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Abstract

This paper calculates implied recovery rates and implied default
probabilities in a risk neutral setting for Argentine US-Dollar Eu-
robonds during the Argentine crisis from 2000 to 2002. In a model
which is related to Jarrow and Turnbull (1995), the hazard rate is
modelled as risk neutral probability using the Gumbel probability dis-
tribution. The results show that implied probabilities roughly take five
levels, allowing to cut the time frame analyzed into five periods. The
jumps between the levels are associated with rating cuts in most cases.
In 2000, the estimated location parameter of the Gumbel distribution
makes a default event appear most probable after four to five years.
Estimated recovery ratios range from above 50% in the beginning to
an average of 25% in the end.

1 Introduction and literature review

Financial crises in the 1990s as in Mexico 1994/1995, Asia 1997, Russia
1998, and Brazil 1999, were closely analyzed. All these crises triggered eco-
nomic disturbances. In Argentina, a long lasting recession and remaining
structural deficits caused the erosion of the public budget. The possibility
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that the Republic of Argentina could slip into default on its USD 128 bil-
lion public debt was widely foreseen. The IMF approved an aid package
in December 2000, even though Argentina was unable to meet the IMF’s
conditions. However, Argentina received another USD 8 billion package in
August 2001, which is in addition to its existing USD 14 billion standby
credit line with the IMF. One year later, political turmoils and the lack of
further help from multilateral institutions drove Argentina into default.

These events provide the background of this analysis of Argentine Eu-
robonds. From Eurobond market prices, information about the market ex-
pectations can be derived provided risk neutrality is assumed. By applying a
pricing model for risky sovereign debt it will be possible to see how investors’
expectations change during the period 2000 to 2002.

The theory of pricing credit risk was initially developed for valuing risky
corporate debt. A first class of these models is called asset based or struc-
tural models. They assume a value process for the firm’s underlying assets.
The firm defaults when the value of the firm’s underlying assets falls be-
low its financial obligations or below an exogenously specified boundary.
Debtor’s incentive patterns can also be an aspect of the structural models.1

This methodology was researched closely by Merton (1974), Black and Cox
(1976), Fischer et al. (1989), Hull and White (1995), Longstaff and Schwartz
(1995), and others.

A second class of models assumes that the bankruptcy process is specified
exogenously. These so called intensity based or reduced form approaches
were described by Jarrow and Turnbull (1995), Jarrow et al. (1997), Lando
(1998), Duffie and Singleton (1999), and others.

Even if similar approaches for calculating credit risk are applicable, one
must carefully consider the differences between risky corporate and risky
sovereign debt. Most important, there is no bankruptcy code that pro-
tects the holder of sovereign debt in case of default.2 Except for foreign
assets which could theoretically serve as collateral for foreign debtholders,
the sovereign has nothing more to lose than reputation. For this reason
governments may consider sovereign default as a political decision.3 The
following debt restructuring is also subject to strong political influences.4

1For instance, Gibson and Sundaresan (1999) develop a formal model for optimal de-
fault strategies for sovereign debt.

2This is valid with exception of some basic rules applying in case of default like collective
action clauses (CAC) which are common under British Law.

3See Eaton and Gersovitz (1981).
4From a game theoretic approach, Ghosal and Miller (2002) developed rational choice

arguments to bankruptcy proceedings.
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This explains the variety of outcomes for sovereign bond investors after de-
fault and shows why expectations about the loss given default are important
for creditors of risky sovereign claims.

The model used throughout this paper can be characterized as a re-
duced form model and follows an approach presented in Duffie and Single-
ton (1999). The underlying tree structure of this model has previously been
described in Jarrow and Turnbull (1995) and was already empirically im-
plemented for sovereign bonds by Merrick (2001).5 The default intensity
is implemented by using a Gumbel probability distribution to derive risk
neutral default probabilities.6 Assuming this distribution for the time of
default is a new feature introduced by this article.

From the application of the model on Argentine bond data the following
important results can be derived: The implied default probability param-
eter shows significant jumps during the sample period. Due to the model
specification, the pricing of the short term Eurobonds maturing within six
years conveys very valuable information to consistently form the shape of
the hazard rate. Implied recovery values are constantly declining but get
an intermediate uplift after the USD 40 billion aid package from the IMF
arrived. During the last stages of the crisis, the implied recovery ratio seems
to be the major driver of Eurobond prices.

The remaining of this paper is structured as follows: Section 2 introduces
the pricing methodology of default risk and explains the pricing model ap-
plied in this study. An introduction to the estimation methodology is given
in Section 3. Section 4 describes the input data. Section 5 estimates daily
coefficients and tries to describe the course of crisis in five periods. In Section
6 the pricing of single issues is researched. Section 7 concludes.

2 The model

Due to the rare event of sovereign default, quantified measures of default
risk hardly exist in literature. Claessens and Pennacchi (1996) derive pseudo
default probabilities from Mexican Brady bond prices. Bhanot (1998) an-
alyzes implied default recovery rates of coupon payments for Brady bonds.
Keswani (2000) uses the model of Duffie and Singleton (1999) to analyze

5Merrick (2001) analyzes contagion effects during the Russian public debt crisis in
1998.

6Assuming risk neutrality is common in literature. If risk aversion is actually prevailing,
the risk neutral default likelihood will be greater than the physical default probability.
Analogously, the risk neutral recovery rate is lower than its physical counterpart. See
Bakshi et al. (2001).
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Figure 1: Event tree
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Event tree to determine the value of a five-period bond subject to default risk. B0 is the
resulting value of the risky bond. Ct are coupon payments, N the bond’s par value. ψ
stands for recovery ratio of the face value N . dt are the risk free discount factors. The
cumulative probability of default as seen from t = 0 is indicated by Q0(t).

Brady bonds. Merrick (2001) compares Russian and Argentine Eurobonds
during the Russian crisis 1998.

In this paper, the value of the sovereign Eurobonds is derived from the
discounted present value of the coupon payments and the nominal face value
in the case that no default occurs. If the bond defaults, the following re-
covery scheme applies: Coupons are no longer paid, but the investor will
receive a fractional recovery of the face value upon default. This follows
the common recovery of face value (RFV) formulation and contrasts with
Jarrow and Turnbull (1995).7

Assuming that investors are risk neutral, all payments are discounted at
the risk free rate. The current bond value is calculated from the sum of all
discounted payments weighted by their probability of occurrence. This is
illustrated in a binomial event tree for an example in discrete time setting
in Figure 1.

The example assumes a bond which expires after five periods. The re-
sulting cash flows and their probabilities are marked at each node. All cash
flows are multiplied with the discount factor. Discounted cash flows get
weighted by their probability. Recovery values are always paid immediately
after default. The resulting bond value is B0.

Analyzing a cross section of bonds issued by one debtor, the model as-
sumes that there is a joint default probability. This means that the issuer

7See Bielecki and Rutkowski (2002), p. 34; Cossin and Pirotte (2001), pp. 100f.
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can default only on all outstanding bonds at a time.8 Analogously, one
joint recovery rate for all bonds is assumed. These assumptions are rea-
sonable in the case of Argentina. All bonds in the sample have a covenant
of equal coverage which tries to reach maximum equality between the un-
secured creditors of different Eurobond issues. There is also no evidence
of different bondholder groups which could lead to a different treatment as
in the case of Russia where debt issued during the Soviet era takes lower
priority than post-Soviet issues.9

Modelling the joint default probability can be done in many different
ways. Early empirical research applied constant default probabilities where
default occurs each period with the same probability.10 In this paper an
instantaneous hazard rate is used. This way it is possible to embed the
model in a time continuous setting along Duffie and Singleton (1999). The
hazard rate thereby is the instantaneous probability of default at time t
given survival until that time. Let Qt be the cumulative probability of
default during the time interval [0, t]. The hazard rate as viewed from time
0 is then

µ0(t) ≡ − d

dt
ln(1−Qt). (1)

The unconditional probability of default or default function density at a
certain point in time t is

µ(t)e−
∫ t
0 µ(s)ds. (2)

Since payments are not continuous but appear in certain but irregular time
intervals, the default probability at payment time t+∆, ∆ ≥ 0, considering
the default probability until the last payment date t, takes the form

e−
∫ t
0 µ(s)ds(1− e−

∫ t+∆
t µ(s)ds) = Qt+∆ −Qt. (3)

In Duffie and Singleton (1999), a constant hazard rate
8Therefore, Standard & Poor’s created the rating category “selective default (SD)” to

account for the possibility that sovereigns may choose to default on only a portion of its
total debt.

9See Duffie et al. (2003), p. 149.
10See Fons (1987), Bhanot (1998). Merrick (2001) uses a linear function of time for the

default probability p. This approach, even if intuitively appealing, has the disadvantage
that if assuming a probability function in the manner of pt = α + βt, the probability pt

can possibly exceed the interval [0, 1]. A calibration of this model can only be valid within
a certain sample of maturities Tε[t, τ ].
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µ(t) = λ, with λ ≥ 0 (4)

is applied as base case. This is a function often applied in modelling default
rates. Therefore, the constant hazard rate function will be used in Section
3 to illustrate under which conditions the model can be estimated.

For the empirical analysis of this article, I use a modified hazard function
to make the default rate dependent on time. A very convenient function for
this purpose is the Gumbel distribution.11 The Gumbel probability distri-
bution and its properties are described in Appendix A. Its hazard function
is given by

µ(t) =
1
β

e−(t−α)/β

ee−(t−α)/β − 1
(5)

where α is the location parameter and β > 0 is the scale parameter. Anal-
ogously to Equation 2 the unconditional probability of default using the
Gumbel distribution becomes

1
β

e−(t−α)/βe−e−(t−α)/β
. (6)

Since the mode of this density is α, this allows modelling a default prob-
ability term structure which shows a maximum at time t = α and has a
standard deviation of π√

6
β.

For t ≥ 0, the conditional default probability between time t and t + ∆
from Equation 3 becomes

Qt+∆ −Qt =





e−e
−∆−α

β for t = 0

e−e
− t+∆−α

β − e−e
− t−α

β for t > 0
(7)

This case differentiation is necessary because the extreme value distribution
is defined for negative variates as well. Equation 7 ensures that the survival
probability at time t = 0 is one which implies that Q0 must be zero.

Estimating the parameters of the extreme value hazard function offers
insight in the expected default risk structure of Argentina. The parameter
α roughly indicates at what point in time default was seen as most proba-
ble. This unveils important information about a cross section of Argentine
Eurobonds with different maturities. Using a bootstrapping method, the

11See Gumbel (1958).
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implied zero curve already indicates that the hazard rate is not constant
over time but rather reaches a peak which can be approximated by α using
the Gumbel default probability density. At this peak, the cumulative default
function Q(t) shows its steepest ascent.

Economically, this makes sense for an economy which passes through a
temporary recession. Having bonds in the estimation sample with a short
duration, the estimation may get distorted when using a constant hazard
function. Such an estimation would underprice bonds with longer duration
since it cannot reflect an expected economic recovery.12 The Gumbel dis-
tribution function, in contrast, can be parameterized in such a way that
the hazard rate decreases in the long-run. The scale parameter β refines
the shape of the default probability density since its standard deviation in-
creases with a growing scale parameter. In other words, the scale parameter
determines the slope of the cumulative default function.

These ingredients can now be combined to calculate the value of a risky
bond from its constituents which are the coupon payments, the notional
payment, and the recovery value. Therefore, imagine a bond with J coupon
payments up to maturity at time t = τ . The periodical coupon payments Cj

are paid at times tj with j = 1, ..., J . The face value N is paid at maturity
τ . Discounting these payments back to time t = 0 using a continuous risk
free term structure rt, the result would equal the bond value of a risk free
claim. The risk neutral value of a risky claim can be obtained by weighting
these payments with the probability of survival up to that time and adding
the recovery value weighted by the default probability. For different hazard
functions µ(t), the bond model value B0 of a risky claim is calculated as
follows:

B0 =
J∑

j=1

Cj exp{−
∫ tj

0
[rs + µ(s)]ds}+ (8)

N exp{−
∫ τ

0
[rs + µ(s)]ds}+

ψN
J∑

j=1

exp(−
∫ tj

0
rsds)[exp(−

∫ tj−1

0
µ(s)ds)− exp(−

∫ tj

0
µ(s)ds)]

Equation 8 represents the bond model value as the sum of three parts.
12In the model proposed here, such an overestimation of the default probability may get

compensated by higher recovery ratios, so that systematic underpricing for long maturities
might not be easily observed from the estimation results.
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The first part is the sum of the coupon payments multiplied with the con-
tinuous discount factor and the survival probability. The second part is the
face value received at maturity. It is discounted with the continuous risk
free rate and weighted by its survival probability. The third part is the
fraction ψ of the face value N , which is discounted with the risk free rate
and multiplied with the probability of default. Thereby, default can occur
between two payment times tj−1 and tj .

In general, there are two ways of implementing this equation given a
sufficient sample of bond prices and discount factors:

1. Taking a time series of one bond, the three coefficients α, β, and ψ
can be estimated for a single bond as constants during the observation
period.

2. In a cross section of bonds sharing the same cross sectional default
probabilities, an estimate gives us the three coefficients α, β, and ψ at
any point in time.

In this study, only the latter aspect will be researched. This implies
homogenous market expectations for all Argentine Eurobond issues under
consideration, whereas expectations are allowed to change from day to day.

3 Parameter estimation

Duffie and Singleton (1999) have shown that the bond value can be calcu-
lated using the discount rate

R = r + hL (9)

in a recovery of market value (RMV) framework, where r is the continuous
risk free rate, h is the hazard rate process and L is the process of fractional
loss at default. In such a setting, it is not possible to separate the two
parameters in a sample which shares the same hazard process and recovery
rate.13

This just serves as example where the simultaneous estimation of both
default probability and recovery parameters leads to an identification prob-
lem. Any model which estimates default and recovery parameters has to
deal with this problem, even if different recovery assumptions (for example,
recovery of face value or recovery of treasury value) are applied. In any of

13See Duffie and Singleton (1999), pp. 705f.
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these cases, an empirical estimation of these parameters for coupon bonds
could typically unveil very high positive correlation between the intensity
parameter of the hazard process and the recovery parameter.

The following will demonstrate that the bond value model used in this
analysis can be considered suitable to estimate both parameters when the
data comply to certain characteristics.

Estimates of the implied parameters are obtained by comparing observed
dirty bond prices and theoretical bond model values, which are calculated
from Equation 8. The root mean squared error (RMSE) — taking the
relative pricing error — is calculated as follows:

√√√√ 1
n

N∑

n=1

(Vn −Bn

Bn

)2
(10)

Thereby, Bn is the bond model value of bond n in a cross section with N
bonds and Vn is its observed dirty price. To gain estimates of the parameters,
the RMSE is minimized using an optimization algorithm.

Figure 2 shows the behavior of the model price for bonds with different
coupons and maturities using a constant hazard rate as in Equation 4. A
constant hazard rate of λ = 0.25 results in a risk neutral default probability
of 22% within the first year, 53% within three years, and 92% within ten
years. This scenario is very realistic for risky sovereign debt as in the case
of Argentina, where high coupon bonds trade well below par even at the
beginning of the observation period in 2000 and drop into the price range
between USD 60 and USD 70 in summer 2001.

Looking at the curvature of the bond model value of a zero coupon bond,
the following observation is obvious. The default probability for longer ma-
turities, that means maturities of more than 15 periods, becomes extremely
high, so that the recovery value is the main constituent of the bond value.
For shorter maturities, the model value consists to a considerable extent of
the bullet amortization weighted by the probability of survival (1 − Q0),
which determines the characteristic curvature of the surface in Figure 2 for
short maturities.

Of course, different coupons also help to identify the model parameters
explicitly. However, the difference in coupons has to be substantial, resulting
in distinctively different bond prices.14 From this point it appears helpful

14Unfortunately, this is not always the case. The Argentine Eurobond sample researched
in this article contains bonds with a coupon range between 8.375% and 12.000%; see Table
1.
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Figure 2: Bond model value
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Model value of a coupon bond in dependence of its maturity and coupon rate using a
constant hazard rate model. In the figure, a constant hazard rate λ = 0.25 and a recovery
ratio ψ = 0.40 is assumed (see Equations 4 and 8). The bond has a face value of 100 and
coupons are paid annually. The term structure of risk free interest rates is flat at 5%.

to regard a measure which combines maturity and coupon in one figure. For
this reason the Macauley duration is used in the following argumentation.

Imagine a sample of two bonds with high durations, from which market
prices are available. Assume that the market participants apply a pricing
framework similar to that illustrated in Figure 2. From these two prices one
could estimate the implied default parameter λ and the recovery ratio ψ.15 If
there is considerable default risk prevailing, the bonds would trade at almost
the same level. This constellation would allow to estimate the recovery ratio
ψ with sufficient precision, but it would be difficult to separate the parameter
λ. It is therefore necessary to have one bond in the sample with a shorter
maturity.

Figures 3 illustrates the two cases in contour plots of the root mean
squared pricing error (see Equation 10). Even if the difference in duration is
the same in both plots, a minimization of the RMSE is difficult in the first
case. The plot indicates that there is a narrow valley of possible combina-

15This is achieved by applying a hazard function similar to that in Equation 4 and
calculating a bond model value along Equation 8. Taking the market prices and minimizing
the resulting RMSE (see Equation 10), one gains estimates of the two parameters λ and
ψ.
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Figure 3: RMSE contour plot for two cases
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Contour plots of the root mean squared pricing error (see Equation 10) in the constant
hazard rate model (see Equation 4). The pricing error is the difference between the bond
model value for different parameter values for λ and ψ and the simulated prices of two
bonds, which are calculated for λ = 0.25 and ψ = 0.40 (see Equation 8). The term
structure of the risk free rate is flat at 5%. The two zero bonds in the left hand figure
mature after twenty and thirty periods. In the right hand figure, the bonds mature after
one and eleven periods. The contour lines suggest lower levels in the middle of the figures.

tions of λ and ψ, for which the RMSE is very small. In contrast, the right
hand plot clearly hints at a global minimum at λ = 0.25 and ψ = 0.40.

From this section the following conclusions can be drawn:

• For the determination of the recovery ratio, the bonds in the sample
should contain considerable default risk. When the default probability
is very low, the recovery value determines only a very small portion of
the total bond price, from which it is difficult to identify the recovery
parameter accurately.

• To estimate the default parameter, it is important to catch the charac-
teristics of the curvature of the cumulative default probability function
Q0(t), be it a constant hazard rate or a Gumbel default probability
function. For this purpose the following rule of thumb can be ap-
plied: if Dh, h = 1, ..., H, is the Macauley duration of the H bonds in
the sample, a wide range of different values of the conditional default
probability function µ(Dh)e−

∫ Dh
0 µ(s)ds is helpful.16

Since the instantaneous default probability is the derivative of the cumu-
lative probability of default Q0(t), its maximum hints at the point in time,
where the Q0(t) shows its steepest incline. Cash flows due around this point
in time are most heavily affected by the increase of the default probability.

16See Equation 2.
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Table 1: Sample of US-Dollar denominated Eurobonds issued by the Republic of Argentina

Name Coupon First cou- Maturity Par value Price range
pon date date ($mln) Min. Mean Max.

Arg01 9.250% 23-Feb-1996 23-Feb-2001 1000 98.16 99.85 100.56
Arg03 8.375% 20-Dec-1993 20-Dec-2003 1000 24.03 71.80 96.85
Arg06 11.000% 09-Oct-1996 09-Oct-2006 1000 24.64 71.64 99.25
Arg09 11.750% 07-Apr-1999 07-Apr-2009 1000 24.50 69.40 98.78
Arg10 11.375% 15-Mar-2000 15-Mar-2010 1000 20.50 67.38 96.15
Arg15 11.750% 15-Jun-2000 15-Jun-2015 2000 22.69 66.67 97.65
Arg17 11.375% 30-Jan-1997 30-Jan-2017 4000 22.50 66.79 95.50
Arg20 12.000% 03-Feb-2000 01-Feb-2020 1000 20.50 68.28 99.25
Arg27 9.750% 19-Sep-1997 19-Sep-2027 2000 23.50 60.52 85.93

All bonds have semi-annual coupon payments.

However, identification problems may still occur with real market prices.
Especially when market prices are very volatile, less liquid issues with sticky
prices may distort the estimation. Exceptional market movements can ex-
plain most outliers, which show characteristically high RMSE and strong
positive correlation between the default and the recovery parameters.

4 Input data

The estimation of the parameters requires two sets of data, Argentine Eu-
robond prices and a risk free term structure. The latter is a necessary
ingredient of the bond model function but has a limited impact on the cal-
culations. Since the objective is to quantify sovereign risk, it is not easy to
find a proxy for the risk free rate. Here the US Treasury bond yields are
accepted as representative for the risk free rate since the United States are
the most solvent and most powerful debtor in the world.

To ensure consistency, I will stick to the US Treasury benchmark yields
provided by Datastream. This yield is calculated from the constant maturity
yield published daily in the Financial Times using linear interpolation. Daily
values for this benchmark exist for maturities of two, three, five, seven, ten,
and thirty years. For maturities in between, rates are linearly interpolated.

The sample includes all Argentine Eurobonds with bullet amortization
for which market prices are available from Datastream. To avoid distortions,
three very illiquid issues are excluded from the data sample. They are the
Arg19, 12.125%, maturing 25 February 2019; the Arg30, 10.250%, maturing
21 July 2030; and the Arg31, 12.000%, maturing 31 January 2031. These
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Figure 4: Price chart of two Argentine Eurobonds
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Clean mid prices of the 8.375% Arg03 (solid line) and the 9.750% Arg27 bond (dashed
line) in USD. Source: Datastream.

issues have an outstanding amount of less than USD 274 million.17 Some
bonds are also not considered in this sample due to special features like
capitalizing coupons et cetera.18 This sample adjustment does not have a
high impact on the estimation because these bonds are situated in the upper
range of maturities.19

After these adjustments the sample includes nine US-Dollar denominated
Eurobonds issued by the Republic of Argentina as listed in Table 1. All issues
have a fixed coupon and a maturity spectrum between one and 27 years.
Daily trading values are received from Datastream.20 Accrued interest is

17Excluded is also the Arg00 8.250% issue, which had a total par value of USD 100
million and already matured in August 2000. The two outstanding zero bonds, which
matured in 2000 and 2001, are thinly traded due to their small volume and are not
considered in this analysis.

18The Arg01, 12.375%, maturing 21 February 2012, is an unsecured loan not having the
negative pledge guarantee of the other issues and is trading significantly higher. Three
bonds maturing in 2008, 2018, and 2031 were issued in June 2001 during a mega debt
swap of USD 29.5 billion (including one Peso bond maturing in 2008). Even if these issues
are the largest Eurobonds by volume, they are not considered here since they had either
varying coupons, were sinking funds, or had capitalizing coupons.

19As illustrated in Section 3, the long-term maturity bonds will not play an essential
role in the parameter estimation for a very risky country like Argentina.

20These prices are the last prices obtained from the market each day, and are quoted as
mid-prices without any accrued interest.
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Table 2: Standard & Poor’s ratings

Date New S&P bond rating

Initial rating BB
14-Nov-2000 BB –
26-Mar-2001 B +
08-May-2001 B
12-Jun-2001 B –
09-Oct-2001 CCC +
30-Oct-2001 CC
19-Nov-2001 D

Standard & Poor’s long term foreign currency sovereign credit ratings for all issues in the
sample. On 07 November 2001, S&P put its long term local and foreign currency credit
rating to ”selective default”. The Arg-17 bond was rated D on 27 November 2001. Source:
Datastream.

calculated using the 30/360 day count convention.
The sample represents a total nominal amount outstanding of about

USD 9.06 billion which is an 11% share of a total of USD 85 billion external
public debt.21 The time frame in question is 08 June 2000 to 6 May 2002,
including data for 498 trading days. Since the short-maturity bonds convey
important information, the Arg01 is included in the analysis, even if its last
price is quoted on 19- February 2001.

Figure 4 shows the price chart for two selected issues of different maturi-
ties in the period from June 2000 to May 2002. The prices of the two issues
remain stable until summer 2001, when Standard & Poor’s downgraded the
sovereign credit rating. The price chart shows a downward trend which is
intensifying around end of October 2001 after downgrades from CCC+ to
CC. Bond prices stabilize around the beginning of December 2001 on a very
low level which is maintained in 2002.

Table 2 gives an overview about Standard & Poor’s ratings during the
time frame of this study.22 The ratings of S&P exist for all bonds in con-
sideration.23

21As reported in the International Monetary Fund’s Dissemination Standards Bulletin
Board (DSBB), June 2002.

22The ratings in Table 2 are the common ratings of the Eurobond issues in the sample.
A rating change might be anticipated when the country is put on credit watch. E.g. the
first downgrade in the table was already anticipated since investors expected negative
implications from S&P putting Argentina on credit watch on 01 November 2000.

23For an in depth analysis of the statistical properties of sovereign credit ratings see
Cruces (2001).
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Figure 5: three-year cumulative default probability and recovery ratio
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Course of the three-year cumulative risk neutral default probability (solid line) and the
recovery ratio (dashed line) for the complete sample.

5 Estimation results

In the following, the results for daily parameter estimates throughout the
whole sample are presented. For illustrative purposes, the cumulative default
distribution for a time interval of three years from the observation date is
calculated from the default parameter estimates.24 Figure 5 shows the three-
year cumulative default probability and the recovery ratio.

In 1999 Argentina slid into a recession and GDP shrank by 3.2% that
year. This was also triggered by the Brazilian devaluation. Still, the default
probability in July 2000 is as low as 20%, shortly after Argentina promised
the IMF to restore fiscal balance until 2003. This means that one could
conclude from the risk neutral pricing model that the Republic of Argentina
will default on a payment due in three years with a risk neutral probability
of 20%. The default risk is then creeping up throughout the sample and
finally reaches the upper level of 100% at the beginning of December 2001,
that is prior to the date the Argentine government officially declared default
on external debt. The recovery ratio starts out at a level between 40 and 50
of a nominal of 100 and drops to a level below 40% in summer 2001. After

24This means, that the daily estimates of the parameters α and β are used to calculate
exp(−exp(− 3−α

β
)).
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default, a 20% to 30% recovery of face value is expected by the market
participants.

The graph shows some peaks with characteristically high correlation be-
tween default probability and recovery ratio. Most of them can be justified
by heavy market movements (as in the case of the peaks in November 2001)
or — in some cases — by obviously mispriced quotes of single issues (as
in the case of Arg06 around 08 December 2000). Over the whole sample,
the three-year default probability and the recovery ratio have a covariance
of −0.026, which does not hint at a prevailing identification problem. Cer-
tainly, during periods of mainly invariate prices, the covariance is low but
positive.25

Figure 6 shows the resulting estimates of the two parameters describing
the Gumbel hazard function. The parameter α is the location parameter
and serves to visualize after which period of time default was approximately
seen as most probable in this risk neutral model. The result is striking in the
sense that the curve obviously declines towards the date Argentina actually
defaults.

The dashed line in Figure 6 represents the scale parameter β, which
determines the standard deviation of the cumulative Gumbel density (see
Section 2). Until bond prices trade very low, the scale parameter remains
at a higher level. It is very obvious that during times of turbulent market
movements β goes up. This is the case, for instance, in spring 2001. After
market disappointment about lower tax revenues than expected, a political
crisis evolved. In the end, a shuffle of the cabinet brought Domingo Cavallo
back into power. This period of uncertainty is reflected by very high values
of β. After a new IMF deal was clinched in May, market sentiment calmed
and spreads narrowed.26 This course of events is reflected in Figure 6 by a
very high scale parameter and occasional slumps of the location parameter.

From the course of the default probability, one can identify periods of
rather stable default probabilities followed by jumps. This divides the time
frame into five periods. Table 3 states means, variances, and correlations
for the different periods as well as for the whole sample. Mean values for
α decline during the course of the periods. Except for the last period, the
scale parameter β remains high. The recovery ratio ψ drops to a realistic

25For instance, from June to October 2000, where prices trade very stable, the covariance
is 0.001.

26The deal ensured further help from the USD 40 billion loan package negotiated in
December under the lead of the IMF. The deal was conditional on meeting the fiscal
deficit target of USD 6.5 billion. At the end of April 2001 economy minister Cavallo
admitted that Argentina will miss this target by about USD 4 billion.
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Figure 6: Location and scale parameter of the Gumbel hazard function
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The location paramter α (bold solid line) indicates the time span in years after which the
density of the hazard function shows its maximum. The scale parameter β (dashed line)
is proportional to the Gumbel density’s standard deviation.

level of 25% in the fifth period. In all single periods the daily estimates of
α and ψ are negatively correlated.27

During the first period, in summer 2000, spreads came down in favor
of Argentina. Hopes culminated in the new president Fernando de la Rua,
who followed the Peronist Carlos Menem. The markets’ perception of Ar-
gentina’s country risk improved and Argentina successfully managed to place
a number of new Eurobond issues. Together with the fact that the Brazil
Real recovered again, this made the endurance of the Peso-Dollar peg more
credible.

In the model, these circumstances are reflected by a mean pseudo default
probability of 23% for a three-year horizon and a mean recovery rate of
44%. The location parameter α suggests that a potential debt crisis was not
expected in the near future. The default parameters α and β both show low
variances. The high values of α and β together with their high correlation
cause this model to behave more like a model using a constant hazard rate
µ(t) = λ (see Equation 4). This finding indicates that market participants

27This is contrasting the high positive correlation in the total sample. It shows the
distinctiveness of the different periods. Joining the periods two and three as well as four
and five would also result in positive correlations between α and ψ in each of the resulting
subsamples.
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Table 3: Means, variances, and correlation matrices of the estimators

Total sample
Mean Variance Correlation Matrix

α 2.19 2.91 1.00 0.74 0.80
β 2.64 2.01 1.00 0.72
ψ 0.39 0.012 1.00

Period 1 (08-Jun-2000 – 30-Oct-2000)
Mean Variance Correlation Matrix

α 4.48 0.17 1.00 0.87 -0.64
β 3.75 0.10 1.00 -0.80
ψ 0.44 0.002 1.00

Period 2 (31-Oct-2000 – 23-Mar-2001)
Mean Variance Correlation Matrix

α 3.28 0.23 1.00 0.59 -0.40
β 3.44 0.27 1.00 -0.74
ψ 0.52 0.002 1.00

Period 3 (26-Mar-2001 – 10-Jul-2001)
Mean Variance Correlation Matrix

α 2.53 0.19 1.00 -0.36 -0.38
β 3.65 0.32 1.00 0.41
ψ 0.44 0.002 1.00

Period 4 (11-Jul-2001 – 26-Oct-2001)
Mean Variance Correlation Matrix

α 0.93 0.11 1.00 0.31 -0.07
β 2.77 0.06 1.00 -0.16
ψ 0.34 0.001 1.00

Period 5 (29-Oct-2001 – 06-May-2002)
Mean Variance Correlation Matrix

α 0.14 0.09 1.00 -0.19 -0.65
β 0.53 0.38 1.00 0.05
ψ 0.25 0.002 1.00

Mean, variance, and correlation matrix of daily estimates of the location parameter α, the
scale parameter β, and the recovery ratio ψ.

18



apply constant term spreads in standard pricing frameworks.28

In October, the country was shaken by the resignation of vice president
Alvarez and by doubts about the government’s capacity to enact the aus-
terity plan. Beginning of November, Standard & Poor’s put Argentina on
negative outlook and rumors originated by the former Argentine president
Raul Alfonsin spread about the necessity of a moratorium.

This marks the transition to the second period. In the second period
the cumulative three year default probability jumpes up to 34% due to
Standard & Poor’s assigning a negative outlook to Agentina’s double B
rating. The peaks around 08 December 2000 stem from pricing inaccuracies
of the Arg06 bond. Until February 2001 prices recovered since international
lenders approved a USD 39.7 billion aid package by the end of December
2000, USD 13.7 billion of which were directly provided by the IMF. In the
model, this is reflected by a very high level of the recovery ratio. In the first
half of the period, default probability and recovery ratio rise in parallel,
whereas in the second half, the default probability sinks and the recovery
expectation remains stable.

In February 2001, the implied recovery ratio ψ drops by around ten
percentage points. This might reflect fears that the IMF deficit spending
targets could not be met. Additionally, the Turkish Lira devaluation and
political events in Turkey provoked contagion effects. In March 2001 finally,
the implied default probability rises as the location parameter α drops. This
can be associated with the political turmoils when president de la Rua called
his cabinet to resign followed by a rating cut by S&P on 26th March.

This is the beginning of the third period. During this period, the de-
fault probability and the recovery expectation seem to stabilize in Figure
5. Argentina succeeded in swapping debt to defer due payments of a total
amount of USD 16 billion through 2005.29 However, the mean of the loca-
tion parameter α is now down at 2.5 during the third period, translating
into a cumulative risk neutral default probability of 42% within three years.
The average recovery ratio can be found at a level of about 44% moving
slightly downwards throughout the sample. For the first time the correla-
tion between α and β is negative: β begins to fall indicating that investors
now have obtained a relatively sharp picture about what might happen to

28This conclusion can also be drawn from a bootstrapping analysis to yield the implied
zero curve. For the first period, such an analysis shows that the implied zero curve is
almost flat around a mean yield of 12.4%. A relatively flat term structure can only be
observed during the early stages of the sample.

29The peaks on 27 April 2001 in Figures 5 and 6 can be ascribed to single bond prices
moving in opposite directions.

19



Argentina in the near future. The S&P rating cut in May did not effect
markets heavily.30

After 10 July 2001, prices — especially those of long term issues —
responded heavily to the assignment of a negative outlook for the S&P
single B rating which was followed by rating actions of Moody’s and Fitch.
The spread over U.S. Treasuries widened to more than 13 percentage points
due to warnings of further rating cuts. This is the beginning of the fourth
period.

The cumulative three-year default probability is now up at 62%, which
is reflected by an α of 0.93 and a very low mean scale measure of 2.77. This
period is marked by very stable parameter estimations, reflected by the ex-
traordinary low variance level of the implied default parameters. This might
origin from a stabilization of the situation in Argentina. In August 2001, the
IMF increased its stand-by loan agreement and the pace of withdrawals from
local accounts slowed down. However, the analysis shows that the recovery
ratio follows a downward trend and has a mean of 0.34 in this period.

In October, the parameter estimations suggest another deterioration of
the crisis. Reasons for this might be rumors about the quitting of economy
minister Domingo Cavallo and the fear of a Peso devaluation. A devaluation
would make debt obligations even more costly and could trigger an Argentine
banking crisis.

Therefore, the fifth period starts about end of October. The default prob-
ability reaches 1 first on 06 November 2001, the day when Standard & Poor’s
put Argentina’s credit rating to “selective default”. But on the following day,
the announcement of a spending deal with the Argentine provinces raised
hopes for immediate IMF help and the avoidance of bankruptcy, causing the
default probability to drop again.

The location parameter is estimated to be zero almost throughout the
entire fifth period.31 The implied cumulative default probability for a three
year horizon is 97% on average. Since bonds were already rated “selective
D” on 6th November, the S&P default rating on 19 November 2001 did
not come as a surprise.32 The only reaction observable in this model is the
recovery ratio dropping well below 30% and remaining in a range between
20% and 30% for the rest of the sample.

30Since Argentina announced a debt swap just days before the rating cut, S&P was
criticized for this step and market participants refused to react to the rating change. The
previous trading sessions had also been dominated by a bond market rally after a letter
of intent with the IMF was signed on 04 May 2001.

31Deviations result from distorted prices since liquidity became very low after default.
32The Arg27 was rated D on 26 November 2001.
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The division into five periods marked by jumps in the implied cumulative
default probability proves to be a solid framework for describing the Argen-
tine sovereign debt crisis. In most cases, the transition to another period is
accompanied by a rating cut by Standard & Poor’s. The location parameter
of the extreme value distribution applied in this model gives a clear picture
of the expected arrival time of default. The recovery ratio shows a persis-
tent downward trend throughout the analyzed time period. The intuitively
appealing empirical results underline the usefulness of the model applied in
this article.

6 Analysis of single issues

This section compares the dirty market prices of single issues to their fitted
values resulting from daily estimates in Section 5. This offers valuable insight
into the performance of the model introduced in Section 2.

Throughout the sample, the RMSE of daily estimates is as low as 0.05
most of the time. Increased pricing errors occur in July 2001 and during the
volatile period after November 2001. Excessive root mean squared pricing
errors are sometimes caused by single bonds which show extraordinary high
price deviations. As already mentioned above, the Arg06 issue is not well
suited by the model and causes some pricing error peaks.33 Beside the
Arg06 issue, the Arg15 bond can be identified to have caused higher root
mean squared errors, mostly due to illiquidity.34 The results presented in
Section 5 therefore show robustness in the sense that excluding selected
observations does not lead to different conclusions.

Taking the simple mean of the pricing error, calculated as dirty market
price minus fitted model price, and its standard deviation, pricing failures
from Table 4 can be compared between the different periods.

33This is the case, for instance, on 23 April 2001, 06 November 2001, and 20 December
2001. In all cases, the market price of the Arg06 bond is too high in relation to the model
price. Excluding these observations leads to slightly different parameter estimates which
delete some outlyers from Figure 5. For instance, this is the case on 06 November 2001,
when the recovery ratio would change from 45% to 36% after excluding Arg06 from the
sample for that day.

34For instance, in the second half of February 2002 the Arg09 was significantly overpriced
sticking to a price of USD 35.67. Excluding these observations from the sample and
recalculating the parameters during the period from 18 February 2002 to 28 February
2002 causes the RSME to drop by 43% on average. However, the overall picture of the
parameter estimates does not change in a manner which would contradict the findings of
Section 5. The mean value of α becomes 0.08 instead of 0.59. The mean recovery ratio is
slightly higher at 26% against 21% before.
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Table 4: Pricing errors during five periods

Period 1 (08-Jun-2000 - 30-Oct-2000)
Arg01 Arg03 Arg06 Arg09 Arg10 Arg15 Arg17 Arg20 Arg27 RMSE

Mean 1.29 -0.46 -0.31 -0.96 -0.54 0.57 0.84 2.06 -1.48 0.042
S.D. 0.54 0.72 0.67 0.74 0.86 0.89 0.79 0.79 0.68 0.011

Period 2 (31-Oct-2000 - 23-Mar-2001)
Arg01 Arg03 Arg06 Arg09 Arg10 Arg15 Arg17 Arg20 Arg27 RMSE

Mean 1.60 -0.70 -0.40 -0.06 -0.49 0.52 0.60 1.35 -1.18 0.041
S.D. 0.75 1.27 0.77 1.11 1.14 0.99 1.05 0.99 0.57 0.012

Period 3 (26-Mar-2001 - 10-Jul-2001)
Arg03 Arg06 Arg09 Arg10 Arg15 Arg17 Arg20 Arg27 RMSE

Mean -0.27 1.17 -1.08 -0.95 -0.04 1.17 0.84 -0.55 0.043
S.D. 0.79 1.77 0.74 0.75 1.09 0.91 1.06 0.58 0.016

Period 4 (11-Jul-2001 - 26-Oct-2001)
Arg03 Arg06 Arg09 Arg10 Arg15 Arg17 Arg20 Arg27 RMSE

Mean -0.30 2.29 -0.69 -1.25 -0.83 0.87 -0.28 0.81 0.069
S.D. 0.46 1.62 1.02 0.98 0.85 1.26 2.06 1.03 0.027

Period 5 (29-Oct-2001 - 06-May-2002)
Arg03 Arg06 Arg09 Arg10 Arg15 Arg17 Arg20 Arg27 RMSE

Mean 0.12 1.93 0.74 -0.26 -1.32 0.70 -0.81 0.39 0.159
S.D. 1.36 2.14 1.98 1.26 1.67 1.60 2.04 1.78 0.064

The pricing error is defined as dirty market prices minus fitted model prices including
accrued interest. The figures shown here are means and standard deviations from pricing
errors calculated for each day using the daily estimates of Section 5. The RMSE shows the
root mean squared error of the estimation. The Arg01 is only included until 19 February
2001.
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Up to its maturity, the Arg01 bond is traded higher than the theoretical
model value suggests. So does the Arg17 issue, which remains overpriced
throughout the whole sample. Despite having the same coupon, the Arg10
bond is the only bond, which trades cheap on average for all periods. The
Arg20 shows positive pricing errors through the first three periods and neg-
ative pricing errors during the periods of intensifying crisis symptoms. This
evolvement is opposite to the Arg27 issue, which trades cheap during the
first three periods and rich thereafter.

Despite the need of explaining single pricing errors in more depth, Table 4
does not suggest that the pricing errors show a certain pattern or significant
biases with respect to price levels, maturities, or coupons.

Additionally, results can be compared to the analysis of Merrick (2001)
who uses a slightly different model and applies it to a different time frame
analyzing Argentine Eurobonds for contagion effects during the Russian de-
fault 1998.35 Comparing pricing errors of single issues, especially the long
maturity issues prove to show almost similar pricing errors prior to default.36

The difference of pricing errors for shorter maturities could stem from the
different approaches to modelling the bond price. The differences between
these approaches have their strongest effect on payments in the near future.

The results from the single bond analysis clarifies that the model does
not show significant biases with regard to general bond characteristics. In
most cases, pricing errors do not remain constant throughout all periods.
Nevertheless, no pattern can be recognized from the analysis. Therefore,
an in-depth research of single issues with regard to related markets (such as
the repurchase agreement market or the default swap market) could possibly
offer more insight.

7 Conclusion

This paper utilizes three parameters to describe sovereign bond prices dur-
ing the Argentine crisis 2001/2002 assuming risk neutrality. Building on
the frameworks provided by Jarrow and Turnbull (1995) and Duffie and
Singleton (1999), a pricing model is developed to estimate implied default
parameters and recovery ratios simultaneously. Thereby, a hazard function
using the Gumbel distribution is applied which is very helpful to illustrate
the course of a debt crisis. To estimate the parameters, dirty market prices of

35In contrast to this analysis, Argentine bond prices did not drop below USD 70 in 1998.
36The sample of Merrick (2001) contains only five bonds, namely Arg01, Arg03, Arg06,

Arg17, and Arg27.

23



a cross section of bonds are compared to theoretical bond values. The recov-
ery of face value (RFV) approach helps to avoid an identification problem.
Given there is considerable default risk and the bonds in the sample show
distinctive differences in duration, exact parameter estimates are gained. In
most cases, samples containing bonds which trade at almost the same level
do not sufficiently characterize the shape of the hazard function and are
therefore not suitable to identify the parameters. Distortions can also result
from very volatile prices or when liquidity is low.

Applying the model on a sample of nine Argentine Eurobonds through-
out a time frame from June 2000 to May 2002, five different periods seg-
regated by jumps in the implied risk neutral default probability can be
separated. Most jumps are associated with rating downgrades by S&P. The
location parameter of the Gumbel distribution, indicating in which year from
the reference date the density of the default probability term structure is at
its maximum, drops each period by around one from five in the beginning
to almost zero in November 2001. The course of the implied recovery ratio
shows that investors assumed a recovery fraction of face value of 40% to 50%
in the beginning. After the IMF and other international lenders approved
a USD 40 billion aid package, the recovery ratio rises to well above 50%
at the beginning of 2001. After default at the end of 2001 the level of the
recovery ratio is well below 30%.37 Daily parameter estimates were used
to calculate pricing errors of single bond issues. Pricing errors do not show
certain patterns with regard to bond characteristics and therefore support
the usefulness of the model.

A The Gumbel distribution

The Gumbel distribution,

G(x) = exp
{
− exp

[
−x− α

β

]}
, xεR, (11)

is a special type of the general extreme value distribution.38 The use of the
Gumbel distribution in this paper is motivated by the characteristic shape
of its density, which is determined by two parameters, α and β.

37Latest news prove even this recovery ratio to be far too optimistic. In October 2003
Argentina specified its debt restructuring offer achieving a debt reduction of 75% on USD
94 billion nominal debt which results in even higher loss rates for investors.

38See Embrechts et al. (1999), p. 121; Coles (2001), pp. 45f.

24



Figure 7: Gumbel distribution for different parameters
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The graph on the left hand side shows the Gumbel distribution for two different values
of α, while β is constant at 2. The solid line shows the distribution for α1 = 4 and the
dotted line for α2 = 7. On the right hand side, α = 4 in both cases and β varies. The
solid line plots the distribution for β1 = 2 and the dotted line for β2 = 0.5.

Figure 7 illustrates the Gumbel distributions for some arbitrary parame-
ters. From the distribution function G follows the probability density func-
tion which is illustrated in Figure 8.

g(x) =
1
β

e−(x−α)/βe−e−(x−α)/β
(12)

As can be seen in Figure 8, the location parameter α describes the mode
of the density, whereas the shape parameter β is proportional to the den-
sity’s standard deviation. Thereby, each parameter determines a different
characteristic of the distribution. For instance, a change of α leads only
to a change in the location of the distribution function without affecting
the shape of the function. This is a very convenient effect, especially for
illustrative reasons.39

The values for the moments of the Gumbel distribution are:

Mean: α + γβ

Median: α− β ln(ln(2))

Standard deviation: βπ√
6

Skewness: 12
√

6ζ(3)
π3

Kurtosis: 12
5

39The disadvantage is that for reasons of this study the range of the location parameter
α has to be restricted to nonnegative values. However, as shown in Section 2, this caveat
is easy to handle.
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Figure 8: Gumbel density for different parameters
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On the left hand side, the Gumbel density is plotted for different values for α, while β = 2.
Again, the solid line shows the distribution for α1 = 4 and the dotted line for α2 = 7. The
figure on the right hand side illustrates two distributions for α = 4. The solid line plots
the density for β1 = 2 and the dotted line for β2 = 0.5.

where γ ≈ 0.5772 is the Euler-Mascheroni constant, ζ(3) ≈ 1.202 is the
Apéry’s constant, and π ≈ 3.142.
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