∗ (the equilibrium probability of randomization) changes
when the discount factor changes but the other parameters remain constant.
The partial derivative ∂p∗

∂δ
is given in (22) below. Manipulating various terms

in (22) leads to the following Lemma regarding the monotonicity of p∗ with
respect to δ. 11

Lemma 7 For the repeated game G∞ with t > l, if a unique TTIR equilibrium
exists for all δ ∈ (δTT , 1), then p∗ satisfies

0.5 < p∗ < 1, (21)

and

∂p∗

∂δ
=
(1− p∗)

h
∂VH
∂δ
− δ ∂V ∗(δ,p∗)

∂δ
− V ∗

i
− p∗

h
∂VL
∂δ
− δ ∂V ∗(δ,p∗)

∂δ
− V ∗

i
(VH − s− δV ∗) + (VL − t− δV ∗) + δ (1− 2p∗) ∂V ∗(δ,p∗)

∂p∗
(22)

is negative.

Lemma 7, which is the most difficult result to prove in this paper, is a cru-
cial step in understanding the turn-taking equilibrium for the t > l case.
The intuition behind this result is as follows. In the TTIR strategy, the
probability of randomization performs multiple roles: helping the players get
onto an efficient turn-taking path (i.e., {..., (T, S) , (S, T ) , (T, S) , (S, T ) , ...}
or {..., (S, T ) , (T, S) , (S, T ) , (T, S) , ...}) in the initial periods of the game, re-
solving the question of who gets to start with the good turn, and acting as
a punishment device to deter defection from the equilibrium behavior in the
turn-taking phase. For the role of getting the players onto an efficient turn-
taking path, observe that the probability of reaching an asymmetric outcome
in a period is 2p (1− p), which is highest at p = 0.5 and is decreasing when p
is farther from 0.5. According to (21), we know that the equilibrium p∗ must
be in the range (0.5, 1). 12 A lower probability of randomization in this range

11However, for the other case (t ≤ l) of game G∞, we have found examples in which
the monotonicity property of p∗ with respect to δ does not hold.
12Note that in the TTIR equilibrium, a player chooses p∗ to ensure that for the
other player, the second equality of (10), or equivalently, p∗ (VL − t− δV ∗) =
(1− p∗) (VH − s− δV ∗), holds. We show in the Appendix that when t > l,
(VH − s− δV ∗) > (VL − t− δV ∗), or equivalently, h − l − (1 + δ) (s− t) > 0 in
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will increase the chance of getting onto a turn-taking path. However, a lower
probability of randomization may not constitute a strong enough deterrent
against defection. Lemma 7 shows that the equilibrium p∗ that balances these
efficiency and incentive considerations is decreasing in δ in the relevant region.
When players are more patient, a lower probability of randomization will be
sufficient to deter the players from deviating.

According to Lemma 7, the function p∗ (δ) decreases monotonically in δ ∈
(δTT , 1), provided that a unique TTIR equilibrium exists. Moreover, it is clear
from (10) that p∗ (δ) is a continuous function in the relevant region. Combining
these features, we conclude that

lim
δ→δTT

p∗ (δ) = 1, (23)

since otherwise we could have found a lower discount factor such that p∗ (δ)
is still less than 1. Note that if both players choose T with certainty during
the randomization phase, they will never get onto an efficient turn-taking
path. Equation (23) says that at the limiting case when δ tends to the critical
discount factor, the punishment of TTIR becomes most severe as p∗ (δ) tends
to 1. Figure 1 illustrates how p∗ behaves as a function of δ.

Furthermore, from the second equality of (10), we have

VL − t− δV ∗ =
1− p∗
p∗

(VH − s− δV ∗) . (10d)

Combining it with Lemma 5 and (23), we have

lim
δ→δTT

[VL (δ)− t− δV ∗ (δ)] = 0. (24)

We conclude that at the critical discount factor δTT , p∗ (δ) tends to 1 and the
no-deviation condition at the bad turn must be binding. Using these results, we
can determine the critical discount factor as a function of the payoff parameters
of the stage game. The result is given in Proposition 2.

Proposition 2 For the repeated game G∞ with t > l, if a unique TTIR
equilibrium exists for all δ ∈ (δTT , 1), then the critical discount factor δTT
depends on the stage-game parameters as follows:

δTT =
t− l
h− t . (25)

(A6). Therefore, each player chooses T with a probability higher than 0.5 at equi-
librium to ensure that the other player is willing to randomize between T and S.
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Proof of Proposition 2. Using (23) and the first equality of (10c), we have

lim
δ→δTT

V ∗ (δ) = lim
δ→δTT

p∗ (δ) t+ [1− p∗ (δ)]VH (δ)
1− δp∗ (δ)

=
t

1− δTT
. (26)

Therefore, substituting (7) and (26) into (24) lead to

lim
δ→δTT

VL (δ) =
l + δTTh

1− δ2TT
= lim

δ→δTT
[t+ δV ∗ (δ)] = t+δTT

µ
t

1− δTT

¶
=

t

1− δTT
.

(24a)
Simplifying (24a) gives (25).

What is the intuition of Proposition 2? According to Lemma 7, the endoge-
nously determined p∗ of the TTIR strategy, which is used to strike a balance
between the efficiency consideration and the incentive consideration, is strictly
decreasing in δ (between δTT and 1). When δ tends to 1, the no-deviation con-
dition (9) is non-binding and the TTIR strategy profile constitutes a subgame-
perfect equilibrium. As δ decreases (and future payoffs become less important),
to ensure that the no-deviation condition (9) holds, p∗ must increase to make
deviation more costly. However, the maximum possible punishment is when
p∗ tends to 1. This defines the critical discount factor δTT . As δ tends to δTT ,
p∗ (δ) tends to 1, and the no-deviation condition at the bad turn becomes bind-
ing. Moreover, the punishment approaches the Nash punishment (of choosing
T with probability 1 at every period), as in Friedman (1971). Thus, V ∗ (δ)
approaches t + δTT t+ δ2TT t + ... =

t
1−δTT in the limit, as given in (26). Using

the above results, we can determine the critical discount factor as in (25).
Because of (5) and t > l, it is easy to conclude from (25) that δTT ∈ (0, 1).

Having determined δTT as a function of the payoff parameters of the game
according to (25), we now show that for all δ ∈ (δTT , 1), in fact there ex-
ists a unique p∗ (δ) that simultaneously satisfy (8), (9), and (10). According
to Lemma 5, the no-deviation condition (8) at the good turn always holds.
According to (10d), if a p∗ ∈ (0, 1) satisfies (8) and (10), it will satisfy (9) au-
tomatically. Therefore, to show that there exists a unique TTIR equilibrium,
it is sufficient to show that there exists a unique p∗ (δ) satisfying (10). This is
given in Proposition 3.

Proposition 3 For the repeated game G∞ with t > l, the TTIR strategy
constitutes a subgame-perfect equilibrium for all δ ∈ (δTT , 1) where δTT is
given by (25). The TTIR equilibrium is unique, and the unique value of p∗ in
the interval (0, 1) is given by (19) if a = 0 or by (20) if a 6= 0.

Note that, unlike the t ≤ l case, condition (9a) does not hold for all p ∈
(0, 1) for the t > l case (even though it does hold for p = p∗ when δ >
δTT .) Therefore, our proof for Proposition 3 proceeds differently from that
for Proposition 1, even though we focus on the equilibrium randomization
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condition (10) in both cases.

Proposition 3 shows that when t > l, for the TTIR strategy to constitute a
subgame-perfect equilibrium, the discount factor must be larger than δTT =
t−l
h−t . This is in sharp contrast to the t ≤ l case, in which the TTIR strategy
constitutes a subgame-perfect equilibrium for any discount factor. According
to (9), a player who is supposed to take the bad turn according to the TTIR
strategy will not deviate if t− l < δ (VH − V ∗), that is, if the current gain from
deviating is smaller than the future loss from deviating. When t ≤ l (i.e., the
two asymmetric efficient outcomes are Nash equilibria of the stage game), this
condition is satisfied for any discount factor because deviation actually yields
a current loss, not a gain. When t > l (i.e., the two asymmetric outcomes are
not Nash equilibria of the stage game), however, deviation yields a current
gain. If the discount factor is too small, then (9) cannot be satisfied no matter
how the probability of randomization (which affects the value of V ∗) is chosen.

5.3 Comparative Static Results

The characterization of the critical discount factor in (25) when t > l allows
us to derive comparative static results regarding some parameters of the stage
game. Despite their simplicity, these comparative static exercises reveal some
interesting commonalities in the various widely studied repeated games in
which the asymmetric outcomes of the stage game are joint-payoff-maximizing.

As observed in (25), the critical discount factor does not depend on parame-
ter s but on the other three payoff parameters. 13 Note first that the left-hand
term of (24a) is a player’s intertemporal payoff of adhering to the equilibrium
strategy when her bad turn comes up, whereas the right-hand term is the
intertemporal payoff of defecting. An increase in t (at an unchanged δTT ) will
increase the current and future payoffs of defecting. To restore the equilib-
rium condition (24a), the critical discount factor has to increase. Formally,
differentiating δTT with respect to t gives

∂δTT
∂t

=
h− l
(h− t)2 > 0, (27)

because of (3) and (5). Holding the value of h and l constant, an increase in

13 The analysis in Subsection 5.2 makes clear that the critical discount factor is
determined by the limiting case of V ∗ (δ) tending to the intertemporal payoff asso-
ciated with the strategy of always choosing Tough. When a player considers whether
to deviate or not at her bad turn of the turn-taking path in this limiting case, pay-
off s does not appear in (26) since the outcome (S, S) will never be reached in the
future. Consequently, the critical discount factor does not depend on s.

21



t (up to h+l
2
) makes it harder for the players to use TTIR to support turn

taking as an equilibrium outcome.

For the other two parameters h and l, instead of relating the critical discount
factor to each of them, we find it more interesting to relate δTT to two concepts
dependent on h and l: the efficiency gain from succeeding in achieving (any one
of) the asymmetric efficient outcomes and the degree of distributional conflict
in the stage game. In the stage game, the maximum and minimum amounts of
the players’ total gain attained as a result of succeeding in reaching either of
the two asymmetric outcomes are h+ l−min {2t, 2s} and h+ l−max {2t, 2s},
respectively. Holding the value of t and s constant, an increase in h+l increases
both the maximum and the minimum gains that the players attain when they
succeed in reaching an asymmetric outcome. Therefore, we define

λ = h+ l (2a)

as the index for the efficiency gain from succeeding in achieving either of the
two asymmetric outcomes. We also define

θ =
h

l
(2b)

as the index for distributional conflict. Without loss of generality, we can
normalize the payoffs so that l > 0. As a result, λ > 0 and θ > 1 according
to (2a) and (2b). When λ = h + l is held constant, an increase in θ implies
that there is a higher degree of conflict of interest in the stage game. Note that
when θ tends to 1, h = l, and it is natural to say that there is no distributional
conflict in this case.

From (2a) and (2b), we can obtain h = θλ
1+θ

and l = λ
1+θ
. Therefore, the stage

game G can also be expressed as a game where the primitives are t, s, θ, and
λ. This is illustrated in the right-hand panel of Table 1.

In the following analysis, we study how changes in the degree of conflict and
the efficiency gain affect the critical discount factor above which the players
succeed in using TTIR as an intertemporal cooperation mechanism for the
t > l case. 14 The critical discount factor in (25) can now be expressed as a
function of t, θ and λ as follows:

δTT =
t− l
h− t =

(1 + θ) t− λ

θλ− (1 + θ) t
. (25a)

14Note that Proposition 1 implies that so long as t ≤ l, the TTIR profile consti-
tutes an equilibrium for all δ ∈ (0, 1). Thus, changes in the degree of conflict and
the efficiency gain have no effect on the players’ ability to use TTIR to facilitate
intertemporal cooperation when t ≤ l.
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Therefore, we have
∂δTT
∂θ

=
λ (λ− 2t)

[θλ− (1 + θ) t]2
> 0, (28)

and
∂δTT
∂λ

=
−t

³
θ2 − 1

´
[θλ− (1 + θ) t]2

< 0, (29)

because t > l > 0 and λ = h+ l > 2t.

Equation (28) says that δTT is increasing in θ, which means that an increase in
the degree of conflict makes it harder for the players to use TTIR to support
turn taking as an equilibrium intertemporal cooperation mechanism. This re-
sult is intuitive. An increase in distributional conflict (when other parameters
are constant) implies that the player’s payoff at the bad turn along the equilib-
rium turn-taking path is relatively unattractive. As a result, the players have
a greater incentive to defect (at a given discount factor); thus the turn-taking
equilibrium can only be supported above a higher critical discount factor.

Equation (29) says that δTT is decreasing in λ, which means that a decrease in
the gain from succeeding in achieving either of the asymmetric efficient out-
comes (provided that (4) and (5) still hold) leads to an increase in the critical
discount factor above which turn taking can be supported as an equilibrium
outcome.

6 Discussion

In earlier sections, we analyze repeated games with asymmetric efficient out-
comes when the players use the TTIR strategy. This strategy differs in a few
important aspects from strategies that have appeared in several earlier pa-
pers. For expositional convenience, in preceding sections, we focus on deriving
analytical results without highlighting these differences. In this section we
systematically discuss the differences.

6.1 Related Papers

Our analysis of equilibrium turn-taking behavior is related to, but differs from,
some other contributions. In an analysis of learning in repeated pure coordi-
nation games, Crawford and Haller (1990) emphasize the role of repeated
interaction in solving the coordination problem. Specifically, they show how
players can use independent randomizations to achieve a coordinated outcome
and can then maintain coordination either by repeating the achieved coordi-
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nated outcome or by alternating between the achieved outcome and the other
joint-payoff-maximizing outcome.

In a study of the efficiency properties of different conventions in repeated sym-
metric two-player mixed-interest games, Bhaskar (2000) also considers strate-
gies that involve independent randomizations and some kind of turn taking.
His contribution is perhaps the most closely related to ours in the existing
literature.

In the context of a mixed-interest game, Bhaskar (2000, p. 250) defines a con-
vention as “a rule which achieves asymmetric coordination by conditioning
upon history.” A convention is “bourgeois” if it specifies that after an asym-
metric outcome is reached as a result of randomization in some initial period,
the players will always choose this particular outcome thereafter. A conven-
tion is “egalitarian” if the players’ payoffs are equalized as far as possible.
The egalitarian convention works as follows. 15 Suppose the realized outcome
in some initial period is (T, S), and player 1’s current-period payoff exceeds
player 2’s. To implement the egalitarian convention, the players choose (S, T )
in succeeding periods until the intertemporal payoff of player 2 exceeds that
of player 1. At this point the players switch to playing (T, S) until player 1’s
intertemporal payoff exceeds player 2’s, and so on. 16

The key point of Bhaskar’s (2000) analysis is that different conventions give
rise to different incentives for the players’ behavior in the randomization phase.
Under the bourgeois convention, each player has a high stake in ensuring that
coordination will be achieved in her preferred asymmetric outcome (that is,
(T, S) for player 1 and (S, T ) for player 2), and this causes the players to
place a higher weight on playing T in the randomization phase than they do
under the egalitarian convention. As a result, coordination is less likely to be
achieved in earlier periods under the bourgeois convention, and this convention
is less efficient than the egalitarian convention.

In a contribution that provides a game-theoretic explanation for staggered
decisions, Lau (2001) considers a repeated duopoly game in which the players

15 See Bhaskar (2000, pp. 256-257). This method, which is an application of the
results in Sorin (1986) and Fudenberg and Maskin (1991), is based on the idea of
keeping track of the players’ intertemporal payoffs at each period.
16 Consider the following example that an asymmetric outcome, say (T, S), is first
achieved in period 0 by randomization in game G∞ with h = 2 and l = 1. It
can easily be verified that if δ = 0.8, the two players’ actions in the first twenty
periods under the egalitarian convention are as follows: The players will play (T, S)
in periods 0, 3, 5, 6, 9, 11, 12, 15, 16, and 18 and will play (S, T ) in other periods.
If δ = 0.9, the two players’ actions in the first twenty periods under the egalitarian
convention are as follows: The players will play (T, S) in periods 0, 3, 5, 6, 9, 10,
12, 15, 17, and 18 and will play (S, T ) in other periods.
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can always set the choice variable for one or two periods. That paper shows
how, by avoiding head-to-head competition, nonsynchronized decisions help
the players achieve intertemporal sharing of the gain from cooperation when
strategic complementarity is present. Along the equilibrium path of staggered
moves, the players set their choice variables in alternating periods.

Like the current paper, each of these three papers considers a repeated game
in which a coordination (or coordination-cum-conflict) problem is present, and
the players use randomization to mitigate this problem.

Despite these similarities, there are important differences among these papers.
First, our goal is to understand the phenomenon of turn taking, which differs
from the objectives of the other three papers. Second, while all four papers
consider repeated symmetric two-player games, the stage game in each paper
is different. Crawford and Haller (1990) consider a pure coordination game,
which, by definition, has no conflict element. Bhaskar (2000) considers a class
of mixed-interest game in which the asymmetric efficient outcomes are Nash
equilibria of the stage game. This paper considers the mixed-interest game in
which the asymmetric efficient outcomes may or may not be Nash equilibria
of the stage game. The game considered in this paper nests those studied in
Bhaskar (2000) as special cases. 17

There are also interesting differences among the players’ strategies and equi-
librium payoffs in Crawford and Haller (1990), Bhaskar (2000), and this paper.
In the pure coordination game in Crawford and Haller (1990), each player is
indifferent in the two efficient outcomes. Thus, the crucial point is to achieve
and then maintain the efficient outcome(s). Since there is no conflict element
in this game, it is not surprising that the players’ equilibrium payoffs are
the same. On the other hand, both Bhaskar (2000) and this paper consider
a game with coordination and conflict elements. In the infinite-horizon ver-
sion of Bhaskar (2000), the conflict element present in the stage game (as
h > l) can be completely removed by the egalitarian convention, which guar-
antees that the players’ intertemporal payoffs are the same, even though the
players’ payoffs in each period are not. 18 While some kind of turn taking is
observed under the egalitarian convention, the time-varying strategies (see, for
instance, the examples in footnote 16) considered by Bhaskar (2000) are more
complicated than the TTIR strategy considered here. On the other hand, in
this paper, when the players use the TTIR strategy, only the players’ ex ante
payoffs–but not their ex post payoffs–are equalized.

Compared to the analyses in Crawford and Haller (1990) and Bhaskar (2000),

17On the other hand, Lau (2001) is more different from the other papers, in that
the action space of the stage game is continuous rather than binary.
18 In the finite-horizon version of Bhaskar (2000), the players’ ex post payoffs usually
cannot be completely equalized.

25



we emphasize analyzing the incentive conditions. In the t ≤ l version of game
G∞, these conditions are not very important since the players have no incentive
to deviate from the efficient path; see Lemma 5 and Lemma 6. Crawford and
Haller (1990) and Bhaskar (2000) only consider the t ≤ l case, and it is
therefore understandable that they do not explicitly analyze these conditions.
In fact, Bhaskar (2000, p. 255) emphasizes that when the two asymmetric
outcomes are both Nash equilibria, “any convention can be supported as the
outcome path of a subgame perfect equilibrium–players can simply ignore
deviations and continue with the convention.” On the other hand, there is a
current gain if a player deviates at her bad turn when the two asymmetric
outcomes are not Nash equilibria of the stage game. It is extremely important
to analyze the incentive condition at a player’s bad turn. By focusing on it, we
are able to show the existence and uniqueness of the TTIR subgame-perfect
equilibrium for game G∞ with t > l.

6.2 Comparing the TTIR Strategy with Other Subgame-Perfect Equilibrium
Strategies

A useful way to organize the discussion of various possible strategies with
turn-taking features is to look at the differences in the initial and punishment
phases of game G∞. We discuss two questions: (a) Instead of using randomized
strategies in the initial phase, are there other turn-taking subgame-perfect
equilibria such as the one in which player 1 chooses T and player 2 chooses
S in the first period and they take turns afterwards? (b) Instead of using
randomized strategies in the punishment phase, can the turn-taking subgame-
perfect equilibrium be supported by other punishment strategies?

We first look at the initial phase. As mentioned in Section 3.1, there are conflict
and coordination problems in this game, which can be seen as follows. Pro-
vided that (8) and (9) are satisfied, there are two efficient equilibria at period
0: (play T at period 0, play S at period 0) and (play S at period 0, play T at
period 0). These two equilibria correspond to the two outcome sequences X =
{(T, S) , (S, T ) , (T, S) , (S, T ) , ...} and Y = {(S, T ) , (T, S) , (S, T ) , (T, S) , ...}.
According to the Folk Theorem, both sequences can be supported as subgame-
perfect equilibrium outcomes when the players are sufficiently patient. How-
ever, each player prefers the outcome in which she is the first player to start
with the good turn: player 1 prefersX to Y , while player 2 prefers Y toX. Any
argument that may be offered in favor of one equilibrium is equally applicable
to the other.

This coordination-cum-conflict problem is a repeated game analog of a similar
problem in the (one-shot) game G with t < l such as the game used by Farrell
(1987) to study market entry issues. Recall that in game G with t < l, there
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are two pure-strategy Nash equilibria (T, S) and (S, T ) and a (symmetric)
mixed-strategy equilibrium. Analogous to the fact that the two players have
conflicting preferences regarding X or Y in the repeated game G∞, the two
players also have conflicting preferences regarding the two pure-strategy Nash
equilibria (T, S) and (S, T ) in the one-shot game G.

As several authors have argued, in the absence of communication, the logical
prediction of the one-shot game G is the mixed-strategy equilibrium (Dixit
and Shapiro, 1986; Farrell, 1987; also see Cooper et al., 1989). Following this
line of argument, we consider the subgame-perfect equilibrium in which the
players use the same mixed strategies in the initial phase. Given the symmetric
nature of the game, this strategy satisfies the symmetry-invariance principle
and ensures that both players receive the same ex ante payoff. On the other
hand, while either sequence X or Y may also be supported as subgame-perfect
equilibria, these equilibria violate the symmetry-invariance principle.

The above discussion provides a justification for why randomization is used in
the initial phase for gameG∞. However, the TTIR strategy specifies more than
the point made above. It also specifies that the players use the randomization
strategy in the punishment phase. This assumption has also been used in
Crawford and Haller (1990) and Lau (2001), but many repeated game papers
use other punishment strategies, especially when they examine a repeated
standard prisoner’s dilemma (see, for example, Friedman, 1971, Maskin and
Fudenberg, 1986). The following discussion focuses on the more interesting
t > l case of game G∞, 19 and it compares the use of mixed strategy with a
commonly used punishment strategy–the grim strategy that involves the play
of the Nash punishment forever when deviation occurs (Friedman, 1971). 20

For easy comparison, we assume that the strategies in the initial and turn-
taking phases are the same as those of the TTIR. We refer to this strategy as
the “turn taking with Nash punishment” strategy.

19 The reason that the other case is not considered here is as follows. When t ≤ l,
it is shown in Section 4 that by adhering to the equilibrium strategy at the bad
turn, a player will have both current and future gains. As a result, a subgame-
perfect equilibrium can be supported by the TTIR strategy for all discount factors,
according to Proposition 1. Because the continuation value (if a player deviates)
under any reasonable punishment strategy is smaller than VH , it is straightforward
to show that when t ≤ l, Proposition 1 will continue to hold for other punishment
strategies.
20 In general, the critical discount factor based on the Nash punishment strategy is
higher than that based on a more elaborate punishment strategy involving other
players minimaxing a deviator (see, for example, Fudenberg and Maskin, 1986),
except in games in which the equilibrium of the stage game holds all players to the
minimax values. In game G∞ with t > l, each player’s minimax value and her payoff
at the Nash equilibrium of the stage game are indeed equal.
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For game G∞ with t > l, the use of the Nash punishment strategy means that
both players will choose T forever if one or both of them deviate in the turn-
taking phase. At first glance, one may expect the Nash punishment strategy
to be more severe than the randomized strategy and may therefore think that
the strategy is able to support a turn-taking equilibrium even when the players
are not sufficiently patient to ensure that a subgame-perfect equilibrium can
be supported by the TTIR strategy. Interestingly, while the first part of this
conjecture is correct (in a sense to be made precise), the second part is not.

Define V NP as the continuation value in the punishment phase and δNP as
the critical discount factor above which the turn taking with Nash punish-
ment strategy can support a subgame-perfect equilibrium. A comparison of
the subgame-perfect equilibria supported by this strategy and by the TTIR is
given in the following Proposition.

Proposition 4 In the repeated game G∞ with t > l, a subgame-perfect equi-
librium can be supported by the turn taking with Nash punishment strategy
when δ ∈ (δNP , 1), where

δNP = δTT . (30)

Moreover, when δ ∈ (δTT , 1), we have

V ∗ > V NP =
t

1− δ
. (31)

A comparison of the proof of Propositions 2 and 4 suggests that the punish-
ment of the TTIR strategy is endogenous (as it depends on δ through p∗),
while that of the turn taking with Nash punishment strategy is not (as the
probability of choosing T in the punishment phase is always 1). However, at
the limiting case when δ tends to the critical discount factor, the punishment
of TTIR becomes most severe as p∗ tends to 1; see (23). But the punishment
in this limiting case is exactly the same as the Nash punishment. Not surpris-
ingly, the critical discount factors for the two punishment strategies are the
same.

On the other hand, (31) shows that the continuation value of the TTIR strat-
egy at the off-equilibrium path (which is the same as V ∗, the value of the
game) is higher than that of the Nash punishment strategy when the discount
factor is strictly higher than the critical level. The underlying reason of (31)
is that the punishment of the TTIR strategy is endogenously determined (to
balance the efficiency and incentive considerations) and varies as a function of
the discount factor δ. The punishment does not have to be very severe if the
players are more patient. The severity of the Nash punishment strategy, on
the other hand, does not vary with the discount factor. 21 Another manifesta-

21Note also that the turn taking with Nash punishment strategy specifies different
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tion of the endogenous punishment of the TTIR strategy is that any deviation
behavior that triggers punishment will end (endogenously and stochastically)
within a finite time period with probability 1.

6.3 Efficient Frontier of Game G∞ and Efficiency Loss of the TTIR Strategy

In this subsection we study the welfare properties of the TTIR equilibrium.
A convenient way to conduct welfare analysis is to convert the players’ in-
tertemporal payoffs into units of single-period payoffs. This can be achieved
by defining a player’s average payoff (i.e., the discounted average of the stream
of single-period payoffs; see, for example, Fudenberg and Maskin, 1986) at the
equilibrium as

W ∗ = (1− δ)V ∗. (32)

In terms of the players’ average payoffs, the efficient frontier of game G∞ is
given by the line joining (h, l) and (l, h) in Figure 2.

In the TTIR equilibrium of the repeated game with asymmetric efficient out-
comes, once the players succeed in achieving one of the two asymmetric out-
comes, they will achieve joint-payoffmaximization for the rest of the game and
will engage in intertemporal sharing of the gain from cooperation along the
equilibrium path. The players’ equilibrium payoffs (given by points A and B in
Figure 2, with point A representing the payoff vector in which player 1 takes
the good turn and player 2 takes the bad turn, and point B representing the
other case)–when evaluated at any period during the turn-taking phase–will
lie on the efficient frontier but not along the 45-degree line. However, because
initial randomization is used to solve the coordination-cum-conflict problem,
the players’ equilibrium payoffs (given by point C in Figure 2)–when evalu-
ated at the initial period (or more generally, at any period when the players
are in the randomization phase)–will lie strictly below the efficient frontier
but will be on the 45-degree line.

Since an initial cost is associated with the TTIR equilibrium in game G∞, one
may ask whether it is possible to use other subgame-perfect equilibrium strate-
gies to implement the efficient and egalitarian outcome

³
h+l
2
, h+l
2

´
, namely,

point D in Figure 2. According to the Folk Theorem (e.g., Fudenberg and
Maskin, 1986, 1991), this should be possible when the players are sufficiently
patient. Because public randomizations are not available in the environment
considered in this paper, the results in Fudenberg and Maskin (1991) are more

strategies in the initial and punishment phases. For example, if (T, T ) occurred in
the previous period during the initial randomization phase, then the players will
continue using the randomized strategy. If (T, T ) occurred in the previous period
because a player deviated from the equilibrium turn-taking strategy at her bad turn,
then the players will choose T .
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relevant. Following Sorin (1986), they show that even in the absence of public
randomizations, any payoff vector in the convex hull of the outcomes of the
stage game can be implemented by (possibly time-varying) deterministic se-
quences of pure strategies when the discount factor is close enough to 1. They
then show that with suitable modification of the argument in Fudenberg and
Maskin (1986), there exists a punishment strategy to ensure that players will
in fact behave according to the particular sequence when the discount fac-
tor is large enough. Thus, any feasible, individually rational payoff vector of
an infinitely repeated game can be supported as the outcome of a subgame-
perfect equilibrium when the players are sufficiently patient, even when public
randomizations are not available.

A possible algorithm to implement the efficient and egalitarian outcome is as
follows. Suppose that player 1 chooses T and her rival chooses S in period
0. The players then choose (S, T ) in subsequent periods until player 2’s dis-
counted sum of payoffs exceeds player 1’s. At that point the players switch
to playing (T, S) until player 1’s discounted sum of payoffs exceed player 2’s,
and so on. This algorithm is modified from the egalitarian strategy used in
Bhaskar (2000), except that the initial randomization phase is absent.

The punishment strategies to support this time-varying deterministic sequence
exist if the discount factor is large enough, according to Lemma 2 in Fudenberg
and Maskin (1991). (Roughly speaking, the suggested punishment strategy
consists of (a) any player defecting from the proposed sequence will be mini-
maxed by other players, and (b) any player who deviates from the prescribed
strategy in the punishment phase against the original defector will herself be
minimaxed, and so on.) Therefore, it is possible to implement the efficient and
egalitarian outcome in game G∞ by the above algorithm when the discount
factor is large enough.

The advantage of the time-varying deterministic sequence of pure strategies
suggested in Sorin (1986) and Fudenberg and Maskin (1991) is that it can
support the efficient and egalitarian outcome as a subgame-perfect equilibrium
when the discount factor is high enough. No efficiency loss occurs, and the
two (symmetric) players get the same intertemporal payoff. However, such
strategies are usually complex, and the exact strategy sequence is sensitive to
changes in parameters such as δ (see, for example, footnote 16). Moreover, the
problem of multiple equilibria reemerges when this kind of strategy sequence
is used. It is easy to observe (say, from the example in footnote 16) that if the
efficient and egalitarian outcome can be supported by a particular sequence, we
can always obtain another subgame-perfect equilibrium supporting

³
h+l
2
, h+l
2

´
by changing the label of the two players for this sequence. These time-varying
strategies do not satisfy the principle of symmetry invariance.

On the other hand, the merit of the TTIR strategy is its relative simplicity.
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The TTIR equilibrium satisfies symmetry invariance and is unique. Moreover,
even though there is an initial cost associated with the TTIR equilibrium, this
cost is arbitrarily close to zero when the players are sufficiently patient. This
is given in the following Proposition.

Proposition 5 For any ε > 0, there exists a critical discount factor depending
on ε, δ(ε), such that for all δ ∈ (δ (ε) , 1), each player in game G∞ obtains
an average payoff larger than h+l

2
− ε at the TTIR equilibrium.

According to Proposition 5, the average payoff of each player at the TTIR
equilibrium, W ∗, is arbitrarily close to the efficient frontier when the discount
factor is large enough. 22 In this sense, the TTIR strategy is almost as success-
ful at achieving efficiency as is the time-varying strategies considered in the
Folk Theorem for repeated games without public randomizations (Fudenberg
and Maskin, 1991).

7 Concluding Remarks

Turn-taking behavior has been observed in many settings. However, a system-
atic investigation of such behavior has not been found in the literature. This
paper represents a step toward such an investigation. Incorporating essential
features of various turn-taking examples, we study a symmetric two-player
repeated game such that (a) the total payoff of the two players at the asym-
metric outcomes is higher than that in the symmetric outcomes, and (b) the
turns that the players take include good and bad turns. The above specifica-
tion is very general, and it includes a number of games widely studied in the
literature.

In this class of repeated games, we show that when a symmetric subgame-
perfect equilibrium supported by the TTIR strategy exists, it is also unique.
When the two asymmetric efficient outcomes are Nash equilibria of the stage
game, turn taking can be supported as an equilibrium by TTIR for any
discount factor. When the two asymmetric efficient outcomes are not Nash
equilibria of the stage game, the equilibrium probability of randomization de-
creases with respect to the discount factor, and a subgame-perfect equilibrium
can be supported by TTIR when the discount factor is above a critical level
that varies with the payoff parameters in an intuitive manner.

22A related question, which is quantitative in nature, is how large the initial cost
associated with independent randomizations is at different discount factors. While
preliminary results show that the initial cost is different for different games, our
analysis of the repeated battle of sexes game (Lau and Mui, 2003) suggests that
this cost is quite small in general.
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In this paper we conduct an analysis of the repeated games with asymmetric
efficient outcomes when there is no communication opportunity between the
players. In this environment, the use of independent randomized strategies al-
lows the players to mitigate the coordination-cum-conflict problem. After an
initial randomization phase (which may be interpreted as a process of trial
and error, similar to the experimental results reported in Prisbrey, 1992), turn
taking eventually emerges. The TTIR strategy depends on only a small set of
relevant variables, since it specifies actions based on whether a symmetric or
asymmetric outcome occurred in the previous period. The TTIR strategy sat-
isfies symmetry invariance, and is simpler than those time-varying determin-
istic sequences of pure strategies considered in the repeated game literature.
We believe it is a very natural strategy to consider in this class of repeated
mixed-interest games with no communication.

A natural direction of future research is to investigate how to extend this
benchmark model to other environments in which turn-taking behavior is po-
tentially important. For example, the results reported in Ostrom et al. (1994)
suggest that nonbinding communication can be efficiency-enhancing in the
laboratory repeated games that they consider, a result that is broadly consis-
tent with findings that cheap talk can be efficiency-enhancing in static mixed-
interest games such as the battle of sexes (Cooper et al., 1989). On the other
hand, the results reported in Prisbrey (1992) suggest that asymmetric turn-
taking schemes–for example, one in which a player is supposed to take the
good turn for two periods and then take the bad turn for one period, with
her opponent doing the opposite–are more difficult to sustain. In the future,
we plan to investigate whether extending the model to incorporate different
kinds of asymmetry and communication will make it more difficult or easier for
(potentially more sophisticated) turn-taking strategies to achieve joint-payoff
maximization and intertemporal sharing of the gain from cooperation.

Finally, the benchmark model considered in this paper rules out the possibility
that a player may attempt to “modify the game” to her advantage. However,
in certain environments–for example, in deciding whether turn taking can be
used to determine who will be the chairperson of a department or an important
committee–players may be reluctant to take the bad turn because they are
concerned that a player who gets to take the good turn in a particular period
may attempt to alter the game to her advantage. A possible direction for
future research is to investigate when and how, in such an environment, some
kinds of turn-taking strategies may still be able to mitigate the conflict-cum-
coordination problems that are more difficult than the one considered in our
benchmark model.
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8 Appendix

The following result appears a number of times in the Appendix. From (3)
and δ ∈ (0, 1), we have

h+ δl = (1 + δ)

Ã
h+ l

2

!
+ (1− δ)

Ã
h− l
2

!
> (1 + δ)

Ã
h+ l

2

!
. (A1)

Proof of Lemma 2. For any 0 < p < 1,
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2
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=
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.

Combining the above expression with (14), and using (4) and (5), we have
(13).

Proof of Lemma 3. If both players choose T with probability p in the
randomization phase, then

V (p) = p2 [t+ δV (p)]+p (1− p) (h+ δVL)+(1− p) p (l + δVH)+(1− p)2 [s+ δV (p)] .
(A2)

Rearranging (A2) and using (14), we have (16). On the other hand,

n
1− δ

h
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µ
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2

¶
+ 2δp (1− p)

µ
VH + VL

2

¶
.

Combining the above expression with (16) and using (11) and (13), we obtain
(15).

Proof of Lemma 5. Using (6), (7), (14), and (A2), we have

VH − [s+ δV (p)] = h+ δl + δ2VH

−s− δU (p)− δ2
nh
p2 + (1− p)2

i
V (p) + p (1− p) (VH + VL)

o
.

First, (12) and (17) imply that

VH =
h
p2 + (1− p)2 + 2p (1− p)

i
VH >

h
p2 + (1− p)2

i
V (p)+p (1− p) (VH + VL) .

Second, (4), (13), and (A1) imply that

h+δl−[s+ δU (p)] > (1 + δ)

Ã
h+ l

2

!
−[s+ δU (p)] =

Ã
h+ l

2
− s

!
+δ

"
h+ l

2
− U (p)

#
> 0.

33



Combining these three expressions, we obtain (8a). Since (8a) holds for all
p ∈ (0, 1), it holds at the equilibrium probability of randomization (if it exists).

Proof of Proposition 1. We are going to prove that, first, the solution to
(10b) exists in the interval (0, 1) and, second, it is unique.

To apply well-known mathematical results, we extend (slightly) the domain
of p from (0, 1) to [0, 1]. We define the function

f (p) =
VH − s− δV (p)

[VH − s− δV (p)] + [VL − t− δV (p)]
(A3)

over p ∈ [0, 1], where V (p) is defined in (16). According to Lemma 5 and
Lemma 6, for any p ∈ (0, 1), VH−s−δV (p) > 0 and VL− t−δV (p) > 0 when
t ≤ l. Therefore, it can be concluded from (A3) that 0 < f (p) < 1. Moreover,
it is easy to extend the proof of Lemma 2 to Lemma 6 to show that they hold
for p = 0 and p = 1 as well. Therefore, f (.) is a continuous function from
the compact set [0, 1] to itself. Moreover, we can observe that the solution to
(10b) is a fixed point of the function f (.) in (A3).

Since the function f (.) maps the interval [0, 1] to itself, we can apply the
Brouwer’s Fixed Point Theorem and conclude that this function has a fixed
point. That is, there exists a p ∈ [0, 1] such that f (p) = p. Moreover, f (p) = p
does not hold at p = 0 or p = 1, since f (0) > 0 and f (1) < 1. Therefore, we
conclude that the solution to (10b) exists in the interval (0, 1). The solution
is denoted by p∗.

To show the uniqueness of p∗, we know that (18) is a quadratic equation in
p∗ and, therefore, that there are at most two real roots. 23 Together with the
existence result above, there must be either one or two equilibrium p∗ in the
interval (0, 1).

From the standard results for quadratic equations, we know that if a = 0,
then there is just one p∗ and it is given by (19), where b must be negative in

23A common approach to show the uniqueness of p∗ is to attempt using the Con-
traction Mapping Theorem. We have, however, found some counterexamples for the
t > l case (such as h = 160, l = 40, t = 80, s = 20 and δ = 0.75) that f (p) in (A3)
is not a contraction mapping. Hence, we use a different approach. One advantage of
using the formulas for quadratic equations to prove the uniqueness of p∗ is that we
also obtain the closed-form solution for p∗. The closed-form solution, given by (19)
or (20), forms the basis for quantitative welfare analysis related to game G∞, such
as those performed in Lau and Mui (2003).
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this case. 24 If a 6= 0, the two roots to (18) are given by (20) and

p∗ =
−b+√b2 − 4ac

2a
. (A4)

Since at least one equilibrium probability of randomization lies in (0, 1), the
term (b2 − 4ac) must be non-negative, and either (20) or (A4), but not both,
may lie outside the interval (0, 1).

From (18a) to (18c), we know that c > 0 but that a and b can be either
positive or negative. If a < 0, then b2 − 4ac > b2. Therefore

√
b2 − 4ac > b,

and p∗ in (A4) is negative.

If a > 0, then b2 − 4ac < b2. We have two cases: b > 0 and b < 0. (It is easy
to see that b = 0 is inconsistent with b2 − 4ac ≥ 0 and a > 0.) If b > 0, then√
b2 − 4ac < b and p∗ in (A4) is negative. If b < 0, then −b +√b2 − 4ac > 0

and p∗ in (A4) is positive. In this case, p∗ in (A4) is larger than 1 if and only
if

−b+
√
b2 − 4ac > 2a,

which, after simplification, is equivalent to

a+ b+ c < 0.

From (18a) to (18c), it can be shown that

a+ b+ c = (1 + δ) t− (l + δh) . (18d)

It is easy to see from (18d) that when t ≤ l, a + b + c < 0 for all δ ∈ (0, 1).
Therefore, whether a in (18a) is positive or negative, p∗ in (A4) does not lie
in the interval (0, 1).

Consequently, there is only one solution to 0 < p∗ < 1 for all δ ∈ (0, 1) when
t ≤ l, and the solution is given by (19) if a = 0 or (20) if a 6= 0.

Proof of Lemma 7. From (8), (9), and (10a), we have

1− p∗ = VL − t− δV ∗

(VH − s− δV ∗) + (VL − t− δV ∗)
> 0. (A5)

24 The pure coordination game in Crawford and Haller (1990) can be represented as
s = t and h = l (and, thus, t < l, because of (5)), using the notation in Table 1. In
this case, the no-deviation conditions (8) and (9) become the same, and it can be
shown that our results (which holds for h > l) will also be applicable when h = l.
It can further be shown that a in (18a) is 0 for this game. Thus, for all δ ∈ (0, 1),
p∗ = 0.5 according to (19).
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Also, (12) and (10a) imply

p∗ − 0.5 = (VH − s− δV ∗)− (VL − t− δV ∗)
2 [(VH − s− δV ∗) + (VL − t− δV ∗)]

=
h− l − (1 + δ) (s− t)

2 (1 + δ) [(VH − s− δV ∗) + (VL − t− δV ∗)]
. (A6)

It is easy to see that the denominator of (A6) is positive. For the numerator,
either t − s ≥ 0 or t − s < 0 can be consistent with t > l. If t − s ≥ 0, it is
easy to conclude from (3) that the numerator of (A6) is positive. If t− s < 0,
then (4), t > l and 0 < δ < 1 imply

h− l− (1 + δ) (s− t) > h− l−2 (s− t) = 2
"Ã
h+ l

2
− s

!
+ t− l

#
> 0. (A7)

Combining (A5), (A6), and (A7), we have (21).

From the second equality of (10), we have

p∗ (δ) [VL (δ)− t− δV ∗ (δ, p∗ (δ))] = [1− p∗ (δ)] [VH (δ)− s− δV ∗ (δ, p∗ (δ))] ,

where the dependence of p∗ on δ, and V ∗ on δ and p∗ (δ) are written explicitly.
(Note that V ∗ (δ) in (24) and V ∗ (δ, p∗ (δ)) are two ways to represent the
dependence of V ∗ on the underlying parameters.) Differentiating the above
expression with respect to δ, and rearranging, gives (22).

Consider the denominator of (22). Differentiating the first equality of (10c)
with respect to p∗ and simplifying, we have

∂V ∗

∂p∗
=
(1 + δ) t− (h+ δl)

(1− δp∗)2 (1 + δ)
< 0. (A8)

This is because the denominator of the middle term of (A8) is positive, and
(5) and (A1) imply h+ δl > (1 + δ)

³
h+l
2

´
> (1 + δ) t.

Combining (21) and (A8), the third term in the denominator of (22) is positive.
The first two terms in the denominator of (22) are positive when (8) and (9)
hold. Therefore, we have

(VH − s− δV ∗) + (VL − t− δV ∗) + δ (1− 2p∗) ∂V
∗

∂p∗
> 0. (A9)

Consider the numerator of (22). First, (21) implies

p∗ > 1− p∗ > 0. (A10)
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Second, using (12), we haveÃ
∂VL
∂δ
− δ

∂V ∗

∂δ
− V ∗

!
−
Ã
∂VH
∂δ
− δ

∂V ∗

∂δ
− V ∗

!

=
∂VL
∂δ
− ∂VH

∂δ
=
−∂ (VH − VL)

∂δ
=

h− l
(1 + δ)2

> 0. (A11)

Third, using (15), we have

∂

∂δ

½
δ
·
VH + VL

2
− V ∗ (δ, p∗ (δ))

¸¾
=

∂

∂δ

 δ
h
h+l
2
− U (p∗)

i
1− δ

h
(p∗)2 + (1− p∗)2

i


=

h
h+l
2
− U (p∗)

i
n
1− δ

h
(p∗)2 + (1− p∗)2

io2 > 0. (A12)

Fourth, (7) implies ∂VL
∂δ
= ∂(δVH)

∂δ
= δ ∂VH

∂δ
+VH , and (6) implies ∂VH

∂δ
= ∂(δVL)

∂δ
=

δ ∂VL
∂δ
+ VL. Using these relationships, (A11) and (A12), we have

∂VL
∂δ
−δ∂V

∗

∂δ
−V ∗ = ∂

∂δ
[δ (VH − V ∗)] = ∂

∂δ

·
δ
µ
VH + VL

2
− V ∗

¶¸
+

∂

∂δ

·
δ
µ
VH − VL

2

¶¸

>
∂

∂δ

·
δ
µ
VH − VL

2

¶¸
=
1

2

"
∂ (δVH)

∂δ
− ∂ (δVL)

∂δ

#
=
1

2

Ã
∂VL
∂δ
− ∂VH

∂δ

!
> 0.

(A13)

Therefore, (A10), (A11), and (A13) imply that

p∗
Ã
∂VL
∂δ
− δ

∂V ∗

∂δ
− V ∗

!
− (1− p∗)

Ã
∂VH
∂δ
− δ

∂V ∗

∂δ
− V ∗

!

> (1− p∗)
Ã
∂VL
∂δ
− δ

∂V ∗

∂δ
− V ∗

!
− (1− p∗)

Ã
∂VH
∂δ
− δ

∂V ∗

∂δ
− V ∗

!
> 0.

(A14)
That is, the numerator of (22) is negative. Combining (A9) and (A14) gives
Lemma 7.

Proof of Proposition 3. To show the existence of p∗ ∈ (0, 1) satisfying (10)
when t > l, we define the following continuous function

g (p) =
VH − s− δV (p)

[VH − s− δV (p)] + [VL − t− δV (p)]
− p (A15)

over p ∈ [0, 1], where V (p) is defined in (16). It is easy to observe that g (.) is
a well-defined function for every p ∈ [0, 1], and the solution to (10b) is defined
by g (p) = 0.
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Using (16) and (4) to (7), we can show that for all δ ∈ (δTT , 1),

g (0) =
VH − s− δV (0)

[VH − s− δV (0)] + [VL − t− δV (0)]
−0 =

VH − s− δ
³

s
1−δ

´
VH + VL − s− t− 2δ

³
s
1−δ

´ > 0,
(A15a)

and

g (1) =
VH − s− δV (1)

[VH − s− δV (1)] + [VL − t− δV (1)]
−1 = −

h
VL − t− δ

³
t
1−δ

´i
VH + VL − s− t− 2δ

³
t
1−δ

´ < 0.
(A15b)

Applying the Intermediate Value Theorem (see, for example, Rosenlicht, 1968,
p. 82), we know that there exists a p ∈ [0, 1] such that g (p) = 0. Moreover,
g (p) = 0 does not hold at p = 0 or p = 1, as observed in (A15a) and (A15b).
Therefore, we conclude that the solution to (10b) exists in the interval (0, 1).
The solution is denoted by p∗.

The proof of the uniqueness of p∗ is similar to that of Proposition 1, except
that (18d) is negative only for δ ∈ (δTT , 1) when t > l, whereas (18d) is
negative for all δ ∈ (0, 1) when t ≤ l. Consequently, we conclude that there is
only one solution to 0 < p∗ < 1 for δ ∈ (δTT , 1) when t > l, and the solution
is given by (19) if a = 0 or (20) if a 6= 0.

Proof of Proposition 4. Since (T, T ) is reached in every period of the pun-
ishment phase if both players use the turn taking with Nash punishment strat-
egy in game G∞ with t > l, it is easy to see that V NP = t + δV NP = t

1−δ .
Therefore, the no-deviation condition at the bad turn is 25

VL −
³
t+ δV NP

´
= (l − t) + δ

³
VH − V NP

´
> 0. (A16)

Using (6), it is straightforward to show that (A16) is satisfied when δ > t−l
h−t .

This proves (30).

To prove (31), we first show that (1− δ)
³
VH+VL

2
− V ∗

´
decreases monotoni-

cally with respect to δ, when the stage-game parameters (h, l, s and t) remain
constant. When h, l, s and t remain constant, V ∗ (δ, p∗ (δ)) depends on δ
only–directly as well as indirectly through p∗ (δ). Using (15), we have

∂

∂δ

½
(1− δ)

·
VH + VL

2
− V ∗ (δ, p∗ (δ))

¸¾
=

∂

∂δ

 (1− δ)
h
h+l
2
− U (p∗)

i
1− δ

h
(p∗)2 + (1− p∗)2

i


25 It is easy to see that the no-deviation condition at the good turn, VH −¡
s+ δV NP

¢
> 0, is always non-binding.
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= −
"
h+ l

2
− U (p∗)

# h
1− (p∗)2 − (1− p∗)2

i
n
1− δ

h
(p∗)2 + (1− p∗)2

io2 < 0. (A17)

Also,

∂

∂p∗

½
(1− δ)

·
VH + VL

2
− V ∗ (δ, p∗ (δ))

¸¾
= − (1− δ)

∂ [V ∗ (δ, p∗ (δ))]
∂p∗

.

(A18)

Using Lemma 7, (A8), (A17), and (A18), we know that for t > l,

d

dδ

·
(1− δ)

µ
VH + VL

2
− V ∗

¶¸
=

∂

∂δ

½
(1− δ)

·
VH + VL

2
− V ∗ (δ, p∗ (δ))

¸¾

+
∂

∂p∗

½
(1− δ)

·
VH + VL

2
− V ∗ (δ, p∗ (δ))

¸¾
∂p∗ (δ)
∂δ

< 0. (A19)

Since (1− δ)
³
VH+VL

2

´
= h+l

2
is independent of δ, we conclude from (A19) that

for δ ∈ (δTT , 1),
d

dδ
[(1− δ)V ∗ (δ, p∗ (δ))] > 0. (A20)

Finally, we know from (26) that limδ→δTT (1− δ)V ∗ = t. Combining this ex-
pression with (A20), we conclude that (1− δ)V ∗ > t for δ ∈ (δTT , 1). This
proves (31).

Proof of Proposition 5. Using (6), (32), and the first equality of (10c), we
have

W ∗ =
(1− δ)

h
p∗t+ (1− p∗)

³
h+δl
1−δ2

´i
1− δp∗

=
(1 + δ) (1− δ) p∗t+ (1− p∗) (h+ δl)

(1 + δ) (1− δp∗)
.

Since limδ→1 p∗ (δ) < 1 according to (23) and Lemma 7, it is easy to show that

lim
δ→1

W ∗ =
h+ l

2
. (A21)

Equation (A21), together with the fact that W ∗ is continuous in δ, leads to
Proposition 5.
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Figure 2: Efficiency loss of the TTIR strategy 
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Table 1: Strategies and Payoffs of the Stage Game 

 

(a) The h and l Specification     (b) The λ andθ Specification 

 

1\2 Tough Soft  1\2 Tough Soft 

 
Tough ( ),t t  ( ),h l   

Tough ( ),t t  ,
1 1

θλ λ
θ θ

 
 + + 

 

 
Soft ( ),l h  ( ),s s   

Soft ,
1 1

λ θλ
θ θ

 
 + + 

 ( ),s s  

 

 

Table 2: Different Symmetric Two-By-Two Games 

 
Game  Parameter  

Restrictions 
Equilibrium / Equilibria  
of the One-Shot Game 

Example 

 (1) Pure Coordination 
Game 

 h = l > s = t ( ),S T , ( ),T S , mixed-

strategy equilibrium 

Crawford and Haller (1990), p. 
573 

 (2) Assurance Game  s > h > t > l  ( ),S S , ( ),T T  Arms Race game in Dixit and 
Skeath (1999), Figure 4.10  
(T: Build; S: Refrain) 

 (3) Battle of the Sexes  h > l > s = t ( ),S T , ( ),T S , mixed-

strategy equilibrium 

Cooper at al. (1989), Figure 1 
(T: Action 2; S: Action 1) 

 (4) Game of Chicken   h > l > t; s > t ( ),S T , ( ),T S , mixed-

strategy equilibrium 

Market Entry game in Farrell 
(1987) (T: In; S: Out)  

 (5) Prisoner’s Dilemma 
(the non-standard 
version) 

 h > s > t > l; 
 h + l > 2s 

( ),T T  Dixit and Skeath (1999), Figure 
11.2 (T: Not build; S: Build) 

 (6) Game of CPR 
Assignment (with 

2h l> ) 

 h > t > l > s; 

2

h
t = ; 

2

l
s =  

( ),T T   Ostrom et al. (1994), Figure 3.5(b) 
(T: Going to the good spot; 
S: Going to the bad spot) 

 

 

Table 3: Strategies and Intertemporal Payoffs at the Beginning of the Repeated Game 

 

1\2 Playing Tough at Period 0  Playing Soft at Period 0 

Playing Tough at Period 0  ( )*, *t V t Vδ δ+ +  ( ),H LV V  

Playing Soft at Period 0 ( ),L HV V  ( )*, *s V s Vδ δ+ +  

 

 


