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Abstract 
 
This paper characterizes optimal income tax and audit schemes in the presence of costly 
enforcement when the agent is risk averse and not necessarily risk neutral. It is shown that 
the results under risk-neutrality (Chander and Wilde (1998)) largely hold under risk 
aversion. We first show that in an optimal scheme the tax evasion decision of the agent is 
equivalent to risking his entire income against a possible gain in terms of lower tax 
payment. We then introduce a measure of aversion to such large risks. In contrast, the 
Arrow-Pratt coefficients of risk aversion measure aversion to small risks only. We show 
that the optimal tax function is non-decreasing and concave if the agent’s aversion to large 
risks, as defined in terms of our measure, is decreasing with income. The optimal audit 
function is non-increasing and the audits may be random or deterministic. 
 
 
JEL Classification Numbers: D80, D81, D86, H26. 
 
Keywords: expected utility, risk aversion, tax evasion, principal-agent, audit probability.  
 
 
 

 
 
  

 

                                                 
1 Indian Statistical Institute and National University of Singapore. E-mail: ecsparka@nus.edu.sg . I am 
thankful to Jacques Drezè, Edi Karni, Basant Kapur, Ali Khan, Maurice Marchand,  Rajiv Vohra and Peyton 
Young for comments and discussion. I have also benefited from seminar presentations at Brown, CORE, 
Hopkins, NUS, and Yale. 



 1

I. Introduction 

 

Unlike the optimal income tax model of Mirrlees (1971),2 the income tax enforcement 

model3 rules out supply side effects of income taxation or the problem of moral hazard and 

treats the agent’s income as exogenous. However, it assumes that the agent’s income can 

be observed only by performing an audit which is costly. In this setting the equity vs. 

efficiency issue arises in a form which is different from the one in the optimal income tax 

model. A progressive tax function generates stronger incentives for the agent to 

underreport income and thereby necessitates more auditing. Since audit expenditure is a 

direct resource cost, an optimal policy must weigh the welfare gains from progressive taxes 

against the concomitant rise in audit expenditure. Indeed, Chander and Wilde (1998) show 

that the optimal tax function must be generally increasing and concave,4 but under the 

rather strong assumption that the agent is risk neutral. The same result need not obtain 

when the agent is risk averse. First, the incentive to underreport income, which is 

equivalent to taking a risk, is weaker if the agent is risk averse, thus making it easier or less 

costly for the principal to enforce any given tax function. Second, the incentive to 

underreport income is even weaker if the income of the agent is higher and aversion to risk 

is not decreasing with income, thus making it easier for the principal to charge 

proportionately higher taxes on higher incomes. Both these effects can tilt the 

                                                 
2 For recent exposition, see Myles (1995). 
3 See e.g. Reinganum and Wilde (1985), Border and Sobel (1987), Melumad and Mookherjee  (1989), 
Cremer, Marchand and Pestieau (1990), Sanchez and Sobel (1993), and Chander and Wilde (1998). 
4 This means that the inability of the tax authority to costlessly observe true income restricts its ability to 
redistribute income in the same manner as does its inability to observe individual effort and skill in the 
original optimal income tax model. 
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balance in favor of a progressive tax function. 

 

We characterize optimal income tax and audit schemes when the agent is risk averse and 

not necessarily risk neutral. We show that the results under risk-neutrality (Border and 

Sobel (1987) and Chander and Wilde (1998)) largely hold under risk aversion. In contrast 

to Winton (1995), who restricts attention to deterministic audits, we allow for random 

audits and show that the tax schedule is non-decreasing and the audit schedule is non-

increasing.5 We proceed by showing that in an optimal scheme the agent’s decision to 

underreport income is equivalent to risking his entire income against a possible gain in 

terms of lower tax payment. We then introduce a measure of aversion to such large risks.  

We show that the optimal tax function is increasing and concave if the agent’s aversion to 

such large risks, as defined in terms of this measure, is decreasing with income. We call 

this the “strong decreasing risk aversion” or SDRA in short. This is briefly contrasted with 

the Arrow-Pratt (Arrow (1971) and Pratt (1964)) measures of risk aversion, which measure 

aversion to small risks only. We show that SDRA implies decreasing absolute risk 

aversion, but the converse is not true. Furthermore, SDRA does not imply decreasing or 

increasing relative risk aversion and the two are not generally comparable. 

 

The paper is organized as follows. The next section states a general model of income tax 

enforcement and introduces the definition of an optimal tax and audit scheme. Section 3 

                                                 
5 Mookherjee and Png (1989) also study the problem under risk aversion and under random auditing but 
leave open the question of monotonicity of the optimal tax and audit schemes. 
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introduces the notion of SDRA and contrasts it with the Arrow-Pratt measures. Section 4 

characterizes the optimal tax and audit schemes. Section 5 draws the conclusion. 

   

2. The Model and Some Results 

 

Consider an agent with random income y which can take values over an interval 

,0],,0[ >yy according to a probability density function g with 0)( >yg  for all ),0( yy∈ .  

The income of the agent is private information.  The principal knows the distribution of 

income g but does not know the actual income of the agent. The agent has a von Neumann-

Morgenstern (vN-M) utility function )(yu  which is continuously differentiable and 

satisfies 0)(,0)(,0)0( ≤′′>′= yuyuu  for all 0≥y .6 

 

The principal may set up a mechanism for extracting the income of the agent. The 

mechanism consists of a set M of messages; a tax function +ℜ→Mt : ; an audit 

 function ];1,0[: →Mp  and a penalty function .],0[: +ℜ→× yMf 7 The agent who 

reports message m  to the principal is audited with probability )(mp .  If no audit occurs, 

his payment to the principal is )(mt .  If an audit occurs, his true income is discovered 

                                                 
6 Assuming 0)0( =u is a legitimate normalization (as we know from the expected utility theory), though not 

always possible. For instance, if αα yyu )/1()( = with .0<α Nevertheless, it can be approximated by the 

utility function αα εαεα )/1()()/1( −+y where 0>ε is arbitrarily small. The assumption rules out schemes 
that may attain approximate first- best optima by imposing arbitrarily large penalties on the agent for 
underreporting. 
7 We require both the tax and penalty functions to be nonnegative. However, none of our results below is 
affected if we allow them to take negative values so long as they are bounded below.  
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without error, and his payment to the principal is )(),( mtymf ≥  if his true income is y , 

i.e., the payment after an audit is not lower than the payment without an audit.8 We assume 

that the agent cannot submit a report that requires a payment which is larger than his true 

income. Therefore, for the mechanism to be feasible, it must satisfy certain requirements. 

Define =)(yM  })(:{ ymtMm ≤∈  to be the set of feasible messages. Then the first 

feasibility requirement on the mechanism is that for all yyM each for   )( φ≠  

and ).(  allfor   ),( yMmyymf ∈≤  Thus, the agent with income y would submit a report 

m so as to maximize +−− ))(())(1[( mtyump ))],(()( ymfyump − , )( subject to yMm∈ . 

The second feasibility requirement is that this maximization problem has a solution for 

each ],0[ yy∈ . 

 

Most analyses of the principal-agent problem rely on the revelation principle. This states 

that without loss of generality we can confine our attention to mechanisms in which the 

agent is asked to report his income and is provided incentives to report truthfully. We shall 

refer to such mechanisms as incentive compatible direct revelation mechanisms. Since the 

revelation principle can indeed be shown to apply to our setting, we shall consider only 

such mechanisms.  In view of the above mentioned feasibility requirements on the 

mechanism, the relevant class of such mechanisms consists of schemes ),,( fpt  that 

satisfy for each y  the following conditions: 

 

                                                 
8 This restriction rules out rewards for truth-telling. As noted by Melumad and Mookherjee (1989), such 
rewards violate the principle of horizontal equity (see e.g. Stiglitz (1982)).  
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 ;1)(0 ≤≤ yp  

yyyfyt ≤≤≤ ),()(0 ; and   

 

The last inequality says that the agent’s expected utility is maximized if he reports his  

income truthfully. Let ),()( yyfyf ≡ . Then the revenue function is defined as  

)()()())(1()( yfypytypyr +−≡ . Since u is concave, if )()( ytyf > , we can increase 

)(yt  and lower )(yf such that the agent’s incentive to report income truthfully is not  

affected and )(yr is not lower. Note that raising the tax corresponding to income 

level y does not reverse the incentive constraints corresponding to income levels other 

than y . This means that )(yf  should be as small as possible. Therefore, in view of the 

above inequalities, )()()( yrytyf == .9 Similarly, the incentive constraints are as weak as 

possible if yxyxf ≠),,(  and yxt ≤)( , is made as large as possible which is accomplished 

by setting .for  ),( yxyyxf ≠=  This means that the expected utility of the agent with 

income y  who reports instead x is equal to or ))(())(1( xtyuxp −−  

)()()))()(()(())(1( yyuxpxtytytyuxp −+−+−− , since by assumption 0)0( =u .  

Whereas the expected utility of the agent is equal to ))(( ytyu − if he reports his income 

truthfully. Comparison of the two utility levels implies that the agent’s tax evasion 

decision is equivalent to risking his entire income y  against a possible gain of )()( xtyt − .  

                                                 
9 The argument here is different from that in the risk neutral case. However, risk aversion only reinforces the 
case for  the equality of )( and )( ytyf  as it reduces risk. 

.)( with  allfor 

 )),(()())(())(1()),(()())(())(1(

yxtx

yxfyuxpxtyuxpyyfyuypytyuyp

≤

−+−−≥−+−−
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In view of the above observations, we need to consider only those tax and audit schemes 

that satisfy for each y, 

 

;1)(0 ≤≤ yp  

yyt ≤≤ )(0 ; and 

,)( with  allfor  ))(())(1())(( yxtxxtyuxpytyu ≤−−≥−  since .0)0( =u                                                          

 

As in most analysis of the principal-agent problem we assume henceforth that an agent 

reports truthfully whenever reporting true income is optimal. 

 

Let Q denote the set of all schemes ),( pt that satisfy the inequalities above. Then Q is the 

set of all feasible schemes. 

 

Let S  be some subset of Q, i.e. QS ⊂ . A scheme Spt ∈),(  is efficient in S if there is no 

other scheme Spt ∈),(  such that p′ ≤  p, t ′  ≥  t, and p′ ≠  p or t ′ ≠  t. That is, it is not 

possible to not lower the taxes and decrease an audit probability without increasing any 

other audit probability, and it is not possible to not increase the audit probabilities and raise 

the tax at some income level without lowering it at any other level. 

 

Note that this notion of efficiency is independent of the probability density function g , that 

is, if a scheme is efficient, it is efficient with respect to every g . An optimal scheme must 
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clearly be efficient if the objective of the principal is to maximize revenue net of audit cost, 

that is 

 






∫ ∫−
y y

pt
dyygypcdyygyt

0 0,
)()()()(maximize , 

where c > 0 is the cost per audit. It is possible to show that for a variety of other objectives 

also an optimal scheme must be efficient including when the objective of the principal is 

purely redistributive. We thus characterize efficient schemes. Note that efficiency is a 

general requirement for optimality. Additional properties of optimal schemes depend on 

the particular objective function and the probability density function and are usually 

obtained by means of numerical analysis, as in Chander et al. (2003). 

 

We characterize the efficient schemes in two steps. In the first step we show that in an 

efficient scheme the tax and audit functions must be monotonic. In the second step we 

show that if the agent's utility function satisfies SDRA, then the tax function must be 

concave. 

 

Proposition 1: A scheme Qpt ∈),( is efficient in Q only if t is non-decreasing and p is 

non-increasing.  

 

Proposition 1 distinguishes itself from other results on this subject (Border and Sobel 

(1987) and Chander and Wilde (1998)) by allowing the agent to be risk averse. This 
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proposition is consistent with certain stylized facts in insurance markets (see e.g. Krasa and 

Villamil (1994)). We also need it for the proof of Theorem 3 below. 

 

Proof of Proposition 1: We first show that if Qpt ∈),(  is efficient in Q, then the 

incentive constraints for each income level y must be binding at some x, that is, for each y 

there exists an x such that )).(())(1())(( xtyuxpytyu −−=−  

 

Suppose not, i.e., for some .)( with  allfor  ))(())(1())((, yxtxxtyuxpytyuy ≤−−>−  This 

implies yyt <)(  and we can find )()(  satisfying  )( ytytyyt >′>′  such that 

))(())(1())(( xtyuxpytyu −−>′−  for all x with .)( yxt ≤  Since raising )(  to)( ytyt ′  will 

also not reverse the incentive constraints for income levels other than y , we have been 

able to find a scheme ,,such that  ),( ttttQpt ≠′≥′∈′′  pp =′ and which contradicts that 

),( pt is efficient in Q.  

 

 We now show that t must be non-decreasing. Suppose not, that is, )()( and ytytyy <′>′ .  

Then, xxtytyty ′′≥′>≥   where)()()( is the point at which the incentive constraints are 

binding for the agent with income y′ . It follows from the incentive constraints that 

))(())(1())(( xtyuxpytyu ′−′−≥− . Since u is concave and )()( xtyt ′> , ≥−′ ))(( ytyu  

))(())(1( xtyuxp ′−′′− . Since )()( ytyt ′>  by supposition, >′−′ ))(( ytyu  

))(())(1( xtyuxp ′−′′− . But this contradicts that the incentive constraints for the agent with 

income y′ are binding at x′ . Hence our supposition is wrong and .for  )()( yyytyt >′≥′  
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Finally, we prove that p is non-increasing. The incentive constraints imply that for each x, 

)(xp must satisfy  

))((
))((1)(

xtyu
ytyuxp

−
−

−≥  for all )(xty≥ . 

 

Given that ),( pt  is efficient, we must have  

))((
))((1)( inf

)( xtyu
ytyuxp

xty −
−

−=
>

. 

 

Note that if there is no y such that .0)( then ,)( =< xpyxt  Since )(xt is non-decreasing 

with x (as shown above), it follows from the above equality that )(xp  is non-increasing.  

This completes the proof. 

 

The above equality defining the audit probabilities is at the heart of the result that taxes and 

audit probabilities move in opposite directions: the higher the tax ,)(xt  the weaker (and 

fewer) the incentive constraints to be satisfied at x  and therefore the lower the audit 

probability ).(xp  

 

The result that the tax is non-decreasing with income is along the expected lines. The result 

that the audit probability is non-increasing with income may be, however, explained 

intuitively as follows: since the low income reports are the most attractive for any 

taxpayer, the optimal auditing policy must devote more resources to the audit of low 
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reports. Since this monotonocity result applies to a population of taxpayers who are 

otherwise indistinguishable by occupation, residential location and source of income, a 

more careful interpretation of this result is that within each category of taxpayers (defined 

according to some exogenously available information on other characteristics) a taxpayer 

is more likely to be audited if he claims to have a lower income in that category.  

 

We prove an additional monotonicity property that motivates further characterization of 

efficient schemes.  

 

Proposition 2:  If the incentive constraints for income levels y and y′ are binding at x and 

x′ , respectively, and ).()( then , xtxtyy ≥′>′  That is, if ,yy >′ =− ))(( ytyu  

))(())(1( xtyuxp −−  for some x with yxt ≤)( and ))(())(1())(( xtyuxpytyu ′−′′−=′−′  

for some ).()( then ,)( with xtxtyxtx ≥′′≤′′  

 

Proof of Proposition 2: Suppose not, that is, suppose y′  > y, but ).()( xtxt <′  Then from 

the incentive constraints  ))(())(1())(( xtyuxpytyu ′−′′−=′−′  ≥ ))(())(1( ztyuzp −′−  for 

all z with yzt ′≤)( and ))(())(1())(( xtyuxpytyu −−=−  ≥ ))(())(1( ztyuzp −−  for all z 

with )(zt  ≤  y. In particular, since ),()( xtxty ′>≥  

 

))(())(1())(( xtyuxpytyu ′−′′−=′−′  ≥  ))(())(1( xtyuxp −′−  

and 

))(())(1())(( xtyuxpytyu −−=−  ≥  ))(())(1( xtyuxp ′−′− . 



 11

  

Thus, 

( )
))((
))((

)(1
)(1

))((
)(

xtyu
xtyu

xp
xp

xtyu
xtyu

−
′−

≥
′−

−
≥

−′
′−′  , 

 

which means 

))((
))((

))((
))((

xtyu
xtyu

xtyu
xtyu

−
−′

≥
′−
′−′ . 

 

 This inequality can be rewritten as 

 

∫

∫ ∫

∫

∫ ∫

−

− −′

−
′−

′− ′−′

′−

′

′+′
≥

′

′+′

)(

0

)(

0

)(

)(
)(

0

)(

0

)(

)(

)(

)()(

)(

)()(
xty

xty xty

xty
xty

xty xty

xty

dssu

dssudssu

dssu

dssudssu
. 

Thus, 

∫

∫

∫

∫

−

−′

−
′−

′−′

′−

′

′
≥

′

′

)(

0

)(

)(
)(

0

)(

)(

)(

)(

)(

)(
xty

xty

xty
xty

xty

xty

dssu

dssu

dssu

dssu
 . 

 

Since u is concave, that is, u′  is decreasing, the above inequality cannot be true if 

)()( xtxt <′ . Hence our supposition is wrong. This proves Proposition 2. 

 

Examples can easily be constructed in which the inequality is strict, i.e., )()( xtxt >′  and 
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 therefore xx >′ , since as shown t  is non-decreasing. 

 

Proposition 2 shows that the audit probabilities in an efficient scheme may not be 

determined by the incentives of the highest income taxpayers. The audit probability )(xp  

which is just sufficient to deter the taxpayer with income y  from underreporting may be 

more than sufficient to deter the taxpayer with income higher than y . Intuitively, this 

indicates that the taxes may not be rising proportionately with income in an efficient 

scheme. 

 

3. The Strong Decreasing Risk Aversion  

 

We had noted above that the tax evasion decision of the agent is equivalent to risking his 

entire income y against a possible gain of ).()( xtyt −  More generally, consider a risk 

averse agent with vN-M utility function u who is considering a bet in which he risks his 

entire wealth w  against a possible gain of x . This gain would have to be sufficiently large 

in order for him to be indifferent between such a bet and retaining his current wealth. 

Moreover, the more unwilling he is to risk his entire wealth, the larger x  will be. Thus, x  

is a direct measure of the agent’s aversion to risking his entire wealth. Furthermore, the 

higher the agent’s current wealth w  or the higher the amount risked, the higher must be the 

potential gain x . More formally, let 

 

                           ),()1()0()()1()( xwupupxwupwu +−=++−=                                   (1) 



 13

 

since by assumption 0)0( =u . Then 

 

                                                           1
)(

)(
1

1
−

+′
′

−
=

xwu
wu

pdw
dx                                           (2) 

 

for a given w. Risk aversion or concavity of u implies that for any ),1,0(∈p x  is strictly 

increasing with w, i.e. 0/ >dwdx . Note that unlike the Arrow-Pratt model, the size of the 

risk or bet itself is increasing with wealth. Therefore, the risk premium must be increasing 

in any case and the only question that remains is whether it is increasing at a non-

increasing rate. This motivates us to say that u satisfies strong decreasing risk aversion 

(SDRA) at w if x  is increasing with w  at a non-increasing rate, that is, if 0/ 22 ≤dwxd  for 

all )1,0(∈p . We call it ‘strong’ for the following reason. In view of (2), 

 















 +

+′
+′′′

−
+′

′′
−

=
dw
dx

xwu
xwuwu

xwu
wu

pdw
xd 1

))((
)()(

)(
)(

1
1

22

2

 

 

                                       







′
′′−

−





 +

+′
+′′−

+′
′

−
=

)(
)(1

)(
)(

)(
)(

1
1

wu
wu

dw
dx

xwu
xwu

xwu
wu

p
.                   (3) 

 

Since 0/ and 0 >> dwdxx ,  )(/)( ifonly  0/ 22 wuwudwxd ′′′−≤ i.e. absolute risk aversion 

 is decreasing at .w  

 



 14

Fig. 1 illustrates the relationship between xwzw += and as implied by SDRA of u . The 

“level curve” as defined by (1) is parameterized by the probability p of the unfavorable 

outcome. The lower the p, the higher the level curve. 

 

Substituting from (1) and (2) and rearranging the terms in (3), we obtain 

 

              







′′

′′−
−

+′
+

+′
+′′−









+′

′′
−

=
)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

1
1

2

2

wu
wu

wu
wu

xwu
xwu

xwu
xwu

xwu
wu

wu
wu

pdw
xd .             (4) 

 

Since, as seen from equation (1), x  can be made as close to zero as desired by choosing 

the probability p  of the unfavorable outcome to be sufficiently small, 0/ 22 ≤dwxd  for all 

p  if and only if ))(/)())((/)(( wuwuwuwu ′′′′−  is non-increasing. 

 

 Let 

                                          
)(
)(

)(
)()(

yu
yu

yu
yuyR

′′
′′−

= .                                                            (5)                

 

Then strong decreasing risk aversion of u at income level y is equivalent to ,0)( ≤′ yR  that 

is,  

                        ( ) 01
)(
)(2

)(
)(

)(
)(

)(
)( ≤








−








′
′′−

−
′′
′′′−









′′

′′
=′

yu
yu

yu
yu

yu
yu

yu
yuyR .                   (6) 
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This inequality reconfirms that decreasing absolute risk aversion (DARA) of ,u that is,  

)(/)()(/)( yuyuyuyu ′′′−≥′′′′−  is a necessary condition for SDRA of u .  The ratio 

)(/)( yuyu ′′′′′−  is the index of absolute prudence. The relative magnitudes of  

)(/)( and )(/)( yuyuyuyu ′′′′′−′′′−  are known to play an important part in many 

applications10.  Next we compare SDRA with non-increasing relative risk aversion, that is, 

      

                               =′ )(yrr  01
)(
)(

)(
)(

)(
)(

≤







−








′
′′−

−
′′
′′′−

′
′′

yu
yu

yu
yuy

yu
yu .                             (7)      

 

Since u is concave, that is, )(xu′  is non-increasing in ,0)0( and =ux =′ )(/)( yuyu   

∫ ≥′′
y

ydxxuyu
0

.)())(/1(  Therefore, the inequalities (6) and (7) are generally not comparable. 

However, when (6) and (7) hold with equality they become identical. In fact, by equating 

the expression on the right in (6) or (7) to zero and integrating it twice and using 0)0( =u , 

we obtain αaxxu =)(  with 0 < 1<α  and a>0, that is, the relative risk aversion is 

constant.11  Our argument is completed if we can exhibit a utility function which satisfies 

(6) with strict inequality. It is easily seen that one such utility function is 

10 with )( <<+= ααyyyu . We also provide an example of a utility function such that 

                                                 
10 Sinclair-Desgagné and Gabel (1997), who study the problem of environmental auditing, show that the  
condition )(/)(2)(/)( yuyuyuyu ′′′−≥′′′′′−  (which is necessary but not sufficient for SDRA) is sufficient for 
the condition under which an audit has to be performed. Drezè and Modigliani (1972) implicitly use the same 
condition to sign a precautionary saving effect. Aumann and Kurz (1977) use it to characterize the outcome 
of their income redistribution game. 
11 This might explain why the utility function ,10,,)( <<>= αα aayyu  has been so successful in many 
applications, as it implies constant aversion to not only small risks but also to some large risks. 
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.0)(but   0)( >′<′ yRyrr  Let .1),1/()( 2
1 <<+= ααyyyu  It is seen that 0)( <′ yrr  for y  

sufficiently large but 0)( >′ yR  for all y . A convenient utility function for which 

0)( <′ yR  but 0)( >′ yrr  is not easy to find. Inequalities (6) and (7) suggest that such a 

utility function must be such that )(/)( yuyu ′  is very high compared to y but the absolute 

risk aversion )(/)( yuyu ′′′−  is very low compared to the absolute prudence 

).(/)( yuyu ′′′′′−  

 

Note that unlike the Arrow-Pratt coefficients of risk aversion )(yR is independent of the 

units in which income y is measured. It is of course also invariant with respect to the units 

in which utility )(yu is measured.12 Additional properties of )(yR as a measure of risk 

aversion can be found in Chander (2000).  

 

4. The Optimal Tax Function 

 

We are now well prepared to show that the optimal tax function is concave even when  

the agent is risk averse. As argued in the introduction to this paper, such a generalization is 

not straightforward. However, we are able to show that the result holds at least when the 

agent’s utility function satisfies SDRA, that is, when absolute risk aversion is decreasing at 

a sufficiently high rate with income. This means that under SDRA the agent’s incentive to 

                                                 
12 More explicitly, )).(/))0()())(((/)(()( yuuyuyuyuyR ′−′′′−=  It is worth noting that the coefficient 

)(yR also depends on the value of the utility function at zero and is not defined entirely by the local 
characteristics of the utility function at point y . 
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underreport income remains strong enough so as to render a progressive tax function less 

cost effective than a concave (or regressive) tax function. 

    

Theorem 3: If the vN-M utility function u satisfies SDRA, then a scheme ),( pt  is 

efficient in Q only if t is concave.  

 

The proof involves showing that for each [ ]yw ,0∈  there exists a probability ]1,0[∈p   

and a level curve passing through ))(,( wzw  as in Fig. 1 such that the function )(yty −  lies 

entirely above it. 

 

Proof of Theorem 3: Since ),( pt  is efficient, given any [ ]yy ,0ˆ∈   (as shown in the  

proof of  Theorem1) there exists an x̂  such that )ˆ(ˆ xty ≥  and 

))ˆ(ˆ())ˆ(1())ˆ(ˆ( xtyuxpytyu −−=− .  

 

Three cases arise: ( ) ( ) ,1ˆ,0ˆ == xpxp and 1)ˆ(0 << xp .  We consider these in that  

order. 

 

If ))ˆ(ˆ())ˆ(ˆ(,0)ˆ( xtyuytyuxp −=−=  and therefore )ˆ()ˆ( xtyt = . Since ≥− ))(( ytyu  

))ˆ(( xtyu −  for all )ˆ(xty ≥  (from the incentive constraints and that 0)ˆ( =xp ) and t is 

non-decreasing (by Theorem 1), it follows that ( )xtyt ˆ)( =  for all )ˆ(ˆ xtxy ≥≥ . On the 
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other hand, since t is non-decreasing, )ˆ()( xtyt ≤  for xy ˆ≤ . Thus, all of t  lies below the 

line )ˆ()ˆ()( ytxtyl ==  for all ].,0[ yy ∈  

 

If 0))ˆ(ˆ(,1)ˆ( =−= ytyuxp , i.e., yyt ˆ)ˆ( = . Since )(yty≥  for all 0≥y , it follows that 

all of )(yt  lies below the 450 line )(yly =  and )ˆ()ˆ( ytyl = .  

 

For the remaining case, that is, 1)ˆ(0 << xp , define )ˆ(ˆˆ),ˆ( ytywxtyz −=−= , and 

)ˆ(ˆˆ xtyz −= . Consider the level curve corresponding to )ˆ(xp , that is, the set of w and z 

satisfying )())ˆ(1()( zuxpwu −=  for all z ≥  0. As seen from Figure 1, there exists a line 

0~,0),~()( ≥>−= zazzazk , such that )ˆ(ˆ zkw =  and )(zkw ≥  for all w satisfying 

0~),())ˆ(1()( ≥≥−≥ zzzuxpwu . 

 

Since in view of the incentive constraints ))ˆ(())ˆ(1())(( xtyuxpytyu −−≥−  for all y≥  

)ˆ(xt ,  z = y - )ˆ(xt  and z~  = y~  - )ˆ(xt  for some y~  ≥  )ˆ(xt , 

 

)]ˆ(~())ˆ([()( xtyxtyayty −−−≥−   for all  ( )xtyy ˆ~ ≥≥  

( )yya ~−=   for all  ( )xtyy ˆ~ ≥≥ , 

and 

)~ˆ()ˆ(ˆ yyayty −=− . 

Since 0 allfor  0)( ≥≥− yyty , the above inequality is true for y y~≤  as well. This 

means that there exists α  and β  such that 
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)(yt  ≤  α  y + β  for all y ≥  0 

and 

)ˆ(yt = α  ŷ  + β . 

 

We have thus shown that in all the three cases, given any ],0[ˆ yy∈ , there exists an affine 

function )(yl  such that )ˆ(yt = )ˆ(yl  and )(yt  ≤  )(yl  for all y ≥  0. This proves that t  is 

concave. 

 

By definition, the net revenue maximizing scheme must be such that raising an 

 additional dollar of revenue requires exactly an additional dollar of audit expenditure. 

Raising the taxes corresponding to the low-income levels not only increases the tax 

revenue collected but also deters the higher income agent from underreporting and thus 

saves audit expenditure. It is therefore optimal to impose proportionately higher taxes on 

low-income levels. Theorem 3 basically confirms this intuition. 

 

Though in our formulation the audit probabilities are determined endogenously and 

allowed to be random, our characterization does not rule out the possibility of optimal 

audit probabilities being deterministic. In particular, it does not preclude the optimality of 

the following type of tax and audit schemes: *)(  and  *0for    )( yytyyyyt =≤≤=  for   

*yy ≥  ;   *0for   1)( yyyp ≤≤= and .*for    0)( yyyp ≥=  The tax function is clearly 

concave and non-decreasing and the audit function in non-increasing as required by our 

characterization. Such deterministic audit schemes are of particular interest as they 
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resemble debt contracts, provided the act of auditing is identified with bankruptcy, and 

have been shown to be optimal in a variety of contexts (see e.g. Dye (1986)). Examples are 

however easily constructed in which deterministic audit probabilities are not optimal.  

 

5. Conclusions 

 

The contribution of this paper is two fold. First, it characterizes the optimal income tax and 

audit schemes when the agent is risk averse and not necessarily risk neutral by applying  

tools and concepts from the theory of risk aversion that have not been used before in this 

literature. Second, the paper advances the theory of risk aversion itself by not only 

discovering a new application, but also by suitably extending/generalizing it. This enriches 

both the areas. Alternatively, we could have adopted a convenient utility function, namely, 

αayyu =)( and obtained all our results. However, we have avoided this approach not 

merely for the sake of greater generality, but also for understanding better the role of the 

agent’s risk aversion in the determination of the optimal policy.  The concept of SDRA 

complements that of DARA as it implies that absolute risk aversion is decreasing with 

income at a higher rate.      

 

We assumed that penalties like taxes and audit probabilities are determined endogenously 

subject only to an upper and lower bound. We know from the literature on economics of 

crime prevention that endogenous determination of penalties gives rise to what is often 

called the “Becker conundrum” – it is optimal to increase penalties as far as possible and 
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minimize the probability of costly auditing. Accordingly, in the present context the penalty 

for misreporting, no matter how insignificant, is extreme. This is clearly at odds with the 

actual practice. Doing away with this optimal penalty will however only reinforce our 

results. This is so because milder penalties only strengthen the incentives for misreporting 

and thus make it even harder to enforce a progressive tax function. 

 

It may appear that the application of the revelation principle simplifies the analysis 

and tells us a lot about the effective taxes but little about the nominal ones. This is however 

not entirely so and by a suitable interpretation of our results we can also learn a few things 

about the nature of the nominal taxes and the pattern of underreporting. Let ),,( fpt be a 

tax and audit scheme that does not induce truthful reporting but that maximizes the net tax 

revenue. Suppose that the tax function t  is increasing and let yy ≤)(α  be the optimal 

report of the agent with income y . Let ),,( fpt ′′′  be the equivalent scheme defined as 

follows: for each )),(()(, ytyty α≡′ )),(()( ypyp α≡′  and =′ ),( yxf  ).),(( yxf α  Since 

the original scheme ),,( fpt  is net revenue maximizing, so must be the equivalent scheme 

),,( fpt ′′′ - besides inducing truthful reporting. Thus, ),,( fpt ′′′  must be efficient and 

therefore, as shown, t′  must be non-decreasing. Since both tt ′  and  are monotonic and 

))(()()())(( ytytytyt ′=′′≥′= αα  for ,yy ′>  it follows that ,for  )()( yyyy ′>′≥ αα  i.e., the 

higher income agents report higher incomes. Furthermore, if the nominal tax function t  is 

progressive, then since the effective tax function t′  is regressive, tax evasion must be 

increasing with income 
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