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1 Introduction

In this paper we study a competitive market model with a finite number of agents for

trading various indivisible commodities. Commodities can be desirable such as houses or

cars, or undesirable such as aging nuclear plants. Each agent is initially endowed with

several units of each commodity and some amount of money. Agents’ preferences depend

on the bundle of commodities and the quantity of money they hold. As most of the recent

literature does, we also focus on a particular but important case in which all agents have

quasi-linear utilities in money. This model is fairly broad. Its related examples include the

models in Bikhchandani and Mamer (1997), Ma (1998), Bevia, Quinzii and Silva (1999),

Gul and Stacchett (1999), and the assignment models in Koopmans and Beckman (1957),

and Shapley and Shubik (1972). It should be aware that the models in Kelso and Crawford

(1982), Laan, Talman and Yang (1997, 2002), Yang (2000), Danilov, Koshevoy and Murota

(2001), Fujishige and Yang (2002), allow for somehow more general situations in the sense

that quasi-linearity in money is not required.

It is well-known that there exists a Walrasian equilibrium under rather mild conditions

in any model in which every agent demands only one indivisible object but has preferences

over different objects. See e.g., Quinzii (1984), and Kaneko and Yamamoto (1986). Unfor-

tunately, the existence of a Walrasian equilibrium is not guaranteed anymore even under

many familiar standard conditions if agents are allowed to demand more than one indivisi-

ble objects. In a seminal article, Kelso and Crawford (1982) introduce the gross substitutes

(GS) condition for the existence of a nonempty core (and equilibrium) in a fairly general

two-sided matching model with money. This condition has become a benchmark condition

for the existence of equilibrium in matching, equilibrium, and auction models where agents

are allowed to demand as many indivisible objects as they wish. Gul and Stacchetti (1999)

present two new and interesting alternative conditions, the single improvement (SI), and

no complementarities (NC) conditions, and have shown that these conditions are equiv-

alent to the gross substitutes condition. Nevertheless, the GS, SI and NC conditions are

not conditions on the primitive characteristics of the economy (the utility functions) but

conditions on the derived demand correspondences. This raises a natural question. What

2



kind of functions satisfy the GS, or equivalently, SI, or NC condition? Three special classes

of functions satisfying the GS conditions are given by Kelso and Crawford (1982), Bevia,

Quinzii and Silva (1999), and Gul and Stacchett (1999).

In an apparently unrelated development, Murota (1998, 2003) and Murota and Shioura

(1999) have recently developed an interesting theory of discrete convex analysis in the field

of discrete optimization. This theory could play an important role in solving problems

of efficient allocation of indivisible resources. Danilov, Koshevoy and Murota (2001), and

Fujishige and Yang (2002) have applied this theory to the equilibrium models with indi-

visibilities and established the existence of equilibrium. Fujishige and Yang (2003) have

shown that a utility function satisfies the GS condition if and only if it is an M\-concave

function introduced by Murota and Shioura, and thus bridged the gap between the two

quite different identities, the GS condition and the M\-concave functions. Subsequent

to Fujishige and Yang (2003), Danilov, Koshevoy and Lang (2003), Murota and Tamura

(2003) have independently shown that the GS, SI, and NC conditions and their relation

with M\-concave functions can be analogously extended to more general situations.

In this paper we demonstrate through the max-convolution approach that the market

has a Walrasian equilibrium if and only if the potential market value function is concave

with respect to the total initial endowment of commodities. We then identify sufficient

conditions on each individual agent’s behavior. In particular, we introduce a class of new

utility functions, called the class of max-convolution concavity preservable utility func-

tions. This class of utility functions covers both the class of functions which satisfy the

gross substitutes condition of Kelso and Crawford (1982), or the single improvement con-

dition, or the no complementarities condition of Gul and Stacchetti (1999), and the class

of M\-concave functions of Murota and Shioura (1999). Compared with the existing ap-

proaches, the approach provided here has some advantages: First, it enables us to establish

a very natural and intimate relationship between equilibrium and concavity and also helps

us better understand what are the fundamental differences between the indivisible goods

market and the divisible goods market in term of existence conditions. Second, its ar-

gument is more transparent and it also allows us to derive the existing existence results,

including the well-known gross substitutes condition of Kelso and Crawford (1982), from
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a unifying perspective. Third, this approach leads to a natural application of the discrete

concave functions introduced by Murota (1998, 2003), Murota and Shioura (1999), and

also indicates a new way of generating more general utility functions for the existence of

equilibrium.

This paper is organized as follows. In Section 2 we introduce the market model. In

Section 3 we establish two necessary and sufficient conditions for the existence of an equi-

librium in the model. In Section 4 we identify sufficient conditions on the behavior of

each individual agent and also make a comparison of the indivisible goods market with the

divisible goods market.

2 The Market Model

First, we introduce some notation. The set Ik denotes the set of the first k positive integers.

The set IRn denotes the n-dimensional Euclidean space and Zn the set of all lattice points

in IRn. The vector 0 denotes the vector of zeros. The vector e(i), i ∈ In, is the ith unit

vector of IRn. Furthermore, x · y means the inner product of vectors x and y.

Consider a market for trading various indivisible commodities. In the market there are

m agents, n indivisible commodities, and money. The set of all agents will be denoted

by T = {1, 2, · · · ,m}. Each agent i is initially endowed with a bundle ωi ∈ Zn+ of goods

and some amount mi of money. Let ω stand for the total initial endowment of indivisible

commodities in the market, i.e., ω =
∑
i∈T ω

i. Thus, for each commodity h = 1, · · ·, n, there

are ωh units available in the market. It is understood that ωh > 0 for every h = 1, · · ·, n.

Each agent i’s preferences over goods and money are quasilinear: that is, the utility of agent

i holding c units of money and the bundle x of goods can be expressed as ui(x, c) = Vi(x)+c,

where Vi(x) is the reservation value, the quantity of money that agent i valuates the bundle

x of goods. For each i ∈ T , the reservation value function Vi : Zn 7→ IR is assumed to be

bounded from above. Furthermore, each agent i is assumed to have a sufficient amount mi

of money in the sense that mi ≥ supx∈Z
n Vi(x)− Vi(ωi). Since Vi is bounded above, mi is

finite. This market model will be represented byM = (Vi,mi, ω
i, i ∈ T,Zn). Note that we

do not require any monotonicity in this model. So this model covers the cases where some
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agents want to get rid of their commodities (namely economic bads) such as used cars or

aging nuclear plants.

A family (x1, x2, · · · , xm) of bundles xi ∈ Zn is called a (feasible) allocation if
∑
i∈T x

i =

ω. An allocation (x1, x2, · · · , xm) is (socially) efficient if it is an optimal solution of the

following problem:

max
∑m
i=1 Vi(y

i)

s.t.
∑m
i=1 y

i = ω

yi ∈ Zn, i = 1, 2, · · · ,m.

(2.1)

A price vector p ∈ IRn indicates a price (units of money) for each good. Given a price

vector p ∈ IRn, the demand of goods by agent i is defined by

Di(p) = {x | (Vi(x) + p(ωi − x)) = max{Vi(y) + p(ωi − y) | p · y ≤ mi + p · ωi, y ∈ Zn } }.

Note that mi ≥ supx∈Z
n Vi(x) − Vi(ω

i) for every i ∈ T . This implies that the budget

constraint p · y ≤ mi + p · ωi is redundant. Thus, the set Di(p) can be simplified as

Di(p) = {x | (Vi(x)− p · x) = max{Vi(y)− p · y | y ∈ Zn } }.

A tuple ((x1, x2, · · · , xm); p) is a Walrasian equilibrium if p is a vector in IRn; and if xi ∈

Di(p) for every i ∈ T ; and if
∑
i∈T x

i = ω. The allocation (x1, x2, · · · , xm) will be called an

equilibrium allocation. Thus, in equilibrium, each agent gets his best bundle of goods under

his budget constraint and moreover market is clear. The following simple lemma indicates

that a free market mechanism will lead to a socially efficient allocation of resources.

Lemma 2.1 Suppose that the allocation (x1, x2, · · · , xm) is an equilibrium allocation.

Then it must be socially efficient.

The lemma shows that the equlibrium concept is indeed interesting and appealing. It is

well known from Debreu (1959) that for market models with divisible goods there exists

an equilibrium if every agent’s utility function is concave and weakly increasing. Unfortu-

nately, with indivisibilities, an equilibrium may not exist under similar conditions.
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Recall that a function f : Zn 7→ IR is said to be (discrete) concave if, for any points x1,

x2, · · ·, xl in Zn with any convex parameters λ1, λ2, · · ·, λl satisfying
∑l
h=1 λhx

h ∈ Zn, it

holds

f(
l∑

h=1

λhx
h) ≥

l∑
h=1

λhf(xh).

In particular, given an integral vector ȳ ∈ Zn, a function f : Zn 7→ IR is said to be (discrete)

concave with respect to ȳ if, for any points x1, x2, · · ·, xl in Zn with any convex parameters

λ1, λ2, · · ·, λl satisfying ȳ =
∑l
h=1 λhx

h, it holds

f(ȳ) ≥
l∑

h=1

λhf(xh).

Clearly, if f is a concave function, then f must be a concave function with respect to ȳ.

The other way around is not true.

Here we slightly modify the example of Bevia, Quinzii and Silva (1999) to demonstrate

that a simple modification of concavity to the indivisibility case is not sufficient to ensure

the existence of an equilibrium. In an indivisible goods market, there are three agents 1, 2

and 3, and three indivisible goods. Agent 1 initially owns one unit of good 1 and 20 dollars,

agent 2 owns one unit of good 2 and 20 dollars, and agent 3 owns one unit of good 3 and

20 dollars. Let B3 = {x ∈ Z3 | 0 ≤ xi ≤ 1, i = 1, 2, 3}. Their reservation value functions

are given by V1(0, 0, 0) = 0, V1(1, 0, 0) = 10, V1(0, 1, 0) = 8, V1(0, 0, 1) = 2, V1(1, 1, 0) = 13,

V1(1, 0, 1) = 11, V1(0, 1, 1) = 9, V1(1, 1, 1) = 14, V1(x) = max{V1(y) | y ∈ B3, y ≤ x}

for x ∈ Z3
+ \ B3, and V1(x) = −∞ if xi < 0 for some i; V2(0, 0, 0) = 0, V2(1, 0, 0) =

8, V2(0, 1, 0) = 5, V2(0, 0, 1) = 10, V2(1, 1, 0) = 13, V2(1, 0, 1) = 14, V2(0, 1, 1) = 13,

V2(1, 1, 1) = 15, V2(x) = max{V2(y) | y ∈ B3, y ≤ x} for x ∈ Z3
+ \ B3, and V2(x) = −∞ if

xi < 0 for some i; V3(0, 0, 0) = 0, V3(1, 0, 0) = 1, V3(0, 1, 0) = 1, V3(0, 0, 1) = 8, V3(1, 1, 0) =

2, V3(1, 0, 1) = 9, V3(0, 1, 1) = 9, V3(1, 1, 1) = 10, V3(x) = max{V3(y) | y ∈ B3, y ≤ x} for

x ∈ Z3
+ \ B3, and V3(x) = −∞ if xi < 0 for some i. Clearly, V1, V2, and V3 are weakly

increasing, (discrete) concave and bounded from above, and their marginal returns are

decreasing. Although the reservation value functions seem to be extremely plausible, yet

there is no equilibrium in this market. In fact, in this market, there is only one efficient

allocation, namely, agent 1 gets (0, 1, 0), agent 2 gets (1, 0, 0), and agent 3 gets (0, 0, 1).
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Unfortunately, it can be shown that this allocation is not an equilibrium allocation. See

Bevia et al. (1999) in detail. We will come back to this example later.

3 Equilibrium Existence Theorems

In this section we will establish existence results for the market model. Define the following

potential market value function on Zn:

R(x) = sup{
∑
i∈T

Vi(x
i) |

∑
i∈T

xi = x, xi ∈ Zn}.

R(x) is the maximal market value that can be achieved by all the agents with the resource

vector x. The function R is also called the max-convolution function generated by V1, V2,

· · ·, Vm and the analysis based upon this function is called the max-convolution approach.

We point out that this approach is somehow related to Negishi (1960) but differs consid-

erably from his in that here R(x) is the maximal market value under the resource x and is

a function of the social endowment x, whereas Negishi defined a social welfare function as

the weighted sum of utility functions where weights are variables and the social endowment

is not treated as a variable but a given constant. His approach works for economies with

divisible goods.

Our first result gives a necessary and sufficient condition for the existence of a Walrasian

equilibrium. Recall that ω is the total initial endowment of indivisible commodities.

Lemma 3.1 Given a market modelM = (Vi,mi, ω
i, i ∈ T,Zn), there exists a Walrasian

equilibrium if and only if the following system of linear inequalities has a solution p ∈ IRn

p · (x− ω) ≥ R(x)−R(ω), ∀x ∈ Zn.

Proof: Suppose that ((x1∗, x2∗, · · · , xm∗); p∗) is a Walrasian equilibrium. Then we have for

all i ∈ T and all y ∈ Zn it holds

Vi(x
i∗)− p∗ · xi∗ ≥ Vi(y)− p∗ · y. (3.2)

It follows from Lemma 2.1 that
∑m
i=1 Vi(x

i∗) = R(ω). For any x ∈ Zn, then there must

exist xi ∈ Zn with
∑m
i=1 x

i = x such that
∑m
i=1 Vi(x

i) = R(x). It follows from (3.2) that

Vi(x
i∗)− p∗ · xi∗ ≥ Vi(x

i)− p∗ · xi, ∀i ∈ T.
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Therefore we have p∗ · (x− ω) ≥ R(x)−R(ω), ∀x ∈ Zn.

On the other hand, suppose that p∗ ∈ IRn is a solution of the following system

p · (x− ω) ≥ R(x)−R(ω), ∀x ∈ Zn.

Let (x1∗, x2∗, · · · , xm∗) be any allocation so that ω =
∑m
i=1 x

i∗ and R(ω) =
∑m
i=1 Vi(x

i∗) with

xi∗ ∈ Zn. Note that such allocation always exists by the definition of R(x). We will show

that ((x1∗, x2∗, · · · , xm∗); p∗) is a Walrasian equilibrium. For any agent i and any y ∈ Zn,

let x =
∑
l 6=i x

l∗ + y. By assumption we have

R(ω)− p∗ · ω ≥ R(x)− p∗ · x.

By definition of R(x), we have

R(x) ≥
∑
l 6=i

Vl(x
l∗) + Vi(y).

Therefore, it follows that

∑m
i=1 Vi(x

i∗)− p∗ ·∑m
i=1 x

i∗ = R(ω)− p∗ · ω

≥ R(x)− p∗ · x

≥ ∑
l 6=i Vl(x

l∗) + Vi(y)− p∗ · (∑l 6=i x
l∗ + y).

The above implies that Vi(x
i∗)− p∗ · xi∗ ≥ Vi(y)− p∗ · y.

Since i and y are taken arbitrarily, it is clear that ((x1∗, x2∗, · · · , xm∗), p∗) is indeed a

Walrasian equilibrium. 2

In the above lemma, the equilibrium price of each good may be postive, zero, or even

negative. The following lemma gives a rather weak condition to ensure that all goods have

positive equilibrium prices.

Lemma 3.2 Suppose that the market M = (Vi,mi, ω
i, i ∈ T,Zn) has a Walrasian

equilibrium. If R(ω + e(i)) > R(ω) for all i ∈ In, then the equilibrium prices for all goods

are positive.

Now we are ready to present our main result which establishes a natural and intimate

connection between Walrasian equilibrium and local concavity.
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Theorem 3.3 Given a market model M = (Vi,mi, ω
i, i ∈ T,Zn), there exists a Wal-

rasian equilibrium if and only if the market potential value function R : Zn 7→ IR is a

discrete concave function with respect to ω.

Proof: By Lemma 3.1 it is sufficient to show that the market potential value function R is

a concave function with respect to ω if and only if the following system of linear inequalities

has a solution p ∈ IRn

p · (x− ω) ≥ R(x)−R(ω), ∀x ∈ Zn.

Suppose that p∗ is a price vector satisfying the above inequalities. Let x1, x2, · · · , xl ∈ Zn

with convex parameters λ1, λ2, · · ·, λl such that ω =
∑l
h=1 λhx

h. Since

R(ω)− p∗ · ω ≥ R(xh)− p∗ · xh, h = 1, 2, · · · , l,

and λh ≥ 0 for h = 1, 2, · · ·, l, then we have

λh(R(ω)− p∗ · ω) ≥ λh(R(xh)− p∗ · xh), h = 1, 2, · · · , l.

Since
∑l
h=1 λh = 1 and ω =

∑l
h=1 λhx

h, it follows that

R(ω) ≥
l∑

h=1

λhR(xh).

Thus, the potential market value function R is a concave function with respect to ω.

On the other hand, suppose that the potential market value function R is a concave

function with respect to ω. Then, by definition, if ω is a convex combination of points x1,

x2, · · ·, xl in Zn with convex parameters λ1, λ2, · · ·, λl, then we have

R(ω) ≥
l∑

h=1

λhR(xh). (3.3)

Now let G be the graph of the function R, i.e., G = {(x,R(x)) | x ∈ Zn }. Let H be the

convex hull of the set G, which is a closed convex set. Take an arbitrary point (ω, z) ∈ H.

Then there exist x1, x2, · · ·, xl in Zn with convex parameters λ1, λ2, · · ·, λl, such that

ω =
∑l
h=1 λhx

h and z =
∑l
h=1 λhR(xh). It follows from (3.3) that

(ω,R(ω)) ≥ (ω, z).

9



This implies that (ω,R(ω)) is a boundary point of the set H. The well known separation

theorem implies that there exists a nonzero vector (−p, t) ∈ IRn × IR such that

−p · ω + tR(ω) ≥ −p · y + tz

for all (y, z) ∈ H. In particular, we have

−p · ω + tR(ω) ≥ −p · x+ tR(x), (3.4)

for all x ∈ Zn.

Since ωh > 0 for all h = 1, 2, · · ·, n, and ω lies in the interior of Zn, it is easy to see

that there does not exists any nonzero vector p ∈ IRn such that

−p · ω ≥ −p · x, ∀x ∈ Zn.

This means that t 6= 0. It follows from (3.3) and (3.4) that t can be made positive.

Without loss of generality, we may assume t = 1. Now the system (3.4) implies

p · (x− ω) ≥ R(x)−R(ω), ∀x ∈ Zn.

The proof is complete. 2

We now return to the previous non-existence example. For this example, the reser-

vation value functions V1, V2, and V3 are discrete concave functions on Z3. We have

R(1, 1, 1) = 24, R(1, 0, 1) = 20, and R((1, 2, 1)) = 29. Because R(1, 1, 1) = 24 <

(R(1, 1, 1)+R(1, 2, 1))/2 = 24.5, the function R is not concave with respect to ω = (1, 1, 1)

and thus the market has no equilibrium.

Note that the conditions stated in both results above are imposed on the collective

behaviors of all agents. In the next section we will provide sufficient conditions on the

behaviors of each individual agent.

4 Max-convolution Concavity Preservable Functions

In this section we will identify agents’ reservation value functions for the existence of

Walrasian equilibrium and discuss the difference between the divisible goods market and
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the indivisible goods market. For this purpose, we will introduce a class of new utility

functions, called the class of max-convolution concavity preservable functions.

In the following, we assume that every function under consideration is bounded from

above. Let f1 and f2 be functions mapping from Zn to IR. Define f1 ⊕ f2 : Zn 7→ IR by

f1 ⊕ f2(x) = sup{f1(x1) + f2(x2) | x1 + x2 = x, x1, x2 ∈ Zn}.

Definition 4.1 A class F = {f | f : Zn 7→ IR} of functions is said to be max-

convolution concavity preservable if the following conditions are satisfied:

(i) For every f ∈ F , f is (discrete) concave;

(ii) For every f and g in F , we also have f ⊕ g in F .

A function f is said to be max-convolution concavity preservable if f is a member of some

class of max-convolution concavity preservable functions. Similarly, functions f1, · · ·, fm
are said to be max-convolution concavity preservable if they belong to the same class of

max-convolution concavity preservable functions. One can analogously define the above

concepts for the continuous case.

It follows immediately from Theorem 3.3 and Definition 4.1 that given a market model

M = (Vi,mi, ω
i, i ∈ T,Zn), if reservation value functions Vi, i ∈ T , are max-convolution

concavity preservable, then the market has a Walrasian equilibrium. In the following, we

will offer several case studies.

When the commodities space is IRn (the divisible goods space), then we have the fol-

lowing simple lemma; see e.g., Rockafellar (1970).

Lemma 4.2 If Vi : IRn 7→ IR, i = 1, 2, are concave, then the function V1 ⊕ V2 is also

concave.

Let F = {f | f : IRn 7→ IR is concave }. Then F is max-convolution concavity preservable.

As a consequence, we have that every divisible goods market has a Walrasian equilibrium

if reservation value functions Vi : IRn 7→ IR, i ∈ T , are concave.

When the commodities space is Zn (the indivisible goods space), things become much

more complicated. The fundamental difference between the indivisible goods market and
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the divisible goods market lies in the fact that for the divisible goods market all concave

functions are max-convolution concavity preservable, whereas for the indivisible goods

market, not all discrete concave functions are max-convolution concavity preservable. The

non-existence example in Section 2 will help illustrate this point. Clearly, functions V1,

V2 and V3 are discrete concave functions on Z3. But, the max-convolution function R

generated by V1, V2 and V3 fails to be discrete concave as shown above.

Murota and Shioura (1999) have introduced a class of discrete concave functions which

are max-convolution concavity preservable; see also Murota (1998, 2003). A function

f : Zn 7→ IR is said to be M\-concave if for every x, y ∈ Zn and every k ∈ supp+(x − y)

with supp+(x− y) 6= ∅, it holds

f(x) + f(y) ≤ max[f(x− e(k)) + f(y + e(k)),

maxl∈supp−(x−y){f(x− e(k) + e(l)) + f(y + e(k)− e(l))}]

where supp+(x− y) = {k ∈ In | xk > yk} and supp−(x− y) = {k ∈ In | xk < yk}.

The functions f : Zn 7→ IR given as f(x) = a · x + c with a ∈ IRn, and as f(x) =∑n
i=1 gi(xi) where gi : Z 7→ IR, i ∈ In, are discrete concave, are all simple examples of M\-

concave function. Note that an M\-concave function is also discrete concave. The following

result is due to Murota (2003).

Theorem 4.3 If Vi : Zn 7→ IR, i = 1, 2, are M\-concave functions, then the function

V1 ⊕ V2 is also M\-concave.

Thus the class of M\-concave functions is max-convolution concavity preservable. As a

consequence of Theorems 3.3, 4.3, we have that every indivisible goods market M =

(Vi,mi, ω
i, i ∈ T,Zn), has a Walrasian equilibrium if reservation value functions Vi : Zn 7→

IR, i ∈ T , are M\-concave. Danilov et al. (2001), Fujishige and Yang (2002) derived a

similar result using more sophisticated techniques.

Applying Lemma 3.1, Theorem 4.3 and a discrete separation theorem of Murota (2003),

we have

Theorem 4.4 Given a market model M = (Vi,mi, ω
i, i ∈ T,Zn), there exists a Wal-

rasian equilibrium with an integral equilibrium price vector p∗ ∈ Zn, if Vi : Zn 7→ Z, i = 1,

2, · · ·, m, are M\-concave functions.
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Proof: Since all reservation value functions Vi are M\-concave and integer valued, the max-

convolution function R generated by V1, · · ·, Vm is also M\-concave and integer valued. It

follows from Murota (2003) that there exists an integral vector p∗ ∈ Zn and β∗ ∈ Z such

that

β∗ + p∗ · ω = R(ω),

and

β∗ + p∗ · x ≥ R(x), ∀ x ∈ Zn.

These inequalities imply that

p∗ · (x− ω) ≥ R(x)−R(ω), ∀x ∈ Zn.

By Lemma 3.1, we know that p∗ is an equilibrium price vector. 2

Note that in the theorem all functions Vi are integer valued and the equilibrium price

vectore p∗ is integral. So this model is more realistic in the sense that money can be also

modeled as an indivisible good.

Finally, we discuss the well-known Kelso and Crawford’s gross substitutes condition,

which is widely used in the literature on equilibrium, matching and auction models.

Consider a market with m traders and n indivisible objects (or goods), denoted by

N = {1, 2, · · · , n}. Note that when there are identical objects, one may use different

numbers to differentiate them. It is easy to show that at equilibrium, identical objects

all have the same price. Each trader i has a reservation value function over the objects,

denoted by Vi : 2N → IR, where 2N is the collection of all subsets of N . In other words,

Vi is a function mapping from the set {x ∈ Zn+ | x ≤
∑
i∈In e(i)} to IR. It is assumed that

Vi(∅) = 0 and Vi is weakly increasing. Given a price vector p ∈ IRn, the demand set Di(p)

of trader i is defined as

Di(p) = {S | Vi(S)−∑h∈S ph = max{Vi(T )−∑h∈T ph | T ⊆ N } }.

For the existence of an equilibrium, Kelso and Crawford (1982) introduced the following

condition with respect to the demand set Di(p), known as gross substitutes (GS).
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(i) For any two price vectors p and q such that p ≤ q, and any A ∈ Di(p), there exists

B ∈ Di(q) such that {k ∈ A | pk = qk} ⊆ B.

Gul and Stacchetti (1999) have introduced the following two conditions, called single im-

provement (SI) and no complementarities (NC), and shown the equivalence between GS,

SI, and NC:

(1) (SI): For any price vector p and A /∈ Di(p) there exists B ⊆ N such that Vi(A) −∑
h∈A ph < Vi(B)−∑h∈B ph, |A \B| ≤ 1, and |B \ A| ≤ 1.

(2) (NC): For any price vector p and any A,B ∈ Di(p) and X ⊆ A, there exists Y ⊆ B

such that (A \X) ∪ Y ∈ Di(p). 2

Note that the GS, SI and NC properties are not conditions on the primitive characteristics

of the economy (the reservation value functions) but conditions on the derived demand

correspondences.

Fujishige and Yang (2003) have proved

Theorem 4.5 A reservation value function V : 2N 7→ IR satisfies the gross substitutes

condition if and only if V is M\-concave.

So this result has identified the complete set of reservation value functions having the GS

or SI or NC property. Three special classes of reservation value functions in this complete

set were previously discovered by Kelso and Crawford (1982), Bevia et al. (1999), Gul and

Stacchetti (1999). Danilov et al.(2003), Murota and Tamura (2003) have shown that all

these results can be analogously extended from 2N to ZN .

Note that when M\-concave function is specified on a set function, it reads as follows:

A set function f : 2N → IR is an M\-concave function if for each S, T ⊆ N and s ∈ S \ T

with S \ T 6= ∅ the function f satisfies

f(S) + f(T ) ≤ max[f(S − s) + f(T + s), max
t∈T\S

{f((S − s) + t) + f((T − t) + s)}].

In the above formula, we read S − s and T + s as S \ {s} and T ∪ {s}, respectively.
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