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Abstract

This paper examines whether permanent earnings growth, crucial to stock valuation,

increased during the last decade as suggested by proponents of the 'New Economy.' Using

S&P 500 earnings for 1951-2000, we do not ¯nd strong evidence of either a one-time struc-

tural break or gradual change. However, the con¯dence interval on permanent earnings

growth is wide enough to include an increase that is consistent with the bull market of

the late 1990s. Thus we cannot reject a rational basis for that exuberance.
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1. Introduction

No one would object to describing the 1990s as a bull market. Over the decade, the

Standard and Poor's 500 index increased in real terms from 408 (January 1991) to 1291

(December 2000), with most of the rise occurring in the second half of the decade (The

index was at 522 in January 1995.) While academics and practitioners generally agree

that investors' enthusiasm played a key role in the stock price spike, they have diverging

views on what caused such enthusiasm.

In his 2000 best-selling book, Irrational Exuberance, Robert Shiller argues that in-

vestors' irrationality was responsible. Enthusiasm bred more enthusiasm and rising stock

prices encouraged investors to bid stocks up even further in a "self-ful¯lling prophecy, a

feed-back loop". Taking extreme valuation ratios as supporting evidence, he predicts in

an article co-authored with John Campbell that stock prices are doomed to fall dramati-

cally with the worst case where the stock market could lose more than three-quarters of

its real value; see Campbell and Shiller (2001).

The opposing view is that stocks were rationally valued, re°ecting changes in funda-

mentals occurring as a result of the New Economy. Higher productivity growth enabled

by the technological and communications revolution substantially elevated the prospects

of earnings growth; see Browne (1999) and Greenwood and Jovanovic (1999). Indeed, ¯-

nancial analysts' forecast of earnings growth over years to come collected in the late 1990s

by The Institutional Brokers Estimate System (I/B/E/S) was more than 10%. Such op-

timism made stocks more attractive and investors were willing to pay higher prices.

Further, earnings growth in the 1990s seemed to justify the optimism: real earnings

grew at an average annual rate of 6.6% after the 1990-1991 recession while the average

growth rate over the last ¯ve decades was only 2.2%. Caution should, however, is advised

in interpreting this as a permanent increase since the standard deviation of real earnings
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growth is large, 20.5% for 1991-2000. Formal tests for a change are thus in order before

drawing conclusions.

We consider and test two types of changes in the permanent growth rate. First is one-

time permanent structural break in the mean of earnings growth at an unknown point,

since the New Economy story suggests a fairly abrupt change. We employ Bayesian model

selection rather than classical tests to take advantage of its appealing features; see Koop

and Potter (1999). The Bayesian approach produces as a by-product the posterior proba-

bility distribution of the unknown break point that provides us with a visual summary of

information regarding the break point. The second type of permanent movement under

consideration is gradual change since the old era could have made a smooth transition to

the new era. Smooth change is assumed to obey a random walk that is the permanent

component in an unobserved components model of earning growth. We test if the pa-

rameter governing the variance of the permanent movement is zero against small positive,

using Stock and Watson's (1998) (SW hereafter) asymptotic median unbiased estima-

tion. Section 2 presents the models and their inference. Section 3 discusses the empirical

results. Section 4 concludes the paper.
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2. Two Models of Earnings Growth

Gordon's (1962) valuation model motivates the importance of expected earnings

growth as a fundamental determinant of stock prices:

Pt¡1 =
Et

(R¡ ¹) (1)

where Pt¡1 is stock price at time t¡ 1; Et is earnings at time t; 1 R is a constant discount
rate; and ¹ is a constant rate at which earnings are expected to grow. Clearly, price is

very sensitive to a change in ¹, an increase causing the price to rise.

To see whether the expected earnings growth rate might plausibly have changed in the

1990s we consider two models which accommodates a permanent change in the mean. In

the ¯rst model, the mean undergoes one-time permanent structural change at an unknown

date. In the second one, the mean is allowed to change gradually over time, following a

random walk which captures permanent changes in the growth rate. 2

2-1. A model with a structural break in the mean growth rate

The model we employ to allow for a possible structural break in the mean of earnings

growth is as follows:

yt = ¹t + et (2)

1 The model is, in fact, expressed in terms of dividend instead of earnings. However,
there exist potential problems that prevent dividend from re°ecting ¯rms' ability to gen-
erate pro¯ts. Examples include dividend smoothing (Kleidon (1986)), share repurchases
by executives with stock options to boost stock prices, and the tendency of ¯rms to pay
less dividends (Fama and French (2000)).
2 Barsky and De Long (1993) drop the assumption of Gordon valuation model that the

dividend growth rate has a constant mean known to the agents throughout the sample,
and instead postulate an environment in which investors estimate, period by period, a
growth rate that is nonstationary. In this framework, they show that long-run movement
in dividends drives long-run °uctuations in the U.S. stock market.

3



¹t = ¹0(1¡Dt) + ¹1Dt; ¹0 < ¹1 (3)

Dt =

8<: 0; if t=1,2, ¢ ¢ ¢, ¿
1; if t= ¿ +1 , ¢ ¢ ¢, T

(4)

Á(L)et = ut; ut » i:i:d:N(0; ¾2u) (5)

where yt is the growth rate of earnings at time t. Dt is a variable that determines the

regime of the mean of yt. When Dt=0, the unconditional expectation of yt is ¹0; when

Dt=1, it is ¹1. The roots of Á(L) = 0 lie outside the unit circle. In order to allow for the

possibility of one-time permanent but endogenous structural break with unknown change

point (¿), we follow Chib (1998) and Kim and Nelson (1999) in treating Dt as a discrete

latent variable with the following transition probabilities:

Pr(Dt = 0jDt¡1 = 0) = q; Pr(Dt = 1jDt¡1 = 1) = 1; 0 < q < 1 (6)

If a structural break has not occurred up to time t, that is, if Dt =0, the probability that

a structural break occurs at time t+1 is 1-q. Because we consider one-time break only,

once a structural break occurs at t = ¿ , we have D¿+j = 1 for all j > 0. We denote this

model Model 1. If ¹0 = ¹1, Model 1 reduces to a simple autoregressive process, denoted

Model 0.

To test for a structural break we take the Bayesian approach. Notice that the unknown

break point ¿ is a nuisance parameter that exists under the alternative hypothesis but not

under the null. As indicated in Koop and Potter (1999), Bayesian model selection based on

the Bayes Factor has an advantage over classical tests of Andrews and Ploberger (1999) in

integrating out ¿ : The classical tests fail to incorporate information about the break point

contained in the data whereas the Bayesian approach does incorporate that information.

To carry out Bayesian we employ the Markov Chain Monte Carlo (MCMC) integration

method of Gibbs sampling. As suggested in Chib (1995), the simulation method enables

us to easily obtain the marginal likelihoods as by-products. These marginal likelihoods
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are inputs into the Bayes factor, which is de¯ned as the ratio of marginal likelihoods for

the models under consideration:

B10 =
m( ~YT j¹0 6= ¹1)
m( ~YT j¹0 = ¹1)

(7)

where B10 is the Bayes factor in favor of Model 1 over Model 0,m() is a marginal likelihood

and ~YT= [yp+1; ¢ ¢ ¢ ; yT ] where p is the lag order of Á(L). Details of the Gibbs sampling
procedure are described in the Appendix A.

For Bayesian model selection, we adopt the criteria of Je®reys (1961) in which lnB10 ·
0 is evidence in support of Model 0 where ln indicates the natural logarithm; 0 < lnB10 ·
1:15; very slight evidence against Model 0; 1:15 < lnB10 · 2:3; slight evidence against

Model 0; 2:3 < lnB10 · 4:6; strong to very strong evidence against Model 0; lnB10 > 4:6;
decisive evidence against Model 0.

2-2. A model with slowly time-varying mean growth rate

While the New Economy suggests a structural break in the mean of earnings growth,

we cannot rule out the possibility that it changes slowly period by period so that structural

break tests are not capable of identifying permanent movements in earnings growth. To

accommodate and test this possibility, we consider the following model, rewriting equation

(2) and (5):

yt = ¹t + et (2)

Á(L)et = ut; ut » i:i:d:N(0; ¾2u) (5)

¹t = ¹t¡1 + vt; vt » i:i:d:N(0; ¾2v) (8)

Equation (8) describes how the mean of earnings growth evolves over time. Basically,

we allow ¹t to follow a random walk. Since vt has a permanent e®ect on ¹t in the sense
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that its e®ect never dies out, ¹t captures permanent movements in earnings growth. In

contrast, the shock ut has a temporary e®ect on et: Its e®ect dies out. Thus, the model is

an unobserved components model in which earnings growth yt has a stochastic long-run

permanent component ¹t around which a cyclical transitory component et °uctuates.

To see if there are permanent movements in earnings growth, we test whether or not

the variance of vt (or variance of ¢¹t) is zero. If it is zero, no permanent movements in

earnings growth exist, which is the null hypothesis. The alternative under consideration

is that the variance is very small positive. This is because a unit root in earnings growth

could contribute a very small share of earnings growth volatility. Many authors including

SW document that the model under this particular alternative is equivalent to a model

having a nearly unit MA root where tests for a unit AR root (ADF unit root tests) have

a high false-rejection rate of a unit AR root. In fact, ADF unit root tests reject the null

hypothesis of a unit AR root in earnings growth.

It is well established that inference of ¾v by Maximum Likelihood estimation tends

to have a point mass at zero so that it is readily mistaken for zero when its true value is

small. For this reason, after rede¯ning vt as
¸
T
´t where T is the number of observations,

we employ the methodology of SW that yields an estimator of ¸ with a property of

median unbiasedness (MUB hereafter) in large sample. The main idea in deriving the

estimators is that under a reasonable normalization ¾´ =
¾u
Á(1)
, the limiting distributions

of test statistics under the null ¸ = 0 depend only on ¸ and so do their medians. 3

Thus, inverting the medians yields the median unbiased estimators of ¸ if the functions

are monotone increasing and continuous in ¸.

3 By construction, the de¯nition raises an issue that the variance of vt depends on ¸
and ¾´ which are not separately identi¯ed. This normalization also enables us to identify
the two parameters.
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3. Empirical Results

The data examined in this paper are quarterly earnings of the S&P 500 index, 4-

quarter total, adjusted to the index obtained from the table entitled "Earnings, Dividends

and Price-Earnings Ratios{Quarterly" of Standard and Poor's Statistical Service Security

Price Index Record. 4 To re°ect the feature of 4-quarter total, we choose an order of 4 for

the autoregressive process Á(L) throughout the paper. The nominal earnings are divided

by the GDP de°ator from the DRI Basics database to produce real earnings, which are

transformed to percentage growth at an annual rate, yt, by setting yt=400 £¢ ln(real

earnings). Since we are interested in the possibility of a dramatic increase in the mean

of earnings growth in the most recent decade, we use only post-war data starting from

1951. In order to deal with the New Economy issue, we exclude period after 2000 during

which the New Economy has become less strident with the collapse of internet-company

stock valuations.

3-1. Inference in a model with possible structural break

We employ normal priors for ~¹ = [¹0; ¹1]
0 and ~Á = [Á1; Á2; Á3; Á4]0, an inverted gamma

distribution for ¾2u, and a beta distribution for q. In particular, the following three alter-

native sets of priors are used

Prior #1: ~¹ » N(0; I2); ~Á » N(0; I4); 1
¾2u
» Gamma(1; 2); q » Beta(8; 0:045)

Prior #2: ~¹ » N(0; 2 ¤ I2); ~Á » N(0; 2 ¤ I4); 1
¾2u
» Gamma(1; 4); q » Beta(8; 0:2)

Prior #3: ~¹ » N(0; 0:5 ¤ I2); ~Á » N(0; 0:5 ¤ I4); 1
¾2u
» Gamma(1; 1); q » Beta(8; 0:1)

4 The data are also available at http://aida.econ.yale.edu/shiller, the website of Robert
Shiller.
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All inference is based on 10,000 Gibbs simulations, with the initial 2,000 simulations

discarded to mitigate the e®ects of initial conditions. We report results for only Prior #1

since the empirical results turn out to be insensitive to prior speci¯cations.

Table 1 summarizes the Bayesian inference of the parameters for Model 0, no struc-

tural break model, and Model 1, structural break model. 5 A comparison of the log of

marginal likelihoods clearly indicates that Model 0 dominates Model 1: The log of the

Bayes factor is -2.61, evidence against the model with structural break. 6 The posterior

probability distribution of the break date (¿) shown in Figure 1 con¯rms this. Over the

entire period considered, the distribution is somewhat di®use. Even though the poste-

rior mode of the break date is 1991:IV, no substantial mass around exists. Further, the

probability of structural break (Pr(Dt = 1)) shown in Figure 2 steadily increases while it

tends to sharply increase in the case of structural break.

There is substantial evidence in the literature that many macroeconomic and ¯nancial

time series underwent volatility change in the form of structural break in the mid 1980s;

see, among others, Kim and Nelson (1999), McConnell and Perez-Quiros (2000), Stock

and Watson (2002) and van Dijk, Osborn and Sensier (2002). As seen in Figure 1, earnings

growth seems more volatile in the past two decades (standard deviation of 20.48%) than

in the previous three decades (standard deviation of 13.85%). We investigate whether and

when volatility change in earnings growth occurred and whether such heteroskedasticity

in°uences inference about structural break in the mean.

From Bayesian inference of the model with structural break only in the variance (Its

speci¯cation is presented in Appendix B.), we ¯nd decisive evidence in favor of one-time

volatility increase occurring 1986:III. 7 The log of the Bayes factor in favor of the model

5 The posterior means of the parameters are similar to the Maximum Likelihood esti-
mates which are not reported here.
6 We ¯nd similar results from classical tests proposed in Andrews and Ploberger (1994)

and Bai and Perron (1998).
7 The estimated break date 1986:III is calculated from the expected duration of the
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with a structural break only in the variance against the model with no structural break

in the mean and variance (Model 0) is 6.94. 8 The posterior distribution of the change

point shown in Figure 3 is very tightly clustered around its posterior mode. In addition,

the probability of structural break displays a sharp increase at the change point (Figure

4). 9

Given the evidence of structural break in the variance, we re-examine structural break

in the mean assuming that the structural break in the variance occurred and the break

point for the variance is known to us. The resulting model takes the following form,

rewriting equations (2), (3), (4) and (6):

yt = ¹t + et (2)

¹t = ¹0(1¡Dt) + ¹1Dt; ¹0 < ¹1 (3)

Dt =

8<: 0; if t=1,2, ¢ ¢ ¢, ¿
1; if t= ¿ +1 , ¢ ¢ ¢, T

(4)

Pr(Dt = 0jDt¡1 = 0) = q; Pr(Dt = 1jDt¡1 = 1) = 1; 0 < q < 1 (6)

Á(L)et = ut; ut » i:i:d:N(0; ¾2u;S¤t ) (50)

¾2u;S¤t = ¾
2
u;0(1¡ S¤t ) + ¾2u;1S¤t ; ¾2u;0 < ¾

2
u;1 (10)

S¤t =

8<: 0; if t=1,2, ¢ ¢ ¢, ¿ ¤

1; if t= ¿ ¤ +1 , ¢ ¢ ¢, T
(11)

where ¾2u;0 and ¾
2
u;1 are variances of earnings growth before and after the break point

known to us as ¿ ¤=1986:III. S¤t is a dummy variable indicating the regime of variance.

state before the structural break occurs, 1
1¡¹p , where ¹p is the posterior mean of p, which is

the probability of a break in the variance occurring at time t given no break up to time
t¡ 1.
8 Posterior moments from the model are not reported here but are available upon

request.
9 It seems interesting that aggregate pro¯t becomes more volatile after the mid 1980s

while the economy becomes more stable since the mid 1980s. This issue deserves more
research.
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The model is denoted Model 1A. Likewise, Model 0A with the variance dummy and no

break in the mean is extended from Model 0.

Table 2 summarizes the Bayesian inference of the parameters for Model 0A and Model

1A. Despite more e±cient use of information contained in the data, we still ¯nd no

evidence of structural change in the mean. The log of the Bayes factor in favor of Model

1A is -3.31. The posterior probability distribution of the break date (¿) shown in Figure 5

is more di®use than in Figure 1. This leads us to conclusion that higher earnings growth in

the 1990s provides only weak evidence of an abrupt shift in the mean growth of earnings.

Meanwhile, as mentioned earlier, the posterior mode of the change point in the mean

is 1991:IV. In addition, the increase in the posterior mean of the growth rate is sizable:

¹1=5.8621% is almost twelve times larger than ¹0=0.4667% (Table 1). Therefore, it seems

reasonable to examine the possibility that other type of permanent change in earnings

growth occurred in the 1990s.

3-2. Inference in a model with time-varying mean

To test if the mean of earnings growth changes over time following a random walk,

we consider four test statistics from which MUB estimator of ¸ is derived. Nyblom's

(1989) L-statistic designed to test the constancy of a mean over time against random

walk alternatives is paid a main attention. Additionally, we consider the mean Wald

(MW ) statistic and exponential Wald (EW ) statistic of Andrews and Ploberger (1994),

and Quandt's (1960) likelihood ratio (SW ) statistic. 10

Table 3 presents those test statistics under the null hypothesis of no time variation

in ¹t (H0 : ¸=0) against the alternative that it varies over time following a random walk

(H1 : ¸ 6= 0). Panel A is for the model with homoskedastic disturbances introduced in

10 These are test statistics for a break but their limiting distributions yield MUB esti-
mator of ¸. SW also use these statistics to make inference about ¸ in GDP growth.
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subsection 2-2. In the preceding subsection 3-1, we found signi¯cant volatility increase in

earnings growth at 1986:III. Since heteroskedasticity may have an impact on inference,

we introduce heteroskedasticity into the transitory component of earnings growth et.
11

In particular, we assume that it has GARCH(1,1) disturbances following Harvey, Ruiz

and Sentana (1992). 12 Panel B is the results for the heteroskedastic case.

The results clearly show that the null hypothesis of constant mean growth rate cannot

be rejected at the conventional signi¯cance level. p-values given in the second column

range from 0.2 (for SW statistic) to 0.7 (for L statistic) for the homoskedastic case.

Taking into account heteroskedasticity does not change the test result: p-values range

from 0.4 (for SW statistic) to 0.8 (for L statistic).

Nonetheless, if the tests have insu±cient power, ¸ could be nonzero meaning per-

manent movements. In fact, MUB estimates of ¸ given in the third column are small

and nonzero: 1.53 (EW ) and 4.80 (SW ) for the homoskedastic case and 2.35 (SW ) for

heteroskedastic case. These correspond to point estimates of ¾v 0.17% and 0.54% (Panel

A), and 0.30% (Panel B) given in the last column. 13 Moreover, we notice that a lot of

uncertainty is involved in ¸ and in turn ¾v: The con¯dence intervals of ¾v in some cases

are wide enough to include 2%. Taken together, these results suggest that the existence

of even highly variable permanent changes in the mean growth rate of earnings are not

excluded.

Given such large uncertainty in ¾v, we perform two experiments. First, we examine the

dynamics of permanent movements for di®erent values of ¾v within a con¯dence interval.

Basically, Gaussian Maximum Likelihood implemented by the Kalman ¯lter can estimate

the parameters of the model, and given the parameter estimates, the time path of the

permanent component can be obtained. In doing so, we ¯x ¾v at a given value, that is,

11 The corresponding model speci¯cation can be found in Appendix C.
12 We found negligible heteroskedasticity in the permanent component.
13 Given ¸, it is straightforward to obtain ¾v using the relation ¾v =

¸
T
¾´.
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¾v is not estimated while other parameters are freely estimated. Second, we seek the time

path of the permanent component that best explains the movement of historical price-

earnings ratio and estimate the risk premium based on it. We report only the results for

the heteroskedastic case.

To see how the permanent growth behaves when uncertainty in ¾v is accounted for,

we choose three values of ¾v=0.26, 0.52, and 0.74.
14 Table 4 reports the parameter

estimates from these restricted Maximum Likelihood estimations along with those from

an unrestricted estimation in which ¾v is also freely estimated. In both restricted and

unrestricted estimations, ¹0 is treated as an unknown constant and estimated following

Nyblom (1989). Based on the estimates of the unrestricted and restricted models, the

time paths of ¹t are computed using the Kalman smoother and plotted in Figure 6.
15

As predicted, its time path for ¾v = 0.74 exhibits the biggest variation. The straight line

corresponds to the unrestricted MLE which yields the estimate of ¾v nearly close to zero.

A couple of points are worth making. First, starting around 1973, ¹t continues to fall

through the 1970s, which suggests that the big retreat in stock prices over the period is in

part due to poor performance of the economy. It is of particular interest that the bottom

is reached in 1982 when the famous "Death of Equities" cover appeared on Business Week.

Second, more importantly, the permanent component of earnings growth increases

from the early 1980s through the 1990s. Interestingly, such a trend matches well with

the time line of the information technology revolution caused by the New Economy that

Hobijn and Jovanovic (2001) argue starts in the early 1980s and persists throughout the

1990s. Figure 7 plots price-earnings ratios implied by the time path of ¹t corresponding

14 0.74 is selected because it is the upper bound of the con¯dence interval from L statistic
which is our main focus.
15 We use the Kalman smoother rather than the Kalman ¯lter to use more information
in inference of ¹t. Also, it turns out that the Kalman smooth estimates make more
sense. Appendix C presents the state-space representation of the model and details about
estimating and smoothing.
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to ¾v=0.74, calculated on the basis of the Gordon Valuation model given in Section 2,

along with historical price-earnings ratio. 7.5% is used as discount rate R. It is seen that

the implied one is able to explain the broad variation of the historical one. Hence, this

result supports the rational exuberance hypothesis.

Now we attempt to estimate the risk premium based on the time path of ¹t that best

explains the movement of historical price-earnings ratio. Assuming that the discount rate

R (the sum of risk free rate Rf and risk premium Rp) is not constant, the Gordon formula

implies:

Et
Pt¡1

= (Rft +R
p
t )¡ ¹t; (12)

A good proxy for the risk free rate in practice is yields on 10-year Treasury note in real

terms which is obtained by subtracting CPI in°ation over the last 12 months from the

nominal yields. ¹t can be estimated by the Kalman smoother as described above. Then,

the risk premium is measured with error:

R̂pt =
Et
Pt¡1

¡ R̂ft + ¹̂t; (13)

Since ¹̂t depends on ¾v, put another way, ¹̂t(¾v), so does the risk premium.

We search for ¾v over [0.0001 2] that best explains
Et
Pt¡1

in terms of minimizing the

variance of resulting residuals. 16 That is,

min
¾v

1

T

TX
t=1

(R̂pt ¡ ¹Rp)2; (14)

where ¹Rp = 1
T

PT
t=1 R̂

p
t . As a result, we obtain the least variable risk premium.

We ¯nd that ¾v =0.70 minimizes the variance of the risk premium. This value is

within its con¯dence interval from L statistic. Figure 8 plots the risk premium estimated

16 The widest 90% con¯dence interval of ¾v is close to this inverval.
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in this manner. We ¯nd two observations interesting. First, the implied risk premium

continues to rise during the late 1990s. This is at odds with recent studies that ¯nd

evidence of a decline in the risk premium in an e®ort to explain the prices run-up of the

1990s; see Blanchard (1993), Claus and Thomas (1999), Siegel (1999), Heaton and Lucas

(2000), Jagannathan, McGrattan and Scherbina (2001), and Fama and French (2002).

Second, the risk premium over the period from the mid 1970s through the early 1980s

is extraordinarily high, which suggests that the long severe bear market is mainly due to

the high risk premium. Modigliani and Cohn (1979) attribute the enormous risk premium

to money illusion created by high in°ation, arguing that investors used the very high

nominal interest rate rather than the real interest rate to discount earnings. 17 Figure 9

appears to verify their argument, where the risk premium is computed with real yields

replaced by nominal yields for the period 1973:IV-1980:IV. The magnitude of residuals of

the 1970s is now as large as those in other decades.

4. Conclusions

It has been argued that the New Economy, characterized by greater growth in real

income and productivity, generated higher permanent earnings growth to which stock

prices in the 1990s responded. This paper explores whether there has been a permanent

increase in the rate of earnings growth during the last decade. In particular, we consider

two types of permanent movements separately: an abrupt shift in the mean at an unknown

point and a gradual change in the form of a random walk in an unobserved components

17 Other in°ation-related explanations of the price decline include interactions between
in°ation and tax codes (see Nelson (1976) and Feldstein (1980)), and the "proxy hypoth-
esis" (see Nelson (1979) and Fama (1981)); for a survey see Sharpe (2001).
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model. For earnings growth of the S&P 500 index for the 1951-2000 period, we ¯nd that

Bayesian model comparison prefers the model without structural break to the structural

break model, and that statistical tests based on asymptotic median unbiased estimation

do not give strong evidence against the null hypothesis that the mean of earnings growth

was unchanged in the 1990s.

However, our Bayesian analysis of a possible structural break does ¯nd that the early

1990s was when a structural break in the mean is most likely to have occurred. As

always, acceptance of the null hypothesis does not exclude alternative hypotheses within

a con¯dence interval. Accordingly, we can account for a substantial increase in permanent

earnings growth, and rise in stock valuation, by allowing for variation in the permanent

growth rate that is within the con¯dence interval.

To sum up, proponents of rational exuberance and the New Economy can take comfort

that variation in permanent earnings growth within the con¯dence interval can explain

much of the bull market. Skeptics can fall back on the lack of strong statistical evidence

that a change in earnings growth did in fact occur.
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Appendix A: Calculation of the Marginal Likelihood based on Gibbs Sampling

In this section, we present a procedure for directly calculating the marginal likeli-

hood for Model 1 by extending Chib (1995). 18 The procedures for other models under

consideration are straightforward to modify.

Let's de¯ne ~µ = [~Á0 ~¹0 ¾2u q] to be a vector of the parameters of the model, where

~Á = [Á1 ¢ ¢ ¢ Á4]0 and ~¹ = [¹0 ¹1]
0. Then, as in Chib (1995) the marginal density of

~YT = [yp+1 ¢ ¢ ¢ yT ]0, by virtue of being the normalizing constant of the posterior density,
can be written as:

m( ~YT ) =
f( ~YT j~µ)¼(~µ)
¼(~µj~YT )

; (A1)

where the numerator is the product of the densities of the sample observations and the

prior, with all integrating constants included, and the denominator is the posterior density

of ~µ. As the above identity holds for any ~µ, we may evaluate the marginal density at the

posterior mean ~µ¤. For computational convenience, the preceding equation is taken of the

logarithm, resulting:

ln m( ~YT ) = ln f( ~YT j~µ¤) + ln ¼(~µ¤)¡ ln ¼(~µ¤j~YT ) (A2)

The log likelihood function and the log of the prior density at ~µ = ~µ¤ can be evaluated

as follows. First, the log likelihood function is given by:

ln f( ~YT j~µ¤) =
TX

t=p+1

ln(
1X

Dt=0

p(Dtj~YT¡1; ~µ¤) f(ytj~YT¡1; Dt; ~µ¤)); (A3)

Second, the log of prior density is given by:

ln ¼(~µ¤) = ln ¼(~Á¤) + ln ¼(~¹¤) + ln ¼(¾2u
¤
) + ln ¼(q¤); (A4)

18 The procedure is a modi¯cation from Kim and Nelson (1999) where it is described
in the context of a Markov-switching model with an endogenous structural break in the
parameters.
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where it is a priori assumed that ~Á, ~¹, ¾2u and q are independent of one another.

Evaluation of the posterior density at ~µ = ~µ¤ is more demanding, but we can take

advantage of the approach proposed by Chib (1995). For this purpose, consider the

following decomposition of the posterior density:

¼(~µ¤j~YT ) = ¼(~Á¤j~YT )¼(~¹¤j~Á¤; ¾2u¤; q¤; ~YT )¼(¾2u¤j~Á¤; ~¹¤; q¤; ~YT )¼(q¤j~Á¤; ~¹¤; ¾2u¤; ~YT ) (A5)

where

¼(~Á¤j~YT ) =
Z
¼(~Á¤j~¹; ~DT ; ¾2u; q; ~YT )¼(~¹; ~DT ; ¾2u; qj~YT ) d~¹ d ~DT d¾2u dq (A6)

¼(~¹¤j~Á¤; ~YT ) =
Z
¼(~¹¤j~Á¤; ~DT ; ¾2u; q; ~YT )¼( ~DT ; ¾2u; qj~Á¤; YT )d ~DT d¾2u dq (A7)

¼(¾2u
¤j~Á¤; ~¹¤; ~YT ) =

Z
¼(¾2u

¤j~Á¤; ~¹¤; ~DT ; q; ~YT )¼( ~DT ; qj~Á¤; ~¹¤; YT )d ~DT dq (A8)

and

¼(q¤j~Á¤; ~¹¤; ¾2u¤; ~YT ) =
Z
¼(q¤j~Á¤; ~¹¤; ¾2u¤; ~DT ; ~YT )¼( ~DT j~Á¤; ~¹¤; ¾2u¤; YT )d ~DT (A9)

where ~DT = [D1 ¢ ¢ ¢ DT ]0.
The above decomposition of the posterior density suggests that ¼(~Á¤j~YT ) can be cal-

culated based on the full Gibbs run, and ¼(~¹¤j~Á¤; ~YT ), ¼(¾2u¤j~Á¤; ~¹¤; ~YT ), and ¼(q¤ j~Á¤ ,
~¹¤; ¾2u

¤
; ~YT ) can be calculated based on draws from the reduced Gibbs runs. The following

explains how each of these can be calculated based on output from appropriate Gibbs

runs:

¼̂(~Á¤j~YT ) = 1

G

GX
g=1

¼(~Á¤j~¹g; ¾2ug; ~Dg
T ; q

g; ~YT ); (A10)

¼̂(~¹¤j~Á¤; ~YT ) = 1

G

GX
g1=1

¼(~¹¤j~Á¤; ¾2ug1; ~Dg1
T ; q

g1; ~YT ); (A11)

¼̂(¾2u
¤j~Á¤; ~¹¤; ~YT ) = 1

G

GX
g2=1

¼(¾2u
¤j~Á¤; ~¹¤; ~Dg2

T ; q
g2 ; ~YT ); (A12)
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¼̂(q¤j~Á¤; ~¹¤; ¾2u¤; ~YT ) =
1

G

GX
g3=1

¼(q¤j~Á¤; ~¹¤; ¾2u¤; ~Dg3
T ; ~YT ); (A13)

where the superscript g refers to the g-th draw of the full Gibbs run and the superscript gi,

i = 1; 2; 3 refers to the gi-th draw from the appropriate reduced Gibbs runs. Thus, apart

from the usual G iterations for the Gibbs run, we need additional 3£G iterations for the
appropriate reduced Gibbs run. In order to calculate ¼(q¤j~Á¤; ~¹¤; ¾2u¤; ~YT ), for example,
we need output from an additional G iterations for the following reduced Gibbs run:

i) Generate q from p(qj~Á¤; ~¹¤; ¾2u¤; ~DT ; ~YT );
ii) Generate ~DT from p( ~DT j~Á¤; ~¹¤; ¾2u¤; q; ~YT );

Notice that throughout the reduced Gibbs run, ~Á, ~¹ and ¾2u are not generated but set

equal to ~Á¤, ~¹¤ and ¾2u
¤
, respectively.

Appendix B: A model with a structural break in the variance only

This Appendix presents a model with structural break in the variance only, which is

of the form:

yt = ¹t + et; (1)

¹t = ¹ (B1)

Á(L)et = ut; ut » i:i:d:N(0; ¾2u;St) (5)

¾2u;St = ¾
2
u;0(1¡ St) + ¾2u;1St; ¾2u;0 < ¾

2
u;1 (B2)

St =

8<: 0; if t=1,2, ¢ ¢ ¢, ¿v
1; if t= ¿v +1 , ¢ ¢ ¢, T

(B3)

where St is a variable that determines the regime of variance; ¿v is the date of break in

the variance. The corresponding transition probabilities are:

Pr(St = 0jSt¡1 = 0) = p; Pr(St = 1jSt¡1 = 1) = 1; 0 < p < 1 (B4)
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Appendix C: The model with a slowly varying mean with GARCH disturbances and its

estimation

The model with GARCH disturbances is as follows:

yt = ¹t + et (2)

¹t = ¹t¡1 + vt; (8)

et = Á1et¡1 + Á2et¡2 + Á3et¡3 + Á4et¡4 + ut + u¤t (50)

where the GARCH e®ect is introduced via u¤t , which is de¯ned as:

u¤t jÃt¡1 » N(0; ht) (C1)

ht = °0 + °1u
¤2
t¡1 + °2ht¡1 (C2)

where Ãt¡1 is information up to time t ¡ 1. Dropping u¤t reduces to the case with ho-
moskedasticity.

The model can be represented as a State-space form which can be estimated by the

Kalman ¯lter. In setting up the State-space model, we treat the permanent and cyclical

components as well as the GARCH disturbances as state variables. Then, we have the

measurement and transition equations of the form:

Measurement Equation
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yt ´
8: 1 1 0 0 0 0

9;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

¹t

et

et¡1

et¡2

et¡3

u¤t

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

; (C3)

or

yt ´ H¯t;

Transition Equation

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

¹t

et

et¡1

et¡2

et¡3

u¤t

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

=

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1 0 0 0 0 0

0 Á1 Á2 Á3 Á4 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

¹t¡1

et¡1

et¡2

et¡3

et¡4

u¤t¡1

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

+

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1 0 0 0 0 0

0 1 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

vt

ut

0

0

0

u¤t

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(C4)

or

¯t = F¯t¡1 +G»t;

Qt ´ E[»t»0tjÃt¡1] =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

¾2v 0 0 0 0 0

0 ¾2u 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 ht

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

; (C5)
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The Kalman ¯lter is the basic tool to estimate the state variable at time t based on

available information at time t. It is given by the following six equations:

¯tjt¡1 = F¯t¡1jt¡1; (C6)

Ptjt¡1 = FPt¡1jt¡1F 0 +Qt; (C7)

yt ¡ ytjt¡1 = yt ¡H¯tjt¡1; (C8)

ftjt¡1 = HPt¡1jt¡1H 0; (C9)

¯tjt = ¯tjt¡1 +Kt(yt ¡ ytjt¡1); (C10)

Ptjt = Ptjt¡1 ¡KtHPtjt¡1; (C11)

wheretjt¡1 indicates the expectation of variable of interest conditional on information up

to time t-1. Ptjt¡1 is the variance of ¯tjt¡1. ftjt¡1 is the variance of the prediction error

yt ¡ ytjt¡1. Kt ´ Ptjt¡1H 0f¡1tjt¡1 is the Kalman gain.

The Kalman ¯lter in this case is not operable as well indicated in Harvey, Ruiz and

Sentana (1992), because u¤t¡1 are unobservable and thus ht cannot be calculated. Hence,

as proposed by them, an approximation u¤t¡1jÃt¡1 is used. That is,

ht = ®0 + ®1E[u
¤2
t¡1jÃt¡1] + ®2ht¡1; (C12)

where using the property of variance of a random variable X

E[X2] = E[X]2 ¡ E[X ¡E[X]]2; (C13)

we have

E[u¤2t¡1jÃt¡1] = E[u¤t¡1jÃt¡1]2 + E[u¤t¡1 ¡E[u¤t¡1jÃt¡1]]2; (C14)
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where E[u¤t¡1jÃt¡1] is obtained from the last element of ¯t¡1jt¡1 and its mean squared error
E[u¤t¡1¡E[u¤t¡1jÃt¡1]]2 is obtained from the last diagonal element of Pt¡1jt¡1. ¯t¡1jt¡1 and
Pt¡1jt¡1 are computed at each iteration of the Kalman ¯lter.

Given ¯T jT at the last iteration of the Kalman ¯lter, the following can be iterated for

t = T ¡1; T ¡2; ¢ ¢ ¢ ; 1 to get the smoothed inferences about ¯t conditional on information
up to time T .

¯tjT = ¯tjt + PtjtF 0P¡1t+1jt(¯t+1jT ¡ F¯tjt); (C15)

PtjT = Ptjt + PtjtF 0P¡1t+1jt(Pt+1jT ¡ Pt+1jt)P¡1t+1jt0FP 0tjt; (C16)
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Table 1. Posterior moments from Model 0 and Model 1

Model 0 Model 1

Parameters Mean SD Mean SD

¹0 2.4123 1.6536 0.4667 2.3234

¹1 5.8621 4.0441

Á1 0.6138 0.0701 0.6138 0.0716

Á2 0.1380 0.0833 0.1358 0.0831

Á3 0.0004 0.0844 -0.0024 0.0837

Á4 -0.2828 0.0710 -0.2824 0.0714

¾u 8.6472 0.8897 8.5800 0.8813

q 0.9870 0.0176

ln m( ~YT ) -225.2583 -227.8713

Log of Bayes factor in favor of Model 1 over Model 0: -2.61

Model 1 indicates a model with a structural break in the mean of earnings growth (¹0

6= ¹1). Model 0 is a model without a structural break (¹0=¹1). SD refers to standard

deviation. ln m( ~YT ) refers to the log of marginal likelihood.



Table 2. Posterior moments from Model 0A and Model 1A

Model 0A Model 1A

Parameters Mean SD Mean SD

¹0 1.7157 1.4471 0.6044 1.9860

¹1 5.9931 4.8515

Á1 0.6958 0.0715 0.6946 0.0726

Á2 0.0288 0.0889 0.0297 0.0860

Á3 0.0081 0.0860 0.0094 0.0856

Á4 -0.2546 0.0694 -0.2567 0.0707

¾u;0 5.3720 0.6765 5.4156 0.6833

¾u;1 16.9116 3.2870 16.8193 3.2601

q 0.9883 0.0167

ln m( ~YT ) -217.3026 -220.6106

Log of Bayes factor in favor of Model 1A over Model 0A: -3.31

Model 1A indicates a structural break model in the mean of earnings growth (¹0 6= ¹1)
with a variance dummy. Model 0A is a model with no structural break in the mean

(¹0=¹1) but with a variance dummy. SD refers to standard deviation. ln m( ~YT ) refers to

the log of marginal likelihood.



Table 3. Tests of H0 : ¸=0 (Constant mean growth rate), median unbiased

estimates and 90% con¯dence intervals

Test Statistic p-value ^̧ ¸ 90% CI ¾̂v ¾v 90% CI

Panel A: Homoskedastic Case

L 0.72 0.00 (0.00 - 8.83) 0.00 (0.00 - 1.00)

MW 0.61 0.00 (0.00 - 11.12) 0.00 (0.00 - 1.23)

EW 0.44 1.53 (0.00 - 14.37) 0.17 (0.00 - 1.63)

SW 0.20 4.80 (0.00 - 20.18) 0.54 (0.00 - 2.29)

Panel B: Heteroskedastic Case

L 0.85 0.00 (0.00 - 5.78) 0.00 (0.00 - 0.74)

MW 0.78 0.00 (0.00 - 7.54) 0.00 (0.00 - 0.97)

EW 0.70 0.00 (0.00 - 8.90) 0.00 (0.00 - 1.14)

SW 0.38 2.35 (0.00 - 14.88) 0.30 (0.00 - 1.91)

The ¯rst column is test statistics from which the median unbiased estimator of ¸ is derived.

L is Nyblom's (1989) statistic; MW and EW are the mean Wald and exponential Wald

statistics of Andrews and Ploberger (1994); SW is the Quandt (1960) likelihood ratio

statistic.



Table 4. Maximum Likelihood Estimates of the Model with slowly-varying

mean

Parameter MLE Estimates with ¯xed ¾v

¾v 5:7663¡6 0.2600 0.5200 0.7400
(0.0933)

¾u 0.0085 0.0059 0.0003 0.0051
(0.1107) (0.1116) (0.0813) (0.2135)

°0 10.2640 10.2430 10.0725 9.9515
(6.2465) (6.3392) (6.3974) (6.3157)

°1 0.2475 0.2490 0.2477 0.2468
(0.0852) (0.0872) (0.0883) (0.0894)

°2 0.6958 0.6960 0.6984 0.6996
(0.0940) (0.0960) (0.0971) (0.0973)

Á1 0.6946 0.6969 0.6954 0.6925
(0.0743) (0.0746) (0.0754) (0.0757)

Á2 0.1159 0.1194 0.1230 0.1251
(0.0956) (0.1004) (0.0956) (0.0996)

Á3 -0.0380 -0.0358 -0.0347 -0.0335
(0.0852) (0.1080) (0.0909) (0.0979)

Á4 -0.2599 -0.2555 -0.2559 -0.2584
(0.0672) (0.0758) (0.0705) (0.0722)

¹0 1.3969 1.4114 1.0727 0.5517
(1.4564) (2.2772) (3.6076) (7.3876)

MLE is an unrestricted MLE. The last three columns are estimates by restricted MLEs

with ¾v set to the values indicated in the row for ¾v. In all estimations, ¹0 is treated as

an unknown constant to be estimated. Parentheses contain standard errors.
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Figure 1. Posterior probability distribution of date of change
               in the mean of earnings growth
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Figure 2. Probability of structural change in the mean of earnings growth
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Figure 3. Posterior probability distribution of date of change
               in the variance of earnings growth
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Figure 4. Probability of structural change in the variance of earnings growth
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Figure 5. Posterior probability distribution of date of change
                in the mean of earnings growth when a variance

dummy isused
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Figure 6. Estimated trends of earnings growth based on
four models in Table 4
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Figure 9. Risk premium shown in Figure 8 when nominal interest rates
are used for 1973:IV-1980:IV


