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Abstract

We give two procedures for determining whether efficient Pareto improv-
ing local changes are possible. When they are, the procedures compute for
them. Any procedure generating efficient and Pareto improving changes
can be replicated by these procedures. The two programs form a striking
duality. We apply the procedures to Pareto improving exchange processes,
Pareto-improving tariff-tax reforms and to the problem of constrained Pareto
optimum where informational constraints are present.
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1 Introduction

Suppose that representatives from n countries negotiate piecemeal changes in

multilateral tariffs. If they fail to reach an agreement, status quo prevails. A

reasonable requirement of any agreement is that all participants benefit from

the change. If larger tariff changes are more costly, whether economically

or politically, it is desirable that such changes are efficient also. There are

usually many efficient Pareto improving directions of changes when Pareto

improving changes are possible. An equity criterion further narrows the

choices. A large country may argue that it should benefit more than smaller

countries. One way to express the equity considerations is through the share

ratios of the total increase in aggregate welfare that goes to individuals. The

MDP exchange process [4], [12] is such a process. Another way is through

the exponents in the generalized Nash product of benefit increases[13].

If the share ratios of the aggregate welfare increase are prescribed, one can

attempt to find an efficient local change that produces the share ratio. We

modify a method in Yun [25] and use it to test whether there is an efficient

and Pareto improving local change that generates the share ratios and to

compute the direction when it exists. If positive exponents are chosen in the

generalized Nash product, we maximize the product over Pareto improving

changes of unit length. When a Pareto improvement is possible, the product
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is maximized at a unique efficient and Pareto improving direction.

We represent the feasible local changes by a non-empty, closed convex

cone K in Rl and criteria by vectors {vi}ni=1 in Rl. We interpret {vi} as the

gradients of some criteria functions. A local change d inK is

improving if vi · d > 0, all i. When there is a Pareto improving change, d

∈ K\{0} is efficient if there does not exist d0 ∈ K of equal size (|d0| = |d|)

such that vi · d0 > vi · d, for all i.

Denote the standard unit simplex in Rn as∆ ≡ {x ∈ Rn|x ≥ 0,Pxi = 1}

and its relative interior as ∆◦ and the unit disk in Rl by D ≡ {d ∈ Rl|d · d ≤

1}. Given v in Rl, πK v is the orthogonal projection of v to K.

Consider the following two problems:

Program 1. Given positive numbers {ci}, i = 1, · · ·, n,

min
λ∈∆

¯̄̄̄
¯πKX

i

λicivi

¯̄̄̄
¯ . (1)

Program 2. Given λ in ∆◦,

max
d

Πi (vi · d)λi

subject to d ∈ K ∩D, vi · d ≥ 0, i = 1, · · ·, n.

The two problems share criterion vectors {vi} and the feasible directions K.
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The positive numbers {ci} specify the first problem and the positive expo-

nents {λi} specify the second. The minimum of program 1 or the maximum

of program 2 is zero if and only if a Pareto improving change does not exist.

A solution to either program gives a Pareto improving and efficient change

when a Pareto improvement is possible. Conversely, given any Pareto im-

proving and efficient local change, one can specify program 1 or Program 2

in such a way that the given direction solves the problems. The two pro-

grams form a striking duality. Suppose program 1 is defined with positive

{ci},where c = (c1, · · ·, cn) is positively proportional to ( 1s1 , · · ·, 1sn ) for some

s ∈ ∆◦ and it has a strictly positive solution λ. If we define program 2 with

the exponents {λi}, then the solution d yields share ratios s, i.e., si = vi·dP
i vi·d ,

each i. Conversely, suppose program 2 is defined with positive exponents

λ ∈ ∆ and the solution d yields share ratios {si}. Then, if program 1 is

defined with c, that is positively proportional to ( 1
s1
, · · ·, 1

sn
), {λi} is a solu-

tion to the program 1. In both cases, πK
P

i λi
1
si
vi given by the solution λ

of the program 1 is positively proportional to the solution d of the program

2. When there is a single function f whose gradient is v, the duality reduces

to the fact that f increases fastest in the direction of the projected gradient

πK v.

Figures 1 - 3 illustrate the above programs and their duality when n = 2,

K = R2 and c1 = c2 = 1. In Figure 1, two gradients v1 = a = (3
4
, 5
4
), v2 = b =
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(7
4
, 1
4
) are shown. The vector v = (1, 1) = 3

4
a + 1

4
b solves the first program.

Since v is orthogonal to a − b, a · v = b · v > 0. So, the share ratios are

s = (1
2
, 1
2
). The arc connecting e to f (excluding e or f) consists of vectors in

the unit circle that form acute angles with both a and b. The inner product

of the vectors on the arc with a and b respectively are plotted by the heavy

curve in Figure 2. The part of the heavy curve in Figure 2 connecting A to B

is ‘efficient.’ The efficient part is obtained by taking the vectors on the unit

circle between a and b in Figure 1 and taking inner products with a and b. If

we maximize w = (a · d) 34 (b · d) 14 by choosing d among unit vectors, we reach

the maximum at C in Figure 2 at d = ( 1√
2
, 1√

2
). At this direction of change,

a · d = b · d = √2 and the resulting share ratios are s = (1
2
, 1
2
). Figure 3

a

b

e

v = 3ê4 a + 1ê4 b

f

Figure 1:
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transports Figure 2 to Figure 1. Here, the level curve of w corresponding to

d = ( 1√
2
, 1√

2
), a0 = 1√

2
a and b0 = 1√

2
b are shown. The gradient of lnw is equal

to d = 3
4
1√
2
a + 1

4
1√
2
b. Also, ( 1√

2
a − 1√

2
b) · d = 0. From the geometry given

by the previous two equations, λ = (3
4
, 1
4
) minimizes

¯̄̄
λ1

1√
2
a+ λ2

1√
2
b
¯̄̄
over

λ ∈ ∆. Thus, when c is positively proportional to ( 1
s1
, 1
s2
) = (2, 2), λ = (3

4
, 1
4
)

solves program 1.

Dixit[5], Guesnerie[8],Turunen-Red and Woodland[21], study conditions

under which Pareto improving piecemeal tariff and tax reforms exist. Weymark[20]

shows that when the tangent cone K is a half space of Rl and Dfi(x) was a

gradient of fi at x, i = 1, · · ·, n, a feasible direction is efficient if and only if it

can be expressed as πK
Pn

i=1 λiDfi(x) for some nonzero λ ≥ 0. When there

is one welfare function whose gradient is not zero, the gradient direction is

the only efficient direction of change and is welfare improving. D’Aspremont

and Tulkens[4], Tirole and Guesnerie [18] use the gradient of a weighted

sum of welfare functions in studying exchange processes and tax reforms re-

spectively. When there are more than one maximand, the gradient method

gives an efficient direction but is not necessarily Pareto improving. Tulkens

and Zamir[19] study local cooperative games with transferable utility in the

context of dynamic exchange processes.

We examine what an efficient and Pareto improving exchange process

looks like in general. By varying the equity criterion, we can generate all
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efficient and Pareto improving exchange processes. We show that the M70

process is efficient while theMDP process is not. We then give an example of

a tariff reform. Our method not only checks the feasibility of a particular type

of Pareto improving tariff reform but it also computes, whenever possible,

the direction of an efficient and Pareto improving tariff reform corresponding

to a choice of equity criterion.

Next, we apply our analysis to models where information constraints are

present. In the standard principal-agent model, the principal has all the

bargaining power and the agent solves an optimization problem within the

principal’s problem (the incentive constraint). When both parties have some

bargaining power and when some constraints are informational, constrained

Pareto optimum — not Pareto optimum nor the principal’s solution — is the

relevant concept. We characterize a constrained Pareto optimum and show

how to find (constrained) Pareto improving directions when the current po-

sition is not a constrained Pareto optimum.

1.1 Mathematical Preliminaries

A subset A of Rl is a cone if v ∈ A, α > 0 imply αv ∈ A. For a non-empty

subset S of Rl, its (negative) normal cone is S− = {v ∈ Rl|v · w ≤ 0, for

all w in S}. Given a non-empty closed set C in Rl and x in C, the tangent
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cone is TC(x) = {v ∈ Rl| there is a sequence {xi} in C converging to x and

a positive sequence {ti} decreasing to zero such that (xi − x)/ti → v}. The

tangent cone is non-empty, closed. If C is convex, TC(x) is convex. We often

write TC(x)
− as NC(x). Suppose C and D are closed convex sets in Rl and

x ∈ C ∩ D. If TC(x) − TD(x) = Rl, then TC∩D(x) = TC(x) ∩ TD(x) and

NC∩D(x) = NC(x)+ND(x). The condition TC(x)−TD(x) = Rl is equivalent

to NC(x) ∩−ND(x) = {0}([1],[24]).

Let K be a non-empty, closed convex cone in Rl. The orthogonal pro-

jection to K, πK , maps v in Rl to the unique vector in K minimizing the

Euclidean distance from v. For v ∈ Rl and c > 0, πKcv = cπKv and πK

is linear if K is a linear subspace. Given any v ∈ Rl, {v = w + z, w · z =

0, w ∈ K, z ∈ K−} has a unique solution {w = πKv, z = πK−v}. Thus, if

w = πKv, v ·w = w ·w and for d ∈ K, v · d ≤ w · d. Given d ∈ K, u ∈ NK(d)

if and only if u ∈ K− and u · d = 0. The functions v ∈ Rn 7→ |πKv| and

λ ∈ ∆ 7→ |πK
P

i λivi| are convex.

Given v, w in Rl, we write: v ∝ w if there is c > 0 such that v = cw;

v > 0 if v ≥ 0 and v 6= 0; v >> 0 if vi > 0, all i; and |v| is the Euclidean

norm of v.

Let F be the cone of Pareto improving directions for some {vi}ni=1 in Rl

and λ a vector in∆◦. If F is not empty, d ∈ F → ln(v1·d)λ1(v2·d)λ2 ···(vn·d)λn

is a concave function. From this and the geometry of F , Program 2 has a
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unique solution when Pareto improving directions exist.

2 Main Results

Let K be a non-empty, closed convex cone of feasible changes in Rl. When

there is a single objective function with the gradient v, a feasible change d

satisfying v · d > 0 does not exist if and only if πK v = 0. When πK v is

not zero, πK v is the efficient direction that improves the objective function.

Theorem 3 extends this observation to the case of n objective function in

terms of program 1 and program 2. Let {vi} be in Rl, i = 1, · · ·, n.

Lemma 1 A Pareto improving change does not exist if and only if there is λ

in ∆ satisfying πK
P

i λivi = 0. A Pareto improving change v ∈ K is efficient

if and only if there is λ > 0 such that v = πK
P

i λivi.

Proof. Suppose there is no d in K satisfying vi · d > 0, all i. Applying

a necessary condition for a Pareto optimum [2][24],
P

i λivi ∈ K− or equiva-

lently, πK
P

i λivi = 0 for some λ in ∆. Conversely, suppose there is λ in ∆

satisfying
P

i λivi ∈ K−. Since
P

i λivi · d ≤ 0 for any d in K, there cannot

be d in K satisfying vi · d > 0, all i. If v ∈ K\{0} is efficient, there is no

u in K such that |u| = |v| and vi · u > vi · v, all i. A necessary condition

for this is: There is (λ, α) > 0 such that
P

i λivi − αv ∈ NK(v) [2][24], or
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equivalently,
P

i λivi − αv ∈ K− and (
P

i λivi − αv) · v = 0 (since K is a

closed, convex cone). Thus, v = πK(
P

i λivi − αv + v). For any λ > 0,P
i λivi /∈ K− since a Pareto improving change is possible. Since NK(v) ⊂

K−,
P

i λivi /∈ NK(v). We conclude that α cannot be zero. By choosing

α = 1, v = πK
P

i λivi, where λ > 0. Conversely, suppose v = πK
P

i λivi

for some λ > 0. Since
P

i λivi /∈ K−, v 6= 0. The orthogonal decomposition

of
P

i λivi gives
P

i λivi − v = u, where u ∈ K− and v · u = 0. Consider

w ∈ K with |w| = |v| . Since (Pi λivi − v) · v = 0 and (Pi λivi − v) · w ≤ 0,

(
P

i λivi − v) · (w− v) ≤ 0. From v · v ≥ v ·w, (Pi λivi) · (w− v) ≤ 0. Thus,

it is not possible that vi · w > vi · v, all i.

Since the definitions of a Pareto improving change and an efficient change

are independent of the lengths of {vi}, characterizations in Lemma 1 are

independent of them.

Lemma 2 Define program 1 with strictly positive {ci}. Then, λ ∈ ∆ is a

solution to program 1 if and only if (∗) v = πK
P

i λicivi satisfies civi·v ≥ v·v,

all i and civi · v = v · v whenever λi > 0. Assume that a Pareto improving

change exists and define program 2 with a strictly positive λ ∈ ∆. Then, d in

K, where |d| = 1, is the solution to program 2 if and only if (∗∗) vi · d > 0

for each i and d = πK
P

i λi
1

vi·dvi.
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Proof. Suppose that λ solves program 1 and let w =
P

i λicivi and v =

πK w. Then, w = v+u, where u ∈ K− and v·u = 0. Since |v| ≤ |πK
P

i λ
0
icivi|

for any λ0 ∈ ∆, |v| ≤ |πK (w + t(civi − w))| ≤ |w + t(civi − w))− u| =

|v + t(civi − w))| for each i and t ∈ [0, 1]. The second inequality follows

since |πK (w + t(civi − w))| is the minimum distance from w + t(civi − w)

to K− and u is in K−. Thus, d
dt
(v + t(civi − w)) · (v + t(civi − w)) |t=0 =

2v · (civi − w) ≥ 0 for each i. We have: civi · v ≥ w · v = v · v, all i. SinceP
i λicivi · v = w · v =Pi λiv · v, λicivi · v = λiv · v, all i and civi · v = v · v

if λi > 0. Conversely, suppose (∗) holds and let v0 = πK
P

i λ
0
icivi, for some

λ0 ∈ ∆. There are u, u0 in K− such that v =
P

i λicivi − u , u · v = 0 and

v0 =
P

i λ
0
icivi− u0, u0 · v0 = 0. Since u minimizes the distance fromPi λicivi

toK− and [u0, u] ⊂ K−, d
dt
(t(u0−u)−v)·(t(u0−u)−v) |t=0 = −v ·(u0−u) ≥ 0.

Then, v ·v0 = v ·(−u0+Pi λ
0
icivi) ≥ v ·(−u+Pi λ

0
icivi) ≥ v ·v. The second in-

equality is from civi·v ≥ v·v and v·u = 0. Thus, |v| |v0| ≥ v·v0 ≥ v·v = |v|·|v| ,

implying |v0| ≥ |v| .

Next, suppose that d solves program 2. Since Pareto improvement is

possible, vi · d > 0, all i. Since for α > 0, Πi (vi · αd)λi = Πi α(vi · d)λi ,

|d| = 1. Taking the log of the maximand, a necessary condition for optimum

is
P

i λi
1

vi·dvi ∈ NC(d), where C = K ∩D. We show that NC(d) = ND(d) +

NK(d). It is sufficient to show TD(d) − TK(d) = Rl, or equivalently, ND(d)

∩−NK(d) = {0}. Now, ND(d) = {cd|c ≥ 0} and NK(d) = {u|u ∈ K−, u·d =
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0}. If cd = −u for u ∈ NK(d) and c ≥ 0, then cd · u = −u · u = 0, implying

u = 0. Thus,
P

i λi
1

vi·dvi = γd + u where γ ≥ 0, u ∈ K− and u · d = 0.

Taking an inner product of d with both sides of the equation, γ = 1. Thus,

d = πK
P

i λi
1

vi·dvi. Conversely, suppose (∗∗) holds and consider a Pareto

improving d0 ∈ K ∩D. Using the concavity of the maximand and writingP
i λi

1
vi·dvi = d+u, where u ∈ K− and u·d = 0,Pi λi ln vi·d0−

P
i λi ln vi·d ≤P

i λi
1

vi·dvi·(d0−d) = (d+u)·(d0−d) ≤ d·(d0−d) ≤ 0. The last two inequalities

follow from u · d0 ≤ 0, u · d = 0 and from |d0| = |d| .

Combining Lemma 1 and Lemma 2:

Theorem 3 Let v = πK
P

i λicivi, where λ is a solution of program 1. Then,

v = 0 if and only if a Pareto improving change does not exist. If v 6= 0, it

is efficient and Pareto improving. If the maximum value at a solution d to

Program 2 is positive, d is non-zero, efficient and Pareto improving. If the

maximum at a solution d to Program 2 is zero, a Pareto improving direction

does not exist and the zero vector is a solution.

Proof. From Lemma 1, v = 0 if and only if Pareto improving direction

does not exist and v is efficient if Pareto improving direction exists. From

Lemma 2, v is Pareto improving since civi · v ≥ v · v > 0, all i. Suppose

the maximum value of Program 2 is positive at a solution d. If there were

d0 ∈ K such that |d0| = |d| and vi · d0 > vi · d, all i, d would not maximize the
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generalized Nash product over the feasible set. Thus, d is efficient. The rest

is clear.

Although Program 1 may not have a unique solution, the corresponding

direction πK
P

i λicivi is unique.

The cone of feasible changes K need not be all economically feasible

directions but rather those the policy makers choose to restrict themselves

to. For example, the policy makers may test whether proportional reductions

of tariffs would increase welfare of all parties (Yun[23]).

A converse of Theorem 3 is:

Theorem 4 A non-zero v ∈ K is an efficient, Pareto improving direction if

and only if there are positive numbers {ci}, i = 1, · · ·, n and λ in ∆ satisfying

v = πK
P

i λicivi and civi · v = cjvj · v, all i, j. Program 1, defined with {ci},

has λ as a solution and program 2, if defined with a strictly positive λ, has

d = v
|v| as its unique solution.

Proof. Suppose that v ∈ K is an efficient, Pareto improving direction.

By Lemma 1, there is α ∈ ∆ such that v ∝ w = πK
P

i αivi. We only

consider the case of when v = w. There are u ∈ K−, u · v = 0 such that

v = −u+Pi αivi. Choose positive numbers {ci} such that civi · v = cjvj · v,

all i, j and
P

i
αi
ci
= 1 (for each i, choose ai =

v1·v
vi·v and let ci = kai where

k =
P

i
αi
ai
). Then, v = −u+Pi λicivi, where λi ≡ αi

ci
for each i and λ ∈ ∆.
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The converse follows from Lemma 1 and v ·v =Pi λicivi ·v = civi ·v > 0. By

Lemma 2, λ is a solution of the program 1 defined with {ci}. Next, let d = v
|v| .

Then, d = − u
|v| +

P
i λi

ci
|v|vi ∈ K, where |d| = 1 and civi · d = cjvj · d, all i, j.

Taking an inner product of d with both sides of the equation, 1 = ci
|v|vi · d for

each i. Thus, d = πK
P

i λi
1

vi·dvi. By Lemma 2, d is the solution of program

2 defined with λ.

In a two person bargaining problem, a utility allocation is a Nash solu-

tion if and only if there is an affine transformation of utilities such that the

solution in the new units is simultaneously the egalitarian and the utilitar-

ian solution. Myerson[13][16] considers a generalized Nash problem where

individuals may carry different weights. In the present context, we have:

Corollary 5 A feasible direction d of unit length is efficient and Pareto im-

proving if and only if there are positive numbers {ci}, i = 1, · · ·, n and λ in

∆ such that d maximizes
P

i λici · v over v ∈ K ∩D and civi · d = cjvj · d,

for each i, j.

Proof. By Theorem 4, d inK\{0} is efficient and Pareto improving if and

only if there are positive {ci} such that d = πK
P

i λicivi and civi ·d = cjvj ·d

for each i, j. For any v ∈ K∩D,
P

i λicivi ·d = d ·d = 1 ≥ d ·v ≥Pi λicivi ·v.

The converse follows since 1 > d · v for v 6= d in the previous expression and

thus d is the unique maximzer of
P

i λicivi · v over v ∈ K ∩D.
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2.1 Share ratios of aggregate welfare improvements

A Pareto improving change d generates a share ratio s in∆ where si =
vi··dP
i vi··d

for each i. When vi is the domestic price vector for the economy i in terms

of commodity l, vi · d represents the rate of increase of welfare measured in

commodity l in the economy. Given a strictly positive s in ∆, one can look

for an efficient, Pareto improving change d generating the share ratio. If such

a change exists, it can be found by minimizing
¯̄̄
πK
P

λi
1
si
vi

¯̄̄
over λ ∈ ∆.

The following feasibility condition shows when an efficient, Pareto improving

direction d can generate a strictly positive share ratios s.

(a) d ∝ v = πK
X
i

λi
si
vi, for an λ in ∆. (b) vi · v = siv · v, all i.

(Condition F)

Condition F shows that the share ratio si is the Fourier coefficients
vi·v
v·v in

projecting vi in the direction of v.

Lemma 6 An efficient, Pareto improving direction d generates a strictly

positive share ratios s if and only if Condition F is satisfied.

Proof. Wemay replace the conditions in Theorem 4 by (a0) v = πK
P

i λicivi

and (b0) vi · v = civ · v, all i since v · v =
P

i λicivi = civi · v. A non-zero d

satisfying Condition F satisfies (a0), (b0) with ci =
1
si
and generates s sinceP

i vi ·v = v ·v. Conversely, if a non-zero d satisfies (a0) and (b0) and generates
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s, then d satisfies Condition F with d = kv and si = k 1
ci
, where k = 1/

P
i
1
ci
.

The following duality theorem now follows from Theorem 4 and Lemma

6.

Theorem 7 If Program 1 is defined with { 1
si
} for some s in ∆◦ and has a

solution λ in ∆◦ and πK
P

i λi
1
si
vi 6= 0, then Problem 2, defined with λ, has a

unique solution d that generates the share ratio s. Conversely, if Program 2

is defined with λ in ∆◦ and has a Pareto improving solution d that generates

the share ratio s, then Problem 1, defined with { 1
si
}, has a solution λ. In both

cases, d ∝ πK
P

i λi
1
si
v.

Proof. Suppose that program 1 is defined with { 1
si
} for some s in ∆◦ and

has a solution λ in ∆◦ and v = πK
P

i λi
1
si
vi 6= 0. By Lemma 2, vi ·v = siv ·v,

all i. By Theorem 4, program 2 defined with λ has d ∝ v as the solution

and thus generates s. If program 2 is defined with λ in ∆◦ and has a Pareto

improving solution d, then by Lemma 2, d = πK
P

i λi
1

vi·dvi.where vi·d > 0,all

i. Then, v = πK
P

i λi
1
si
vi = (

P
i vi · d) d. Since |d| = 1, v · v = (

P
i vi · d)2 =

1
si
vi · v. By Theorem 4, program 1, defined with s, has a solution λ.
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Schematically:

program 1 program 2

given s (ci =
1
si
) λ

determines λ s

direction of change v = πK
P

i λi
1
si
vi d = πK

P
i λi

1
vi·dvi ∝ v

(2)

A Pareto improving direction given by Program 2 is invariant with respect

to the lengths of {vi}. This is clear since for any positive numbers {ci},

Πi(civi ·d)λi = cΠi(vi ·d)λi , where c = Πic
λi
i > 0. The invariance is important

since the lengths of {vi} may not be economically meaningful. Program 1,

by contrast, picks different Pareto improving directions when the lengths of

{vi} are altered through multiplicative factors { 1si}. A duality between the

procedures shows, however, that they are in a sense equivalent.

3 Applications and Examples

3.1 Exchange Processes

Consider an exchange economy with n traders and l(≥ 2) goods. The con-

sumption xi of trader i and the aggregate endowment ω are strictly positive

vectors in Rl. The consumption allocations are {x = (x1, · · ·, xn)|x >>
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0,
P

i xi = ω}. The utility function of trader i is ui(x) ≡ Ui(xi), whose gradi-

ents are strictly positive vectors vi and Vi. Then, vi = (0, · · ·, 0, Vi, 0, · · ·, 0) ,

where Vi is the ith l-vector of vi. We normalize: |Vi| = 1, all i. The feasible di-

rections at a consumption allocation x isK =
©
z = (z1, · · ·, zn) |zi ∈ Rl, all i and

P
i zi = 0

ª
whose normal is K− =

©
(r, · · ·, r) ∈ Rnl|r ∈ Rl

ª
. Let z = πK

P
i λi

1
si
vi,

λ ∈ ∆. By the orthogonal decomposition,
P

i λi
1
si
vi = (λ1

1
s1
V1, · · ·, λi 1siVi, · ·

·, λn 1
sn
Vn) = (z1, ···, zn)+(r, ···, r). From this, r = 1

n

P
i λi

1
si
Vi. For i = 1, ···, n,

zi =
λi
si
Vi − 1

n

X
j

λj
sj
Vj. (3)

Total gain is:
P

i Vi · zi =
P

j
λj
sj
− V ·Pj

λj
sj
Vj, where V ≡

P
j
1
n
Vj. For

each i,

λi
si
− 1

n
Vi ·

X
j

λj
sj
Vj = si

ÃX
j

λj
sj
− V ·

X
j

λj
sj
Vj

!
. (4)

3.1.1 exchange processes using program 1

Consider first the case of equal division of the aggregate gain; si =
1
n
, each

i. By choosing d = n2z and denoting eV ≡ P
i λiVi, (3) and (4) become

di = nλiVi − eV and λi =
1
n

³
1 +

¡
Vi − V

¢ · eV ´ , i = 1, · · ·, n. From the

Brouwer fixed point theorem, there is λ in ∆ solving the latter equations.
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Using a solution λ to evaluate eV ,
di =

³
1 +

¡
Vi − V

¢ · eV ´Vi − eV , i = 1, · · ·, n (5)

This process is Pareto improving (generates share ratios si =
1
n
, each i)

whenever d 6= 0; that is, whenever Vi 6= Vj for some i, j. In the followings, we

assume that this is the case.

We present an efficient and Pareto improving process where one needs not

solve for λ at each step. The process may be considered an approxima-

tion of the above process. Approximate eV by V and assign values λi =

1
n

¡
1 +

¡
Vi − V

¢ · V ¢ for each i. Then the process is given by (5). Since

V · V < 1 and {Vi} are non-negative, λi > 0, all i. Also,
P

i λi = 1 andP
di = 0. This process is efficient since d ∝ πK

P
λivi. It is Pareto improv-

ing since nVi · di = (1− V · V )(1 − Vi · V ) + 1
n

³P
j(1− Vj · V )Vi · Vj

´
> 0.

The inequality follows from Vi · V ≤
¯̄̄
1
n

P
j Vj

¯̄̄
< 1.

The MDP process [12] is an exchange process that can generate any pre-

scribed share ratios {si}. The price for such a flexibility is that the pro-

cess is not efficient in general. Consider the case of two traders and three

goods. Normalize the gradient of Ui by: πi(xi) ≡ DUi(xi)/DlUi(xi) and

let πi = (π1i , π
2
i ), π ≡

P
i siπi and di = (d1i , d

2
i ). According to the MDP

process, di = siΛ(πi − π) and d3i = siw− πi · di, i = 1, 2 where Λ is a
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diagonal matrix with positive entries and w ≡ P
i πi · di. Collecting the

terms, d1 = s1s2Λ(π1 − π2), d
3
1 = −s1s2(s2π1 + s1π2)

tΛ(π1 − π2), d2 = −d1,

d32 = −d31. The aggregate welfare increase, w = s1s2(π1 − π2)
tΛ(π1 − π2) is

positive unless π1 = π2. We give an example where Λ is the identity ma-

trix and U1 = x1y1z1, U2 = x2y2z2. Holdings of traders are: x1 = (1, 3, 3),

x2 = (3, 1, 1) and s1 = s2 =
1
2
. The MDP process gives the rate of welfare

change (.888, .888). Process 5, with the same norm of the rate of exchanges,

gives the rate of welfare change (1.1178, 1.1178).

3.1.2 exchange processes using program 2

Here, it is convenient to work with d = πK
P

i λi
1

vi·dvi (Lemma 2). Suppose

λ ∈ ∆◦ is given. Following the arguments leading to (3) , di = λiciVi −
1
n

P
j λjcjVj, where ci =

1
Vi·di . Multiplying both sides of the equation with Vi

and writing bV =
P

j λjcjVj, 1 = ci(λici − 1
n
Vi · bV ), for i = 1, · · ·, n. After

solving for positive numbers {ci}ni=1 from these n equations, an efficient,

Pareto improving change is given by: di = λiciVi − 1
n

P
j λjcjVj.

Can we choose λ such that λici = λjcj all i, j. In that case, di ∝ Vi −
1
n

P
j Vj, all i. Such a choice is indeed possible (λi =

1−Vi·V
n(1−V ·V ) , all i). Thus, this

simple process, called the M70 process ([4]), is efficient and Pareto improving.
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3.2 A Numerical Example of Tariff Changes

Consider an exchange international economy with two goods and two countries.

Good 2 is a numeraire and p1 is the world price of good 1 in terms of good

2. The consumption and the endowment of country i are xi = (x
1
i , x

2
i ) and

ωi = (ω
1
i , ω

2
i ). Welfare functions are: U1 =

p
x11x

2
1 and U2 =

p
x12x

2
2. Coun-

tries may impose specific tariffs on good 1 only. The tariff by country i is

ti = (τ i, 0). Negative τ i is subsidy. Domestic price vector in country i is

qi ≡ p + ti. Equilibrium conditions are: DUi(xi) ∝ qi, p · (xi − ωi) = 0,

i = 1, 2 and
P

i xi =
P

i ωi.

Endowments are: {ω1 = (3, 1), ω2 = (1, 3)}. At a tariff profile of (τ 1, τ 2) =

(−0.05, 0.05), the equilibrium consumption allocations are {x1 ≈ (2.30, 1.48), x2 ≈

(1.70, 2.52)} and p1 is approximately 0.69. At the tariff equilibrium, country

1 exports good 1 and subsidizes its export. Country 2 imports good 1 and

charges a tariff on it. At the equilibrium, we compute an efficient and Pareto

improving change in the allocation space. Turunen-Red and Woodland[?]

uses the Motzkin’s Lemma to test whether a particular Pareto improving

tariff reform exists. Our method not only tests the possibility but also com-

putes for such a reform whenever they exist. The feasible allocations are

S = {(x1, x2)|x1 ≥ 0, x2 ≥ 0, x1 + x2 = ω1 + ω2}. Given a strictly posi-

tive x = (x1, x2), the tangent cone TS(x) is K = {d = (d1, d2)|d1 = −d2}.
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Defining ui(x) ≡ Ui(xi), i = 1, 2, let v1 = (DU1(x1), 0) ∝ (q1, 0) and

v2 = (0,DU2(x2)) ∝ (0, q2). For any choice of strictly positive λ1, λ2 summing

to 1, maximizing ln(v1 · d)λ1(v2 · d)λ2 subject to d ∈ K, |d| ≤ 1 is equivalent

to maximizing ln(q1 · d1)λ1(−q2 · d1)λ2 subject to |d1| ≤ 1√
2
. A necessary and

sufficient condition for maximum is λ1
1/2
q1·d1 q1+λ2

1/2
q2·d1 q2 = d1.When {λ1 = 3

4
,

λ2 =
1
4
}, d1 is approximately (−0.575, 0.412). In this computation, we just

used the knowledge of q1, q2.

We can ask what tariff changes will produce the change d. This involves

a general equilibrium computation that requires the knowledge of prefer-

ences around the current tariff equilibrium. Instead, we consider the wel-

fare as a function of a tariff profile and compute an efficient and Pareto

improving tariff changes. Writing xi as a function of τ = (τ 1, τ 2), we

redefine vi ≡ DUi(xi)Dxi(τ)
¯̄
τ=(−0.05,0.05) , i = 1, 2. We compute: v1 ≈

(−0.210,−0.238), v2 ≈ (0.159, 0.115). Since we do not impose any restric-

tion on the changes of tariffs, the tangent cone of feasible directions is R2

and its normal cone is {0}. Maximizing ln(v1 · d)3/4(v2 · d)1/4 subject to

d · d ≤ 1 and vi · d ≥ 0, i = 1, 2, the unique solution is d ≈ (0.631,−0.776).

The welfare improvements are:{v1 · d ≈ 0.52, v2 · d ≈ 0.11}.

Now, we choose c1 =
1

v1·d , c2 =
1

v2·d and minimize |λ1c1v1 + λ2c2v2| over λ

in ∆. The solution is λ = (3
4
, 1
4
). These are precisely the weights used in the

generalized Nash product.
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3.3 Pareto improvement when informational constraints

are present

In the principal-agent framework, the principal has all the bargaining power

(see Grossman-Hart[[6]], Rogerson[[15]], Jewitt[[10]], for example). We may

ask what the Pareto optimal solutions are when both parties have some bar-

gaining power. Also, given a wage schedule w and associated action choice

a by the agent, the principal can consider a piecemeal changes to w that

produce Pareto improvement for both parties. We adopt Rogerson’s nota-

tion closely. With a finite possible outcomes for an effort, the model is finite

dimensional. Let a ≥ 0 and wj ≥ 0, for j = 1, · · ·, n. The expected util-

ity of the principal is given by: U(w, a) =
Pn

j=1 pj(a)u(xj − wj) and that

of the agent by: V (w, a) =
Pn

j=1 pj(a)(v(wj) − a). Here, pj(a) is the prob-

ability that the jth outcome will occur when action a is chosen and xj is

the gross income to the principal in the event of the jth outcome. When

the expected utilities are differentiable, DU(w, a) = (−p1(a)u0(x1 − w1), · ·

·,−pn(a)u0(xn−wn),
Pn

j=1 p
0
j(a)u(xj −wj)) and DV (w, a) = (p1(a)v

0(w1), · ·

·, pn(a)v0(wn),
Pn

j=1 p
0
j(a)v(wj) − 1). We say that (w, a) ≥ 0 is Pareto opti-

mal if there is no (w0, a0) ≥ 0 such that U(w0, a0) > U(w, a) and V (w0, a0) >

V (w, a). If (w, a) >> 0 is Pareto optimal, there is λ ∈ [0, 1] such that

λDV (w, a)+(1− λ)DU(w, a) = 0. That is, λv0(wi) = (1− λ) u0(xi−wi), all
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i and
Pn

j=1 p
0
j(a) [λv(wj) + (1− λ)u(xj − wj)] = λ. Now, suppose that (w, a)

needs to satisfy the participation constraint ((w, a) ∈ C1 ≡ {(w, a)|V (w, a) ≥

V } and an incentive constraint.((w, a) ∈ C2 ≡ {(w, a)|a ∈ argmaxV (w, ·)}.

(We need to introduce participation constraint for the principal, as well.

We do not do so here for simplicity). While the wage schedule w needs

to be agreed upon by both parties, the action a is chosen by the agent.

The idea of constrained Pareto optimum repects this fact. We say that

(w, a) ≥ 0, (w, a) ∈ C ≡ C1 ∩ C2 is constrained Pareto optimal if there is no

(w0, a0) ≥ 0, (w0, a0) ∈ C1 ∩C2 such that U(w0, a0) > U(w, a) and V (w0, a0) >

V (w, a). A necessary condition that (w, a) is a constrained Pareto optimum

is: there is λ ∈ [0, 1] such that λDV (w, a) + (1− λ)DU(w, a) ∈ NC(w, a). A

constrained Pareto optimal (w, a) at which the participation constraint C1

is binding is the solution for the principal in the standard principal-agent

model. If the current allocation is not constrained Pareto optimal, we can

consider a constrained Pareto improvement in w. That is, how can the wage

schedule w be changed so that the welfare of both the principal and the agent

improve while satisfying the incentive constraint?

For a constrained Pareto optimum that is different from a solution to the

principal’s problem, consider the case where the participation constraint is

not binding. We consider a simple case that the optimum a for the agent is

locally given by a differentiable function f ; that is, a = f(w), locally. As-
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suming Df(w) 6= 0, TC(w, a) = {(dw,Df(w)dw)|dw ∈ Rn} and NC(w, a) =

{(−cDf(w), c)|c ∈ R}. So, a necessary condition that (w, a) is a constrained

Pareto optimum is that there is λ ∈ [0, 1] such that λDV (w, a) + (1 −

λ)DU(w, a) = (−cDf(w), c) for some c ∈ R. Writing out: there is λ ∈ [0, 1]

and c ∈ R such that (p1(a) (λv
0(w1)− (1− λ)u0(x1 − w1)) , · · ·, pn(a) (λv0(wn)− (1− λ)u0(xn − wn

−cDf(w) and
Pn

j=1 p
0
j(a) [λv(wj) + (1− λ)u(xj − wj)] − λ = c. If (w, a) is

not a constrained Pareto optimum, we can compute directions of change in

w that would Pareto improve U and V while respecting the incentive con-

straint. For this, first compute c that makes

λDV (w, a)+(1−λ)DU(w, a)−c[−Df(w), 1] orthogonal to [−Df(w), 1]. De-

noting by c the value of such c, c = 1
|[−Df(w),1]|2 [− (λDVw(w, a) + (1− λ)DUw(w, a))Df(w) + (λDV

Next let λ ∈ argmin |λDV (w, a) + (1− λ)DU(w, a)− c(λ,w, a)[−Df(w), 1]| .

Then, a Pareto improving change in w respecting the incentive constraint of

the agent is given by dw = λDwV (w, a)+(1−λ)DUw(w, a)+c(λ,w, a)Df(w).

If λ ∈ (0, 1), U and V improve at the same rate; dU = dV.
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