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Abstract

We study a repeated Nash demand game, where bargainers follow
a fictitious play procedure after their one-shot decision on demand
in the initial period. In the reduced static game they play at the
initial period, all the ε-equilibria are clustered around the division
corresponding to the Nash bargaining solution when the bargainers
are patient. As the bargainers make a more accurate comparison of
payoffs and become more patient accordingly, the only equilibrium left
is the division of the Nash bargaining solution.
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1 Introduction

Since Nash’s work in the early 1950’s, there have been two different ap-
proaches to analyzing bargaining problems: the strategic approach and the
axiomatic approach. Nash (1953) claimed that these two approaches should
be complementary, and considered himself a strategic model of bargaining to
implement his axiomatic solution. The idea of relating axiomatic solutions to
equilibria of strategic models is now known as the “Nash program” (see Bin-
more (1987)). Binmore et al. (1986) also showed that the subgame-perfect
equilibrium of the Rubinstein’s (1982) alternating offers model approaches
the Nash (1950) bargaining solution when the friction becomes smaller. We
refer readers to Osborne and Rubinstein (1990) for more results that relate
axiomatic solutions to equilibria of strategic models. In this paper, we add
another strategic model, which is evolutionary in nature, to implement the
Nash bargaining solution.

In Young’s (1993) evolutionary model of bargaining, individuals from two
populations of bargainers are randomly matched to play the Nash demand
game. They make their demands by choosing best replies based on an adap-
tive play process with incomplete sampling. In our model, a fixed pair of
individual bargainers are matched to play the Nash demand game. They
make their demands by choosing best replies based on a fictitious play pro-
cess. Our model explains what bargainers will demand if they expect a long-
term relationship with the other bargainer. (A review of recent evolutionary
approaches to bargaining to be added here.)

Bounded rationality of the players is incorporated into our model in two
ways. In the initial period, the players foresee what will happen following
their choices, but allow small differences (Radner’s (1986) ε-equilibrium con-
cept) when they compare their expected average payoffs. In the subsequent
periods, both players use a simple learning rule and make a decision according
to a fictitious play.

We show that the fictitious play resolves eventually the inefficiency due to
miscoordination. If players miscoordinate in the initial period by demanding
too little, they get to coordinate eventually in the way that the player who is
less greedy gets a better share. If players miscoordinate in the initial period
by demanding too much, they get to coordinate eventually in the way that
the player who is greedier gets a worse share.

Our main result is that in the reduced static game they play at the initial
period, all the ε-equilibria are clustered around the division corresponding
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to the Nash bargaining solution, when the bargainers are patient (the time
discount is small). Furthermore, as the bargainers make a more accurate
comparison of payoffs and become more patient (the time discount vanishes)
accordingly, the only equilibrium left is the division of the Nash bargaining
solution.

2 The strategic model

Two players 1 and 2 are playing the Nash (1953) demand game infinitely
many times, starting at time t = 0. In each period both players simulta-
neously announce their demands x and y respectively, where 0 < x, y ≤ 1.
That is, the size of the pie has been normalized to 1. If x+y ≤ 1, they receive
u(x) and v(y) in that period respectively. Otherwise, they receive u(0) and
v(0) respectively. The utility functions are strictly increasing, concave, and
normalized so that u(0) = v(0) = 0.

There is a discount of payoff by δ between periods, where 0 ≤ δ < 1.
Alternatively, (1 − δ) can be interpreted as a probability of breakdown, as
Binmore, et al. (1986) did. Player 1 receives u(xt)I[xt+yt≤1](xt, yt) in each
period t, and the average payoff of the infinite sequence of payoffs is

ū ≡ (1− δ)
∞∑

t=0

δtu(xt)I[xt+yt≤1](xt, yt),

where I is an indicator function. Similarly, player 2 receives v(yt)I[xt+yt≤1](xt, yt)
in each period t, and the average payoff of the infinite sequence of payoffs is

v̄ ≡ (1− δ)
∞∑

t=0

δtv(yt)I[xt+yt≤1](xt, yt).

From the time t = 1, both players use a simple learning rule and make
a decision according to the fictitious play. For any t ≥ 1, let ft(x) denote
the relative frequency with which player 1 has chosen x up to time (t − 1).
Similarly, let gt(y) denote the relative frequency with which player 2 has
chosen y up to time (t− 1). According to the fictitious play, players choose
xt and yt for any t ≥ 1 as follows:

xt = arg max
x

∑
y:gt(y)>0

gt(y)u(x)I[x+y≤1](x, y),
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yt = arg max
y

∑
x:ft(x)>0

ft(x)v(y)I[x+y≤1](x, y).

That is, in each period each player chooses his best response to the observed
historical frequency of his opponent’s choices. For simplicity, we assume that
ties are broken in favor of a higher demand.

In the initial period t = 0, however, there has been no opponent’s action
to refer to. In this initial period, they play a one-shot Nash demand game
where the payoffs are the average payoff of the infinite sequence of payoffs
that they expect in the initial and subsequent periods. Their decisions in
this one-shot Nash demand game unambiguously determine the subsequent
demands by the fictitious play procedure. In the reduced static game they
play at the initial period, the equilibrium concept we employ is Radner’s
(1986) ε-equilibrium. A strategy profile is an ε-equilibrium if no player has
an alternative strategy that increases his payoff by more than ε.

3 The implementation result

Lemma 1 For any (x0, y0), the following hold:
(1) x1 = 1− y0 and y1 = 1− x0.
(2) For any t ≥ 2, xt must be either x0 or (1− y0), and yt must be either y0

or (1− x0).
(3) For any t ≥ 1, ft(x0) + ft(1− y0) = 1 and gt(y0) + gt(1− x0) = 1.

Proof. (1) Clearly, x1 = arg maxx u(x)I[x≤1−y0](x) = 1 − y0, and y1 =
arg maxy v(y)I[y≤1−x0](y) = 1− x0.
(2) We prove statement (2) by mathematical induction. x2 must be either
x0 or (1 − y0) because x1 = arg maxx[

1
2
u(x)I[x≤x0](x) + 1

2
u(x)I[x≤1−y0](x)].

Similarly, y2 must be either y0 or (1− x0).
Suppose that xt is either x0 or (1 − y0), and yt is either y0 or (1 − x0) for
any t ≥ 2 (induction hypothesis). Then xt+1 must be either x0 or (1 − y0)
because xt+1 = arg maxx[gt+1(1−x0)u(x)I[x≤x0](x)+gt+1(y0)u(x)I[x≤1−y0](x)].
Similarly, yt+1 must be either y0 or (1− x0).
(3) Statement (3) follows immediately from statements (1) and (2).

Let (xN , yN) be the division of the Nash bargaining solution, given the
utility functions u and v. That is,

(xN , yN) = arg max
(x,1−x)

u(x)v(1− x).
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We define a function φ that assigns y = φ(x) in [0, 1] to each number x in
[0, 1] as follows:

• φ(xN) = yN .

• If x 6= xN , φ(x) is the solution of the following equation which is
different from (1− x):

u(x)v(1− x) = u(1− φ(x))v(φ(x)).

Since u and v are strictly increasing and concave, φ(x) is uniquely determined
for each x ∈ [0, 1]. The function φ(x) is strictly increasing and reflects the
shape of the Pareto frontier of the feasible alternatives. For example, if u
and v are linear then φ(x) = x.

Lemma 2 (1) If x0 + y0 = 1, then ū = u(x0) and v̄ = v(y0).
(2) If x0 + y0 < 1 and y0 = φ(x0), then

(1− δ)u(x0) < ū < (1− δ + δ2)u(x0), lim
δ→1

ū =
u(x0)

2

u(1− y0)
,

(1− δ)v(y0) < v̄ < (1− δ + δ2)v(y0), and lim
δ→1

v̄ =
v(y0)

2

v(1− x0)
.

(3) If x0 + y0 > 1 and y0 = φ(x0), then

(1− δ)δu(1− y0) < ū < δu(1− y0), lim
δ→1

ū =
u(1− y0)

2

u(x0)
,

(1− δ)δv(1− x0) < v̄ < δv(1− x0), and lim
δ→1

v̄ =
v(1− x0)

2

v(y0)
.

(4) If x0 + y0 < 1 and y0 > φ(x0), then

(1− δ)u(x0) + δT u(1− y0) ≤ ū ≤ (1− δT )u(x0) + δT u(1− y0) and

(1− δ + δT )v(y0) ≤ v̄ ≤ v(y0) for some positive integer T .

If δ is sufficiently large, as δ → 1, ū monotonically increases towards

lim
δ→1

ū = u(1− y0)
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and v̄ monotonically increases towards

lim
δ→1

v̄ = v(y0).

Similarly, if x0 + y0 < 1 and y0 < φ(x0), then

(1− δ + δT )u(x0) ≤ ū ≤ u(x0) and

(1− δ)v(y0) + δT v(1− x0) ≤ v̄ ≤ (1− δT )v(y0) + δT v(1− x0)

for some positive integer T .

If δ is sufficiently large, as δ → 1, ū monotonically increases towards

lim
δ→1

ū = u(x0)

and v̄ monotonically increases towards

lim
δ→1

v̄ = v(1− x0).

(5) If x0 + y0 > 1 and y0 > φ(x0), then

(1− δ + δT )u(x0) ≤ ū ≤ u(x0) and

(1− δ)v(y0) + δT v(1− x0) ≤ v̄ ≤ (1− δT )v(y0) + δT v(1− x0)

for some positive integer T .

If δ is sufficiently large, as δ → 1, ū monotonically increases towards

lim
δ→1

ū = u(x0)

and v̄ monotonically increases towards

lim
δ→1

v̄ = v(1− x0).

Similarly, if x0 + y0 > 1 and y0 < φ(x0), then

(1− δ)u(x0) + δT u(1− y0) ≤ ū ≤ (1− δT )u(x0) + δT u(1− y0) and

(1− δ + δT )v(y0) ≤ v̄ ≤ v(y0) for some positive integer T .
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If δ is sufficiently large, as δ → 1, ū monotonically increases towards

lim
δ→1

ū = u(1− y0)

and v̄ monotonically increases towards

lim
δ→1

v̄ = v(y0).

Proof. (1) Statement (1) follows from Lemma 1 because x0 + y0 = 1.
(2)-(5) We prove only statement (2) (the case of [x0+y0 < 1 and y0 = φ(x0)])
and the first part of statement (4) (the case of [x0 + y0 < 1 and y0 > φ(x0)])
omitting the tedious repetition for the other cases.

We first prove the first part of statement (4). Let f ∗ ≡ u(x0)
u(1−y0)

and

g∗ ≡ v(y0)
v(1−x0)

. For any t ≥ 1,

ft+1(x0) =

{
tft(x0)

t+1
if gt(y0) ≥ f ∗

tft(x0)+1
t+1

if gt(y0) < f ∗,

and

gt+1(y0) =

{
tgt(y0)

t+1
if ft(x0) ≥ g∗

tgt(y0)+1
t+1

if ft(x0) < g∗.

We define the following four states regarding the pair of relative frequencies
(ft(x0), gt(y0)):

• state [>>]: ft(x0) ≥ g∗ and gt(y0) ≥ f ∗,

• state [><]: ft(x0) ≥ g∗ and gt(y0) < f ∗,

• state [<>]: ft(x0) < g∗ and gt(y0) ≥ f ∗,

• state [<<]: ft(x0) ≥ g∗ and gt(y0) ≥ f ∗.

We define state [>>]∗ and [<<]∗ as follows:

• state [>>]∗: ft(x0) ≥ g∗, gt(y0) ≥ f ∗, and ft(x0) = gt(y0),

• state [<<]∗: ft(x0) < g∗, gt(y0) < f ∗, and ft(x0) = gt(y0).
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Note that 0 < f ∗ < g∗ < 1 because x0 + y0 < 1 and y0 > φ(x0). At t = 1,
f1(x0) = g1(y0) = 1 and therefore the pair of relative frequencies is in the
state [>>]∗. At t = 2, f2(x0) = g2(y0) = 1

2
and the state can be either

[>>]∗, [<>], or [<<]∗ depending on the values of f ∗ and g∗. However, it
cannot be [><] because f ∗ < g∗. We can establish the following regarding
the transition between states:

• If the current state is [<>], the next state is always [<>] (Borrowing
a term from the Markov chain theory, the state [<>] is an absorbing
state).

• If the current state is [>>]∗, the next state must be either [>>]∗, [<>],
or [<<]∗.

• If the current state is [<<]∗, the next state must be either [>>]∗, [<>],
or [<<]∗.

Therefore, the state must be either [>>]∗, [<>], or [<<]∗ for any t ≥ 2.
Furthermore, the state becomes [<>] eventually because the change in the
relative frequency between two periods becomes smaller than (g∗− f ∗) even-
tually. That is, an oscillation between the states [>>]∗ and [<<]∗ cannot
last for ever.

Let T1 be the number of periods when the state is [>>]∗ before the state
becomes [<>] eventually, and T2 the number of periods when the state is
[<<]∗ before the state becomes [<>] eventually. The numbers T1 and T2 are
nonnegative integers. By taking T ≡ T1 + T2 + 1, we have

(1− δ)u(x0) + δT u(1− y0) ≤ ū ≤ (1− δT )u(x0) + δT u(1− y0) and

(1− δ + δT )v(y0) ≤ v̄ ≤ v(y0) for some positive integer T .

If δ is sufficiently large, as δ → 1, ū monotonically increases towards

lim
δ→1

ū = u(1− y0)

and v̄ monotonically increases towards

lim
δ→1

v̄ = v(y0).

This ends the proof of the first part of statement (4). Now, we prove state-
ment (2).
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If x0 + y0 < 1 and y0 = φ(x0), then f ∗ = g∗. Therefore, the state
must be either [>>]∗ or [<<]∗ for any t ≥ 1. The state oscillates between
the states [>>]∗ and [<<]∗ for ever, and the sequence {ft(x0)} converges to

u(x0)
u(1−y0)

(= v(y0)
v(1−x0)

). Therefore, we obtain

(1− δ)u(x0) < ū < (1− δ + δ2)u(x0), lim
δ→1

ū =
u(x0)

2

u(1− y0)
,

(1− δ)v(y0) < v̄ < (1− δ + δ2)v(y0), and lim
δ→1

v̄ =
v(y0)

2

v(1− x0)
.

This ends the proof of the first part of statement (2).

Therefore, in this model, the perpetual miscoordination, as in Young
(1993) p. 152, does not happen generically. The limits for the linear utility
case were studied by He (2004). To see how long it takes for the demands to
reach the limit in the linear utility case, we refer readers to He.

Theorem 1 For any ε > 0, there exists δ∗(ε) < 1 such that ε-equilibria
are clustered around (xN , yN) for any δ ≥ δ∗(ε). As ε → 0 and δ∗(ε) → 1
accordingly, the only equilibrium left is the division of the Nash bargaining
solution.

Proof. Using the limit average payoffs limδ→1 ū and limδ→1 v̄ that we have
obtained in Lemma 2, we can get the best response correspondences for
player 1 (illustrated in Figure 1)

x∗(y) =


[0, φ−1(y)) ∪ [1− y, 1] if y < yN

[0, 1] if y = yN

∅ if y > yN ,

and for player 2

y∗(x) =


[0, φ(x)) ∪ [1− x, 1] if x < xN

[0, 1] if x = xN

∅ if x > xN .

Note that the average payoff functions are continuous except at the points of
y = φ(x). One can see easily that the only pure-strategy Nash equilibrium
in this case is (xN , yN).
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Figure 1: Limit-Average-Payoff Best Response Correspondence
for Player 1

Using the limit average payoffs limδ→1 ū and limδ→1 v̄ that we have ob-
tained in Lemma 2, we can get the ε-best response correspondence for player 1
(illustrated in Figure 2)

x∗ε(y) =



[0, φ−1(y)) ∪ [u−1(u(1− y)− ε), 1] if y < y(1)

[0, φ−1(y)) ∪ (φ−1(y), 1] if y(1) ≤ y < y(2)

[0, 1] if y(2) ≤ y ≤ y(3)

[0, φ−1(y)) ∪ (φ−1(y), 1] if y(3) < y ≤ y(4)

[u−1(u(φ−1(y))− ε), φ−1(y)) if y > y(4),

(1)

where
y(1) is the solution of φ−1(y) = u−1(u(1− y)− ε),

y(2) is the solution of
u(φ−1(y))2

u(1− y)
= u(1− y)− ε,
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Figure 2: Limit-Average-Payoff ε-Best Response Correspondence
for Player 1

y(3) is the solution of
u(1− y)2

u(φ−1(y))
= u(φ−1(y))− ε, and

y(4) is the solution of φ−1(y) = u−1(u(1− y) + ε).

Similarly, the ε-best response correspondence for player 2 is

y∗ε (x) =



[0, φ(x)) ∪ [v−1(v(1− x)− ε), 1] if x < x(1)

[0, φ(x)) ∪ (φ(x), 1] if x(1) ≤ x < x(2)

[0, 1] if x(2) ≤ x ≤ x(3)

[0, φ(x)) ∪ (φ(x), 1] if x(3) < x ≤ x(4)

[v−1(v(φ(x))− ε), φ(x)) if x > x(4),

(2)

where
x(1) is the solution of φ(x) = v−1(v(1− x)− ε),

x(2) is the solution of
u(x)2

u(1− φ(x))
= v(1− x)− ε,
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x(3) is the solution of
u(1− φ(x))2

u(x)
= v(φ(x))− ε, and

x(4) is the solution of φ(x) = v−1(v(1− x) + ε).

The set of ε-equilibria based on the limit average payoffs is illustrated in
Figure 3. This set is a subset of

{x : 1− v−1(v(y(4)) + ε) ≤ x ≤ φ−1(v−1(v(y(4)) + ε))}×

{y : 1− u−1(u(x(4)) + ε) ≤ y ≤ φ(u−1(u(x(4)) + ε))}. (3)

-
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Figure 3: Limit-Average-Payoff ε-Equilibria

If we choose a sufficiently large δ∗(ε) < 1, then the set of ε-equilibria will
be a subset of (3) above for any δ ≥ δ∗(ε). As ε → 0,

1− v−1(v(y(4)) + ε) → xN ,

φ−1(v−1(v(y(4)) + ε)) → xN ,
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1− u−1(u(x(4)) + ε) → yN , and

φ(u−1(u(x(4)) + ε)) → yN .

This implies that as ε → 0 and δ∗(ε) → 1 accordingly, only (xN , yN) remains
as the limit of ε-equilibria.
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