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Estimation of Credit and Default Spreads: An Application to CDO Valuation 

 
 
 
Abstract 
 
Many securities are, to a certain extent, subject to credit risk in one way or another. Both 
the financial institutions and regulators are keen to have their credit risk exposures well 
managed. In order to fulfill their needs, the market for credit derivatives has become one 
of the fast growing securities markets in the last several years. In particular, the credit 
risk on a corporate balance sheet has become an important topic. Along with this growing 
importance of credit risk, the development of credit risk models has received much 
attention from both practitioners and academia. This paper addresses the impact of 
default rate modeling on the risk analysis and market valuation of credit derivatives 
products. 
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I. Introduction 
 
Many securities are, to a certain extent, subject to credit risk in one way or another. Both 
the financial institutions and regulators are keen to have their credit risk exposures well 
managed. In order to fulfill their needs, the market for credit derivatives has become one 
of the fast growing securities markets in the last several years. In particular, the credit 
risk on a corporate balance sheet has become an important topic. Along with this growing 
importance of credit risk, the development of credit risk models has received much 
attention from both practitioners and academia. This paper addresses the impact of 
default rate modeling on the risk analysis and market valuation of credit derivatives 
products.  
 
Researchers attempt to model credit risk and valuation by using either one of the 
following two approaches: structural models or reduced form models. The first group, 
like KMV, mainly follows Merton (1974) by relating a firm’s credit risk to the variation 
of its asset and liability value through equity value. A default event occurs when its asset 
value is lower than certain threshold liability level. However, to implement this approach, 
firms’ assets need to be estimated, and the complex structure of payoffs of all the 
liabilities needs to be specified. For multi-factor models, given the complexity in 
modeling default as a first passage time event, it is difficult to obtain closed-form 
solutions. The second group, like Credit Metrics, Jarrow and Turnbull (1995), and Duffie 
and Singleton (1997), works on the credit migration and default probability based on the 
historical credit transition probability or market credit spreads without explicitly taking 
account of firms’ underlying asset values. Duffie and Singleton (1997) used the affine 
class of term structure models to capture both the cross-sectional and time-series 
properties.  
 
Delianedis and Geske (2000), Elton, Gruber et al (2001) described the discrepancy 
between the default spread and credit spread due to taxes, liquidity and market risk 
factors. For default rate modeling, there is little empirical evidence with which to 
differentiate the parameters guiding the dynamics of risk-neutral and actual default 
intensities. Jarrow, Lando, and Turnbull (1997) provided some methods for calibrating 
risk-neutral default intensities from ratings-based transition data and bond-yield spreads. 
Duffee (1998) provided some empirical estimates for the actual dynamics of risk-neutral 
default intensities for relatively low-risk corporate bond issuers, based on time-series data 
on corporate bonds. However, both studies provide hazard rate models for credit spreads 
not for default spreads. In this paper, we separately estimate the processes for default 
spreads and credit spreads combining the above two approaches. 
 
Since default process is an important factor in measuring credit risk and pricing credit 
derivatives, if there are big gaps between credit spreads and default spreads, it would 
make more sense to estimate default rate models using default spreads data rather than 
using credit spreads data. We find that default spreads account for only a small portion of 
credit spreads for investment grade firms and they display quite different volatility 
structure.  
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In section II and III we describe a model for constructing credit spreads, default spreads 
and correlations. In section IV we describe the estimation procedures and section V 
shows how we model credit event generator. Section VI shows the estimation results and 
the impact of default correlation on the market value of Collateralized Debt Obligations 
(CDO). 
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II. Credit and Default Spread Model 
 
In this section we describe an empirical approach to measure actual and risk neutral 
default probability. First we start with structural approach for default probability and 
bond pricing. Then we describe a parametric model for default process to compute credit 
and default spread using the market bond data and the default probability from the 
structural approach. 
 
A. Structural Approach  
 
Let V be the time t  value of the firm ’s assets and it follows, under the risk neutral 
measure,  

t i

 
 titivititi dZVrVdV ,,,,, σ+=  (1)  
 
where r  is the risk-free interest rate. Under the actual measure, it can be written as 
follows: 
 
 titivitiiti dZVVdV ,,,,, σµ +=  (2) 
 
where viii r ,σλµ +=  and iλ  is the price of risk. 
 

Merton (1974) modeled the option to default by considering the stock in a 
leveraged firm as a call option on the assets of the firm with an exercise price equal to the 
face value of the total debt: 
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and is the current market value of the stock,  is the face value of debt. iS iM
 
The probability that the firm will be insolvent and default on its debt obligation at date T 
is: 
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where is the cumulative normal distribution function. The risk neutral probability 
that the firm will be insolvent and default on its debt obligation at date T is

)(⋅N
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Under the risk-averse assumption, the expected return on the firm must exceed the risk 
free rate. Since the actual and risk neutral distributions of the firm have the same variance 
and actual distribution must have a mean greater than the risk free rate, then the risk 
neutral distribution will have the larger default probability. 
 
To compute the above default probabilities, we need to estimate the asset value and asset 
volatility. In addition to equation (3), we need the following condition to estimate them 2: 
 

 )(
S
V

S
V

VS ∂
∂= σσ  (6) 

 
Using twelve months of daily data, we estimate the asset value and asset volatility 
iteratively until the asset volatility converges. This process is repeated every end of 
month. 
 

 
B. Reduced Form Approach  
 
Following Duffie and Singleton (1999), we describe the default-adjusted rate  as a sum 
of default-free interest rate  and hazard rate  multiplied by loss given default , i.e., 

. Generally,  and  are not separately identifiable. In this paper we 
assume constant , equal to . Since  and  are not separately identifiable, the 
validity of this assumption will not affect the model performance in fitting the corporate 
bond prices. Moreover, an empirical study conducted by Skinner and Diaz (2000) 
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1 The firm i’s beta is 

M

i
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β ν,=  where is the correlation between the firm i’s return and the market 

return. Hence, the equation (5) is expressed in terms of the market price of risk instead of the firm i’s price 
of risk. 

iR

2 Under certain conditions, the relationship can be expressed as follows (see CreditGrades): 

MS
S

SV +
= σσ . This implies that, for a stable asset volatility, the equity volatility increases with 

declining stock price consistent with volatility skew in equity option market. 
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suggests that allowing for time dependent variation in  is of secondary importance in 
pricing defaultable claims. 

tL

 
We assume the default-free interest rate is defined as follows: 
 
 ttrt ssr 21 ++=α , (7) 
 
and the two factors,  and , follow the CIR process: ts1 ts2
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where (8) holds under the actual and risk neutral measure, respectively. The value of a 
default-free bond, , for maturity T  is given by ),( TtG t−
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We also assume that the expected loss rate is defined as: 
 
 LsshLg tttht )( 2211 ββα +++=  (11) 
 
where δ−=1L  is the loss rate and δ  is the recovery rate, and the hazard rate  follows 
the CIR process: 

th
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where (12) and (13) holds under the actual and risk neutral measure, respectively. 
 
The value of a risky zero-coupon bond, , for maturity T , with constant 
recovery rate 
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and G is G with and ),( Tth ),( Tt Ls t11β Ls t22β  instead of  and , respectively. ts1 ts2

 
 

III. Default Intensity and Default Correlation 
 
Using the default probability computed from the Merton model, we can price risky bond 
as follows: 
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Similar to Jones, Mason, and Rosenfeld (1984), risky bond can also be priced as follows: 
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Once the time series of default spread or risky bond price with only default premium is 
estimated, similar to the hazard rate modeling in the above section, we can use a 
parsimonious Markov model for each obligor’s (or sector’s) default probabilities, while 
varying the correlation among different obligor’s default times.  
 
Duffie and Garleanu (1999) and Finger (2002) assumed that default times have default 
intensity processes iς , which follow the CIR process described in equation (13) with 
parameters ),,( , iii i λσθκ  i.e., 
 
 itititiitiiiit dzdtd ςσςλκςδθκς ++−+= ))((   (18) 
 
under the risk neutral measure and where tς  denotes the average default intensity. 
 
Alternatively, using the time series of risk neutral default probabilities, we can estimate 
the default intensities as follows: 
 
 itititiitiiiit tt εςσςλκςδθκς ∆+∆+−+=∆ −− *))(( 11   (19) 
 
where ))(1ln()( ττς itit RPD−−= . Then the correlation between the default intensities of 
firm i and j is computed as the correlation between itε  and jtε  over the sample period. 
We can also achieve the same goal using the time series of default spreads and the 
following relationship: 
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where denotes default spreadsits 3. 
 

IV. Estimation 

Month-end prices of US Treasury bills, notes, bonds and corporate bonds are extracted 
from Bridge over the period of beginning July 1995 and ending February 2002. We 
restrict our sample to corporate bonds issued by U.S. firms. The bonds under 
consideration have semi-annual fixed rate coupons and principal at maturity. We also 

                                                 
3 This implies that the default intensity is computed as: ))ln(*(1)( Lsitit += τ

τ
τς . 
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exclude bonds with call options, put options and sinking fund provisions. To estimate the 
term structure parameters, we select 2669 bonds from 231 companies by choosing 
median credit curves. 
 
For structural approach, we use two sources of data, Compustat and DRI. Compustat 
database provides quarterly observations of each firm’s capital structure and S&P ratings. 
DRI database provides the daily stock price data and the number of shares outstanding.  
 
Given data on the firm’s stock price, the number of shares outstanding, the liabilities, and 
the interest rates, we can solve the current market value of the firm and volatility, 

),( vV σ , using the Merton equation (3) and the following equation: 
 

 vs S
V

V
S σσ

∂
∂=  (21) 

 
Using twelve months of daily data, we estimate the asset value and asset volatility 
iteratively until the asset volatility converges. This process is repeated every end of 
month. Once we compute the firms’ default probability, we use the above bond 
information to compute structural bond prices. Then we apply these structural bond 
prices to estimate the default process. 

To estimate the term structure parameter in section II, we use non-linear Kalman filter 
estimation. The measurement equation for equations (7) through (9), or (12) through (14), 
can be defined as 
 
  (22) tttt ssZD ε+Θ= );,( 21

 
where  denotes observed bond prices of maturities and the 

maps the state variables  and parameters Θ  into  theoretical prices. Since 
is not linear in the state variables, we use extended Kalman filter (EFK) technique 

following Lund (1997). Using a first-order Taylor series expansion bond prices can be 
expressed as, 
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After defining the cross-sectional price relationship with measurement equation (22), we 
can describe the time-series relationship of state variables, which is called transition 
equation, as follows: 
 
  (24) ttt Fss υ+= −1
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 For example, the transition equation for equation (8) and (9) is expressed as 
 
  (25) τ

τκτκ
τ ηθ +

−−
+ ++−= ititirit

rir eses )1(

where 12/1=τ  and itη  has zero mean and the following variance 

 2
2

2
2

)1(
2

)()var( τκτκτκ
τ κ

σθ
κ
ση irrr eees

ir

ir
ir

ir

ir
irit

−−−
+ −+−=  (26) 

 
The log-likelihood function is computed as, 
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where the prediction errors, tµ , and their covariance matrices, , are updated through 
the Kalman filter.  

tΩ

 

V.  Credit Event Generation 
 
In the next section we try to gauge the impact of default correlation on CDO valuation. In 
order to measure the impact of default correlation on valuation of credit derivatives, we 
need to generate credit events to simulate a distribution.  
 
In our framework, the probability of default within  years under the risk neutral 
measure is given by: 

n

 
   (27)nnRPDnCRPD ))(1(1)( −−= 4 
 
The probabilities of transition within one year period is described by a matrix of the 
form: 
 

   (28) 
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where . We assume that each obligor has a set of transition 
matrices, a matrix per one-year period. Then the probability of default by the n-th year 
conditional on survival of the beginning of the n-th year is computed as: 

1,,, =++ DNDRNDNDND ppp

 

                                                 
4 With KMV model, we can simply replace RPD with QEDF. 
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The probability of restructuring is assumed to be zero i.e., . We present the 
following two ways to simulate default events: we can either generate asset returns using 
a joint normal distribution with asset correlations or generate default intensity residuals 
using a joint normal distribution. For example, for the second approach, assume that the 
observed default probability and the intensity are denoted as and , respectively. We 
generate random normal number (

0, =RNDp

ip̂ iλ̂
),...,, 21 Nεεε for each obligor from the standard normal 

distribution with covariance matrix , which was estimated from section V. For the 
obligor i, let 

Σ
ji,λ  be the intensity simulated at the j-th time, then the default time, t , is 

computed by solving , where 
ji,

)ˆ
, ji tλ−exp(1jp −= )exp( , ji1jp λ−−= . 

 

VI. Empirical Study 

Table 1 reports the parameters for US Treasury and corporate curves, AAA to BB, and 
their pricing errors. Table 2 reports the parameters for default curves, AAA to BB and 
their pricing errors. From Table 2, it looks like we need to include jump factors to fit the 
default curves better since the default spreads seems to be more volatile than the credit 
spreads.  

In Table 3, we show median fitted credit and default spreads for each credit rating. For 
AAA credit rating, default spreads account for only 6.5% of the AAA credit spreads. For 
BB credit rating, default spreads explain for 34.2% of the BB credit spreads. The 
standard deviation suggests that default spreads are more volatile than credit spreads.  
 
Table 4 shows correlation among credit spreads and default spreads. The default spreads 
show lower correlation among the group than the credit spreads. For correlation between 
AAA and BB, credit spreads produce 0.84 and default spreads produce 0.47. 
 
Figure 1 shows median of the time series of the fitted credit spreads and Figure 2 shows 
the time series of 1-year fitted credit and default spreads.  
 
To gauge the impact of default correlation we study a cash-flow CDO under different 
correlation structure. CDO is an asset-baked security whose underlying collateral is 
typically a portfolio of bonds or bank loans. A CDO cash-flow structure allocates interest 
income and principal repayments from a collateral pool of different debt instruments to a 
prioritized collection of CDO securities (tranches). A standard prioritization scheme is 
simple subordination: Senior CDO notes are paid before mezzanine and lower-
subordinated notes are paid, with any residual cash flow paid to equity notes.  
 
The uncertainty regarding interest and principal payments to CDO tranches is determined 
mainly by the number and timing of defaults of the collateral securities. In the Basel 
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Committee on Banking Supervision (BCBS) document of November 2001, asset 
correlations were assumed to be a decreasing function of firm probability of default. 
Lopez (2002) reported the similar results.  
 
We set up a CDO with 5 tranches invested on 77 obligors. We assume that there is no 
reinvestment and liquidation. In the first set, 3 obligors are rated as A, 6 obligors are 
rated as BBB, 68 obligors are rated as B with constant asset correlation of 0.3. In the 
second set, 3 obligors are rated as A with correlation 0.6, 6 obligors are rated as BBB 
with correlation of 0.6, 68 obligors are rated as B with correlation of 0.1. In the third set, 
6 obligors are rated as A, 14 obligors are rated as BBB, 57 obligors are rated as B with 
constant asset correlation of 0.23. In the fourth set, 6 obligors are rated as A with 
correlation 0.6, 14 obligors are rated as BBB with correlation of 0.6, 57 obligors are rated 
as B with correlation of 0.1. Thus asset correlations are decreasing as firm probability of 
default increases with average correlation around 0.23. 
 
Table 5 reports the change of market value of the CDO under different default 
correlations. In both cases, as we switch from constant correlation to decreasing default 
correlation, the market value of mezzanine increases while the market value of lower 
tranches decreases. 
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Table 1. Estimated Parameters of Treasury and Credit Curves (July 1995 – February 2002) 
 
        Treasury AAA AA A BBB BB

Coef Std
 

Coef Std Coef Std Coef Std Coef Std Coef Std

r1κ  0.423  0.064 hκ  0.021          0.012 0.014 0.012 0.015 0.012 0.012 0.013 0.026 0.013

r1θ  0.982  0.019 hθ  0.597          0.042 0.593 0.034 0.595 0.033 0.595 0.028 0.594 0.026

r1σ  0.017  0.004 hσ  0.008          0.004 0.007 0.003 0.008 0.004 0.008 0.004 0.016 0.007

r1λ  -0.001  0.200 hλ  -0.487          0.541 -0.489 0.530 -0.490 0.508 -0.491 0.472 -0.491 0.434

r2κ  0.028  0.062 hα  -0.052          0.271 -0.051 0.262 -0.050 0.231 -0.049 0.198 -0.049 0.222

r2θ  0.144  0.312 εσ  3.684          0.197 3.813 0.206 3.093 0.163 2.329 0.116 1.764 0.067

r2σ  0.024  0.003 1β  -0.511          0.214 -0.510 0.209 -0.509 0.181 -0.509 0.167 -0.508 0.196

r2λ  -0.123  2.506 2β  -0.762          0.167 -0.765 0.148 -0.765 0.161 -0.765 0.194 -0.761 0.268

rα  -1.058            0.021  

εσ  2.651            

            

0.130  
 

RMSE(%) 1.670
 

1.420 1.410 1.390 1.440 1.650
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Table 2. Estimated Parameters of Treasury and Default Curves (July 1995 – February 2002) 
 
 

        Treasury AAA AA A BBB BB
Coef Std
 

Coef Std Coef Std Coef Std Coef Std Coef Std

r1κ  0.423  0.064 hκ  0.043 0.020 0.078      0.016 0.056 0.007 0.064 0.013 0.017 0.066

r1θ  0.982  0.019 hθ  0.641 0.143 0.602      0.041 0.711 0.045 0.626 0.054 0.591 15.308

r1σ  0.017  0.004 hσ  0.006 0.002 0.032      0.009 0.030 0.006 0.031 0.007 0.001 0.008

r1λ  -0.001  0.200 hλ  -0.413 0.521 -0.373      0.388 -0.076 0.116 -0.284 0.285 -0.487 16.352

r2κ  0.028  0.062 hα  -0.063 0.259 -0.069      0.269 -0.083 0.225 -0.082 0.248 -0.053 15.706

r2θ  0.144  0.312 εσ  4.277 0.243 1.187      0.059 1.100 0.060 1.156 0.059 10.451 1.732

r2σ  0.024  0.003 1β  -0.522 0.169 -0.526      0.240 -0.541 0.215 -0.539 0.235 -0.513 0.849

r2λ  -0.123  2.506 2β  -0.719 0.150 -0.771      0.132 -0.753 0.147 -0.668 0.158 -0.755 0.357

rα  -1.058            0.021  

εσ  2.651            

          

0.130  
 

RMSE(%) 1.670
 

1.360 3.720 1.830 3.300 11.990
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Table 3. Fitted Credit and Default Spreads (July 1995 – February 2002) 

 
 

 Credit spread Default spread  
 Median Std Median Std Ratio 

AAA 62.50 27.38 4.04 3.66 6.47% 
AA 66.00 31.76 5.79 4.98 8.77% 
A 87.00 38.23 12.39 9.76 14.24% 

BBB 118.50 49.84 22.65 16.64 19.11% 
BB 238.00 87.01 81.31 28.27 34.16% 

 
 
 

Table 4. Credit and Default Spread Correlations (July 1995 – February 2002) 
 

Credit Spread Correlations 
 

 AAA AA A BBB BB 
AAA 1.00 0.98 0.93 0.91 0.84
AA 0.98 1.00 0.95 0.93 0.89
A 0.93 0.95 1.00 0.95 0.94

BBB 0.91 0.93 0.95 1.00 0.95
BB 0.84 0.89 0.94 0.95 1.00

 
 

Default Spread Correlations 
 

 AAA AA A BBB BB 
AAA 1.00 0.89 0.85 0.77 0.47
AA 0.89 1.00 0.84 0.72 0.43
A 0.85 0.84 1.00 0.84 0.65

BBB 0.77 0.72 0.84 1.00 0.84
BB 0.47 0.43 0.65 0.84 1.00
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Table 5. Impact of default correlation on cash-flow CDO’s market values. 
 

A (3), BBB (6), B & B- (68) 
 
 
Tranches 
 

 
TYPE 
 

PV 
(0.3,0.3) 
 

Std 
 

PV 
(0.6,0.1) 
 

Std 
 

Book 
Value 
 

PV_ratio 
 

std_ratio
 

note.A Float 414.41 6.19 416.17 5.23 426.00 0.9958 1.1836
note.B-1 Fixed 13.55 1.28 14.46 0.72 11.50 0.9367 1.7774
note.B-2 Float 29.98 4.83 33.09 2.38 36.50 0.9058 2.0258
note.C-1 Fixed 30.88 3.88 31.47 4.00 28.50 0.9814 0.9719
note.C-2 Float 10.34 2.32 10.56 2.32 15.00 0.9789 0.9966
note.D-1 Fixed 30.44 3.07 28.09 1.96 25.50 1.0839 1.5646
note.D-2 Float 11.99 1.90 10.47 1.16 15.00 1.1453 1.6463
note.E Equity 46.42 6.00 44.66 2.88 42.00 1.0396 2.0870

 
 

A (6), BBB (14), B & B- (57) 
 
 
Tranches 
 

 
TYPE 
 

PV 
(0.23,0.23) 
 

Std 
 

PV 
(0.6,0.1) 
 

Std 
 

Book 
Value 
 

PV_ratio 
 

std_ratio
 

note.A Float 416.54 1.51 416.71 1.73 426.00 0.9996 0.8744
note.B-1 Fixed 14.69 0.47 14.91 0.02 11.50 0.9850 25.5706
note.B-2 Float 34.26 3.55 35.07 0.61 36.50 0.9771 5.8705
note.C-1 Fixed 34.29 6.97 35.26 4.84 28.50 0.9726 1.4396
note.C-2 Float 12.29 4.61 12.79 3.32 15.00 0.9608 1.3889
note.D-1 Fixed 31.65 6.18 30.42 4.21 25.50 1.0405 1.4682
note.D-2 Float 12.69 4.21 11.89 2.95 15.00 1.0672 1.4245
note.E Equity 40.64 8.77 39.41 3.64 42.00 1.0311 2.4106
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Figure 1. Term Structure of Median Fitted Credit Spreads  
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Figure 2. Fitted Credit and Default Spreads (July 1995 – February 2002) 
 

 
 

 
 

0

100

200

300

400

500

600

Ju
l-9

5

Ja
n-

96

Ju
l-9

6

Ja
n-

97

Ju
l-9

7

Ja
n-

98

Ju
l-9

8

Ja
n-

99

Ju
l-9

9

Ja
n-

00

Ju
l-0

0

Ja
n-

01

Ju
l-0

1

Ja
n-

02

AAA
AA
A
BBB
BB

 

0

20

40

60

80

100

120

140

Ju
l-9

5

Ja
n-

96

Ju
l-9

6

Ja
n-

97

Ju
l-9

7

Ja
n-

98

Ju
l-9

8

Ja
n-

99

Ju
l-9

9

Ja
n-

00

Ju
l-0

0

Ja
n-

01

Ju
l-0

1

Ja
n-

02

AAA
AA
A
BBB
BB

 22


	Introduction
	Credit and Default Spread Model
	where
	Default Intensity and Default Correlation
	Estimation
	Month-end prices of US Treasury bills, notes, bonds and corporate bonds are extracted from Bridge over the period of beginning July 1995 and ending February 2002. We restrict our sample to corporate bonds issued by U.S. firms. The bonds under considerati
	To estimate the term structure parameter in section II, we use non-linear Kalman filter estimation. The measurement equation for equations (7) through (9), or (12) through (14), can be defined as
	After defining the cross-sectional price relationship with measurement equation (22), we can describe the time-series relationship of state variables, which is called transition equation, as follows:
	For example, the transition equation for equation (8) and (9) is expressed as
	where � and � has zero mean and the following variance
	V. Credit Event Generation
	VI. Empirical Study
	Table 1 reports the parameters for US Treasury and corporate curves, AAA to BB, and their pricing errors. Table 2 reports the parameters for default curves, AAA to BB and their pricing errors. From Table 2, it looks like we need to include jump factors t
	In Table 3, we show median fitted credit and default spreads for each credit rating. For AAA credit rating, default spreads account for only 6.5% of the AAA credit spreads. For BB credit rating, default spreads explain for 34.2% of the BB credit spreads.
	References
	Table 1. Estimated Parameters of Treasury and Cre
	Table 2. Estimated Parameters of Treasury and Def
	Figure 2. Fitted Credit and Default Spreads \(Ju

