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Abstract

This paper studies weak exogeneity of conditioning variables for the inference of

a subset of parameters of the conditional student’s t and elliptical linear regression

models considered by Spanos (1994). Weak exogeneity of the conditioning variables

is shown to hold for the inference of regression parameters of the conditional stu-

dent’s t and elliptical linear regression models. A new definition of weak exogeneity

is given which utilizes block-diagonality of the conditional information matrix. A

simulation experiment is made to compare the full-likelihood and conditional max-

imum likelihood estimators in finite samples for the conditional student’s t linear

regression model. The conditional maximum likelihood estimator of the regression

parameters is found to work well in finite samples.
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1 Introduction

Spanos (1994) presented an interesting class of non-normal linear heteroskedastic mod-

els with potentially wide applicability. It was shown in Spanos (1994) that linear het-

eroskedastic models naturally arise as conditional models when the underlying joint

distribution of all the random variables in question follows the class of elliptically sym-

metric non-normal distributions. We shall call them the conditional non-normal linear

heteroskedastic models in this paper. Spanos rightly claimed necessity to use the in-

formation of the marginal distribution of the conditioning random variables in order to

estimate efficiently the parameters of the conditional non-normal linear heteroskedas-

tic models. This is because the conditioning random variables are not weak exogenous

for the inference of the parameters of the conditional non-normal linear heteroskedastic

models. In this paper, we are concerned with a situation where we are interested in

regression parameters, a subset of the parameters, of the conditional non-normal linear

heteroskedastic models, instead of all of the parameters as in Spanos (1994). It is often

the case that we are interested in the regression parameters but not variance of the error

term. We show it is not necessary to use the information of the marginal distribution of

the conditioning random variables in order to estimate efficiently the regression param-

eters, i.e., parameters of interest, of the conditional non-normal linear heteroskedastic

models. This is equivalent to weak exogeneity of the conditioning random variables

for the inference of the regression parameters of the conditional non-normal linear het-

eroskedastic models.

Engle et al. (1983) defined weak exogeneity of the conditioning random variables in

estimation of the parameters associated with the conditional models. Spanos (1994) fol-

lowed Engle et al. (1983) when he considered estimation of the conditional non-normal

linear heteroskedastic models. Engle et al. (1983) used the idea of sequential cut or

cut in defining weak exogeneity. Although Engle et al. (1983) is a seminal paper which

established the concept of weak exogeneity in econometrics, we consider the condition

imposed by sequential cut or cut, on which weak exogeneity in Engle et al. (1983) is

based, is rather too restrictive to be applied to various models. In other words, the

concept of sequential cut or cut requires parameters of the conditional distribution and
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those of the marginal distribution to be variation free (cf., Definition 2.4 of Engle et al.

(1983)). We consider this is so restrictive as to make the conditioning random variables

hard to satisfy weak exogeneity. In this paper, we first give a new definition of weak

exogeneity which utilizes block-diagonality of the conditional information matrix, i.e., in-

formation matrix of the conditional distribution, in order to show weak exogeneity of the

conditioning random variables for the inference of a subset of the parameters associated

with the conditional models. By introducing the new definition of weak exogeneity, we

can add flexibility to the restrictive concept of weak exogeneity established by Engle et

al. (1983). Based on the new definition of weak exogeneity, weak exogeneity of the con-

ditioning random variables is proved for the inference of the regression parameters of the

conditional non-normal linear heteroskedasic models, by showing the block-daigonality

of the conditional information matrix with respect to the regression parameters and vari-

ance of the error term of the conditional non-normal linear heteroskedastic models. We

also present a simulation experiment to compare in finite samples the full-likelihood and

conditional maximum likelihood estimators (MLEs) of the regression parameters of the

conditional student’s t linear heteroskedastic model, following the simulation study by

Spanos (1994). The conditional MLE of the regression parameters is shown to work all

right in finite samples while the conditional MLE of the remaining parameters does not

perform well compared to the full-likelihood MLE.

The paper is organized as follows. In Section 2, a new definition of weak exogeneity

is given. In Section 3, the block-diagonality of conditional information matrix with

respect to the regression parameters and variance of the error term is proved to show

weak exogeneity of the conditioning random variables for the inference of the regression

parameters of the conditional non-normal linear heteroskedastic models. In Section 4, a

simulation study is presented which compares the full-likelihood and conditional MLEs

of the regression parameters of the conditional student’s t linear regression model in

finite samples. Concluding comments are given in Section 5.
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2 A New Definition of Weak Exogeneity

In this section, we introduce a new definition of weak exogeneity which can be used

to establish weak exogeneity of the conditioning random variables for the inference of

the regression parameters of the conditional non-normal linear heteroskedastic models.

Spanos (1994) considered a situation where the underlying data is independently and

identically distributed (i.i.d.) while Engle et al. (1983) considered dynamic models

where the underlying data is generally dependent over time. We basically follow the

notation of Spanos (1994) to consider the joint distribution of Zt ≡ (yt,X
′
t)

′, t ∈ N,

which is i.i.d. with elliptically symmetric non-normal distribution with mean µ and

scale matrix Σ (assuming they exist), denoted by

Zt ∼ Cm(µ,Σ)

where dimensions of yt and Xt are 1× 1 and k × 1 respectively and N denotes the set of

natural numbers. µ and Σ are decomposed, conformably to the decomposition of Zt, as

follows;

µ =

(
µ1

µ2

)

Σ =

(
σ11 σ12

σ21 Σ22

)
.

We remark that Σ does not necessarily correspond to the covariance matrix of Zt
1. Since

Zt is assumed to be i.i.d., it is sufficient to consider the joint distribution of Zt = (yt,X
′
t)

′

to define weak exogeneity of Xt for the inference of parameters of the conditional non-

normal linear heteroskedastic models. Hence, the original parameters associated with the

full-likelihood function or the joint probability density function (pdf) of Zt are (µ,Σ).

We now consider a one-to-one transformation or reparametrization of (µ,Σ), i.e., Ψ ≡
([µ1 − σ12Σ

−1
22 µ2], [Σ

−1
22 σ21], [σ11 − σ12Σ

−1
22 σ21], µ2,Σ22). When Zt is normal, the first

three of Ψ correspond to the parameters associated with the conditional pdf of yt given

Xt and the last two of Ψ correspond to the parameters associated with the marginal pdf

1Spanos (1994) gave at subsection 3.1 a definition of the density function of multivariate Student
t distribution with ν degrees of freedom, where its covariance matrix is given by

ν

ν − 2
Σ not Σ (cf.,

Appendix B.2 of Zellner (1971)). Therefore, Σ is scale matrix but not necessarily covariance matrix in
Spanos (1994). We follow Spanos in this respect.
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of Xt. On the other hand, when Zt is non-normal, all of Ψ correspond to the parameters

associated with the conditional pdf of yt given Xt while the last two of Ψ continue to

correspond to the parameters associated with the marginal pdf of Xt (cf., Lemma 1 and

2 of Spanos (1994) (or Theorem 7 of Kelker (1970) and Theorem 5 of Chu (1973))).

We decompose Ψ as follows; Ψ = (Ψ1, Ψ2) where Ψ1 = (Ψ11, Ψ12) with Ψ11 = (β0, β)

and Ψ12 = (σ2, µ2,Σ22) and Ψ2 = (µ2,Σ22) where β0 = µ1 − β′µ2, β = Σ−1
22 σ21, and

σ2 = σ11 −σ12Σ
−1
22 σ21. Then the joint pdf of Zt is decomposed as the conditional pdf of

yt given Xt times the marginal pdf of Xt as follows;

D(Zt; Ψ) = D(yt | Xt; Ψ1)D(Xt; Ψ2)

where D(Zt; Ψ), D(yt | Xt; Ψ1) , and D(Xt; Ψ2) denote the joint pdf of Zt, conditional

pdf of yt given Xt, and marginal pdf of Xt respectively. The definition of a sequential

cut, or actually a cut since our setup is i.i.d., on D(Zt; Ψ) (cf., Definition 2.4 of Engle et

al. (1983)) cannot be applied to the decomposition D(yt | Xt; Ψ1)D(Xt; Ψ2) when Zt is

non-normally elliptical becasue of the overlap between Ψ1 and Ψ2.

Spanos (1994) investigated the weak exogeneity of conditioning random variables Xt

for the inference of the parameters Ψ1 of the class of the conditional non-normal linear

heteroskedastic models according to the definition of Engle et al. (1983). However, the

underlying model on which the definition of weak exogeneity in Engle et al. (1983) is

based has rather a simplified structure and not suitable to analyze weak exogeneity of

the conditioning random variables for the inference of the regression parameters of the

conditional non-normal linear heteroskedastic models in Spanos (1994). We reproduce

the definition of sequential cut, equivalent to cut in our setup, in Engle et al. (1983).

Definition 1. [(yt|Xt; λ1), (Xt; λ2)] operates a sequential cut (cut) on D(Zt; λ) if
and only if

D(Zt; λ) = D(yt | Xt; λ1)D(Xt; λ2)

where λ = (λ′
1, λ

′
2)

′ is transformed parameters of the original parameters and λ1 and λ2

are variation free.

In the above definition, λ1 and λ2 being variation free implies that the range of

admissible values for λi should not vary with λj(j �= i) and hence no cross-restrictions
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between λ1 and λ2 should not exist (cf., p. 282 of Engle et al. (1983)). When λ1 is

parameters of interest, Xt is defined in Engle et al. (1983) to be weakly exogenous for

the inference of λ1 if [(yt|Xt; λ1), (Xt; λ2)] operates a sequential cut (cut) on D(Zt; λ).

We now introduce a new definition of weak exogeneity as follows.

Definition 2. When the conditional information matrix associated with the

conditional pdf D(yt | Xt; Ψ1) is block-diagonal with respect to Ψ11 and Ψ12 , Xt is

weakly exogenous for the inference of Ψ11, i.e., inference on Ψ11 based on the

conditional pdf of D(yt | Xt; Ψ1) involves no loss of information, if Ψ11 and Ψ2 are

variation free.

In the above definition 2, we have introduced block-diagonality of the conditional infor-

mation matrix, i.e., the information matrix associated with the conditional pdf D(yt |
Xt; Ψ1), to handle the overlap between Ψ1 and Ψ2. When Ψ12 and Ψ2 are variation

free, Xt is obviously weakly exogenous in the above definition, since Ψ11 and Ψ2 are

variation free. Even when Ψ12 and Ψ2 are not variation free, the block-diagonality of

the conditional information matrix with respect to Ψ11 and Ψ12 makes Xt weakly ex-

ogenous, if Ψ11 and Ψ2 are variation free. In Engle et al. (1983, p.286), it was stated

that the block-diagonality of the information matrix between two sets of parameters is

often equivalent to the condition that the parametrization should operate a sequential

cut (cut). However, the block-diagonality of the information matrix was not used there

to discuss the exogeneity. Here we have made use of the block-diagonality of the condi-

tional information matrix to define weak exogeneity of Xt for the inference of parameters

Ψ11 . Since sequential cut (cut), the concept on which weak exogeneity of the condition-

ing random variables is based in Engle et al. (1983), has a simple structure, we need

to adopt a different concept to establish weak exogeneity of the conditioning random

variables for a subset of the conditional model. We find the block-diagonality of the

conditional information matrix convenient for this purpose.

6



3 Block-diagonality of the conditional information

matrix with respect to Ψ11 and Ψ12

When Zt is multivariate student’s t distribution with ν degrees of freedom, the condi-

tional log-likelihood function of yt given Xt, t = 1, . . ., T, is given by

lT c(Ψ1)≡lnLc(Ψ1; y1|X1, . . ., yT |XT )

∝ −T

2
ln(σ2) +

1

2
(ν + k)

T∑
t=1

ln(ct) − 1

2
(ν + m)

T∑
t=1

ln(γt) (1)

where

ct = {1 + [Xt − µ2]
′Σ−1

22 [Xt − µ2]/ν}
γt = (ct + u2

t/(νσ2))

where ut = yt−β0−β′Xt (cf.,p.296 of Spanos (1994)). As in Spanos (1994), ν is assumed

to be known in this paper. Then we have

∂lT c

∂β
=

ν + m

νσ2

T∑
t=1

[1/γt]{Xt(yt − β0 − β′Xt)} (2)

∂lT c

∂β0
=

ν + m

νσ2

T∑
t=1

[1/γt](yt − β0 − β′Xt). (3)

From the first derivative above, it can be easily derived that

∂2lT c

∂β∂σ2
= −ν + m

νσ4

T∑
t=1

Xtut

γt
+

ν + m

ν2σ6

T∑
t=1

Xtu
3
t

γ2
t

(4)

∂2lT c

∂β∂µ′
2

= 2
ν + m

ν2σ2

T∑
t=1

1

γ2
t

Xtut(Xt − µ2)
′Σ−1

22 (5)

∂2LT c

∂β∂Σ′
22

=
ν + m

ν2σ2

T∑
t=1

ut

γ2
t

[Xt⊗Σ−1
22 (Xt − µ2)(Xt − µ2)

′Σ−1
22 }]. (6)

(4) coincides with the corresponding second derivative of the log-likelihood function for

the joint density, as given in Spanos (1994). The second derivative of the log-likelihood

funciton for the joint density corresponding to (5) was not given in Spanos. The second

derivative corresponding to (6) was given in Spanos in a different parametrization where

Σ22 was replaced by Q = ( 1
ν
)Σ−1

22 .

The following property of the class of elliptically symmetric distributions holds; if

Zt∼Cm(µ,Σ), then a + BZt ∼ Cm(a+ Bµ,BΣB′) where a is an mxl vector of constants
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and B is an mxm nonsingular matrix of constants (cf., for example, Theorem 2.6.3 of

Fang and Zhang(1990)). Since( −β0

0

)
+

(
1 −β′

0 Ik

) (
yt

Xt

)
=

(
ut

Xt

)
,

Zt = (yt,X
′
t)

′ being in the class of elliptically symmetric distributions implies (ut,X
′
t)

′

being in the class of elliptically symmetric distributions. Hence, the conditional distri-

bution of ut given Xt is also elliptically symmetric distributed by the above property

of the class of elliptically symmetric distributions. When Zt is multivariate student’s t

distribution with ν degrees of freedom, ut given Xt is student’s t distribution with k + ν

degrees of freedom with mean 0 and variance

ν

k + ν − 2
σ2(1 + (Xt −µ2)

′Σ−1
22 (Xt − µ2)/ν).

We take conditional expectation of the second derivatives (4),(5), and (6). Xt is given

in (4),(5), and (6). Therefore, we evaluate conditional expectation of ut/γt, u
3
t /γ

2
t , and

ut/γ
2
t given Xt. Since γt = ct + u2

t /(νσ2) where ct = (1 + (Xt − µ2)
′Σ−1

22 (Xt − µ2)/ν),

the conditional expectation of ut/γt, u
3
t/γ

2
t and ut/γ

2
t given Xt are all zero because of

symmetry if the conditional expectations exist. This is the same property utilized in

Spanos (1994) to prove the unbiasedness of the full-likelihood MLE of (β0, β
′, µ′

2)
′. When

Zt is multivariate student’s t distribution with ν degrees of freedom, all of the three

conditional expectations exist if k + ν > −3. Hence, if k + ν > −3, we have

plim
1

T

∂2lT c

∂β∂σ2
= 0 (7)

plim
1

T

∂2lT c

∂β∂µ′
2

= 0 (8)

plim
1

T

∂2lT c

∂β∂Σ′
22

= 0. (9)

Similarly, since ut given Xt is i.i.d., if k + ν > −3, we can show

plim
1

T

∂2lT c

∂β0∂σ2
= 0, plim

1

T

∂2lT c

∂β0∂µ′
2

= 0, plim
1

T

∂2lT c

∂β0∂Σ′
22

= 0.

Therefore, we have block-diagonality of the conditional information matrix with respect

to Ψ11 and Ψ12.

The result developed above is the case of multivariate student’s t distribution. Simi-

larly, we can prove block-diagonality of the conditional information matrix with respect
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to Ψ11 and Ψ12 when Zt = (yt,X
′
t)

′ follows other elliptically symmetric non-normal

distributions since ut given Xt is elliptically symmetric.

4 A simulation study

In this section, we present a simulation study to compare the finite-sample properties

of the full-likelihood and conditional MLEs for the conditional student’s t linear het-

eroskedastic model. We use bivariate student’s t distribution with 9 degrees of freedom

with mean (2.5, 1.5)′ and scale matrix

(
2 0.86

0.86 1.2

)
as the underlying joint distribu-

tion of Zt. We set the sample size T 200, 400, 800 and the number of repetitions N 1,000.

This is the same setup as Spanos (1994) except the sample size T. In our study, we use

the three different sample sizes to see the finite-sample comparison of the full-likelihood

and conditional MLEs.

We compute the full-likelihood and conditional MLEs using Gauss2 with the starting

value of Ψ obtained from the sample mean and sample covariance matrix estimate for

µ and cov(Zt) =
ν

ν − 2
Σ , using the transformation from (µ,Σ) to Ψ. The simulation

results are given in Tables 1-6, which are presented similarly as in Spanos (1994). The

population parameter values are given as follows from the transformation from (µ,Σ)

to Ψ; β0 = 1.425, β = 0.717, σ2 = 1.384, µ2 = 1.5, and δ = 1
ν
Σ−1

22 = 0.0926.3

Table 1 and 2 give simulation summary statistics of the full-likelihood and condi-

tional MLEs respectively, when T = 200. The means of the full-likelihood MLE are all

close to the population values. The standard deviations are larger, the minimums are

smaller, and the maximums are larger in the full-likelihood MLE of β0, β, and µ2 than

the corresponding ones reported in Spanos. This indicates our full-likelihood MLE varies

more than that in Spanos. We attribute this to the difference of the student’s t random

numbers in Spanos and ours. The performance of the full-likelihood MLE of σ2 and δ

is unfortunately not comparable to the result of Spanos. However, it appears not to be

2Gauss programs are available on request from the author.
3The population parameter values of σ2 and δ were not given in Spanos (1994). The full-likelihood

MLEs of σ2 and δ reported at Table 1 of Spanos (1994) deviate significantly from the population
parameter values σ2 = 1.384 and δ = 0.0926. We do not know the reason for the above fact. On the
other hand, our full-likelihood and conditional MLEs of σ2 and δ given in Table 1-6 center around the
population parameter values.
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qualitatively different from that of β0, β, and µ2. The full-likelihood MLE works well as

a whole when T = 200. On the other hand, the performance of the conditional MLE is

characteristically different from that of the unconditional MLE. The conditional MLE

of β0 and β performs similarly to the full-likelihood MLE while the conditional MLE

of σ2, µ2, and δ does not work well compared to the full-likelihood MLE, when T =

200. All of the summary statistics for the conditional MLE of σ2, µ2, and δ indicate the

poor performance of the conditional MLE of these parameters. The poor performance

of the conditional MLE of µ2 and δ seems to be due to the fact that the information

from the marginal distribution of Xt contains most of the information of µ2 and δ. The

performance of the conditional MLE of σ2 could be explained by that of the conditional

MLE of µ2 and δ because of the correlation. Therefore, the conditional MLE works well,

as good as the full-likelihood MLE, with respect to the regression parameters β0 and β

but not with respect to other parameters. As the number of observations increases, the

performance of the full-likelihood and conditional MLEs generally improves as shown in

Table 3-6. However, the same characteristics of the conditional MLE continue to hold

when T = 400 and 800. 800 observations are not enough to make the performance of

the conditional MLE of σ2, µ2, and δ reliable in this bivariate student’s t linear het-

eroskedastic model.

Overall, the conditional MLE of the regression parameters works well in finite samples

compared to the full-likelihood MLE. Therefore, our simulation study, although quite

limited, verifies our theoretical finding that Xt is weakly exogenous for estimating (β0, β
′)′

when the joint distribution of Zt = (yt,X
′
t)

′ is elliptically symmetric, and also shows the

inference of (β0, β
′)′ based on the conditional MLE works well in finite samples.

5 Concluding comments

We have reexamined weak exogeneity of the conditioning random variables for the infer-

ence of the conditional non-normal linear heteroskedastic models considered by Spanos

(1994). When we are interested in only a subset of the parameters of the conditional

models, the conditioning random variables may be weakly exogenous for the inference of

the subset of the parameters of the conditional models even though they are not weakly
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exogenous for the inference of all of the parameters of the conditional models. Weak

exogeneity defined in Engle et al. (1983) is not applicable to this situation. Thus, we

have introduced a new definition of weak exogeneity of the conditioning random vari-

ables for the inference of the subset of the parameters of the conditional models based

on the block-diagonality of the conditional information matrix with respect to two dis-

joint subsets of the parameters associated with the conditional models. Based on the

new definition of weak exogeneity, we have shown weak exogeneity of the conditioning

random variables for the inference of the regression parameters, a subset of all of the

parameters, of the conditional non-normal linear heteroskedastic models considered by

Spanos (1994), where the conditioning random variables were not weakly exogenous for

the inference of all of the parameters of the conditional models. In a limited simula-

tion study, we have shown the conditional MLE of the regression parameters works as

good as the full likelihood MLE in finite samples in the conditional student’s t linear

heteroskedastic model although the conditional MLE of the remaining parameters varies

a lot and is not reliable.
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Table 1. Simulation summary statistics (T=200)

(full likelihood)

Mean SD Min Max Skewness Kurtosis

β̂0 1.424 0.158 0.970 2.075 0.145 3.030

β̂ 0.718 0.082 0.363 0.957 -0.084 2.974
σ̂2 1.368 0.165 0.974 2.033 0.366 3.058
µ̂2 1.495 0.085 1.243 1.776 -0.042 3.086

δ̂ 0.094 0.011 0.062 0.140 0.405 3.322
Correlation Matrix

β̂0 1.000

β̂ -0.807 1.000
γ̂2 -0.046 0.014 1.000
µ̂2 0.045 -0.024 -0.020 1.000

δ̂ 0.044 -0.013 -0.131 0.054 1.000

Table 2. Simulation summary statistics (T=200)

(conditional likelihood)

Mean SD Min Max Skewness Kurtosis

β̃0 1.424 0.156 0.889 1.937 -0.029 3.069

β̃ 0.718 0.084 0.409 1.070 0.026 3.359
σ̃2 1.236 0.332 0.000 1.931 -1.824 7.873
µ̃2 1.453 4.110 -34.598 30.130 -0.513 29.485

δ̃ 0.929 17.376 0.000 540.557 30.080 931.431
Correlation Matrix

β̃0 1.000

β̃ -0.820 1.000
σ̃2 0.043 -0.026 1.000
µ̃2 -0.007 0.003 0.011 1.000

δ̃ 0.020 -0.002 -0.176 -0.061 1.000
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Table 3. Simulation summary statistics (T=400)

(full likelihood)

Mean SD Min Max Skewness Kurtosis

β̂0 1.423 0.109 1.076 1.720 -0.080 2.895

β̂ 0.719 0.059 0.543 0.913 0.089 2.878
σ̂2 1.379 0.112 1.067 1.759 0.228 3.191
µ̂2 1.500 0.058 1.334 1.694 0.097 2.867

δ̂ 0.093 0.008 0.071 0.119 0.229 3.014
Correlation Matrix

β̂0 1.000

β̂ -0.816 1.000
σ̂2 -0.010 0.039 1.000
µ̂2 0.030 -0.008 0.035 1.000

δ̂ 0.061 -0.029 -0.118 -0.001 1.000

Table 4. Simulation summary statistics (T=400)

(conditional likelihood)

Mean SD Min Max Skewness Kurtosis

β̃0 1.423 0.109 1.077 1.823 -0.037 2.952

β̃1 0.717 0.060 0.523 0.932 0.026 2.947
σ̃2 1.325 0.194 0.003 1.783 -2.633 19.027
µ̃2 1.431 2.293 -23.051 30.538 -1.811 76.845

δ̃ 0.108 0.122 0.000 2.592 12.824 239.448
Correlation Matrix

β̃0 1.000

β̃ -0.832 1.000
σ̃2 0.001 0.001 1.000
µ̃2 0.034 -0.008 0.240 1.000

δ̃ 0.000 0.021 -0.508 -0.212 1.000
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Table 5. Simulation summary statistics (T=800)

(full likelihood)

Mean SD Min Max Skewness Kurtosis

β̂0 1.424 0.076 1.188 1.657 0.070 2.800

β̂ 0.717 0.042 0.581 0.842 -0.032 2.908
σ̂2 1.385 0.080 1.125 1.674 0.111 3.090
µ̂2 1.501 0.041 1.367 1.653 0.120 3.218

δ̂ 0.093 0.005 0.075 0.110 0.118 2.862
Correlation Matrix

β̂0 1.000

β̂ -0.796 1.000
σ̂2 0.030 -0.054 1.000
µ̂2 0.017 -0.014 0.055 1.000

δ̂ 0.006 0.018 -0.113 0.024 1.000

Table 6. Simulation summary statistics (T=800)

(conditional likelihood)

Mean SD Min Max Skewness Kurtosis

β̃0 1.422 0.077 1.162 1.670 -0.007 3.096

β̃ 0.719 0.042 0.585 0.868 -0.083 2.912
σ̃2 1.362 0.106 0.305 1.775 -0.839 12.694
µ̃2 1.564 1.820 -5.028 55.162 25.913 756.337

δ̃ 0.096 0.044 0.000 0.287 0.480 3.591
Correlation Matrix

β̃0 1.000

β̃ -0.808 1.000
σ̃2 -0.025 0.050 1.000
µ̃2 0.009 0.015 -0.301 1.000

δ̃ -0.012 -0.025 -0.484 -0.078 1.000
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