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Abstract 

This note presents possibly hitherto unnoticed, or only implicitly discussed, properties of the 

stochastic unit root process developed in Granger and Swanson (1997) and Leybourne, McCabe, 

and Tremayne (1996).  
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1. Introduction 

This note presents some properties of stochastic unit root [STUR] processes developed by Granger 

and Swanson (1997), Leybourne, McCabe, and Tremayne (1996), Leybourne, McCabe, and Mills 

(1996), and McCabe and Tremayne (1995). Specifically, it examines if STUR processes have 

stationary distributions and estimates their tail indices. It also shows that the estimation method 

employed by Granger and Swanson does not yield consistent estimates and that taking differences 

cannot make the STUR processes (weakly) stationary. These properties shed some light on the 

previous simulation results in Granger and Swanson (1997) and Gonzalo and Lee (1998). Some of 

the properties presented here are already known; however, it appears that most are hitherto 

unnoticed or only implicitly discussed in the literature. It is hoped that these properties will 

contribute to better understanding of this important and flexible class of models.  

 

2. Main results 

Among alternative formulations of STUR processes1, the one used in Granger and Swanson (1997), 

GS hereafter, will be studied for its simplicity. The same notations in GS are used to avoid 

unnecessary confusions. GS consider the following process: 

                                                 
1 See for instance Leybourne et al. (1996) and Leybourne et al. (1996).  
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1t t t tx a x ε−= +                                 (1) 

t = 1, 2, … where ( )2~ . . 0,t i i d εε σ  and 

 ( )expt ta α=                                 (2) 

( )2~ ,t N m αα σ  with a power spectrum ( )gα ω . 0x  is assumed to be a constant. Assume also 

that tα  is governed by an AR(1) process 

1t t tα µ ρα η−= + +                               (3) 

where 1ρ <  and ( )2~ . . . 0,t i i d N ηη σ  is independent of tε . GS put additional condition that  

( ) 1tE a =                                  (4) 

and call the process STURA.2 Thus, tx  has a unit root only on average and can be mildly 

explosive for some periods. When ( ) 1tE a > , tx  is an explosive stochastic root process in 

Granger (2000). Equation (4) implies that 

21 0
2

m ασ+ = .                               (5) 

It follows that 0m < , given that 2 0ασ > .  

A multiplicative stochastic process of the form 1 1 1t t t tx A x b+ + += +  is studied in depth in 

Vervaat (1979), Brandt (1986) and Horst (2001), among others. Brandt (1986) shows that under the 

                                                 
2 Another process, STURB, assumes instead that ( )1 1 0 0

2 2
m gαπ

+ × = . 
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assumption of strict stationarity and ergodicity of ( )1 1,t tA b+ + , tx  has a stationary distribution if 

( )1ln 0E A−∞ ≤ <                               (6)                

and  

( )1lnE b +
< ∞                                (7) 

where ( ), 0maxω ω+ = . He also shows that the solution to the multiplicative stochastic 

equation is unique. From now on, (7) is assumed to hold for the STUR process in (1). It is easy to 

show that (6) is satisfied as well because ( )( ) ( )1 1ln 0E a E mα= = < . Hence, the first property 

of STUR follows: 

 

Property 1: STUR processes are strictly stationary and have unique stationary distributions. 

 

(1) is not a nonstationary process and it is somewhat confusing to call it a stochastic unit root 

process. It is straightforward to show that the STUR processes are not weakly stationary, using the 

well-known result in Nicholls and Quinn (1982): ( ) ( )2 1t tVar a Ea+ < . Further, next property 

shows that STUR processes do not have any finite moments as t → ∞ . A positive exponent, λ , 

that satisfies ( ) 1tE aλ =  is called a tail index, so that the tails of the limiting distribution are 

asymptotic to a power law, ( )tProb x x cx λ−> ≈ . x  and c  are constants. A distribution with a 
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lower tail index has a higher probability of extreme events. Much progress has been made recently 

on the tail behavior of financial data; see for instance discussions in Mikosch (2001). For the STUR 

processes considered here, their tail index is 1, almost trivially by definition, see (4). Therefore, no 

finite moments exist for STUR, which is next property.  

 

Property 2: STUR processes have a tail index 1 and therefore they have no finite moments.  

 

Hence, STUR processes are not weakly stationary. A tail index 1 corresponds to the tail behavior of 

a Cauchy distribution. The STUR processes have very heavy-tails and their autocorrelation 

functions have non-degenerate limit distributions, as shown in Davis and Mikosch (1998). 

Therefore, the autocorrelation functions should be used with care. Further, autocorrelations are not 

particularly useful for nonlinear processes as already noted in Granger and Teräsvirta (1993). As an 

illustration, 1000T =  observations are generated and split into half.3 Figure 1 shows the data 

series, its first difference and estimated autocorrelations functions for the two subsamples 1T  and 

                                                 
3 The following values are used in simulating a STUR process by GAUSS: tη ~ ( ). . 0, 0.001i i N , 

0.6ρ = , 0.0002µ = − , and 2 1εσ = , with 0 0α =  and 0 1x = . Initial 500 observations are 

discarded. 
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2T  of the same size. Clearly, the sample autocorrelations functions are very different for the two 

subperiods.  

How does this tail index property of STUR stand with the empirical results reported in GS? GS 

use various monthly data series for 1955:1 ~ 1987:12 and estimate the STUR model in (1), (2), and 

(3) without imposing the restriction of (4). GS employ an approximate maximum likelihood 

estimation method. Their estimation results are reproduced here in table 1. Without imposing the 

condition (4), it is not difficult to show that the tail index of STUR is 

( )
2 2

2 12 0m

α η

µ ρ
λ

σ σ
+

= − = − > . The second column of table 1 shows that µ̂  is negative only for 

stock price index, three interest rates, and unemployment rate. Hence, λ̂  is reported only for them 

at the last column, with 
( )

2

ˆˆ2 1ˆ
ˆη

µ ρ
λ

σ
+

= − . Stock price index has by far the highest estimated 2ˆησ . 

Its tail index is less than 1, implying that no moments exist. For other series, their tail indices are 

much bigger.4 Interestingly, according to the simulation results in Gonzalo and Lee (1998), the 

standard Dickey-Fuller tests have power against a STUR alternative for these four series only out of 

ten series listed in table 1. However, the sample size should be very large for the tests to have a 

                                                 
4 For unemployment rate, 2ˆ 0.00001ησ =  is used. 
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power.5  

GS also report that parameters of STUR processes are “usually fairly imprecisely estimated.” 

[p. 48] They use an approximate maximum likelihood method. However, the method requires the 

existence of moments of high enough order for the estimates to be consistent and asymptotically 

normal; see Laroque and Salanié (1994). Thus, the following property follows: 

 

Property 3: Approximate maximum likelihood estimates of STUR are not consistent, nor 

asymptotically normally distributed. 

  

Further, GS use the approximate maximum likelihood estimates to generate predictions for forecast 

evaluation exercise. Thus, the forecast performance of STUR is handicapped by estimates that are 

not consistent.6 Notice also that GS use mean squared prediction errors as a forecasting evaluation 

criterion. However, given that no moments exist for the STUR process, a more natural choice for 

                                                 
5 The standard ADF tests are not useful in distinguishing the null of difference stationarity against 

STUR alternatives; see McCabe and Smith (1998). 

6 GS find that the forecast performance of STUR is not dominating other methods, for instance a 

time-varying parameter model estimated by the Kalman filter, at least for short-term forecasts. 
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forecast evaluation would be conditional median. It is known to be optimal in the sense defined in 

Hall et al. (2002). 

It follows from the property 2 that any differences of tx , d
tx∆ , d ∈ ! , do not have finite 

moments, either. Therefore, a stochastic unit root process tx  cannot be made into weak stationarity 

by taking differences.  

 

Property 4: STUR processes are not weakly stationary to any order of differencing. 

 

This property was already noted by GS when they write that “STUR processes are clearly not 

difference stationary, in theory.” [p.45] See also Leybourne, McCabe, and Tremayne (1996), who 

call such a process ( )1tI . Yoon (2002) dubs such a process ( )I ∞ . Gonzalo and Lee (1998) show 

that standard cointegration tests tend to find cointegrating relationship when they are applied to two 

independent STUR processes. Since STUR processes are not difference stationary, the standard 

cointegration testing procedures are not applicable.  

 

3. Conclusions 

This note presents some properties of stochastic unit root processes. While some of the properties 
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are already known, it appears that others are hitherto unnoticed, or only implicitly discussed in the 

literature. Of course, there could be other interesting properties associated with STUR processes 

that are not mentioned here. It is hoped that these properties will contribute to the better 

understanding of this important class of models. 
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Table 1: STUR estimation results 

Series µ̂  ρ̂  2ˆησ  λ̂  
Money stock- M2 0.0026    
Stock price index -0.0036 0.025 0.0586 0.13 
Long-term interest rate -0.0012 -0.302 0.0001 16.75 
Short-term interest rate -0.0060 -0.328 0.0004 20.16 
Medium-term interest rate -0.0040 -0.169 0.0003 22.16 
Industrial production 0.0002    
Nominal inventory 0.0002    
Unemployment rate -0.0009 -0.376 0.0000 112.32 
Consumer price index 0.0052    
Producer price index 0.0048    

The monthly data series are used in Granger and Swanson (1997) for 1955:1 ~ 1987:12. ^  denotes 

estimated values reproduced from Granger and Swanson, except for the last column. Granger and 

Swanson use an approximate maximum likelihood estimation method. For unemployment rate, 

2ˆησ =0.00001 is used to calculate λ̂ . For the last three columns, results are reported only for the 

series with ˆ 0µ < . 
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Caption for figure 

Figure 1: Simulated STUR process and estimated autocorrelation functions 

 

1000 observations are generated from a stochastic unit root process using values listed in footnote 3. 

The autocorrelation functions are estimated for two equally divided subsamples, 1T  and 2T , with 

500 observations each. 
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